/* Build expressions with type checking for C++ compiler. Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc. Hacked by Michael Tiemann (tiemann@cygnus.com) This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* This file is part of the C++ front end. It contains routines to build C++ expressions given their operands, including computing the types of the result, C and C++ specific error checks, and some optimization. There are also routines to build RETURN_STMT nodes and CASE_STMT nodes, and to process initializations in declarations (since they work like a strange sort of assignment). */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "rtl.h" #include "expr.h" #include "cp-tree.h" #include "tm_p.h" #include "flags.h" #include "output.h" #include "toplev.h" #include "diagnostic.h" #include "target.h" #include "convert.h" static tree convert_for_assignment (tree, tree, const char *, tree, int); static tree cp_pointer_int_sum (enum tree_code, tree, tree); static tree rationalize_conditional_expr (enum tree_code, tree); static int comp_ptr_ttypes_real (tree, tree, int); static int comp_ptr_ttypes_const (tree, tree); static bool comp_except_types (tree, tree, bool); static bool comp_array_types (tree, tree, bool); static tree common_base_type (tree, tree); static tree pointer_diff (tree, tree, tree); static tree get_delta_difference (tree, tree, int); static void casts_away_constness_r (tree *, tree *); static bool casts_away_constness (tree, tree); static void maybe_warn_about_returning_address_of_local (tree); static tree lookup_destructor (tree, tree, tree); /* Return the target type of TYPE, which means return T for: T*, T&, T[], T (...), and otherwise, just T. */ tree target_type (tree type) { type = non_reference (type); while (TREE_CODE (type) == POINTER_TYPE || TREE_CODE (type) == ARRAY_TYPE || TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE || TYPE_PTRMEM_P (type)) type = TREE_TYPE (type); return type; } /* Do `exp = require_complete_type (exp);' to make sure exp does not have an incomplete type. (That includes void types.) Returns the error_mark_node if the VALUE does not have complete type when this function returns. */ tree require_complete_type (tree value) { tree type; if (processing_template_decl || value == error_mark_node) return value; if (TREE_CODE (value) == OVERLOAD) type = unknown_type_node; else type = TREE_TYPE (value); if (type == error_mark_node) return error_mark_node; /* First, detect a valid value with a complete type. */ if (COMPLETE_TYPE_P (type)) return value; if (complete_type_or_else (type, value)) return value; else return error_mark_node; } /* Try to complete TYPE, if it is incomplete. For example, if TYPE is a template instantiation, do the instantiation. Returns TYPE, whether or not it could be completed, unless something goes horribly wrong, in which case the error_mark_node is returned. */ tree complete_type (tree type) { if (type == NULL_TREE) /* Rather than crash, we return something sure to cause an error at some point. */ return error_mark_node; if (type == error_mark_node || COMPLETE_TYPE_P (type)) ; else if (TREE_CODE (type) == ARRAY_TYPE && TYPE_DOMAIN (type)) { tree t = complete_type (TREE_TYPE (type)); if (COMPLETE_TYPE_P (t) && !dependent_type_p (type)) layout_type (type); TYPE_NEEDS_CONSTRUCTING (type) = TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (t)); TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type) = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (t)); } else if (CLASS_TYPE_P (type) && CLASSTYPE_TEMPLATE_INSTANTIATION (type)) instantiate_class_template (TYPE_MAIN_VARIANT (type)); return type; } /* Like complete_type, but issue an error if the TYPE cannot be completed. VALUE is used for informative diagnostics. DIAG_TYPE indicates the type of diagnostic: 0 for an error, 1 for a warning, 2 for a pedwarn. Returns NULL_TREE if the type cannot be made complete. */ tree complete_type_or_diagnostic (tree type, tree value, int diag_type) { type = complete_type (type); if (type == error_mark_node) /* We already issued an error. */ return NULL_TREE; else if (!COMPLETE_TYPE_P (type)) { cxx_incomplete_type_diagnostic (value, type, diag_type); return NULL_TREE; } else return type; } /* Return truthvalue of whether type of EXP is instantiated. */ int type_unknown_p (tree exp) { return (TREE_CODE (exp) == TREE_LIST || TREE_TYPE (exp) == unknown_type_node); } /* Return the common type of two parameter lists. We assume that comptypes has already been done and returned 1; if that isn't so, this may crash. As an optimization, free the space we allocate if the parameter lists are already common. */ tree commonparms (tree p1, tree p2) { tree oldargs = p1, newargs, n; int i, len; int any_change = 0; len = list_length (p1); newargs = tree_last (p1); if (newargs == void_list_node) i = 1; else { i = 0; newargs = 0; } for (; i < len; i++) newargs = tree_cons (NULL_TREE, NULL_TREE, newargs); n = newargs; for (i = 0; p1; p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n), i++) { if (TREE_PURPOSE (p1) && !TREE_PURPOSE (p2)) { TREE_PURPOSE (n) = TREE_PURPOSE (p1); any_change = 1; } else if (! TREE_PURPOSE (p1)) { if (TREE_PURPOSE (p2)) { TREE_PURPOSE (n) = TREE_PURPOSE (p2); any_change = 1; } } else { if (1 != simple_cst_equal (TREE_PURPOSE (p1), TREE_PURPOSE (p2))) any_change = 1; TREE_PURPOSE (n) = TREE_PURPOSE (p2); } if (TREE_VALUE (p1) != TREE_VALUE (p2)) { any_change = 1; TREE_VALUE (n) = merge_types (TREE_VALUE (p1), TREE_VALUE (p2)); } else TREE_VALUE (n) = TREE_VALUE (p1); } if (! any_change) return oldargs; return newargs; } /* Given a type, perhaps copied for a typedef, find the "original" version of it. */ tree original_type (tree t) { while (TYPE_NAME (t) != NULL_TREE) { tree x = TYPE_NAME (t); if (TREE_CODE (x) != TYPE_DECL) break; x = DECL_ORIGINAL_TYPE (x); if (x == NULL_TREE) break; t = x; } return t; } /* T1 and T2 are arithmetic or enumeration types. Return the type that will result from the "usual arithmetic conversions" on T1 and T2 as described in [expr]. */ tree type_after_usual_arithmetic_conversions (tree t1, tree t2) { enum tree_code code1 = TREE_CODE (t1); enum tree_code code2 = TREE_CODE (t2); tree attributes; /* FIXME: Attributes. */ my_friendly_assert (ARITHMETIC_TYPE_P (t1) || TREE_CODE (t1) == COMPLEX_TYPE || TREE_CODE (t1) == VECTOR_TYPE || TREE_CODE (t1) == ENUMERAL_TYPE, 19990725); my_friendly_assert (ARITHMETIC_TYPE_P (t2) || TREE_CODE (t2) == COMPLEX_TYPE || TREE_CODE (t2) == VECTOR_TYPE || TREE_CODE (t2) == ENUMERAL_TYPE, 19990725); /* In what follows, we slightly generalize the rules given in [expr] so as to deal with `long long' and `complex'. First, merge the attributes. */ attributes = (*targetm.merge_type_attributes) (t1, t2); /* If one type is complex, form the common type of the non-complex components, then make that complex. Use T1 or T2 if it is the required type. */ if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE) { tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1; tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2; tree subtype = type_after_usual_arithmetic_conversions (subtype1, subtype2); if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype) return build_type_attribute_variant (t1, attributes); else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype) return build_type_attribute_variant (t2, attributes); else return build_type_attribute_variant (build_complex_type (subtype), attributes); } if (code1 == VECTOR_TYPE) { /* When we get here we should have two vectors of the same size. Just prefer the unsigned one if present. */ if (TREE_UNSIGNED (t1)) return build_type_attribute_variant (t1, attributes); else return build_type_attribute_variant (t2, attributes); } /* If only one is real, use it as the result. */ if (code1 == REAL_TYPE && code2 != REAL_TYPE) return build_type_attribute_variant (t1, attributes); if (code2 == REAL_TYPE && code1 != REAL_TYPE) return build_type_attribute_variant (t2, attributes); /* Perform the integral promotions. */ if (code1 != REAL_TYPE) { t1 = type_promotes_to (t1); t2 = type_promotes_to (t2); } /* Both real or both integers; use the one with greater precision. */ if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2)) return build_type_attribute_variant (t1, attributes); else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1)) return build_type_attribute_variant (t2, attributes); /* The types are the same; no need to do anything fancy. */ if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2)) return build_type_attribute_variant (t1, attributes); if (code1 != REAL_TYPE) { /* If one is a sizetype, use it so size_binop doesn't blow up. */ if (TYPE_IS_SIZETYPE (t1) > TYPE_IS_SIZETYPE (t2)) return build_type_attribute_variant (t1, attributes); if (TYPE_IS_SIZETYPE (t2) > TYPE_IS_SIZETYPE (t1)) return build_type_attribute_variant (t2, attributes); /* If one is unsigned long long, then convert the other to unsigned long long. */ if (same_type_p (TYPE_MAIN_VARIANT (t1), long_long_unsigned_type_node) || same_type_p (TYPE_MAIN_VARIANT (t2), long_long_unsigned_type_node)) return build_type_attribute_variant (long_long_unsigned_type_node, attributes); /* If one is a long long, and the other is an unsigned long, and long long can represent all the values of an unsigned long, then convert to a long long. Otherwise, convert to an unsigned long long. Otherwise, if either operand is long long, convert the other to long long. Since we're here, we know the TYPE_PRECISION is the same; therefore converting to long long cannot represent all the values of an unsigned long, so we choose unsigned long long in that case. */ if (same_type_p (TYPE_MAIN_VARIANT (t1), long_long_integer_type_node) || same_type_p (TYPE_MAIN_VARIANT (t2), long_long_integer_type_node)) { tree t = ((TREE_UNSIGNED (t1) || TREE_UNSIGNED (t2)) ? long_long_unsigned_type_node : long_long_integer_type_node); return build_type_attribute_variant (t, attributes); } /* Go through the same procedure, but for longs. */ if (same_type_p (TYPE_MAIN_VARIANT (t1), long_unsigned_type_node) || same_type_p (TYPE_MAIN_VARIANT (t2), long_unsigned_type_node)) return build_type_attribute_variant (long_unsigned_type_node, attributes); if (same_type_p (TYPE_MAIN_VARIANT (t1), long_integer_type_node) || same_type_p (TYPE_MAIN_VARIANT (t2), long_integer_type_node)) { tree t = ((TREE_UNSIGNED (t1) || TREE_UNSIGNED (t2)) ? long_unsigned_type_node : long_integer_type_node); return build_type_attribute_variant (t, attributes); } /* Otherwise prefer the unsigned one. */ if (TREE_UNSIGNED (t1)) return build_type_attribute_variant (t1, attributes); else return build_type_attribute_variant (t2, attributes); } else { if (same_type_p (TYPE_MAIN_VARIANT (t1), long_double_type_node) || same_type_p (TYPE_MAIN_VARIANT (t2), long_double_type_node)) return build_type_attribute_variant (long_double_type_node, attributes); if (same_type_p (TYPE_MAIN_VARIANT (t1), double_type_node) || same_type_p (TYPE_MAIN_VARIANT (t2), double_type_node)) return build_type_attribute_variant (double_type_node, attributes); if (same_type_p (TYPE_MAIN_VARIANT (t1), float_type_node) || same_type_p (TYPE_MAIN_VARIANT (t2), float_type_node)) return build_type_attribute_variant (float_type_node, attributes); /* Two floating-point types whose TYPE_MAIN_VARIANTs are none of the standard C++ floating-point types. Logic earlier in this function has already eliminated the possibility that TYPE_PRECISION (t2) != TYPE_PRECISION (t1), so there's no compelling reason to choose one or the other. */ return build_type_attribute_variant (t1, attributes); } } /* Subroutine of composite_pointer_type to implement the recursive case. See that function for documentation fo the parameters. */ static tree composite_pointer_type_r (tree t1, tree t2, const char* location) { tree pointee1; tree pointee2; tree result_type; tree attributes; /* Determine the types pointed to by T1 and T2. */ if (TREE_CODE (t1) == POINTER_TYPE) { pointee1 = TREE_TYPE (t1); pointee2 = TREE_TYPE (t2); } else { pointee1 = TYPE_PTRMEM_POINTED_TO_TYPE (t1); pointee2 = TYPE_PTRMEM_POINTED_TO_TYPE (t2); } /* [expr.rel] Otherwise, the composite pointer type is a pointer type similar (_conv.qual_) to the type of one of the operands, with a cv-qualification signature (_conv.qual_) that is the union of the cv-qualification signatures of the operand types. */ if (same_type_ignoring_top_level_qualifiers_p (pointee1, pointee2)) result_type = pointee1; else if ((TREE_CODE (pointee1) == POINTER_TYPE && TREE_CODE (pointee2) == POINTER_TYPE) || (TYPE_PTR_TO_MEMBER_P (pointee1) && TYPE_PTR_TO_MEMBER_P (pointee2))) result_type = composite_pointer_type_r (pointee1, pointee2, location); else { pedwarn ("%s between distinct pointer types `%T' and `%T' " "lacks a cast", location, t1, t2); result_type = void_type_node; } result_type = cp_build_qualified_type (result_type, (cp_type_quals (pointee1) | cp_type_quals (pointee2))); /* If the original types were pointers to members, so is the result. */ if (TYPE_PTR_TO_MEMBER_P (t1)) { if (!same_type_p (TYPE_PTRMEM_CLASS_TYPE (t1), TYPE_PTRMEM_CLASS_TYPE (t2))) pedwarn ("%s between distinct pointer types `%T' and `%T' " "lacks a cast", location, t1, t2); result_type = build_ptrmem_type (TYPE_PTRMEM_CLASS_TYPE (t1), result_type); } else result_type = build_pointer_type (result_type); /* Merge the attributes. */ attributes = (*targetm.merge_type_attributes) (t1, t2); return build_type_attribute_variant (result_type, attributes); } /* Return the composite pointer type (see [expr.rel]) for T1 and T2. ARG1 and ARG2 are the values with those types. The LOCATION is a string describing the current location, in case an error occurs. This routine also implements the computation of a common type for pointers-to-members as per [expr.eq]. */ tree composite_pointer_type (tree t1, tree t2, tree arg1, tree arg2, const char* location) { tree class1; tree class2; /* [expr.rel] If one operand is a null pointer constant, the composite pointer type is the type of the other operand. */ if (null_ptr_cst_p (arg1)) return t2; if (null_ptr_cst_p (arg2)) return t1; /* We have: [expr.rel] If one of the operands has type "pointer to cv1 void*", then the other has type "pointer to cv2T", and the composite pointer type is "pointer to cv12 void", where cv12 is the union of cv1 and cv2. If either type is a pointer to void, make sure it is T1. */ if (TREE_CODE (t2) == POINTER_TYPE && VOID_TYPE_P (TREE_TYPE (t2))) { tree t; t = t1; t1 = t2; t2 = t; } /* Now, if T1 is a pointer to void, merge the qualifiers. */ if (TREE_CODE (t1) == POINTER_TYPE && VOID_TYPE_P (TREE_TYPE (t1))) { tree attributes; tree result_type; if (pedantic && TYPE_PTRFN_P (t2)) pedwarn ("ISO C++ forbids %s between pointer of type `void *' and pointer-to-function", location); result_type = cp_build_qualified_type (void_type_node, (cp_type_quals (TREE_TYPE (t1)) | cp_type_quals (TREE_TYPE (t2)))); result_type = build_pointer_type (result_type); /* Merge the attributes. */ attributes = (*targetm.merge_type_attributes) (t1, t2); return build_type_attribute_variant (result_type, attributes); } /* [expr.eq] permits the application of a pointer conversion to bring the pointers to a common type. */ if (TREE_CODE (t1) == POINTER_TYPE && TREE_CODE (t2) == POINTER_TYPE && CLASS_TYPE_P (TREE_TYPE (t1)) && CLASS_TYPE_P (TREE_TYPE (t2)) && !same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (t1), TREE_TYPE (t2))) { class1 = TREE_TYPE (t1); class2 = TREE_TYPE (t2); if (DERIVED_FROM_P (class1, class2)) t2 = (build_pointer_type (cp_build_qualified_type (class1, TYPE_QUALS (class2)))); else if (DERIVED_FROM_P (class2, class1)) t1 = (build_pointer_type (cp_build_qualified_type (class2, TYPE_QUALS (class1)))); else { error ("%s between distinct pointer types `%T' and `%T' " "lacks a cast", location, t1, t2); return error_mark_node; } } /* [expr.eq] permits the application of a pointer-to-member conversion to change the class type of one of the types. */ else if (TYPE_PTR_TO_MEMBER_P (t1) && !same_type_p (TYPE_PTRMEM_CLASS_TYPE (t1), TYPE_PTRMEM_CLASS_TYPE (t2))) { class1 = TYPE_PTRMEM_CLASS_TYPE (t1); class2 = TYPE_PTRMEM_CLASS_TYPE (t2); if (DERIVED_FROM_P (class1, class2)) t1 = build_ptrmem_type (class2, TYPE_PTRMEM_POINTED_TO_TYPE (t1)); else if (DERIVED_FROM_P (class2, class1)) t2 = build_ptrmem_type (class1, TYPE_PTRMEM_POINTED_TO_TYPE (t2)); else { error ("%s between distinct pointer-to-member types `%T' and `%T' " "lacks a cast", location, t1, t2); return error_mark_node; } } return composite_pointer_type_r (t1, t2, location); } /* Return the merged type of two types. We assume that comptypes has already been done and returned 1; if that isn't so, this may crash. This just combines attributes and default arguments; any other differences would cause the two types to compare unalike. */ tree merge_types (tree t1, tree t2) { enum tree_code code1; enum tree_code code2; tree attributes; /* Save time if the two types are the same. */ if (t1 == t2) return t1; if (original_type (t1) == original_type (t2)) return t1; /* If one type is nonsense, use the other. */ if (t1 == error_mark_node) return t2; if (t2 == error_mark_node) return t1; /* Merge the attributes. */ attributes = (*targetm.merge_type_attributes) (t1, t2); if (TYPE_PTRMEMFUNC_P (t1)) t1 = TYPE_PTRMEMFUNC_FN_TYPE (t1); if (TYPE_PTRMEMFUNC_P (t2)) t2 = TYPE_PTRMEMFUNC_FN_TYPE (t2); code1 = TREE_CODE (t1); code2 = TREE_CODE (t2); switch (code1) { case POINTER_TYPE: case REFERENCE_TYPE: /* For two pointers, do this recursively on the target type. */ { tree target = merge_types (TREE_TYPE (t1), TREE_TYPE (t2)); int quals = cp_type_quals (t1); if (code1 == POINTER_TYPE) t1 = build_pointer_type (target); else t1 = build_reference_type (target); t1 = build_type_attribute_variant (t1, attributes); t1 = cp_build_qualified_type (t1, quals); if (TREE_CODE (target) == METHOD_TYPE) t1 = build_ptrmemfunc_type (t1); return t1; } case OFFSET_TYPE: { int quals; tree pointee; quals = cp_type_quals (t1); pointee = merge_types (TYPE_PTRMEM_POINTED_TO_TYPE (t1), TYPE_PTRMEM_POINTED_TO_TYPE (t2)); t1 = build_ptrmem_type (TYPE_PTRMEM_CLASS_TYPE (t1), pointee); t1 = cp_build_qualified_type (t1, quals); break; } case ARRAY_TYPE: { tree elt = merge_types (TREE_TYPE (t1), TREE_TYPE (t2)); /* Save space: see if the result is identical to one of the args. */ if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1)) return build_type_attribute_variant (t1, attributes); if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2)) return build_type_attribute_variant (t2, attributes); /* Merge the element types, and have a size if either arg has one. */ t1 = build_cplus_array_type (elt, TYPE_DOMAIN (TYPE_DOMAIN (t1) ? t1 : t2)); break; } case FUNCTION_TYPE: /* Function types: prefer the one that specified arg types. If both do, merge the arg types. Also merge the return types. */ { tree valtype = merge_types (TREE_TYPE (t1), TREE_TYPE (t2)); tree p1 = TYPE_ARG_TYPES (t1); tree p2 = TYPE_ARG_TYPES (t2); tree rval, raises; /* Save space: see if the result is identical to one of the args. */ if (valtype == TREE_TYPE (t1) && ! p2) return cp_build_type_attribute_variant (t1, attributes); if (valtype == TREE_TYPE (t2) && ! p1) return cp_build_type_attribute_variant (t2, attributes); /* Simple way if one arg fails to specify argument types. */ if (p1 == NULL_TREE || TREE_VALUE (p1) == void_type_node) { rval = build_function_type (valtype, p2); if ((raises = TYPE_RAISES_EXCEPTIONS (t2))) rval = build_exception_variant (rval, raises); return cp_build_type_attribute_variant (rval, attributes); } raises = TYPE_RAISES_EXCEPTIONS (t1); if (p2 == NULL_TREE || TREE_VALUE (p2) == void_type_node) { rval = build_function_type (valtype, p1); if (raises) rval = build_exception_variant (rval, raises); return cp_build_type_attribute_variant (rval, attributes); } rval = build_function_type (valtype, commonparms (p1, p2)); t1 = build_exception_variant (rval, raises); break; } case METHOD_TYPE: { /* Get this value the long way, since TYPE_METHOD_BASETYPE is just the main variant of this. */ tree basetype = TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (t2))); tree raises = TYPE_RAISES_EXCEPTIONS (t1); tree t3; /* If this was a member function type, get back to the original type of type member function (i.e., without the class instance variable up front. */ t1 = build_function_type (TREE_TYPE (t1), TREE_CHAIN (TYPE_ARG_TYPES (t1))); t2 = build_function_type (TREE_TYPE (t2), TREE_CHAIN (TYPE_ARG_TYPES (t2))); t3 = merge_types (t1, t2); t3 = build_method_type_directly (basetype, TREE_TYPE (t3), TYPE_ARG_TYPES (t3)); t1 = build_exception_variant (t3, raises); break; } case TYPENAME_TYPE: /* There is no need to merge attributes into a TYPENAME_TYPE. When the type is instantiated it will have whatever attributes result from the instantiation. */ return t1; default:; } return cp_build_type_attribute_variant (t1, attributes); } /* Return the common type of two types. We assume that comptypes has already been done and returned 1; if that isn't so, this may crash. This is the type for the result of most arithmetic operations if the operands have the given two types. */ tree common_type (tree t1, tree t2) { enum tree_code code1; enum tree_code code2; /* If one type is nonsense, bail. */ if (t1 == error_mark_node || t2 == error_mark_node) return error_mark_node; code1 = TREE_CODE (t1); code2 = TREE_CODE (t2); if ((ARITHMETIC_TYPE_P (t1) || code1 == ENUMERAL_TYPE || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE) && (ARITHMETIC_TYPE_P (t2) || code2 == ENUMERAL_TYPE || code2 == COMPLEX_TYPE || code2 == VECTOR_TYPE)) return type_after_usual_arithmetic_conversions (t1, t2); else if ((TYPE_PTR_P (t1) && TYPE_PTR_P (t2)) || (TYPE_PTRMEM_P (t1) && TYPE_PTRMEM_P (t2)) || (TYPE_PTRMEMFUNC_P (t1) && TYPE_PTRMEMFUNC_P (t2))) return composite_pointer_type (t1, t2, error_mark_node, error_mark_node, "conversion"); else abort (); } /* Compare two exception specifier types for exactness or subsetness, if allowed. Returns false for mismatch, true for match (same, or derived and !exact). [except.spec] "If a class X ... objects of class X or any class publicly and unambiguously derived from X. Similarly, if a pointer type Y * ... exceptions of type Y * or that are pointers to any type publicly and unambiguously derived from Y. Otherwise a function only allows exceptions that have the same type ..." This does not mention cv qualifiers and is different to what throw [except.throw] and catch [except.catch] will do. They will ignore the top level cv qualifiers, and allow qualifiers in the pointer to class example. We implement the letter of the standard. */ static bool comp_except_types (tree a, tree b, bool exact) { if (same_type_p (a, b)) return true; else if (!exact) { if (cp_type_quals (a) || cp_type_quals (b)) return false; if (TREE_CODE (a) == POINTER_TYPE && TREE_CODE (b) == POINTER_TYPE) { a = TREE_TYPE (a); b = TREE_TYPE (b); if (cp_type_quals (a) || cp_type_quals (b)) return false; } if (TREE_CODE (a) != RECORD_TYPE || TREE_CODE (b) != RECORD_TYPE) return false; if (ACCESSIBLY_UNIQUELY_DERIVED_P (a, b)) return true; } return false; } /* Return true if TYPE1 and TYPE2 are equivalent exception specifiers. If EXACT is false, T2 can be stricter than T1 (according to 15.4/7), otherwise it must be exact. Exception lists are unordered, but we've already filtered out duplicates. Most lists will be in order, we should try to make use of that. */ bool comp_except_specs (tree t1, tree t2, bool exact) { tree probe; tree base; int length = 0; if (t1 == t2) return true; if (t1 == NULL_TREE) /* T1 is ... */ return t2 == NULL_TREE || !exact; if (!TREE_VALUE (t1)) /* t1 is EMPTY */ return t2 != NULL_TREE && !TREE_VALUE (t2); if (t2 == NULL_TREE) /* T2 is ... */ return false; if (TREE_VALUE (t1) && !TREE_VALUE (t2)) /* T2 is EMPTY, T1 is not */ return !exact; /* Neither set is ... or EMPTY, make sure each part of T2 is in T1. Count how many we find, to determine exactness. For exact matching and ordered T1, T2, this is an O(n) operation, otherwise its worst case is O(nm). */ for (base = t1; t2 != NULL_TREE; t2 = TREE_CHAIN (t2)) { for (probe = base; probe != NULL_TREE; probe = TREE_CHAIN (probe)) { tree a = TREE_VALUE (probe); tree b = TREE_VALUE (t2); if (comp_except_types (a, b, exact)) { if (probe == base && exact) base = TREE_CHAIN (probe); length++; break; } } if (probe == NULL_TREE) return false; } return !exact || base == NULL_TREE || length == list_length (t1); } /* Compare the array types T1 and T2. ALLOW_REDECLARATION is true if [] can match [size]. */ static bool comp_array_types (tree t1, tree t2, bool allow_redeclaration) { tree d1; tree d2; tree max1, max2; if (t1 == t2) return true; /* The type of the array elements must be the same. */ if (!same_type_p (TREE_TYPE (t1), TREE_TYPE (t2))) return false; d1 = TYPE_DOMAIN (t1); d2 = TYPE_DOMAIN (t2); if (d1 == d2) return true; /* If one of the arrays is dimensionless, and the other has a dimension, they are of different types. However, it is valid to write: extern int a[]; int a[3]; by [basic.link]: declarations for an array object can specify array types that differ by the presence or absence of a major array bound (_dcl.array_). */ if (!d1 || !d2) return allow_redeclaration; /* Check that the dimensions are the same. */ if (!cp_tree_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))) return false; max1 = TYPE_MAX_VALUE (d1); max2 = TYPE_MAX_VALUE (d2); if (processing_template_decl && !abi_version_at_least (2) && !value_dependent_expression_p (max1) && !value_dependent_expression_p (max2)) { /* With abi-1 we do not fold non-dependent array bounds, (and consequently mangle them incorrectly). We must therefore fold them here, to verify the domains have the same value. */ max1 = fold (max1); max2 = fold (max2); } if (!cp_tree_equal (max1, max2)) return false; return true; } /* Return true if T1 and T2 are related as allowed by STRICT. STRICT is a bitwise-or of the COMPARE_* flags. */ bool comptypes (tree t1, tree t2, int strict) { if (t1 == t2) return true; /* Suppress errors caused by previously reported errors. */ if (t1 == error_mark_node || t2 == error_mark_node) return false; my_friendly_assert (TYPE_P (t1) && TYPE_P (t2), 20030623); /* TYPENAME_TYPEs should be resolved if the qualifying scope is the current instantiation. */ if (TREE_CODE (t1) == TYPENAME_TYPE) { tree resolved = resolve_typename_type (t1, /*only_current_p=*/true); if (resolved != error_mark_node) t1 = resolved; } if (TREE_CODE (t2) == TYPENAME_TYPE) { tree resolved = resolve_typename_type (t2, /*only_current_p=*/true); if (resolved != error_mark_node) t2 = resolved; } /* If either type is the internal version of sizetype, use the language version. */ if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1) && TYPE_DOMAIN (t1)) t1 = TYPE_DOMAIN (t1); if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2) && TYPE_DOMAIN (t2)) t2 = TYPE_DOMAIN (t2); if (TYPE_PTRMEMFUNC_P (t1)) t1 = TYPE_PTRMEMFUNC_FN_TYPE (t1); if (TYPE_PTRMEMFUNC_P (t2)) t2 = TYPE_PTRMEMFUNC_FN_TYPE (t2); /* Different classes of types can't be compatible. */ if (TREE_CODE (t1) != TREE_CODE (t2)) return false; /* Qualifiers must match. For array types, we will check when we recur on the array element types. */ if (TREE_CODE (t1) != ARRAY_TYPE && TYPE_QUALS (t1) != TYPE_QUALS (t2)) return false; if (TYPE_FOR_JAVA (t1) != TYPE_FOR_JAVA (t2)) return false; /* Allow for two different type nodes which have essentially the same definition. Note that we already checked for equality of the type qualifiers (just above). */ if (TREE_CODE (t1) != ARRAY_TYPE && TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2)) return true; if (!(*targetm.comp_type_attributes) (t1, t2)) return false; switch (TREE_CODE (t1)) { case TEMPLATE_TEMPLATE_PARM: case BOUND_TEMPLATE_TEMPLATE_PARM: if (TEMPLATE_TYPE_IDX (t1) != TEMPLATE_TYPE_IDX (t2) || TEMPLATE_TYPE_LEVEL (t1) != TEMPLATE_TYPE_LEVEL (t2)) return false; if (!comp_template_parms (DECL_TEMPLATE_PARMS (TEMPLATE_TEMPLATE_PARM_TEMPLATE_DECL (t1)), DECL_TEMPLATE_PARMS (TEMPLATE_TEMPLATE_PARM_TEMPLATE_DECL (t2)))) return false; if (TREE_CODE (t1) == TEMPLATE_TEMPLATE_PARM) return true; /* Don't check inheritance. */ strict = COMPARE_STRICT; /* Fall through. */ case RECORD_TYPE: case UNION_TYPE: if (TYPE_TEMPLATE_INFO (t1) && TYPE_TEMPLATE_INFO (t2) && (TYPE_TI_TEMPLATE (t1) == TYPE_TI_TEMPLATE (t2) || TREE_CODE (t1) == BOUND_TEMPLATE_TEMPLATE_PARM) && comp_template_args (TYPE_TI_ARGS (t1), TYPE_TI_ARGS (t2))) return true; if ((strict & COMPARE_BASE) && DERIVED_FROM_P (t1, t2)) return true; else if ((strict & COMPARE_DERIVED) && DERIVED_FROM_P (t2, t1)) return true; return false; case OFFSET_TYPE: if (!comptypes (TYPE_OFFSET_BASETYPE (t1), TYPE_OFFSET_BASETYPE (t2), strict & ~COMPARE_REDECLARATION)) return false; /* Fall through. */ case POINTER_TYPE: case REFERENCE_TYPE: return same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)); case METHOD_TYPE: case FUNCTION_TYPE: if (!same_type_p (TREE_TYPE (t1), TREE_TYPE (t2))) return false; return compparms (TYPE_ARG_TYPES (t1), TYPE_ARG_TYPES (t2)); case ARRAY_TYPE: /* Target types must match incl. qualifiers. */ return comp_array_types (t1, t2, !!(strict & COMPARE_REDECLARATION)); case TEMPLATE_TYPE_PARM: return (TEMPLATE_TYPE_IDX (t1) == TEMPLATE_TYPE_IDX (t2) && TEMPLATE_TYPE_LEVEL (t1) == TEMPLATE_TYPE_LEVEL (t2)); case TYPENAME_TYPE: if (!cp_tree_equal (TYPENAME_TYPE_FULLNAME (t1), TYPENAME_TYPE_FULLNAME (t2))) return false; return same_type_p (TYPE_CONTEXT (t1), TYPE_CONTEXT (t2)); case UNBOUND_CLASS_TEMPLATE: if (!cp_tree_equal (TYPE_IDENTIFIER (t1), TYPE_IDENTIFIER (t2))) return false; return same_type_p (TYPE_CONTEXT (t1), TYPE_CONTEXT (t2)); case COMPLEX_TYPE: return same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)); default: break; } return false; } /* Returns 1 if TYPE1 is at least as qualified as TYPE2. */ bool at_least_as_qualified_p (tree type1, tree type2) { int q1 = cp_type_quals (type1); int q2 = cp_type_quals (type2); /* All qualifiers for TYPE2 must also appear in TYPE1. */ return (q1 & q2) == q2; } /* Returns 1 if TYPE1 is more qualified than TYPE2. */ bool more_qualified_p (tree type1, tree type2) { int q1 = cp_type_quals (type1); int q2 = cp_type_quals (type2); return q1 != q2 && (q1 & q2) == q2; } /* Returns 1 if TYPE1 is more cv-qualified than TYPE2, -1 if TYPE2 is more cv-qualified that TYPE1, and 0 otherwise. */ int comp_cv_qualification (tree type1, tree type2) { int q1 = cp_type_quals (type1); int q2 = cp_type_quals (type2); if (q1 == q2) return 0; if ((q1 & q2) == q2) return 1; else if ((q1 & q2) == q1) return -1; return 0; } /* Returns 1 if the cv-qualification signature of TYPE1 is a proper subset of the cv-qualification signature of TYPE2, and the types are similar. Returns -1 if the other way 'round, and 0 otherwise. */ int comp_cv_qual_signature (tree type1, tree type2) { if (comp_ptr_ttypes_real (type2, type1, -1)) return 1; else if (comp_ptr_ttypes_real (type1, type2, -1)) return -1; else return 0; } /* If two types share a common base type, return that basetype. If there is not a unique most-derived base type, this function returns ERROR_MARK_NODE. */ static tree common_base_type (tree tt1, tree tt2) { tree best = NULL_TREE; int i; /* If one is a baseclass of another, that's good enough. */ if (UNIQUELY_DERIVED_FROM_P (tt1, tt2)) return tt1; if (UNIQUELY_DERIVED_FROM_P (tt2, tt1)) return tt2; /* Otherwise, try to find a unique baseclass of TT1 that is shared by TT2, and follow that down. */ for (i = CLASSTYPE_N_BASECLASSES (tt1)-1; i >= 0; i--) { tree basetype = TYPE_BINFO_BASETYPE (tt1, i); tree trial = common_base_type (basetype, tt2); if (trial) { if (trial == error_mark_node) return trial; if (best == NULL_TREE) best = trial; else if (best != trial) return error_mark_node; } } /* Same for TT2. */ for (i = CLASSTYPE_N_BASECLASSES (tt2)-1; i >= 0; i--) { tree basetype = TYPE_BINFO_BASETYPE (tt2, i); tree trial = common_base_type (tt1, basetype); if (trial) { if (trial == error_mark_node) return trial; if (best == NULL_TREE) best = trial; else if (best != trial) return error_mark_node; } } return best; } /* Subroutines of `comptypes'. */ /* Return true if two parameter type lists PARMS1 and PARMS2 are equivalent in the sense that functions with those parameter types can have equivalent types. The two lists must be equivalent, element by element. */ bool compparms (tree parms1, tree parms2) { tree t1, t2; /* An unspecified parmlist matches any specified parmlist whose argument types don't need default promotions. */ for (t1 = parms1, t2 = parms2; t1 || t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2)) { /* If one parmlist is shorter than the other, they fail to match. */ if (!t1 || !t2) return false; if (!same_type_p (TREE_VALUE (t1), TREE_VALUE (t2))) return false; } return true; } /* Process a sizeof or alignof expression where the operand is a type. */ tree cxx_sizeof_or_alignof_type (tree type, enum tree_code op, bool complain) { enum tree_code type_code; tree value; const char *op_name; my_friendly_assert (op == SIZEOF_EXPR || op == ALIGNOF_EXPR, 20020720); if (type == error_mark_node) return error_mark_node; if (dependent_type_p (type)) { value = build_min (op, size_type_node, type); TREE_READONLY (value) = 1; return value; } op_name = operator_name_info[(int) op].name; type = non_reference (type); type_code = TREE_CODE (type); if (type_code == METHOD_TYPE) { if (complain && (pedantic || warn_pointer_arith)) pedwarn ("invalid application of `%s' to a member function", op_name); value = size_one_node; } else value = c_sizeof_or_alignof_type (complete_type (type), op, complain); return value; } /* Process a sizeof or alignof expression where the operand is an expression. */ tree cxx_sizeof_or_alignof_expr (tree e, enum tree_code op) { const char *op_name = operator_name_info[(int) op].name; if (e == error_mark_node) return error_mark_node; if (processing_template_decl) { e = build_min (op, size_type_node, e); TREE_SIDE_EFFECTS (e) = 0; TREE_READONLY (e) = 1; return e; } if (TREE_CODE (e) == COMPONENT_REF && TREE_CODE (TREE_OPERAND (e, 1)) == FIELD_DECL && DECL_C_BIT_FIELD (TREE_OPERAND (e, 1))) { error ("invalid application of `%s' to a bit-field", op_name); e = char_type_node; } else if (is_overloaded_fn (e)) { pedwarn ("ISO C++ forbids applying `%s' to an expression of function type", op_name); e = char_type_node; } else if (type_unknown_p (e)) { cxx_incomplete_type_error (e, TREE_TYPE (e)); e = char_type_node; } else e = TREE_TYPE (e); return cxx_sizeof_or_alignof_type (e, op, true); } /* EXPR is being used in a context that is not a function call. Enforce: [expr.ref] The expression can be used only as the left-hand operand of a member function call. [expr.mptr.operator] If the result of .* or ->* is a function, then that result can be used only as the operand for the function call operator (). by issuing an error message if appropriate. Returns true iff EXPR violates these rules. */ bool invalid_nonstatic_memfn_p (tree expr) { if (TREE_CODE (TREE_TYPE (expr)) == METHOD_TYPE) { error ("invalid use of non-static member function"); return true; } return false; } /* Perform the conversions in [expr] that apply when an lvalue appears in an rvalue context: the lvalue-to-rvalue, array-to-pointer, and function-to-pointer conversions. In addition manifest constants are replaced by their values. */ tree decay_conversion (tree exp) { tree type; enum tree_code code; type = TREE_TYPE (exp); code = TREE_CODE (type); if (code == REFERENCE_TYPE) { exp = convert_from_reference (exp); type = TREE_TYPE (exp); code = TREE_CODE (type); } if (type == error_mark_node) return error_mark_node; if (type_unknown_p (exp)) { cxx_incomplete_type_error (exp, TREE_TYPE (exp)); return error_mark_node; } /* Constants can be used directly unless they're not loadable. */ if (TREE_CODE (exp) == CONST_DECL) exp = DECL_INITIAL (exp); /* Replace a nonvolatile const static variable with its value. We don't do this for arrays, though; we want the address of the first element of the array, not the address of the first element of its initializing constant. */ else if (code != ARRAY_TYPE) { exp = decl_constant_value (exp); type = TREE_TYPE (exp); } /* build_c_cast puts on a NOP_EXPR to make the result not an lvalue. Leave such NOP_EXPRs, since RHS is being used in non-lvalue context. */ if (code == VOID_TYPE) { error ("void value not ignored as it ought to be"); return error_mark_node; } if (invalid_nonstatic_memfn_p (exp)) return error_mark_node; if (code == FUNCTION_TYPE || is_overloaded_fn (exp)) return build_unary_op (ADDR_EXPR, exp, 0); if (code == ARRAY_TYPE) { tree adr; tree ptrtype; if (TREE_CODE (exp) == INDIRECT_REF) return build_nop (build_pointer_type (TREE_TYPE (type)), TREE_OPERAND (exp, 0)); if (TREE_CODE (exp) == COMPOUND_EXPR) { tree op1 = decay_conversion (TREE_OPERAND (exp, 1)); return build (COMPOUND_EXPR, TREE_TYPE (op1), TREE_OPERAND (exp, 0), op1); } if (!lvalue_p (exp) && ! (TREE_CODE (exp) == CONSTRUCTOR && TREE_STATIC (exp))) { error ("invalid use of non-lvalue array"); return error_mark_node; } ptrtype = build_pointer_type (TREE_TYPE (type)); if (TREE_CODE (exp) == VAR_DECL) { if (!cxx_mark_addressable (exp)) return error_mark_node; adr = build_nop (ptrtype, build_address (exp)); TREE_SIDE_EFFECTS (adr) = 0; /* Default would be, same as EXP. */ return adr; } /* This way is better for a COMPONENT_REF since it can simplify the offset for a component. */ adr = build_unary_op (ADDR_EXPR, exp, 1); return cp_convert (ptrtype, adr); } /* [basic.lval]: Class rvalues can have cv-qualified types; non-class rvalues always have cv-unqualified types. */ if (! CLASS_TYPE_P (type)) exp = cp_convert (TYPE_MAIN_VARIANT (type), exp); return exp; } tree default_conversion (tree exp) { exp = decay_conversion (exp); if (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (exp))) exp = perform_integral_promotions (exp); return exp; } /* EXPR is an expression with an integral or enumeration type. Perform the integral promotions in [conv.prom], and return the converted value. */ tree perform_integral_promotions (tree expr) { tree type; tree promoted_type; type = TREE_TYPE (expr); my_friendly_assert (INTEGRAL_OR_ENUMERATION_TYPE_P (type), 20030703); promoted_type = type_promotes_to (type); if (type != promoted_type) expr = cp_convert (promoted_type, expr); return expr; } /* Take the address of an inline function without setting TREE_ADDRESSABLE or TREE_USED. */ tree inline_conversion (tree exp) { if (TREE_CODE (exp) == FUNCTION_DECL) exp = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (exp)), exp); return exp; } /* Returns nonzero iff exp is a STRING_CST or the result of applying decay_conversion to one. */ int string_conv_p (tree totype, tree exp, int warn) { tree t; if (! flag_const_strings || TREE_CODE (totype) != POINTER_TYPE) return 0; t = TREE_TYPE (totype); if (!same_type_p (t, char_type_node) && !same_type_p (t, wchar_type_node)) return 0; if (TREE_CODE (exp) == STRING_CST) { /* Make sure that we don't try to convert between char and wchar_t. */ if (!same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (exp))), t)) return 0; } else { /* Is this a string constant which has decayed to 'const char *'? */ t = build_pointer_type (build_qualified_type (t, TYPE_QUAL_CONST)); if (!same_type_p (TREE_TYPE (exp), t)) return 0; STRIP_NOPS (exp); if (TREE_CODE (exp) != ADDR_EXPR || TREE_CODE (TREE_OPERAND (exp, 0)) != STRING_CST) return 0; } /* This warning is not very useful, as it complains about printf. */ if (warn && warn_write_strings) warning ("deprecated conversion from string constant to `%T'", totype); return 1; } /* Given a COND_EXPR, MIN_EXPR, or MAX_EXPR in T, return it in a form that we can, for example, use as an lvalue. This code used to be in unary_complex_lvalue, but we needed it to deal with `a = (d == c) ? b : c' expressions, where we're dealing with aggregates. But now it's again only called from unary_complex_lvalue. The case (in particular) that led to this was with CODE == ADDR_EXPR, since it's not an lvalue when we'd get it there. */ static tree rationalize_conditional_expr (enum tree_code code, tree t) { /* For MIN_EXPR or MAX_EXPR, fold-const.c has arranged things so that the first operand is always the one to be used if both operands are equal, so we know what conditional expression this used to be. */ if (TREE_CODE (t) == MIN_EXPR || TREE_CODE (t) == MAX_EXPR) { return build_conditional_expr (build_x_binary_op ((TREE_CODE (t) == MIN_EXPR ? LE_EXPR : GE_EXPR), TREE_OPERAND (t, 0), TREE_OPERAND (t, 1), /*overloaded_p=*/NULL), build_unary_op (code, TREE_OPERAND (t, 0), 0), build_unary_op (code, TREE_OPERAND (t, 1), 0)); } return build_conditional_expr (TREE_OPERAND (t, 0), build_unary_op (code, TREE_OPERAND (t, 1), 0), build_unary_op (code, TREE_OPERAND (t, 2), 0)); } /* Given the TYPE of an anonymous union field inside T, return the FIELD_DECL for the field. If not found return NULL_TREE. Because anonymous unions can nest, we must also search all anonymous unions that are directly reachable. */ tree lookup_anon_field (tree t, tree type) { tree field; for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field)) { if (TREE_STATIC (field)) continue; if (TREE_CODE (field) != FIELD_DECL || DECL_ARTIFICIAL (field)) continue; /* If we find it directly, return the field. */ if (DECL_NAME (field) == NULL_TREE && type == TYPE_MAIN_VARIANT (TREE_TYPE (field))) { return field; } /* Otherwise, it could be nested, search harder. */ if (DECL_NAME (field) == NULL_TREE && ANON_AGGR_TYPE_P (TREE_TYPE (field))) { tree subfield = lookup_anon_field (TREE_TYPE (field), type); if (subfield) return subfield; } } return NULL_TREE; } /* Build an expression representing OBJECT.MEMBER. OBJECT is an expression; MEMBER is a DECL or baselink. If ACCESS_PATH is non-NULL, it indicates the path to the base used to name MEMBER. If PRESERVE_REFERENCE is true, the expression returned will have REFERENCE_TYPE if the MEMBER does. Otherwise, the expression returned will have the type referred to by the reference. This function does not perform access control; that is either done earlier by the parser when the name of MEMBER is resolved to MEMBER itself, or later when overload resolution selects one of the functions indicated by MEMBER. */ tree build_class_member_access_expr (tree object, tree member, tree access_path, bool preserve_reference) { tree object_type; tree member_scope; tree result = NULL_TREE; if (object == error_mark_node || member == error_mark_node) return error_mark_node; if (TREE_CODE (member) == PSEUDO_DTOR_EXPR) return member; my_friendly_assert (DECL_P (member) || BASELINK_P (member), 20020801); /* [expr.ref] The type of the first expression shall be "class object" (of a complete type). */ object_type = TREE_TYPE (object); if (!currently_open_class (object_type) && !complete_type_or_else (object_type, object)) return error_mark_node; if (!CLASS_TYPE_P (object_type)) { error ("request for member `%D' in `%E', which is of non-class type `%T'", member, object, object_type); return error_mark_node; } /* The standard does not seem to actually say that MEMBER must be a member of OBJECT_TYPE. However, that is clearly what is intended. */ if (DECL_P (member)) { member_scope = DECL_CLASS_CONTEXT (member); mark_used (member); if (TREE_DEPRECATED (member)) warn_deprecated_use (member); } else member_scope = BINFO_TYPE (BASELINK_BINFO (member)); /* If MEMBER is from an anonymous aggregate, MEMBER_SCOPE will presently be the anonymous union. Go outwards until we find a type related to OBJECT_TYPE. */ while (ANON_AGGR_TYPE_P (member_scope) && !same_type_ignoring_top_level_qualifiers_p (member_scope, object_type)) member_scope = TYPE_CONTEXT (member_scope); if (!member_scope || !DERIVED_FROM_P (member_scope, object_type)) { if (TREE_CODE (member) == FIELD_DECL) error ("invalid use of nonstatic data member '%E'", member); else error ("`%D' is not a member of `%T'", member, object_type); return error_mark_node; } /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x' into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only an lvalue in the frontend; only _DECLs and _REFs are lvalues in the backend. */ { tree temp = unary_complex_lvalue (ADDR_EXPR, object); if (temp) object = build_indirect_ref (temp, NULL); } /* In [expr.ref], there is an explicit list of the valid choices for MEMBER. We check for each of those cases here. */ if (TREE_CODE (member) == VAR_DECL) { /* A static data member. */ result = member; /* If OBJECT has side-effects, they are supposed to occur. */ if (TREE_SIDE_EFFECTS (object)) result = build (COMPOUND_EXPR, TREE_TYPE (result), object, result); } else if (TREE_CODE (member) == FIELD_DECL) { /* A non-static data member. */ bool null_object_p; int type_quals; tree member_type; null_object_p = (TREE_CODE (object) == INDIRECT_REF && integer_zerop (TREE_OPERAND (object, 0))); /* Convert OBJECT to the type of MEMBER. */ if (!same_type_p (TYPE_MAIN_VARIANT (object_type), TYPE_MAIN_VARIANT (member_scope))) { tree binfo; base_kind kind; binfo = lookup_base (access_path ? access_path : object_type, member_scope, ba_ignore, &kind); if (binfo == error_mark_node) return error_mark_node; /* It is invalid to try to get to a virtual base of a NULL object. The most common cause is invalid use of offsetof macro. */ if (null_object_p && kind == bk_via_virtual) { error ("invalid access to non-static data member `%D' of NULL object", member); error ("(perhaps the `offsetof' macro was used incorrectly)"); return error_mark_node; } /* Convert to the base. */ object = build_base_path (PLUS_EXPR, object, binfo, /*nonnull=*/1); /* If we found the base successfully then we should be able to convert to it successfully. */ my_friendly_assert (object != error_mark_node, 20020801); } /* Complain about other invalid uses of offsetof, even though they will give the right answer. Note that we complain whether or not they actually used the offsetof macro, since there's no way to know at this point. So we just give a warning, instead of a pedwarn. */ if (null_object_p && warn_invalid_offsetof && CLASSTYPE_NON_POD_P (object_type)) { warning ("invalid access to non-static data member `%D' of NULL object", member); warning ("(perhaps the `offsetof' macro was used incorrectly)"); } /* If MEMBER is from an anonymous aggregate, we have converted OBJECT so that it refers to the class containing the anonymous union. Generate a reference to the anonymous union itself, and recur to find MEMBER. */ if (ANON_AGGR_TYPE_P (DECL_CONTEXT (member)) /* When this code is called from build_field_call, the object already has the type of the anonymous union. That is because the COMPONENT_REF was already constructed, and was then disassembled before calling build_field_call. After the function-call code is cleaned up, this waste can be eliminated. */ && (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (object), DECL_CONTEXT (member)))) { tree anonymous_union; anonymous_union = lookup_anon_field (TREE_TYPE (object), DECL_CONTEXT (member)); object = build_class_member_access_expr (object, anonymous_union, /*access_path=*/NULL_TREE, preserve_reference); } /* Compute the type of the field, as described in [expr.ref]. */ type_quals = TYPE_UNQUALIFIED; member_type = TREE_TYPE (member); if (TREE_CODE (member_type) != REFERENCE_TYPE) { type_quals = (cp_type_quals (member_type) | cp_type_quals (object_type)); /* A field is const (volatile) if the enclosing object, or the field itself, is const (volatile). But, a mutable field is not const, even within a const object. */ if (DECL_MUTABLE_P (member)) type_quals &= ~TYPE_QUAL_CONST; member_type = cp_build_qualified_type (member_type, type_quals); } result = fold (build (COMPONENT_REF, member_type, object, member)); /* Mark the expression const or volatile, as appropriate. Even though we've dealt with the type above, we still have to mark the expression itself. */ if (type_quals & TYPE_QUAL_CONST) TREE_READONLY (result) = 1; else if (type_quals & TYPE_QUAL_VOLATILE) TREE_THIS_VOLATILE (result) = 1; } else if (BASELINK_P (member)) { /* The member is a (possibly overloaded) member function. */ tree functions; tree type; /* If the MEMBER is exactly one static member function, then we know the type of the expression. Otherwise, we must wait until overload resolution has been performed. */ functions = BASELINK_FUNCTIONS (member); if (TREE_CODE (functions) == FUNCTION_DECL && DECL_STATIC_FUNCTION_P (functions)) type = TREE_TYPE (functions); else type = unknown_type_node; /* Note that we do not convert OBJECT to the BASELINK_BINFO base. That will happen when the function is called. */ result = build (COMPONENT_REF, type, object, member); } else if (TREE_CODE (member) == CONST_DECL) { /* The member is an enumerator. */ result = member; /* If OBJECT has side-effects, they are supposed to occur. */ if (TREE_SIDE_EFFECTS (object)) result = build (COMPOUND_EXPR, TREE_TYPE (result), object, result); } else { error ("invalid use of `%D'", member); return error_mark_node; } if (!preserve_reference) /* [expr.ref] If E2 is declared to have type "reference to T", then ... the type of E1.E2 is T. */ result = convert_from_reference (result); return result; } /* Return the destructor denoted by OBJECT.SCOPE::~DTOR_NAME, or, if SCOPE is NULL, by OBJECT.~DTOR_NAME. */ static tree lookup_destructor (tree object, tree scope, tree dtor_name) { tree object_type = TREE_TYPE (object); tree dtor_type = TREE_OPERAND (dtor_name, 0); tree expr; if (scope && !check_dtor_name (scope, dtor_name)) { error ("qualified type `%T' does not match destructor name `~%T'", scope, dtor_type); return error_mark_node; } if (!DERIVED_FROM_P (dtor_type, TYPE_MAIN_VARIANT (object_type))) { error ("the type being destroyed is `%T', but the destructor refers to `%T'", TYPE_MAIN_VARIANT (object_type), dtor_type); return error_mark_node; } if (!TYPE_HAS_DESTRUCTOR (dtor_type)) return build (PSEUDO_DTOR_EXPR, void_type_node, object, scope, dtor_type); expr = lookup_member (dtor_type, complete_dtor_identifier, /*protect=*/1, /*want_type=*/false); expr = (adjust_result_of_qualified_name_lookup (expr, dtor_type, object_type)); return expr; } /* This function is called by the parser to process a class member access expression of the form OBJECT.NAME. NAME is a node used by the parser to represent a name; it is not yet a DECL. It may, however, be a BASELINK where the BASELINK_FUNCTIONS is a TEMPLATE_ID_EXPR. Templates must be looked up by the parser, and there is no reason to do the lookup twice, so the parser keeps the BASELINK. */ tree finish_class_member_access_expr (tree object, tree name) { tree expr; tree object_type; tree member; tree access_path = NULL_TREE; tree orig_object = object; tree orig_name = name; if (object == error_mark_node || name == error_mark_node) return error_mark_node; object_type = TREE_TYPE (object); if (processing_template_decl) { if (/* If OBJECT_TYPE is dependent, so is OBJECT.NAME. */ dependent_type_p (object_type) /* If NAME is just an IDENTIFIER_NODE, then the expression is dependent. */ || TREE_CODE (object) == IDENTIFIER_NODE /* If NAME is "f", where either 'f' or 'args' is dependent, then the expression is dependent. */ || (TREE_CODE (name) == TEMPLATE_ID_EXPR && dependent_template_id_p (TREE_OPERAND (name, 0), TREE_OPERAND (name, 1))) /* If NAME is "T::X" where "T" is dependent, then the expression is dependent. */ || (TREE_CODE (name) == SCOPE_REF && TYPE_P (TREE_OPERAND (name, 0)) && dependent_type_p (TREE_OPERAND (name, 0)))) return build_min_nt (COMPONENT_REF, object, name); object = build_non_dependent_expr (object); } if (TREE_CODE (object_type) == REFERENCE_TYPE) { object = convert_from_reference (object); object_type = TREE_TYPE (object); } /* [expr.ref] The type of the first expression shall be "class object" (of a complete type). */ if (!currently_open_class (object_type) && !complete_type_or_else (object_type, object)) return error_mark_node; if (!CLASS_TYPE_P (object_type)) { error ("request for member `%D' in `%E', which is of non-class type `%T'", name, object, object_type); return error_mark_node; } if (BASELINK_P (name)) { /* A member function that has already been looked up. */ my_friendly_assert ((TREE_CODE (BASELINK_FUNCTIONS (name)) == TEMPLATE_ID_EXPR), 20020805); member = name; } else { bool is_template_id = false; tree template_args = NULL_TREE; tree scope; if (TREE_CODE (name) == TEMPLATE_ID_EXPR) { is_template_id = true; template_args = TREE_OPERAND (name, 1); name = TREE_OPERAND (name, 0); if (TREE_CODE (name) == OVERLOAD) name = DECL_NAME (get_first_fn (name)); else if (DECL_P (name)) name = DECL_NAME (name); } if (TREE_CODE (name) == SCOPE_REF) { /* A qualified name. The qualifying class or namespace `S' has already been looked up; it is either a TYPE or a NAMESPACE_DECL. The member name is either an IDENTIFIER_NODE or a BIT_NOT_EXPR. */ scope = TREE_OPERAND (name, 0); name = TREE_OPERAND (name, 1); my_friendly_assert ((CLASS_TYPE_P (scope) || TREE_CODE (scope) == NAMESPACE_DECL), 20020804); my_friendly_assert ((TREE_CODE (name) == IDENTIFIER_NODE || TREE_CODE (name) == BIT_NOT_EXPR), 20020804); /* If SCOPE is a namespace, then the qualified name does not name a member of OBJECT_TYPE. */ if (TREE_CODE (scope) == NAMESPACE_DECL) { error ("`%D::%D' is not a member of `%T'", scope, name, object_type); return error_mark_node; } /* Find the base of OBJECT_TYPE corresponding to SCOPE. */ access_path = lookup_base (object_type, scope, ba_check, NULL); if (access_path == error_mark_node) return error_mark_node; if (!access_path) { error ("`%T' is not a base of `%T'", scope, object_type); return error_mark_node; } } else { scope = NULL_TREE; access_path = object_type; } if (TREE_CODE (name) == BIT_NOT_EXPR) member = lookup_destructor (object, scope, name); else { /* Look up the member. */ member = lookup_member (access_path, name, /*protect=*/1, /*want_type=*/false); if (member == NULL_TREE) { error ("'%D' has no member named '%E'", object_type, name); return error_mark_node; } if (member == error_mark_node) return error_mark_node; } if (is_template_id) { tree template = member; if (BASELINK_P (template)) template = lookup_template_function (template, template_args); else { error ("`%D' is not a member template function", name); return error_mark_node; } } } if (TREE_DEPRECATED (member)) warn_deprecated_use (member); expr = build_class_member_access_expr (object, member, access_path, /*preserve_reference=*/false); if (processing_template_decl && expr != error_mark_node) return build_min_non_dep (COMPONENT_REF, expr, orig_object, orig_name); return expr; } /* Return an expression for the MEMBER_NAME field in the internal representation of PTRMEM, a pointer-to-member function. (Each pointer-to-member function type gets its own RECORD_TYPE so it is more convenient to access the fields by name than by FIELD_DECL.) This routine converts the NAME to a FIELD_DECL and then creates the node for the complete expression. */ tree build_ptrmemfunc_access_expr (tree ptrmem, tree member_name) { tree ptrmem_type; tree member; tree member_type; /* This code is a stripped down version of build_class_member_access_expr. It does not work to use that routine directly because it expects the object to be of class type. */ ptrmem_type = TREE_TYPE (ptrmem); my_friendly_assert (TYPE_PTRMEMFUNC_P (ptrmem_type), 20020804); member = lookup_member (ptrmem_type, member_name, /*protect=*/0, /*want_type=*/false); member_type = cp_build_qualified_type (TREE_TYPE (member), cp_type_quals (ptrmem_type)); return fold (build (COMPONENT_REF, member_type, ptrmem, member)); } /* Given an expression PTR for a pointer, return an expression for the value pointed to. ERRORSTRING is the name of the operator to appear in error messages. This function may need to overload OPERATOR_FNNAME. Must also handle REFERENCE_TYPEs for C++. */ tree build_x_indirect_ref (tree expr, const char *errorstring) { tree orig_expr = expr; tree rval; if (processing_template_decl) { if (type_dependent_expression_p (expr)) return build_min_nt (INDIRECT_REF, expr); expr = build_non_dependent_expr (expr); } rval = build_new_op (INDIRECT_REF, LOOKUP_NORMAL, expr, NULL_TREE, NULL_TREE, /*overloaded_p=*/NULL); if (!rval) rval = build_indirect_ref (expr, errorstring); if (processing_template_decl && rval != error_mark_node) return build_min_non_dep (INDIRECT_REF, rval, orig_expr); else return rval; } tree build_indirect_ref (tree ptr, const char *errorstring) { tree pointer, type; if (ptr == error_mark_node) return error_mark_node; if (ptr == current_class_ptr) return current_class_ref; pointer = (TREE_CODE (TREE_TYPE (ptr)) == REFERENCE_TYPE ? ptr : decay_conversion (ptr)); type = TREE_TYPE (pointer); if (TYPE_PTR_P (type) || TREE_CODE (type) == REFERENCE_TYPE) { /* [expr.unary.op] If the type of the expression is "pointer to T," the type of the result is "T." We must use the canonical variant because certain parts of the back end, like fold, do pointer comparisons between types. */ tree t = canonical_type_variant (TREE_TYPE (type)); if (VOID_TYPE_P (t)) { /* A pointer to incomplete type (other than cv void) can be dereferenced [expr.unary.op]/1 */ error ("`%T' is not a pointer-to-object type", type); return error_mark_node; } else if (TREE_CODE (pointer) == ADDR_EXPR && same_type_p (t, TREE_TYPE (TREE_OPERAND (pointer, 0)))) /* The POINTER was something like `&x'. We simplify `*&x' to `x'. */ return TREE_OPERAND (pointer, 0); else { tree ref = build1 (INDIRECT_REF, t, pointer); /* We *must* set TREE_READONLY when dereferencing a pointer to const, so that we get the proper error message if the result is used to assign to. Also, &* is supposed to be a no-op. */ TREE_READONLY (ref) = CP_TYPE_CONST_P (t); TREE_THIS_VOLATILE (ref) = CP_TYPE_VOLATILE_P (t); TREE_SIDE_EFFECTS (ref) = (TREE_THIS_VOLATILE (ref) || TREE_SIDE_EFFECTS (pointer)); return ref; } } /* `pointer' won't be an error_mark_node if we were given a pointer to member, so it's cool to check for this here. */ else if (TYPE_PTR_TO_MEMBER_P (type)) error ("invalid use of `%s' on pointer to member", errorstring); else if (pointer != error_mark_node) { if (errorstring) error ("invalid type argument of `%s'", errorstring); else error ("invalid type argument"); } return error_mark_node; } /* This handles expressions of the form "a[i]", which denotes an array reference. This is logically equivalent in C to *(a+i), but we may do it differently. If A is a variable or a member, we generate a primitive ARRAY_REF. This avoids forcing the array out of registers, and can work on arrays that are not lvalues (for example, members of structures returned by functions). If INDEX is of some user-defined type, it must be converted to integer type. Otherwise, to make a compatible PLUS_EXPR, it will inherit the type of the array, which will be some pointer type. */ tree build_array_ref (tree array, tree idx) { if (idx == 0) { error ("subscript missing in array reference"); return error_mark_node; } if (TREE_TYPE (array) == error_mark_node || TREE_TYPE (idx) == error_mark_node) return error_mark_node; /* If ARRAY is a COMPOUND_EXPR or COND_EXPR, move our reference inside it. */ switch (TREE_CODE (array)) { case COMPOUND_EXPR: { tree value = build_array_ref (TREE_OPERAND (array, 1), idx); return build (COMPOUND_EXPR, TREE_TYPE (value), TREE_OPERAND (array, 0), value); } case COND_EXPR: return build_conditional_expr (TREE_OPERAND (array, 0), build_array_ref (TREE_OPERAND (array, 1), idx), build_array_ref (TREE_OPERAND (array, 2), idx)); default: break; } if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE && TREE_CODE (array) != INDIRECT_REF) { tree rval, type; /* Subscripting with type char is likely to lose on a machine where chars are signed. So warn on any machine, but optionally. Don't warn for unsigned char since that type is safe. Don't warn for signed char because anyone who uses that must have done so deliberately. */ if (warn_char_subscripts && TYPE_MAIN_VARIANT (TREE_TYPE (idx)) == char_type_node) warning ("array subscript has type `char'"); if (!INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (idx))) { error ("array subscript is not an integer"); return error_mark_node; } /* Apply integral promotions *after* noticing character types. (It is unclear why we do these promotions -- the standard does not say that we should. In fact, the natual thing would seem to be to convert IDX to ptrdiff_t; we're performing pointer arithmetic.) */ idx = perform_integral_promotions (idx); /* An array that is indexed by a non-constant cannot be stored in a register; we must be able to do address arithmetic on its address. Likewise an array of elements of variable size. */ if (TREE_CODE (idx) != INTEGER_CST || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array))) && (TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))) { if (!cxx_mark_addressable (array)) return error_mark_node; } /* An array that is indexed by a constant value which is not within the array bounds cannot be stored in a register either; because we would get a crash in store_bit_field/extract_bit_field when trying to access a non-existent part of the register. */ if (TREE_CODE (idx) == INTEGER_CST && TYPE_VALUES (TREE_TYPE (array)) && ! int_fits_type_p (idx, TYPE_VALUES (TREE_TYPE (array)))) { if (!cxx_mark_addressable (array)) return error_mark_node; } if (pedantic && !lvalue_p (array)) pedwarn ("ISO C++ forbids subscripting non-lvalue array"); /* Note in C++ it is valid to subscript a `register' array, since it is valid to take the address of something with that storage specification. */ if (extra_warnings) { tree foo = array; while (TREE_CODE (foo) == COMPONENT_REF) foo = TREE_OPERAND (foo, 0); if (TREE_CODE (foo) == VAR_DECL && DECL_REGISTER (foo)) warning ("subscripting array declared `register'"); } type = TREE_TYPE (TREE_TYPE (array)); rval = build (ARRAY_REF, type, array, idx); /* Array ref is const/volatile if the array elements are or if the array is.. */ TREE_READONLY (rval) |= (CP_TYPE_CONST_P (type) | TREE_READONLY (array)); TREE_SIDE_EFFECTS (rval) |= (CP_TYPE_VOLATILE_P (type) | TREE_SIDE_EFFECTS (array)); TREE_THIS_VOLATILE (rval) |= (CP_TYPE_VOLATILE_P (type) | TREE_THIS_VOLATILE (array)); return require_complete_type (fold (rval)); } { tree ar = default_conversion (array); tree ind = default_conversion (idx); /* Put the integer in IND to simplify error checking. */ if (TREE_CODE (TREE_TYPE (ar)) == INTEGER_TYPE) { tree temp = ar; ar = ind; ind = temp; } if (ar == error_mark_node) return ar; if (TREE_CODE (TREE_TYPE (ar)) != POINTER_TYPE) { error ("subscripted value is neither array nor pointer"); return error_mark_node; } if (TREE_CODE (TREE_TYPE (ind)) != INTEGER_TYPE) { error ("array subscript is not an integer"); return error_mark_node; } return build_indirect_ref (cp_build_binary_op (PLUS_EXPR, ar, ind), "array indexing"); } } /* Resolve a pointer to member function. INSTANCE is the object instance to use, if the member points to a virtual member. This used to avoid checking for virtual functions if basetype has no virtual functions, according to an earlier ANSI draft. With the final ISO C++ rules, such an optimization is incorrect: A pointer to a derived member can be static_cast to pointer-to-base-member, as long as the dynamic object later has the right member. */ tree get_member_function_from_ptrfunc (tree *instance_ptrptr, tree function) { if (TREE_CODE (function) == OFFSET_REF) function = TREE_OPERAND (function, 1); if (TYPE_PTRMEMFUNC_P (TREE_TYPE (function))) { tree idx, delta, e1, e2, e3, vtbl, basetype; tree fntype = TYPE_PTRMEMFUNC_FN_TYPE (TREE_TYPE (function)); tree instance_ptr = *instance_ptrptr; tree instance_save_expr = 0; if (instance_ptr == error_mark_node) { if (TREE_CODE (function) == PTRMEM_CST) { /* Extracting the function address from a pmf is only allowed with -Wno-pmf-conversions. It only works for pmf constants. */ e1 = build_addr_func (PTRMEM_CST_MEMBER (function)); e1 = convert (fntype, e1); return e1; } else { error ("object missing in use of `%E'", function); return error_mark_node; } } if (TREE_SIDE_EFFECTS (instance_ptr)) instance_ptr = instance_save_expr = save_expr (instance_ptr); if (TREE_SIDE_EFFECTS (function)) function = save_expr (function); /* Start by extracting all the information from the PMF itself. */ e3 = PFN_FROM_PTRMEMFUNC (function); delta = build_ptrmemfunc_access_expr (function, delta_identifier); idx = build1 (NOP_EXPR, vtable_index_type, e3); switch (TARGET_PTRMEMFUNC_VBIT_LOCATION) { case ptrmemfunc_vbit_in_pfn: e1 = cp_build_binary_op (BIT_AND_EXPR, idx, integer_one_node); idx = cp_build_binary_op (MINUS_EXPR, idx, integer_one_node); break; case ptrmemfunc_vbit_in_delta: e1 = cp_build_binary_op (BIT_AND_EXPR, delta, integer_one_node); delta = cp_build_binary_op (RSHIFT_EXPR, delta, integer_one_node); break; default: abort (); } /* Convert down to the right base before using the instance. First use the type... */ basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (fntype)); basetype = lookup_base (TREE_TYPE (TREE_TYPE (instance_ptr)), basetype, ba_check, NULL); instance_ptr = build_base_path (PLUS_EXPR, instance_ptr, basetype, 1); if (instance_ptr == error_mark_node) return error_mark_node; /* ...and then the delta in the PMF. */ instance_ptr = build (PLUS_EXPR, TREE_TYPE (instance_ptr), instance_ptr, delta); /* Hand back the adjusted 'this' argument to our caller. */ *instance_ptrptr = instance_ptr; /* Next extract the vtable pointer from the object. */ vtbl = build1 (NOP_EXPR, build_pointer_type (vtbl_ptr_type_node), instance_ptr); vtbl = build_indirect_ref (vtbl, NULL); /* Finally, extract the function pointer from the vtable. */ e2 = fold (build (PLUS_EXPR, TREE_TYPE (vtbl), vtbl, idx)); e2 = build_indirect_ref (e2, NULL); TREE_CONSTANT (e2) = 1; /* When using function descriptors, the address of the vtable entry is treated as a function pointer. */ if (TARGET_VTABLE_USES_DESCRIPTORS) e2 = build1 (NOP_EXPR, TREE_TYPE (e2), build_unary_op (ADDR_EXPR, e2, /*noconvert=*/1)); TREE_TYPE (e2) = TREE_TYPE (e3); e1 = build_conditional_expr (e1, e2, e3); /* Make sure this doesn't get evaluated first inside one of the branches of the COND_EXPR. */ if (instance_save_expr) e1 = build (COMPOUND_EXPR, TREE_TYPE (e1), instance_save_expr, e1); function = e1; } return function; } tree build_function_call (tree function, tree params) { tree fntype, fndecl; tree coerced_params; tree result; tree name = NULL_TREE, assembler_name = NULL_TREE; int is_method; tree original = function; /* build_c_cast puts on a NOP_EXPR to make the result not an lvalue. Strip such NOP_EXPRs, since FUNCTION is used in non-lvalue context. */ if (TREE_CODE (function) == NOP_EXPR && TREE_TYPE (function) == TREE_TYPE (TREE_OPERAND (function, 0))) function = TREE_OPERAND (function, 0); if (TREE_CODE (function) == FUNCTION_DECL) { name = DECL_NAME (function); assembler_name = DECL_ASSEMBLER_NAME (function); mark_used (function); fndecl = function; /* Convert anything with function type to a pointer-to-function. */ if (pedantic && DECL_MAIN_P (function)) pedwarn ("ISO C++ forbids calling `::main' from within program"); /* Differs from default_conversion by not setting TREE_ADDRESSABLE (because calling an inline function does not mean the function needs to be separately compiled). */ if (DECL_INLINE (function)) function = inline_conversion (function); else function = build_addr_func (function); } else { fndecl = NULL_TREE; function = build_addr_func (function); } if (function == error_mark_node) return error_mark_node; fntype = TREE_TYPE (function); if (TYPE_PTRMEMFUNC_P (fntype)) { error ("must use .* or ->* to call pointer-to-member function in `%E (...)'", original); return error_mark_node; } is_method = (TREE_CODE (fntype) == POINTER_TYPE && TREE_CODE (TREE_TYPE (fntype)) == METHOD_TYPE); if (!((TREE_CODE (fntype) == POINTER_TYPE && TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE) || is_method || TREE_CODE (function) == TEMPLATE_ID_EXPR)) { error ("`%E' cannot be used as a function", original); return error_mark_node; } /* fntype now gets the type of function pointed to. */ fntype = TREE_TYPE (fntype); /* Convert the parameters to the types declared in the function prototype, or apply default promotions. */ coerced_params = convert_arguments (TYPE_ARG_TYPES (fntype), params, fndecl, LOOKUP_NORMAL); if (coerced_params == error_mark_node) return error_mark_node; /* Check for errors in format strings. */ if (warn_format) check_function_format (NULL, TYPE_ATTRIBUTES (fntype), coerced_params); /* Recognize certain built-in functions so we can make tree-codes other than CALL_EXPR. We do this when it enables fold-const.c to do something useful. */ if (TREE_CODE (function) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL && DECL_BUILT_IN (TREE_OPERAND (function, 0))) { result = expand_tree_builtin (TREE_OPERAND (function, 0), params, coerced_params); if (result) return result; } return build_cxx_call (function, params, coerced_params); } /* Convert the actual parameter expressions in the list VALUES to the types in the list TYPELIST. If parmdecls is exhausted, or when an element has NULL as its type, perform the default conversions. NAME is an IDENTIFIER_NODE or 0. It is used only for error messages. This is also where warnings about wrong number of args are generated. Return a list of expressions for the parameters as converted. Both VALUES and the returned value are chains of TREE_LIST nodes with the elements of the list in the TREE_VALUE slots of those nodes. In C++, unspecified trailing parameters can be filled in with their default arguments, if such were specified. Do so here. */ tree convert_arguments (tree typelist, tree values, tree fndecl, int flags) { tree typetail, valtail; tree result = NULL_TREE; const char *called_thing = 0; int i = 0; /* Argument passing is always copy-initialization. */ flags |= LOOKUP_ONLYCONVERTING; if (fndecl) { if (TREE_CODE (TREE_TYPE (fndecl)) == METHOD_TYPE) { if (DECL_NAME (fndecl) == NULL_TREE || IDENTIFIER_HAS_TYPE_VALUE (DECL_NAME (fndecl))) called_thing = "constructor"; else called_thing = "member function"; } else called_thing = "function"; } for (valtail = values, typetail = typelist; valtail; valtail = TREE_CHAIN (valtail), i++) { tree type = typetail ? TREE_VALUE (typetail) : 0; tree val = TREE_VALUE (valtail); if (val == error_mark_node) return error_mark_node; if (type == void_type_node) { if (fndecl) { cp_error_at ("too many arguments to %s `%+#D'", called_thing, fndecl); error ("at this point in file"); } else error ("too many arguments to function"); /* In case anybody wants to know if this argument list is valid. */ if (result) TREE_TYPE (tree_last (result)) = error_mark_node; break; } /* build_c_cast puts on a NOP_EXPR to make the result not an lvalue. Strip such NOP_EXPRs, since VAL is used in non-lvalue context. */ if (TREE_CODE (val) == NOP_EXPR && TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0)) && (type == 0 || TREE_CODE (type) != REFERENCE_TYPE)) val = TREE_OPERAND (val, 0); if (type == 0 || TREE_CODE (type) != REFERENCE_TYPE) { if (TREE_CODE (TREE_TYPE (val)) == ARRAY_TYPE || TREE_CODE (TREE_TYPE (val)) == FUNCTION_TYPE || TREE_CODE (TREE_TYPE (val)) == METHOD_TYPE) val = decay_conversion (val); } if (val == error_mark_node) return error_mark_node; if (type != 0) { /* Formal parm type is specified by a function prototype. */ tree parmval; if (!COMPLETE_TYPE_P (complete_type (type))) { if (fndecl) error ("parameter %P of `%D' has incomplete type `%T'", i, fndecl, type); else error ("parameter %P has incomplete type `%T'", i, type); parmval = error_mark_node; } else { parmval = convert_for_initialization (NULL_TREE, type, val, flags, "argument passing", fndecl, i); parmval = convert_for_arg_passing (type, parmval); } if (parmval == error_mark_node) return error_mark_node; result = tree_cons (NULL_TREE, parmval, result); } else { if (TREE_CODE (TREE_TYPE (val)) == REFERENCE_TYPE) val = convert_from_reference (val); if (fndecl && DECL_BUILT_IN (fndecl) && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P) /* Don't do ellipsis conversion for __built_in_constant_p as this will result in spurious warnings for non-POD types. */ val = require_complete_type (val); else val = convert_arg_to_ellipsis (val); result = tree_cons (NULL_TREE, val, result); } if (typetail) typetail = TREE_CHAIN (typetail); } if (typetail != 0 && typetail != void_list_node) { /* See if there are default arguments that can be used. */ if (TREE_PURPOSE (typetail) && TREE_CODE (TREE_PURPOSE (typetail)) != DEFAULT_ARG) { for (; typetail != void_list_node; ++i) { tree parmval = convert_default_arg (TREE_VALUE (typetail), TREE_PURPOSE (typetail), fndecl, i); if (parmval == error_mark_node) return error_mark_node; result = tree_cons (0, parmval, result); typetail = TREE_CHAIN (typetail); /* ends with `...'. */ if (typetail == NULL_TREE) break; } } else { if (fndecl) { cp_error_at ("too few arguments to %s `%+#D'", called_thing, fndecl); error ("at this point in file"); } else error ("too few arguments to function"); return error_mark_list; } } return nreverse (result); } /* Build a binary-operation expression, after performing default conversions on the operands. CODE is the kind of expression to build. */ tree build_x_binary_op (enum tree_code code, tree arg1, tree arg2, bool *overloaded_p) { tree orig_arg1; tree orig_arg2; tree expr; orig_arg1 = arg1; orig_arg2 = arg2; if (processing_template_decl) { if (type_dependent_expression_p (arg1) || type_dependent_expression_p (arg2)) return build_min_nt (code, arg1, arg2); arg1 = build_non_dependent_expr (arg1); arg2 = build_non_dependent_expr (arg2); } if (code == DOTSTAR_EXPR) expr = build_m_component_ref (arg1, arg2); else expr = build_new_op (code, LOOKUP_NORMAL, arg1, arg2, NULL_TREE, overloaded_p); if (processing_template_decl && expr != error_mark_node) return build_min_non_dep (code, expr, orig_arg1, orig_arg2); return expr; } /* Build a binary-operation expression without default conversions. CODE is the kind of expression to build. This function differs from `build' in several ways: the data type of the result is computed and recorded in it, warnings are generated if arg data types are invalid, special handling for addition and subtraction of pointers is known, and some optimization is done (operations on narrow ints are done in the narrower type when that gives the same result). Constant folding is also done before the result is returned. Note that the operands will never have enumeral types because either they have just had the default conversions performed or they have both just been converted to some other type in which the arithmetic is to be done. C++: must do special pointer arithmetic when implementing multiple inheritance, and deal with pointer to member functions. */ tree build_binary_op (enum tree_code code, tree orig_op0, tree orig_op1, int convert_p ATTRIBUTE_UNUSED) { tree op0, op1; enum tree_code code0, code1; tree type0, type1; /* Expression code to give to the expression when it is built. Normally this is CODE, which is what the caller asked for, but in some special cases we change it. */ enum tree_code resultcode = code; /* Data type in which the computation is to be performed. In the simplest cases this is the common type of the arguments. */ tree result_type = NULL; /* Nonzero means operands have already been type-converted in whatever way is necessary. Zero means they need to be converted to RESULT_TYPE. */ int converted = 0; /* Nonzero means create the expression with this type, rather than RESULT_TYPE. */ tree build_type = 0; /* Nonzero means after finally constructing the expression convert it to this type. */ tree final_type = 0; /* Nonzero if this is an operation like MIN or MAX which can safely be computed in short if both args are promoted shorts. Also implies COMMON. -1 indicates a bitwise operation; this makes a difference in the exact conditions for when it is safe to do the operation in a narrower mode. */ int shorten = 0; /* Nonzero if this is a comparison operation; if both args are promoted shorts, compare the original shorts. Also implies COMMON. */ int short_compare = 0; /* Nonzero if this is a right-shift operation, which can be computed on the original short and then promoted if the operand is a promoted short. */ int short_shift = 0; /* Nonzero means set RESULT_TYPE to the common type of the args. */ int common = 0; /* Apply default conversions. */ op0 = orig_op0; op1 = orig_op1; if (code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR || code == TRUTH_OR_EXPR || code == TRUTH_ORIF_EXPR || code == TRUTH_XOR_EXPR) { if (!really_overloaded_fn (op0)) op0 = decay_conversion (op0); if (!really_overloaded_fn (op1)) op1 = decay_conversion (op1); } else { if (!really_overloaded_fn (op0)) op0 = default_conversion (op0); if (!really_overloaded_fn (op1)) op1 = default_conversion (op1); } /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */ STRIP_TYPE_NOPS (op0); STRIP_TYPE_NOPS (op1); /* DTRT if one side is an overloaded function, but complain about it. */ if (type_unknown_p (op0)) { tree t = instantiate_type (TREE_TYPE (op1), op0, tf_none); if (t != error_mark_node) { pedwarn ("assuming cast to type `%T' from overloaded function", TREE_TYPE (t)); op0 = t; } } if (type_unknown_p (op1)) { tree t = instantiate_type (TREE_TYPE (op0), op1, tf_none); if (t != error_mark_node) { pedwarn ("assuming cast to type `%T' from overloaded function", TREE_TYPE (t)); op1 = t; } } type0 = TREE_TYPE (op0); type1 = TREE_TYPE (op1); /* The expression codes of the data types of the arguments tell us whether the arguments are integers, floating, pointers, etc. */ code0 = TREE_CODE (type0); code1 = TREE_CODE (type1); /* If an error was already reported for one of the arguments, avoid reporting another error. */ if (code0 == ERROR_MARK || code1 == ERROR_MARK) return error_mark_node; switch (code) { case PLUS_EXPR: /* Handle the pointer + int case. */ if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE) return cp_pointer_int_sum (PLUS_EXPR, op0, op1); else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE) return cp_pointer_int_sum (PLUS_EXPR, op1, op0); else common = 1; break; case MINUS_EXPR: /* Subtraction of two similar pointers. We must subtract them as integers, then divide by object size. */ if (code0 == POINTER_TYPE && code1 == POINTER_TYPE && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (type0), TREE_TYPE (type1))) return pointer_diff (op0, op1, common_type (type0, type1)); /* Handle pointer minus int. Just like pointer plus int. */ else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE) return cp_pointer_int_sum (MINUS_EXPR, op0, op1); else common = 1; break; case MULT_EXPR: common = 1; break; case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR: case ROUND_DIV_EXPR: case EXACT_DIV_EXPR: if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE) && (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE)) { if (TREE_CODE (op1) == INTEGER_CST && integer_zerop (op1)) warning ("division by zero in `%E / 0'", op0); else if (TREE_CODE (op1) == REAL_CST && real_zerop (op1)) warning ("division by zero in `%E / 0.'", op0); if (!(code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)) resultcode = RDIV_EXPR; else /* When dividing two signed integers, we have to promote to int. unless we divide by a constant != -1. Note that default conversion will have been performed on the operands at this point, so we have to dig out the original type to find out if it was unsigned. */ shorten = ((TREE_CODE (op0) == NOP_EXPR && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op0, 0)))) || (TREE_CODE (op1) == INTEGER_CST && ! integer_all_onesp (op1))); common = 1; } break; case BIT_AND_EXPR: case BIT_IOR_EXPR: case BIT_XOR_EXPR: if ((code0 == INTEGER_TYPE && code1 == INTEGER_TYPE) || (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE)) shorten = -1; break; case TRUNC_MOD_EXPR: case FLOOR_MOD_EXPR: if (code1 == INTEGER_TYPE && integer_zerop (op1)) warning ("division by zero in `%E %% 0'", op0); else if (code1 == REAL_TYPE && real_zerop (op1)) warning ("division by zero in `%E %% 0.'", op0); if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE) { /* Although it would be tempting to shorten always here, that loses on some targets, since the modulo instruction is undefined if the quotient can't be represented in the computation mode. We shorten only if unsigned or if dividing by something we know != -1. */ shorten = ((TREE_CODE (op0) == NOP_EXPR && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op0, 0)))) || (TREE_CODE (op1) == INTEGER_CST && ! integer_all_onesp (op1))); common = 1; } break; case TRUTH_ANDIF_EXPR: case TRUTH_ORIF_EXPR: case TRUTH_AND_EXPR: case TRUTH_OR_EXPR: result_type = boolean_type_node; break; /* Shift operations: result has same type as first operand; always convert second operand to int. Also set SHORT_SHIFT if shifting rightward. */ case RSHIFT_EXPR: if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE) { result_type = type0; if (TREE_CODE (op1) == INTEGER_CST) { if (tree_int_cst_lt (op1, integer_zero_node)) warning ("right shift count is negative"); else { if (! integer_zerop (op1)) short_shift = 1; if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0) warning ("right shift count >= width of type"); } } /* Convert the shift-count to an integer, regardless of size of value being shifted. */ if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node) op1 = cp_convert (integer_type_node, op1); /* Avoid converting op1 to result_type later. */ converted = 1; } break; case LSHIFT_EXPR: if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE) { result_type = type0; if (TREE_CODE (op1) == INTEGER_CST) { if (tree_int_cst_lt (op1, integer_zero_node)) warning ("left shift count is negative"); else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0) warning ("left shift count >= width of type"); } /* Convert the shift-count to an integer, regardless of size of value being shifted. */ if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node) op1 = cp_convert (integer_type_node, op1); /* Avoid converting op1 to result_type later. */ converted = 1; } break; case RROTATE_EXPR: case LROTATE_EXPR: if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE) { result_type = type0; if (TREE_CODE (op1) == INTEGER_CST) { if (tree_int_cst_lt (op1, integer_zero_node)) warning ("%s rotate count is negative", (code == LROTATE_EXPR) ? "left" : "right"); else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0) warning ("%s rotate count >= width of type", (code == LROTATE_EXPR) ? "left" : "right"); } /* Convert the shift-count to an integer, regardless of size of value being shifted. */ if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node) op1 = cp_convert (integer_type_node, op1); } break; case EQ_EXPR: case NE_EXPR: if (warn_float_equal && (code0 == REAL_TYPE || code1 == REAL_TYPE)) warning ("comparing floating point with == or != is unsafe"); build_type = boolean_type_node; if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE) && (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE)) short_compare = 1; else if ((code0 == POINTER_TYPE && code1 == POINTER_TYPE) || (TYPE_PTRMEM_P (type0) && TYPE_PTRMEM_P (type1))) result_type = composite_pointer_type (type0, type1, op0, op1, "comparison"); else if ((code0 == POINTER_TYPE || TYPE_PTRMEM_P (type0)) && null_ptr_cst_p (op1)) result_type = type0; else if ((code1 == POINTER_TYPE || TYPE_PTRMEM_P (type1)) && null_ptr_cst_p (op0)) result_type = type1; else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE) { result_type = type0; error ("ISO C++ forbids comparison between pointer and integer"); } else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE) { result_type = type1; error ("ISO C++ forbids comparison between pointer and integer"); } else if (TYPE_PTRMEMFUNC_P (type0) && null_ptr_cst_p (op1)) { op0 = build_ptrmemfunc_access_expr (op0, pfn_identifier); op1 = cp_convert (TREE_TYPE (op0), integer_zero_node); result_type = TREE_TYPE (op0); } else if (TYPE_PTRMEMFUNC_P (type1) && null_ptr_cst_p (op0)) return cp_build_binary_op (code, op1, op0); else if (TYPE_PTRMEMFUNC_P (type0) && TYPE_PTRMEMFUNC_P (type1) && same_type_p (type0, type1)) { /* E will be the final comparison. */ tree e; /* E1 and E2 are for scratch. */ tree e1; tree e2; tree pfn0; tree pfn1; tree delta0; tree delta1; if (TREE_SIDE_EFFECTS (op0)) op0 = save_expr (op0); if (TREE_SIDE_EFFECTS (op1)) op1 = save_expr (op1); /* We generate: (op0.pfn == op1.pfn && (!op0.pfn || op0.delta == op1.delta)) The reason for the `!op0.pfn' bit is that a NULL pointer-to-member is any member with a zero PFN; the DELTA field is unspecified. */ pfn0 = pfn_from_ptrmemfunc (op0); pfn1 = pfn_from_ptrmemfunc (op1); delta0 = build_ptrmemfunc_access_expr (op0, delta_identifier); delta1 = build_ptrmemfunc_access_expr (op1, delta_identifier); e1 = cp_build_binary_op (EQ_EXPR, delta0, delta1); e2 = cp_build_binary_op (EQ_EXPR, pfn0, cp_convert (TREE_TYPE (pfn0), integer_zero_node)); e1 = cp_build_binary_op (TRUTH_ORIF_EXPR, e1, e2); e2 = build (EQ_EXPR, boolean_type_node, pfn0, pfn1); e = cp_build_binary_op (TRUTH_ANDIF_EXPR, e2, e1); if (code == EQ_EXPR) return e; return cp_build_binary_op (EQ_EXPR, e, integer_zero_node); } else if ((TYPE_PTRMEMFUNC_P (type0) && same_type_p (TYPE_PTRMEMFUNC_FN_TYPE (type0), type1)) || (TYPE_PTRMEMFUNC_P (type1) && same_type_p (TYPE_PTRMEMFUNC_FN_TYPE (type1), type0))) abort (); break; case MAX_EXPR: case MIN_EXPR: if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE) && (code1 == INTEGER_TYPE || code1 == REAL_TYPE)) shorten = 1; else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE) result_type = composite_pointer_type (type0, type1, op0, op1, "comparison"); break; case LE_EXPR: case GE_EXPR: case LT_EXPR: case GT_EXPR: build_type = boolean_type_node; if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE) && (code1 == INTEGER_TYPE || code1 == REAL_TYPE)) short_compare = 1; else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE) result_type = composite_pointer_type (type0, type1, op0, op1, "comparison"); else if (code0 == POINTER_TYPE && TREE_CODE (op1) == INTEGER_CST && integer_zerop (op1)) result_type = type0; else if (code1 == POINTER_TYPE && TREE_CODE (op0) == INTEGER_CST && integer_zerop (op0)) result_type = type1; else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE) { result_type = type0; pedwarn ("ISO C++ forbids comparison between pointer and integer"); } else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE) { result_type = type1; pedwarn ("ISO C++ forbids comparison between pointer and integer"); } break; case UNORDERED_EXPR: case ORDERED_EXPR: case UNLT_EXPR: case UNLE_EXPR: case UNGT_EXPR: case UNGE_EXPR: case UNEQ_EXPR: build_type = integer_type_node; if (code0 != REAL_TYPE || code1 != REAL_TYPE) { error ("unordered comparison on non-floating point argument"); return error_mark_node; } common = 1; break; default: break; } if (((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE) && (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE)) || (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE)) { int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE); if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE && !tree_int_cst_equal (TYPE_SIZE (type0), TYPE_SIZE (type1))) error ("can't convert between vector values of different size"); if (shorten || common || short_compare) result_type = common_type (type0, type1); /* For certain operations (which identify themselves by shorten != 0) if both args were extended from the same smaller type, do the arithmetic in that type and then extend. shorten !=0 and !=1 indicates a bitwise operation. For them, this optimization is safe only if both args are zero-extended or both are sign-extended. Otherwise, we might change the result. Eg, (short)-1 | (unsigned short)-1 is (int)-1 but calculated in (unsigned short) it would be (unsigned short)-1. */ if (shorten && none_complex) { int unsigned0, unsigned1; tree arg0 = get_narrower (op0, &unsigned0); tree arg1 = get_narrower (op1, &unsigned1); /* UNS is 1 if the operation to be done is an unsigned one. */ int uns = TREE_UNSIGNED (result_type); tree type; final_type = result_type; /* Handle the case that OP0 does not *contain* a conversion but it *requires* conversion to FINAL_TYPE. */ if (op0 == arg0 && TREE_TYPE (op0) != final_type) unsigned0 = TREE_UNSIGNED (TREE_TYPE (op0)); if (op1 == arg1 && TREE_TYPE (op1) != final_type) unsigned1 = TREE_UNSIGNED (TREE_TYPE (op1)); /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE. */ /* For bitwise operations, signedness of nominal type does not matter. Consider only how operands were extended. */ if (shorten == -1) uns = unsigned0; /* Note that in all three cases below we refrain from optimizing an unsigned operation on sign-extended args. That would not be valid. */ /* Both args variable: if both extended in same way from same width, do it in that width. Do it unsigned if args were zero-extended. */ if ((TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)) && (TYPE_PRECISION (TREE_TYPE (arg1)) == TYPE_PRECISION (TREE_TYPE (arg0))) && unsigned0 == unsigned1 && (unsigned0 || !uns)) result_type = c_common_signed_or_unsigned_type (unsigned0, common_type (TREE_TYPE (arg0), TREE_TYPE (arg1))); else if (TREE_CODE (arg0) == INTEGER_CST && (unsigned1 || !uns) && (TYPE_PRECISION (TREE_TYPE (arg1)) < TYPE_PRECISION (result_type)) && (type = c_common_signed_or_unsigned_type (unsigned1, TREE_TYPE (arg1)), int_fits_type_p (arg0, type))) result_type = type; else if (TREE_CODE (arg1) == INTEGER_CST && (unsigned0 || !uns) && (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)) && (type = c_common_signed_or_unsigned_type (unsigned0, TREE_TYPE (arg0)), int_fits_type_p (arg1, type))) result_type = type; } /* Shifts can be shortened if shifting right. */ if (short_shift) { int unsigned_arg; tree arg0 = get_narrower (op0, &unsigned_arg); final_type = result_type; if (arg0 == op0 && final_type == TREE_TYPE (op0)) unsigned_arg = TREE_UNSIGNED (TREE_TYPE (op0)); if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type) /* We can shorten only if the shift count is less than the number of bits in the smaller type size. */ && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0 /* If arg is sign-extended and then unsigned-shifted, we can simulate this with a signed shift in arg's type only if the extended result is at least twice as wide as the arg. Otherwise, the shift could use up all the ones made by sign-extension and bring in zeros. We can't optimize that case at all, but in most machines it never happens because available widths are 2**N. */ && (!TREE_UNSIGNED (final_type) || unsigned_arg || (((unsigned) 2 * TYPE_PRECISION (TREE_TYPE (arg0))) <= TYPE_PRECISION (result_type)))) { /* Do an unsigned shift if the operand was zero-extended. */ result_type = c_common_signed_or_unsigned_type (unsigned_arg, TREE_TYPE (arg0)); /* Convert value-to-be-shifted to that type. */ if (TREE_TYPE (op0) != result_type) op0 = cp_convert (result_type, op0); converted = 1; } } /* Comparison operations are shortened too but differently. They identify themselves by setting short_compare = 1. */ if (short_compare) { /* Don't write &op0, etc., because that would prevent op0 from being kept in a register. Instead, make copies of the our local variables and pass the copies by reference, then copy them back afterward. */ tree xop0 = op0, xop1 = op1, xresult_type = result_type; enum tree_code xresultcode = resultcode; tree val = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode); if (val != 0) return cp_convert (boolean_type_node, val); op0 = xop0, op1 = xop1; converted = 1; resultcode = xresultcode; } if ((short_compare || code == MIN_EXPR || code == MAX_EXPR) && warn_sign_compare /* Do not warn until the template is instantiated; we cannot bound the ranges of the arguments until that point. */ && !processing_template_decl) { int op0_signed = ! TREE_UNSIGNED (TREE_TYPE (orig_op0)); int op1_signed = ! TREE_UNSIGNED (TREE_TYPE (orig_op1)); int unsignedp0, unsignedp1; tree primop0 = get_narrower (op0, &unsignedp0); tree primop1 = get_narrower (op1, &unsignedp1); /* Check for comparison of different enum types. */ if (TREE_CODE (TREE_TYPE (orig_op0)) == ENUMERAL_TYPE && TREE_CODE (TREE_TYPE (orig_op1)) == ENUMERAL_TYPE && TYPE_MAIN_VARIANT (TREE_TYPE (orig_op0)) != TYPE_MAIN_VARIANT (TREE_TYPE (orig_op1))) { warning ("comparison between types `%#T' and `%#T'", TREE_TYPE (orig_op0), TREE_TYPE (orig_op1)); } /* Give warnings for comparisons between signed and unsigned quantities that may fail. */ /* Do the checking based on the original operand trees, so that casts will be considered, but default promotions won't be. */ /* Do not warn if the comparison is being done in a signed type, since the signed type will only be chosen if it can represent all the values of the unsigned type. */ if (! TREE_UNSIGNED (result_type)) /* OK */; /* Do not warn if both operands are unsigned. */ else if (op0_signed == op1_signed) /* OK */; /* Do not warn if the signed quantity is an unsuffixed integer literal (or some static constant expression involving such literals or a conditional expression involving such literals) and it is non-negative. */ else if ((op0_signed && tree_expr_nonnegative_p (orig_op0)) || (op1_signed && tree_expr_nonnegative_p (orig_op1))) /* OK */; /* Do not warn if the comparison is an equality operation, the unsigned quantity is an integral constant and it does not use the most significant bit of result_type. */ else if ((resultcode == EQ_EXPR || resultcode == NE_EXPR) && ((op0_signed && TREE_CODE (orig_op1) == INTEGER_CST && int_fits_type_p (orig_op1, c_common_signed_type (result_type))) || (op1_signed && TREE_CODE (orig_op0) == INTEGER_CST && int_fits_type_p (orig_op0, c_common_signed_type (result_type))))) /* OK */; else warning ("comparison between signed and unsigned integer expressions"); /* Warn if two unsigned values are being compared in a size larger than their original size, and one (and only one) is the result of a `~' operator. This comparison will always fail. Also warn if one operand is a constant, and the constant does not have all bits set that are set in the ~ operand when it is extended. */ if ((TREE_CODE (primop0) == BIT_NOT_EXPR) ^ (TREE_CODE (primop1) == BIT_NOT_EXPR)) { if (TREE_CODE (primop0) == BIT_NOT_EXPR) primop0 = get_narrower (TREE_OPERAND (op0, 0), &unsignedp0); if (TREE_CODE (primop1) == BIT_NOT_EXPR) primop1 = get_narrower (TREE_OPERAND (op1, 0), &unsignedp1); if (host_integerp (primop0, 0) || host_integerp (primop1, 0)) { tree primop; HOST_WIDE_INT constant, mask; int unsignedp; unsigned int bits; if (host_integerp (primop0, 0)) { primop = primop1; unsignedp = unsignedp1; constant = tree_low_cst (primop0, 0); } else { primop = primop0; unsignedp = unsignedp0; constant = tree_low_cst (primop1, 0); } bits = TYPE_PRECISION (TREE_TYPE (primop)); if (bits < TYPE_PRECISION (result_type) && bits < HOST_BITS_PER_LONG && unsignedp) { mask = (~ (HOST_WIDE_INT) 0) << bits; if ((mask & constant) != mask) warning ("comparison of promoted ~unsigned with constant"); } } else if (unsignedp0 && unsignedp1 && (TYPE_PRECISION (TREE_TYPE (primop0)) < TYPE_PRECISION (result_type)) && (TYPE_PRECISION (TREE_TYPE (primop1)) < TYPE_PRECISION (result_type))) warning ("comparison of promoted ~unsigned with unsigned"); } } } /* At this point, RESULT_TYPE must be nonzero to avoid an error message. If CONVERTED is zero, both args will be converted to type RESULT_TYPE. Then the expression will be built. It will be given type FINAL_TYPE if that is nonzero; otherwise, it will be given type RESULT_TYPE. */ if (!result_type) { error ("invalid operands of types `%T' and `%T' to binary `%O'", TREE_TYPE (orig_op0), TREE_TYPE (orig_op1), code); return error_mark_node; } /* Issue warnings about peculiar, but valid, uses of NULL. */ if (/* It's reasonable to use pointer values as operands of && and ||, so NULL is no exception. */ !(code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR) && (/* If OP0 is NULL and OP1 is not a pointer, or vice versa. */ (orig_op0 == null_node && TREE_CODE (TREE_TYPE (op1)) != POINTER_TYPE) /* Or vice versa. */ || (orig_op1 == null_node && TREE_CODE (TREE_TYPE (op0)) != POINTER_TYPE) /* Or, both are NULL and the operation was not a comparison. */ || (orig_op0 == null_node && orig_op1 == null_node && code != EQ_EXPR && code != NE_EXPR))) /* Some sort of arithmetic operation involving NULL was performed. Note that pointer-difference and pointer-addition have already been handled above, and so we don't end up here in that case. */ warning ("NULL used in arithmetic"); if (! converted) { if (TREE_TYPE (op0) != result_type) op0 = cp_convert (result_type, op0); if (TREE_TYPE (op1) != result_type) op1 = cp_convert (result_type, op1); if (op0 == error_mark_node || op1 == error_mark_node) return error_mark_node; } if (build_type == NULL_TREE) build_type = result_type; { tree result = build (resultcode, build_type, op0, op1); tree folded; folded = fold_if_not_in_template (result); if (folded == result) TREE_CONSTANT (folded) = TREE_CONSTANT (op0) & TREE_CONSTANT (op1); if (final_type != 0) return cp_convert (final_type, folded); return folded; } } /* Return a tree for the sum or difference (RESULTCODE says which) of pointer PTROP and integer INTOP. */ static tree cp_pointer_int_sum (enum tree_code resultcode, tree ptrop, tree intop) { tree res_type = TREE_TYPE (ptrop); /* pointer_int_sum() uses size_in_bytes() on the TREE_TYPE(res_type) in certain circumstance (when it's valid to do so). So we need to make sure it's complete. We don't need to check here, if we can actually complete it at all, as those checks will be done in pointer_int_sum() anyway. */ complete_type (TREE_TYPE (res_type)); return pointer_int_sum (resultcode, ptrop, fold (intop)); } /* Return a tree for the difference of pointers OP0 and OP1. The resulting tree has type int. */ static tree pointer_diff (tree op0, tree op1, tree ptrtype) { tree result, folded; tree restype = ptrdiff_type_node; tree target_type = TREE_TYPE (ptrtype); if (!complete_type_or_else (target_type, NULL_TREE)) return error_mark_node; if (pedantic || warn_pointer_arith) { if (TREE_CODE (target_type) == VOID_TYPE) pedwarn ("ISO C++ forbids using pointer of type `void *' in subtraction"); if (TREE_CODE (target_type) == FUNCTION_TYPE) pedwarn ("ISO C++ forbids using pointer to a function in subtraction"); if (TREE_CODE (target_type) == METHOD_TYPE) pedwarn ("ISO C++ forbids using pointer to a method in subtraction"); } /* First do the subtraction as integers; then drop through to build the divide operator. */ op0 = cp_build_binary_op (MINUS_EXPR, cp_convert (restype, op0), cp_convert (restype, op1)); /* This generates an error if op1 is a pointer to an incomplete type. */ if (!COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (op1)))) error ("invalid use of a pointer to an incomplete type in pointer arithmetic"); op1 = (TYPE_PTROB_P (ptrtype) ? size_in_bytes (target_type) : integer_one_node); /* Do the division. */ result = build (EXACT_DIV_EXPR, restype, op0, cp_convert (restype, op1)); folded = fold (result); if (folded == result) TREE_CONSTANT (folded) = TREE_CONSTANT (op0) & TREE_CONSTANT (op1); return folded; } /* Construct and perhaps optimize a tree representation for a unary operation. CODE, a tree_code, specifies the operation and XARG is the operand. */ tree build_x_unary_op (enum tree_code code, tree xarg) { tree orig_expr = xarg; tree exp; int ptrmem = 0; if (processing_template_decl) { if (type_dependent_expression_p (xarg)) return build_min_nt (code, xarg, NULL_TREE); xarg = build_non_dependent_expr (xarg); } exp = NULL_TREE; /* [expr.unary.op] says: The address of an object of incomplete type can be taken. (And is just the ordinary address operator, not an overloaded "operator &".) However, if the type is a template specialization, we must complete the type at this point so that an overloaded "operator &" will be available if required. */ if (code == ADDR_EXPR && TREE_CODE (xarg) != TEMPLATE_ID_EXPR && ((CLASS_TYPE_P (TREE_TYPE (xarg)) && !COMPLETE_TYPE_P (complete_type (TREE_TYPE (xarg)))) || (TREE_CODE (xarg) == OFFSET_REF))) /* Don't look for a function. */; else exp = build_new_op (code, LOOKUP_NORMAL, xarg, NULL_TREE, NULL_TREE, /*overloaded_p=*/NULL); if (!exp && code == ADDR_EXPR) { /* A pointer to member-function can be formed only by saying &X::mf. */ if (!flag_ms_extensions && TREE_CODE (TREE_TYPE (xarg)) == METHOD_TYPE && (TREE_CODE (xarg) != OFFSET_REF || !PTRMEM_OK_P (xarg))) { if (TREE_CODE (xarg) != OFFSET_REF) { error ("invalid use of '%E' to form a pointer-to-member-function. Use a qualified-id.", xarg); return error_mark_node; } else { error ("parenthesis around '%E' cannot be used to form a pointer-to-member-function", xarg); PTRMEM_OK_P (xarg) = 1; } } if (TREE_CODE (xarg) == OFFSET_REF) { ptrmem = PTRMEM_OK_P (xarg); if (!ptrmem && !flag_ms_extensions && TREE_CODE (TREE_TYPE (TREE_OPERAND (xarg, 1))) == METHOD_TYPE) { /* A single non-static member, make sure we don't allow a pointer-to-member. */ xarg = build (OFFSET_REF, TREE_TYPE (xarg), TREE_OPERAND (xarg, 0), ovl_cons (TREE_OPERAND (xarg, 1), NULL_TREE)); PTRMEM_OK_P (xarg) = ptrmem; } } else if (TREE_CODE (xarg) == TARGET_EXPR) warning ("taking address of temporary"); exp = build_unary_op (ADDR_EXPR, xarg, 0); } if (processing_template_decl && exp != error_mark_node) exp = build_min_non_dep (code, exp, orig_expr, /*For {PRE,POST}{INC,DEC}REMENT_EXPR*/NULL_TREE); if (TREE_CODE (exp) == ADDR_EXPR) PTRMEM_OK_P (exp) = ptrmem; return exp; } /* Like c_common_truthvalue_conversion, but handle pointer-to-member constants, where a null value is represented by an INTEGER_CST of -1. */ tree cp_truthvalue_conversion (tree expr) { tree type = TREE_TYPE (expr); if (TYPE_PTRMEM_P (type)) return build_binary_op (NE_EXPR, expr, integer_zero_node, 1); else return c_common_truthvalue_conversion (expr); } /* Just like cp_truthvalue_conversion, but we want a CLEANUP_POINT_EXPR. */ tree condition_conversion (tree expr) { tree t; if (processing_template_decl) return expr; t = perform_implicit_conversion (boolean_type_node, expr); t = fold (build1 (CLEANUP_POINT_EXPR, boolean_type_node, t)); return t; } /* Return an ADDR_EXPR giving the address of T. This function attempts no optimizations or simplifications; it is a low-level primitive. */ tree build_address (tree t) { tree addr; if (error_operand_p (t) || !cxx_mark_addressable (t)) return error_mark_node; addr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (t)), t); if (staticp (t)) TREE_CONSTANT (addr) = 1; return addr; } /* Return a NOP_EXPR converting EXPR to TYPE. */ tree build_nop (tree type, tree expr) { tree nop; if (type == error_mark_node || error_operand_p (expr)) return expr; nop = build1 (NOP_EXPR, type, expr); if (TREE_CONSTANT (expr)) TREE_CONSTANT (nop) = 1; return nop; } /* C++: Must handle pointers to members. Perhaps type instantiation should be extended to handle conversion from aggregates to types we don't yet know we want? (Or are those cases typically errors which should be reported?) NOCONVERT nonzero suppresses the default promotions (such as from short to int). */ tree build_unary_op (enum tree_code code, tree xarg, int noconvert) { /* No default_conversion here. It causes trouble for ADDR_EXPR. */ tree arg = xarg; tree argtype = 0; const char *errstring = NULL; tree val; if (arg == error_mark_node) return error_mark_node; switch (code) { case CONVERT_EXPR: /* This is used for unary plus, because a CONVERT_EXPR is enough to prevent anybody from looking inside for associativity, but won't generate any code. */ if (!(arg = build_expr_type_conversion (WANT_ARITH | WANT_ENUM | WANT_POINTER, arg, true))) errstring = "wrong type argument to unary plus"; else { if (!noconvert) arg = default_conversion (arg); arg = build1 (NON_LVALUE_EXPR, TREE_TYPE (arg), arg); TREE_CONSTANT (arg) = TREE_CONSTANT (TREE_OPERAND (arg, 0)); } break; case NEGATE_EXPR: if (!(arg = build_expr_type_conversion (WANT_ARITH | WANT_ENUM, arg, true))) errstring = "wrong type argument to unary minus"; else if (!noconvert && CP_INTEGRAL_TYPE_P (TREE_TYPE (arg))) arg = perform_integral_promotions (arg); break; case BIT_NOT_EXPR: if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE) { code = CONJ_EXPR; if (!noconvert) arg = default_conversion (arg); } else if (!(arg = build_expr_type_conversion (WANT_INT | WANT_ENUM, arg, true))) errstring = "wrong type argument to bit-complement"; else if (!noconvert) arg = perform_integral_promotions (arg); break; case ABS_EXPR: if (!(arg = build_expr_type_conversion (WANT_ARITH | WANT_ENUM, arg, true))) errstring = "wrong type argument to abs"; else if (!noconvert) arg = default_conversion (arg); break; case CONJ_EXPR: /* Conjugating a real value is a no-op, but allow it anyway. */ if (!(arg = build_expr_type_conversion (WANT_ARITH | WANT_ENUM, arg, true))) errstring = "wrong type argument to conjugation"; else if (!noconvert) arg = default_conversion (arg); break; case TRUTH_NOT_EXPR: arg = perform_implicit_conversion (boolean_type_node, arg); val = invert_truthvalue (arg); if (arg != error_mark_node) return val; errstring = "in argument to unary !"; break; case NOP_EXPR: break; case REALPART_EXPR: if (TREE_CODE (arg) == COMPLEX_CST) return TREE_REALPART (arg); else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE) return fold (build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg)); else return arg; case IMAGPART_EXPR: if (TREE_CODE (arg) == COMPLEX_CST) return TREE_IMAGPART (arg); else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE) return fold (build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg)); else return cp_convert (TREE_TYPE (arg), integer_zero_node); case PREINCREMENT_EXPR: case POSTINCREMENT_EXPR: case PREDECREMENT_EXPR: case POSTDECREMENT_EXPR: /* Handle complex lvalues (when permitted) by reduction to simpler cases. */ val = unary_complex_lvalue (code, arg); if (val != 0) return val; /* Increment or decrement the real part of the value, and don't change the imaginary part. */ if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE) { tree real, imag; arg = stabilize_reference (arg); real = build_unary_op (REALPART_EXPR, arg, 1); imag = build_unary_op (IMAGPART_EXPR, arg, 1); return build (COMPLEX_EXPR, TREE_TYPE (arg), build_unary_op (code, real, 1), imag); } /* Report invalid types. */ if (!(arg = build_expr_type_conversion (WANT_ARITH | WANT_POINTER, arg, true))) { if (code == PREINCREMENT_EXPR) errstring ="no pre-increment operator for type"; else if (code == POSTINCREMENT_EXPR) errstring ="no post-increment operator for type"; else if (code == PREDECREMENT_EXPR) errstring ="no pre-decrement operator for type"; else errstring ="no post-decrement operator for type"; break; } /* Report something read-only. */ if (CP_TYPE_CONST_P (TREE_TYPE (arg)) || TREE_READONLY (arg)) readonly_error (arg, ((code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR) ? "increment" : "decrement"), 0); { tree inc; tree result_type = TREE_TYPE (arg); arg = get_unwidened (arg, 0); argtype = TREE_TYPE (arg); /* ARM $5.2.5 last annotation says this should be forbidden. */ if (TREE_CODE (argtype) == ENUMERAL_TYPE) pedwarn ("ISO C++ forbids %sing an enum", (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR) ? "increment" : "decrement"); /* Compute the increment. */ if (TREE_CODE (argtype) == POINTER_TYPE) { tree type = complete_type (TREE_TYPE (argtype)); if (!COMPLETE_OR_VOID_TYPE_P (type)) error ("cannot %s a pointer to incomplete type `%T'", ((code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR) ? "increment" : "decrement"), TREE_TYPE (argtype)); else if ((pedantic || warn_pointer_arith) && !TYPE_PTROB_P (argtype)) pedwarn ("ISO C++ forbids %sing a pointer of type `%T'", ((code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR) ? "increment" : "decrement"), argtype); inc = cxx_sizeof_nowarn (TREE_TYPE (argtype)); } else inc = integer_one_node; inc = cp_convert (argtype, inc); /* Handle incrementing a cast-expression. */ switch (TREE_CODE (arg)) { case NOP_EXPR: case CONVERT_EXPR: case FLOAT_EXPR: case FIX_TRUNC_EXPR: case FIX_FLOOR_EXPR: case FIX_ROUND_EXPR: case FIX_CEIL_EXPR: { tree incremented, modify, value, compound; if (! lvalue_p (arg) && pedantic) pedwarn ("cast to non-reference type used as lvalue"); arg = stabilize_reference (arg); if (code == PREINCREMENT_EXPR || code == PREDECREMENT_EXPR) value = arg; else value = save_expr (arg); incremented = build (((code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR) ? PLUS_EXPR : MINUS_EXPR), argtype, value, inc); modify = build_modify_expr (arg, NOP_EXPR, incremented); compound = build (COMPOUND_EXPR, TREE_TYPE (arg), modify, value); /* Eliminate warning about unused result of + or -. */ TREE_NO_UNUSED_WARNING (compound) = 1; return compound; } default: break; } /* Complain about anything else that is not a true lvalue. */ if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR) ? "increment" : "decrement"))) return error_mark_node; /* Forbid using -- on `bool'. */ if (TREE_TYPE (arg) == boolean_type_node) { if (code == POSTDECREMENT_EXPR || code == PREDECREMENT_EXPR) { error ("invalid use of `--' on bool variable `%D'", arg); return error_mark_node; } val = boolean_increment (code, arg); } else val = build (code, TREE_TYPE (arg), arg, inc); TREE_SIDE_EFFECTS (val) = 1; return cp_convert (result_type, val); } case ADDR_EXPR: /* Note that this operation never does default_conversion regardless of NOCONVERT. */ argtype = lvalue_type (arg); if (TREE_CODE (arg) == OFFSET_REF) goto offset_ref; if (TREE_CODE (argtype) == REFERENCE_TYPE) { arg = build1 (CONVERT_EXPR, build_pointer_type (TREE_TYPE (argtype)), arg); TREE_CONSTANT (arg) = TREE_CONSTANT (TREE_OPERAND (arg, 0)); return arg; } else if (pedantic && DECL_MAIN_P (arg)) /* ARM $3.4 */ pedwarn ("ISO C++ forbids taking address of function `::main'"); /* Let &* cancel out to simplify resulting code. */ if (TREE_CODE (arg) == INDIRECT_REF) { /* We don't need to have `current_class_ptr' wrapped in a NON_LVALUE_EXPR node. */ if (arg == current_class_ref) return current_class_ptr; arg = TREE_OPERAND (arg, 0); if (TREE_CODE (TREE_TYPE (arg)) == REFERENCE_TYPE) { arg = build1 (CONVERT_EXPR, build_pointer_type (TREE_TYPE (TREE_TYPE (arg))), arg); TREE_CONSTANT (arg) = TREE_CONSTANT (TREE_OPERAND (arg, 0)); } else if (lvalue_p (arg)) /* Don't let this be an lvalue. */ return non_lvalue (arg); return arg; } /* For &x[y], return x+y. But, in a template, ARG may be an ARRAY_REF representing a non-dependent expression. In that case, there may be an overloaded "operator []" that will be chosen at instantiation time; we must not try to optimize here. */ if (TREE_CODE (arg) == ARRAY_REF && !processing_template_decl) { if (!cxx_mark_addressable (TREE_OPERAND (arg, 0))) return error_mark_node; return cp_build_binary_op (PLUS_EXPR, TREE_OPERAND (arg, 0), TREE_OPERAND (arg, 1)); } /* Uninstantiated types are all functions. Taking the address of a function is a no-op, so just return the argument. */ if (TREE_CODE (arg) == IDENTIFIER_NODE && IDENTIFIER_OPNAME_P (arg)) { abort (); /* We don't know the type yet, so just work around the problem. We know that this will resolve to an lvalue. */ return build1 (ADDR_EXPR, unknown_type_node, arg); } if (TREE_CODE (arg) == COMPONENT_REF && type_unknown_p (arg) && !really_overloaded_fn (TREE_OPERAND (arg, 1))) { /* They're trying to take the address of a unique non-static member function. This is ill-formed (except in MS-land), but let's try to DTRT. Note: We only handle unique functions here because we don't want to complain if there's a static overload; non-unique cases will be handled by instantiate_type. But we need to handle this case here to allow casts on the resulting PMF. We could defer this in non-MS mode, but it's easier to give a useful error here. */ /* Inside constant member functions, the `this' pointer contains an extra const qualifier. TYPE_MAIN_VARIANT is used here to remove this const from the diagnostics and the created OFFSET_REF. */ tree base = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (arg, 0))); tree name = DECL_NAME (get_first_fn (TREE_OPERAND (arg, 1))); if (! flag_ms_extensions) { if (current_class_type && TREE_OPERAND (arg, 0) == current_class_ref) /* An expression like &memfn. */ pedwarn ("ISO C++ forbids taking the address of an unqualified" " or parenthesized non-static member function to form" " a pointer to member function. Say `&%T::%D'", base, name); else pedwarn ("ISO C++ forbids taking the address of a bound member" " function to form a pointer to member function." " Say `&%T::%D'", base, name); } arg = build_offset_ref (base, name, /*address_p=*/true); } offset_ref: if (type_unknown_p (arg)) return build1 (ADDR_EXPR, unknown_type_node, arg); /* Handle complex lvalues (when permitted) by reduction to simpler cases. */ val = unary_complex_lvalue (code, arg); if (val != 0) return val; switch (TREE_CODE (arg)) { case NOP_EXPR: case CONVERT_EXPR: case FLOAT_EXPR: case FIX_TRUNC_EXPR: case FIX_FLOOR_EXPR: case FIX_ROUND_EXPR: case FIX_CEIL_EXPR: if (! lvalue_p (arg) && pedantic) pedwarn ("ISO C++ forbids taking the address of a cast to a non-lvalue expression"); break; case OVERLOAD: arg = OVL_CURRENT (arg); break; default: break; } /* Allow the address of a constructor if all the elements are constant. */ if (TREE_CODE (arg) == CONSTRUCTOR && TREE_HAS_CONSTRUCTOR (arg) && TREE_CONSTANT (arg)) ; /* Anything not already handled and not a true memory reference is an error. */ else if (TREE_CODE (argtype) != FUNCTION_TYPE && TREE_CODE (argtype) != METHOD_TYPE && TREE_CODE (arg) != OFFSET_REF && !lvalue_or_else (arg, "unary `&'")) return error_mark_node; if (argtype != error_mark_node) argtype = build_pointer_type (argtype); { tree addr; if (TREE_CODE (arg) != COMPONENT_REF /* Inside a template, we are processing a non-dependent expression so we can just form an ADDR_EXPR with the correct type. */ || processing_template_decl) { addr = build_address (arg); if (TREE_CODE (arg) == OFFSET_REF) PTRMEM_OK_P (addr) = PTRMEM_OK_P (arg); } else if (TREE_CODE (TREE_OPERAND (arg, 1)) == BASELINK) { tree fn = BASELINK_FUNCTIONS (TREE_OPERAND (arg, 1)); /* We can only get here with a single static member function. */ my_friendly_assert (TREE_CODE (fn) == FUNCTION_DECL && DECL_STATIC_FUNCTION_P (fn), 20030906); mark_used (fn); addr = build_address (fn); if (TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0))) /* Do not lose object's side effects. */ addr = build (COMPOUND_EXPR, TREE_TYPE (addr), TREE_OPERAND (arg, 0), addr); } else if (DECL_C_BIT_FIELD (TREE_OPERAND (arg, 1))) { error ("attempt to take address of bit-field structure member `%D'", TREE_OPERAND (arg, 1)); return error_mark_node; } else { /* Unfortunately we cannot just build an address expression here, because we would not handle address-constant-expressions or offsetof correctly. */ tree field = TREE_OPERAND (arg, 1); tree rval = build_unary_op (ADDR_EXPR, TREE_OPERAND (arg, 0), 0); tree binfo = lookup_base (TREE_TYPE (TREE_TYPE (rval)), decl_type_context (field), ba_check, NULL); rval = build_base_path (PLUS_EXPR, rval, binfo, 1); rval = build_nop (argtype, rval); addr = fold (build (PLUS_EXPR, argtype, rval, cp_convert (argtype, byte_position (field)))); } if (TREE_CODE (argtype) == POINTER_TYPE && TREE_CODE (TREE_TYPE (argtype)) == METHOD_TYPE) { build_ptrmemfunc_type (argtype); addr = build_ptrmemfunc (argtype, addr, 0); } return addr; } default: break; } if (!errstring) { if (argtype == 0) argtype = TREE_TYPE (arg); return fold (build1 (code, argtype, arg)); } error ("%s", errstring); return error_mark_node; } /* Apply unary lvalue-demanding operator CODE to the expression ARG for certain kinds of expressions which are not really lvalues but which we can accept as lvalues. If ARG is not a kind of expression we can handle, return NULL_TREE. */ tree unary_complex_lvalue (enum tree_code code, tree arg) { /* Handle (a, b) used as an "lvalue". */ if (TREE_CODE (arg) == COMPOUND_EXPR) { tree real_result = build_unary_op (code, TREE_OPERAND (arg, 1), 0); return build (COMPOUND_EXPR, TREE_TYPE (real_result), TREE_OPERAND (arg, 0), real_result); } /* Handle (a ? b : c) used as an "lvalue". */ if (TREE_CODE (arg) == COND_EXPR || TREE_CODE (arg) == MIN_EXPR || TREE_CODE (arg) == MAX_EXPR) return rationalize_conditional_expr (code, arg); /* Handle (a = b), (++a), and (--a) used as an "lvalue". */ if (TREE_CODE (arg) == MODIFY_EXPR || TREE_CODE (arg) == PREINCREMENT_EXPR || TREE_CODE (arg) == PREDECREMENT_EXPR) { tree lvalue = TREE_OPERAND (arg, 0); if (TREE_SIDE_EFFECTS (lvalue)) { lvalue = stabilize_reference (lvalue); arg = build (TREE_CODE (arg), TREE_TYPE (arg), lvalue, TREE_OPERAND (arg, 1)); } return unary_complex_lvalue (code, build (COMPOUND_EXPR, TREE_TYPE (lvalue), arg, lvalue)); } if (code != ADDR_EXPR) return 0; /* Handle (a = b) used as an "lvalue" for `&'. */ if (TREE_CODE (arg) == MODIFY_EXPR || TREE_CODE (arg) == INIT_EXPR) { tree real_result = build_unary_op (code, TREE_OPERAND (arg, 0), 0); arg = build (COMPOUND_EXPR, TREE_TYPE (real_result), arg, real_result); TREE_NO_UNUSED_WARNING (arg) = 1; return arg; } if (TREE_CODE (TREE_TYPE (arg)) == FUNCTION_TYPE || TREE_CODE (TREE_TYPE (arg)) == METHOD_TYPE || TREE_CODE (arg) == OFFSET_REF) { tree t; my_friendly_assert (TREE_CODE (arg) != SCOPE_REF, 313); if (TREE_CODE (arg) != OFFSET_REF) return 0; t = TREE_OPERAND (arg, 1); /* Check all this code for right semantics. */ if (TREE_CODE (t) == FUNCTION_DECL) { if (DECL_DESTRUCTOR_P (t)) error ("taking address of destructor"); return build_unary_op (ADDR_EXPR, t, 0); } if (TREE_CODE (t) == VAR_DECL) return build_unary_op (ADDR_EXPR, t, 0); else { tree type; if (TREE_OPERAND (arg, 0) && ! is_dummy_object (TREE_OPERAND (arg, 0)) && TREE_CODE (t) != FIELD_DECL) { error ("taking address of bound pointer-to-member expression"); return error_mark_node; } if (!PTRMEM_OK_P (arg)) return build_unary_op (code, arg, 0); if (TREE_CODE (TREE_TYPE (t)) == REFERENCE_TYPE) { error ("cannot create pointer to reference member `%D'", t); return error_mark_node; } type = build_ptrmem_type (context_for_name_lookup (t), TREE_TYPE (t)); t = make_ptrmem_cst (type, TREE_OPERAND (arg, 1)); return t; } } /* We permit compiler to make function calls returning objects of aggregate type look like lvalues. */ { tree targ = arg; if (TREE_CODE (targ) == SAVE_EXPR) targ = TREE_OPERAND (targ, 0); if (TREE_CODE (targ) == CALL_EXPR && IS_AGGR_TYPE (TREE_TYPE (targ))) { if (TREE_CODE (arg) == SAVE_EXPR) targ = arg; else targ = build_cplus_new (TREE_TYPE (arg), arg); return build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (arg)), targ); } if (TREE_CODE (arg) == SAVE_EXPR && TREE_CODE (targ) == INDIRECT_REF) return build (SAVE_EXPR, build_pointer_type (TREE_TYPE (arg)), TREE_OPERAND (targ, 0), current_function_decl, NULL); } /* Don't let anything else be handled specially. */ return 0; } /* Mark EXP saying that we need to be able to take the address of it; it should not be allocated in a register. Value is true if successful. C++: we do not allow `current_class_ptr' to be addressable. */ bool cxx_mark_addressable (tree exp) { tree x = exp; while (1) switch (TREE_CODE (x)) { case ADDR_EXPR: case COMPONENT_REF: case ARRAY_REF: case REALPART_EXPR: case IMAGPART_EXPR: x = TREE_OPERAND (x, 0); break; case PARM_DECL: if (x == current_class_ptr) { error ("cannot take the address of `this', which is an rvalue expression"); TREE_ADDRESSABLE (x) = 1; /* so compiler doesn't die later. */ return true; } /* Fall through. */ case VAR_DECL: /* Caller should not be trying to mark initialized constant fields addressable. */ my_friendly_assert (DECL_LANG_SPECIFIC (x) == 0 || DECL_IN_AGGR_P (x) == 0 || TREE_STATIC (x) || DECL_EXTERNAL (x), 314); /* Fall through. */ case CONST_DECL: case RESULT_DECL: if (DECL_REGISTER (x) && !TREE_ADDRESSABLE (x) && !DECL_ARTIFICIAL (x) && extra_warnings) warning ("address requested for `%D', which is declared `register'", x); TREE_ADDRESSABLE (x) = 1; put_var_into_stack (x, /*rescan=*/true); return true; case FUNCTION_DECL: TREE_ADDRESSABLE (x) = 1; TREE_ADDRESSABLE (DECL_ASSEMBLER_NAME (x)) = 1; return true; case CONSTRUCTOR: TREE_ADDRESSABLE (x) = 1; return true; case TARGET_EXPR: TREE_ADDRESSABLE (x) = 1; cxx_mark_addressable (TREE_OPERAND (x, 0)); return true; default: return true; } } /* Build and return a conditional expression IFEXP ? OP1 : OP2. */ tree build_x_conditional_expr (tree ifexp, tree op1, tree op2) { tree orig_ifexp = ifexp; tree orig_op1 = op1; tree orig_op2 = op2; tree expr; if (processing_template_decl) { /* The standard says that the expression is type-dependent if IFEXP is type-dependent, even though the eventual type of the expression doesn't dependent on IFEXP. */ if (type_dependent_expression_p (ifexp) /* As a GNU extension, the middle operand may be omitted. */ || (op1 && type_dependent_expression_p (op1)) || type_dependent_expression_p (op2)) return build_min_nt (COND_EXPR, ifexp, op1, op2); ifexp = build_non_dependent_expr (ifexp); if (op1) op1 = build_non_dependent_expr (op1); op2 = build_non_dependent_expr (op2); } expr = build_conditional_expr (ifexp, op1, op2); if (processing_template_decl && expr != error_mark_node) return build_min_non_dep (COND_EXPR, expr, orig_ifexp, orig_op1, orig_op2); return expr; } /* Given a list of expressions, return a compound expression that performs them all and returns the value of the last of them. */ tree build_x_compound_expr_from_list (tree list, const char *msg) { tree expr = TREE_VALUE (list); if (TREE_CHAIN (list)) { if (msg) pedwarn ("%s expression list treated as compound expression", msg); for (list = TREE_CHAIN (list); list; list = TREE_CHAIN (list)) expr = build_x_compound_expr (expr, TREE_VALUE (list)); } return expr; } /* Handle overloading of the ',' operator when needed. */ tree build_x_compound_expr (tree op1, tree op2) { tree result; tree orig_op1 = op1; tree orig_op2 = op2; if (processing_template_decl) { if (type_dependent_expression_p (op1) || type_dependent_expression_p (op2)) return build_min_nt (COMPOUND_EXPR, op1, op2); op1 = build_non_dependent_expr (op1); op2 = build_non_dependent_expr (op2); } result = build_new_op (COMPOUND_EXPR, LOOKUP_NORMAL, op1, op2, NULL_TREE, /*overloaded_p=*/NULL); if (!result) result = build_compound_expr (op1, op2); if (processing_template_decl && result != error_mark_node) return build_min_non_dep (COMPOUND_EXPR, result, orig_op1, orig_op2); return result; } /* Build a compound expression. */ tree build_compound_expr (tree lhs, tree rhs) { lhs = decl_constant_value (lhs); lhs = convert_to_void (lhs, "left-hand operand of comma"); if (lhs == error_mark_node || rhs == error_mark_node) return error_mark_node; if (TREE_CODE (rhs) == TARGET_EXPR) { /* If the rhs is a TARGET_EXPR, then build the compound expression inside the target_expr's initializer. This helps the compiler to eliminate unnecessary temporaries. */ tree init = TREE_OPERAND (rhs, 1); init = build (COMPOUND_EXPR, TREE_TYPE (init), lhs, init); TREE_OPERAND (rhs, 1) = init; return rhs; } return build (COMPOUND_EXPR, TREE_TYPE (rhs), lhs, rhs); } /* Issue an error message if casting from SRC_TYPE to DEST_TYPE casts away constness. DESCRIPTION explains what operation is taking place. */ static void check_for_casting_away_constness (tree src_type, tree dest_type, const char *description) { if (casts_away_constness (src_type, dest_type)) error ("%s from type `%T' to type `%T' casts away constness", description, src_type, dest_type); } /* Return an expression representing static_cast(EXPR). */ tree build_static_cast (tree type, tree expr) { tree intype; tree result; if (type == error_mark_node || expr == error_mark_node) return error_mark_node; if (processing_template_decl) { expr = build_min (STATIC_CAST_EXPR, type, expr); /* We don't know if it will or will not have side effects. */ TREE_SIDE_EFFECTS (expr) = 1; return expr; } /* build_c_cast puts on a NOP_EXPR to make the result not an lvalue. Strip such NOP_EXPRs if VALUE is being used in non-lvalue context. */ if (TREE_CODE (type) != REFERENCE_TYPE && TREE_CODE (expr) == NOP_EXPR && TREE_TYPE (expr) == TREE_TYPE (TREE_OPERAND (expr, 0))) expr = TREE_OPERAND (expr, 0); intype = TREE_TYPE (expr); /* [expr.static.cast] An lvalue of type "cv1 B", where B is a class type, can be cast to type "reference to cv2 D", where D is a class derived (clause _class.derived_) from B, if a valid standard conversion from "pointer to D" to "pointer to B" exists (_conv.ptr_), cv2 is the same cv-qualification as, or greater cv-qualification than, cv1, and B is not a virtual base class of D. */ /* We check this case before checking the validity of "TYPE t = EXPR;" below because for this case: struct B {}; struct D : public B { D(const B&); }; extern B& b; void f() { static_cast(b); } we want to avoid constructing a new D. The standard is not completely clear about this issue, but our interpretation is consistent with other compilers. */ if (TREE_CODE (type) == REFERENCE_TYPE && CLASS_TYPE_P (TREE_TYPE (type)) && CLASS_TYPE_P (intype) && real_lvalue_p (expr) && DERIVED_FROM_P (intype, TREE_TYPE (type)) && can_convert (build_pointer_type (TYPE_MAIN_VARIANT (intype)), build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (type)))) && at_least_as_qualified_p (TREE_TYPE (type), intype)) { /* There is a standard conversion from "D*" to "B*" even if "B" is ambiguous or inaccessible. Therefore, we ask lookup_base to check these conditions. */ tree base = lookup_base (TREE_TYPE (type), intype, ba_check, NULL); /* Convert from "B*" to "D*". This function will check that "B" is not a virtual base of "D". */ expr = build_base_path (MINUS_EXPR, build_address (expr), base, /*nonnull=*/false); /* Convert the pointer to a reference -- but then remember that there are no expressions with reference type in C++. */ return convert_from_reference (build_nop (type, expr)); } /* [expr.static.cast] An expression e can be explicitly converted to a type T using a static_cast of the form static_cast(e) if the declaration T t(e);" is well-formed, for some invented temporary variable t. */ result = perform_direct_initialization_if_possible (type, expr); if (result) { result = convert_from_reference (result); /* [expr.static.cast] If T is a reference type, the result is an lvalue; otherwise, the result is an rvalue. */ if (TREE_CODE (type) != REFERENCE_TYPE && real_lvalue_p (result)) result = build1 (NON_LVALUE_EXPR, TREE_TYPE (result), result); return result; } /* [expr.static.cast] Any expression can be explicitly converted to type cv void. */ if (TREE_CODE (type) == VOID_TYPE) return convert_to_void (expr, /*implicit=*/NULL); /* [expr.static.cast] The inverse of any standard conversion sequence (clause _conv_), other than the lvalue-to-rvalue (_conv.lval_), array-to-pointer (_conv.array_), function-to-pointer (_conv.func_), and boolean (_conv.bool_) conversions, can be performed explicitly using static_cast subject to the restriction that the explicit conversion does not cast away constness (_expr.const.cast_), and the following additional rules for specific cases: */ /* For reference, the conversions not excluded are: integral promotions, floating point promotion, integral conversions, floating point conversions, floating-integral conversions, pointer conversions, and pointer to member conversions. */ if ((ARITHMETIC_TYPE_P (type) && ARITHMETIC_TYPE_P (intype)) /* DR 128 A value of integral _or enumeration_ type can be explicitly converted to an enumeration type. */ || (INTEGRAL_OR_ENUMERATION_TYPE_P (type) && INTEGRAL_OR_ENUMERATION_TYPE_P (intype))) /* Really, build_c_cast should defer to this function rather than the other way around. */ return build_c_cast (type, expr); if (TYPE_PTR_P (type) && TYPE_PTR_P (intype) && CLASS_TYPE_P (TREE_TYPE (type)) && CLASS_TYPE_P (TREE_TYPE (intype)) && can_convert (build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (intype))), build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (type))))) { tree base; check_for_casting_away_constness (intype, type, "static_cast"); base = lookup_base (TREE_TYPE (type), TREE_TYPE (intype), ba_check, NULL); return build_base_path (MINUS_EXPR, expr, base, /*nonnull=*/false); } if ((TYPE_PTRMEM_P (type) && TYPE_PTRMEM_P (intype)) || (TYPE_PTRMEMFUNC_P (type) && TYPE_PTRMEMFUNC_P (intype))) { tree c1; tree c2; tree t1; tree t2; c1 = TYPE_PTRMEM_CLASS_TYPE (intype); c2 = TYPE_PTRMEM_CLASS_TYPE (type); if (TYPE_PTRMEM_P (type)) { t1 = (build_ptrmem_type (c1, TYPE_MAIN_VARIANT (TYPE_PTRMEM_POINTED_TO_TYPE (intype)))); t2 = (build_ptrmem_type (c2, TYPE_MAIN_VARIANT (TYPE_PTRMEM_POINTED_TO_TYPE (type)))); } else { t1 = intype; t2 = type; } if (can_convert (t1, t2)) { check_for_casting_away_constness (intype, type, "static_cast"); if (TYPE_PTRMEM_P (type)) { tree delta; if (TREE_CODE (expr) == PTRMEM_CST) expr = cplus_expand_constant (expr); delta = get_delta_difference (c1, c2, /*force=*/1); if (!integer_zerop (delta)) expr = cp_build_binary_op (PLUS_EXPR, build_nop (ptrdiff_type_node, expr), delta); return build_nop (type, expr); } else return build_ptrmemfunc (TYPE_PTRMEMFUNC_FN_TYPE (type), expr, /*force=*/1); } } /* [expr.static.cast] An rvalue of type "pointer to cv void" can be explicitly converted to a pointer to object type. A value of type pointer to object converted to "pointer to cv void" and back to the original pointer type will have its original value. */ if (TREE_CODE (intype) == POINTER_TYPE && VOID_TYPE_P (TREE_TYPE (intype)) && TYPE_PTROB_P (type)) { check_for_casting_away_constness (intype, type, "static_cast"); return build_nop (type, expr); } error ("invalid static_cast from type `%T' to type `%T'", intype, type); return error_mark_node; } tree build_reinterpret_cast (tree type, tree expr) { tree intype; if (type == error_mark_node || expr == error_mark_node) return error_mark_node; if (processing_template_decl) { tree t = build_min (REINTERPRET_CAST_EXPR, type, expr); if (!TREE_SIDE_EFFECTS (t) && type_dependent_expression_p (expr)) /* There might turn out to be side effects inside expr. */ TREE_SIDE_EFFECTS (t) = 1; return t; } if (TREE_CODE (type) != REFERENCE_TYPE) { expr = decay_conversion (expr); /* build_c_cast puts on a NOP_EXPR to make the result not an lvalue. Strip such NOP_EXPRs if VALUE is being used in non-lvalue context. */ if (TREE_CODE (expr) == NOP_EXPR && TREE_TYPE (expr) == TREE_TYPE (TREE_OPERAND (expr, 0))) expr = TREE_OPERAND (expr, 0); } intype = TREE_TYPE (expr); if (TREE_CODE (type) == REFERENCE_TYPE) { if (! real_lvalue_p (expr)) { error ("invalid reinterpret_cast of an rvalue expression of type `%T' to type `%T'", intype, type); return error_mark_node; } expr = build_unary_op (ADDR_EXPR, expr, 0); if (expr != error_mark_node) expr = build_reinterpret_cast (build_pointer_type (TREE_TYPE (type)), expr); if (expr != error_mark_node) expr = build_indirect_ref (expr, 0); return expr; } else if (same_type_ignoring_top_level_qualifiers_p (intype, type)) return build_static_cast (type, expr); if (TYPE_PTR_P (type) && (TREE_CODE (intype) == INTEGER_TYPE || TREE_CODE (intype) == ENUMERAL_TYPE)) /* OK */; else if (TREE_CODE (type) == INTEGER_TYPE && TYPE_PTR_P (intype)) { if (TYPE_PRECISION (type) < TYPE_PRECISION (intype)) pedwarn ("reinterpret_cast from `%T' to `%T' loses precision", intype, type); } else if ((TYPE_PTRFN_P (type) && TYPE_PTRFN_P (intype)) || (TYPE_PTRMEMFUNC_P (type) && TYPE_PTRMEMFUNC_P (intype))) { expr = decl_constant_value (expr); return fold (build1 (NOP_EXPR, type, expr)); } else if ((TYPE_PTRMEM_P (type) && TYPE_PTRMEM_P (intype)) || (TYPE_PTROBV_P (type) && TYPE_PTROBV_P (intype))) { check_for_casting_away_constness (intype, type, "reinterpret_cast"); expr = decl_constant_value (expr); return fold (build1 (NOP_EXPR, type, expr)); } else if ((TYPE_PTRFN_P (type) && TYPE_PTROBV_P (intype)) || (TYPE_PTRFN_P (intype) && TYPE_PTROBV_P (type))) { pedwarn ("ISO C++ forbids casting between pointer-to-function and pointer-to-object"); expr = decl_constant_value (expr); return fold (build1 (NOP_EXPR, type, expr)); } else { error ("invalid reinterpret_cast from type `%T' to type `%T'", intype, type); return error_mark_node; } return cp_convert (type, expr); } tree build_const_cast (tree type, tree expr) { tree intype; if (type == error_mark_node || error_operand_p (expr)) return error_mark_node; if (processing_template_decl) { tree t = build_min (CONST_CAST_EXPR, type, expr); if (!TREE_SIDE_EFFECTS (t) && type_dependent_expression_p (expr)) /* There might turn out to be side effects inside expr. */ TREE_SIDE_EFFECTS (t) = 1; return t; } if (!POINTER_TYPE_P (type) && !TYPE_PTRMEM_P (type)) error ("invalid use of const_cast with type `%T', which is not a pointer, reference, nor a pointer-to-data-member type", type); else if (TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE) { error ("invalid use of const_cast with type `%T', which is a pointer or reference to a function type", type); return error_mark_node; } if (TREE_CODE (type) != REFERENCE_TYPE) { expr = decay_conversion (expr); /* build_c_cast puts on a NOP_EXPR to make the result not an lvalue. Strip such NOP_EXPRs if VALUE is being used in non-lvalue context. */ if (TREE_CODE (expr) == NOP_EXPR && TREE_TYPE (expr) == TREE_TYPE (TREE_OPERAND (expr, 0))) expr = TREE_OPERAND (expr, 0); } intype = TREE_TYPE (expr); if (same_type_ignoring_top_level_qualifiers_p (intype, type)) return build_static_cast (type, expr); else if (TREE_CODE (type) == REFERENCE_TYPE) { if (! real_lvalue_p (expr)) { error ("invalid const_cast of an rvalue of type `%T' to type `%T'", intype, type); return error_mark_node; } if (comp_ptr_ttypes_const (TREE_TYPE (type), intype)) { expr = build_unary_op (ADDR_EXPR, expr, 0); expr = build1 (NOP_EXPR, type, expr); return convert_from_reference (expr); } } else if (((TREE_CODE (type) == POINTER_TYPE && TREE_CODE (intype) == POINTER_TYPE) || (TYPE_PTRMEM_P (type) && TYPE_PTRMEM_P (intype))) && comp_ptr_ttypes_const (TREE_TYPE (type), TREE_TYPE (intype))) return cp_convert (type, expr); error ("invalid const_cast from type `%T' to type `%T'", intype, type); return error_mark_node; } /* Build an expression representing a cast to type TYPE of expression EXPR. ALLOW_NONCONVERTING is true if we should allow non-converting constructors when doing the cast. */ tree build_c_cast (tree type, tree expr) { tree value = expr; tree otype; if (type == error_mark_node || expr == error_mark_node) return error_mark_node; if (processing_template_decl) { tree t = build_min (CAST_EXPR, type, tree_cons (NULL_TREE, value, NULL_TREE)); /* We don't know if it will or will not have side effects. */ TREE_SIDE_EFFECTS (t) = 1; return t; } /* build_c_cast puts on a NOP_EXPR to make the result not an lvalue. Strip such NOP_EXPRs if VALUE is being used in non-lvalue context. */ if (TREE_CODE (type) != REFERENCE_TYPE && TREE_CODE (value) == NOP_EXPR && TREE_TYPE (value) == TREE_TYPE (TREE_OPERAND (value, 0))) value = TREE_OPERAND (value, 0); if (TREE_CODE (type) == ARRAY_TYPE) { /* Allow casting from T1* to T2[] because Cfront allows it. NIHCL uses it. It is not valid ISO C++ however. */ if (TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE) { pedwarn ("ISO C++ forbids casting to an array type `%T'", type); type = build_pointer_type (TREE_TYPE (type)); } else { error ("ISO C++ forbids casting to an array type `%T'", type); return error_mark_node; } } if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE) { error ("invalid cast to function type `%T'", type); return error_mark_node; } if (TREE_CODE (type) == VOID_TYPE) { /* Conversion to void does not cause any of the normal function to * pointer, array to pointer and lvalue to rvalue decays. */ value = convert_to_void (value, /*implicit=*/NULL); return value; } if (!complete_type_or_else (type, NULL_TREE)) return error_mark_node; /* Convert functions and arrays to pointers and convert references to their expanded types, but don't convert any other types. If, however, we are casting to a class type, there's no reason to do this: the cast will only succeed if there is a converting constructor, and the default conversions will be done at that point. In fact, doing the default conversion here is actually harmful in cases like this: typedef int A[2]; struct S { S(const A&); }; since we don't want the array-to-pointer conversion done. */ if (!IS_AGGR_TYPE (type)) { if (TREE_CODE (TREE_TYPE (value)) == FUNCTION_TYPE || (TREE_CODE (TREE_TYPE (value)) == METHOD_TYPE /* Don't do the default conversion on a ->* expression. */ && ! (TREE_CODE (type) == POINTER_TYPE && bound_pmf_p (value))) || TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE || TREE_CODE (TREE_TYPE (value)) == REFERENCE_TYPE) value = decay_conversion (value); } else if (TREE_CODE (TREE_TYPE (value)) == REFERENCE_TYPE) /* However, even for class types, we still need to strip away the reference type, since the call to convert_force below does not expect the input expression to be of reference type. */ value = convert_from_reference (value); otype = TREE_TYPE (value); /* Optionally warn about potentially worrisome casts. */ if (warn_cast_qual && TREE_CODE (type) == POINTER_TYPE && TREE_CODE (otype) == POINTER_TYPE && !at_least_as_qualified_p (TREE_TYPE (type), TREE_TYPE (otype))) warning ("cast from `%T' to `%T' discards qualifiers from pointer target type", otype, type); if (TREE_CODE (type) == INTEGER_TYPE && TYPE_PTR_P (otype) && TYPE_PRECISION (type) != TYPE_PRECISION (otype)) warning ("cast from pointer to integer of different size"); if (TYPE_PTR_P (type) && TREE_CODE (otype) == INTEGER_TYPE && TYPE_PRECISION (type) != TYPE_PRECISION (otype) /* Don't warn about converting any constant. */ && !TREE_CONSTANT (value)) warning ("cast to pointer from integer of different size"); if (TREE_CODE (type) == REFERENCE_TYPE) value = (convert_from_reference (convert_to_reference (type, value, CONV_C_CAST, LOOKUP_COMPLAIN, NULL_TREE))); else { tree ovalue; value = decl_constant_value (value); ovalue = value; value = convert_force (type, value, CONV_C_CAST); /* Ignore any integer overflow caused by the cast. */ if (TREE_CODE (value) == INTEGER_CST) { TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue); TREE_CONSTANT_OVERFLOW (value) = TREE_CONSTANT_OVERFLOW (ovalue); } } /* Warn about possible alignment problems. Do this here when we will have instantiated any necessary template types. */ if (STRICT_ALIGNMENT && warn_cast_align && TREE_CODE (type) == POINTER_TYPE && TREE_CODE (otype) == POINTER_TYPE && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE && COMPLETE_TYPE_P (TREE_TYPE (otype)) && COMPLETE_TYPE_P (TREE_TYPE (type)) && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype))) warning ("cast from `%T' to `%T' increases required alignment of target type", otype, type); /* Always produce some operator for an explicit cast, so we can tell (for -pedantic) that the cast is no lvalue. */ if (TREE_CODE (type) != REFERENCE_TYPE && value == expr && real_lvalue_p (value)) value = non_lvalue (value); return value; } /* Build an assignment expression of lvalue LHS from value RHS. MODIFYCODE is the code for a binary operator that we use to combine the old value of LHS with RHS to get the new value. Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment. C++: If MODIFYCODE is INIT_EXPR, then leave references unbashed. */ tree build_modify_expr (tree lhs, enum tree_code modifycode, tree rhs) { tree result; tree newrhs = rhs; tree lhstype = TREE_TYPE (lhs); tree olhstype = lhstype; tree olhs = NULL_TREE; /* Avoid duplicate error messages from operands that had errors. */ if (lhs == error_mark_node || rhs == error_mark_node) return error_mark_node; /* Handle control structure constructs used as "lvalues". */ switch (TREE_CODE (lhs)) { /* Handle --foo = 5; as these are valid constructs in C++. */ case PREDECREMENT_EXPR: case PREINCREMENT_EXPR: if (TREE_SIDE_EFFECTS (TREE_OPERAND (lhs, 0))) lhs = build (TREE_CODE (lhs), TREE_TYPE (lhs), stabilize_reference (TREE_OPERAND (lhs, 0)), TREE_OPERAND (lhs, 1)); return build (COMPOUND_EXPR, lhstype, lhs, build_modify_expr (TREE_OPERAND (lhs, 0), modifycode, rhs)); /* Handle (a, b) used as an "lvalue". */ case COMPOUND_EXPR: newrhs = build_modify_expr (TREE_OPERAND (lhs, 1), modifycode, rhs); if (newrhs == error_mark_node) return error_mark_node; return build (COMPOUND_EXPR, lhstype, TREE_OPERAND (lhs, 0), newrhs); case MODIFY_EXPR: if (TREE_SIDE_EFFECTS (TREE_OPERAND (lhs, 0))) lhs = build (TREE_CODE (lhs), TREE_TYPE (lhs), stabilize_reference (TREE_OPERAND (lhs, 0)), TREE_OPERAND (lhs, 1)); newrhs = build_modify_expr (TREE_OPERAND (lhs, 0), modifycode, rhs); if (newrhs == error_mark_node) return error_mark_node; return build (COMPOUND_EXPR, lhstype, lhs, newrhs); /* Handle (a ? b : c) used as an "lvalue". */ case COND_EXPR: { /* Produce (a ? (b = rhs) : (c = rhs)) except that the RHS goes through a save-expr so the code to compute it is only emitted once. */ tree cond; tree preeval = NULL_TREE; rhs = stabilize_expr (rhs, &preeval); /* Check this here to avoid odd errors when trying to convert a throw to the type of the COND_EXPR. */ if (!lvalue_or_else (lhs, "assignment")) return error_mark_node; cond = build_conditional_expr (TREE_OPERAND (lhs, 0), build_modify_expr (cp_convert (TREE_TYPE (lhs), TREE_OPERAND (lhs, 1)), modifycode, rhs), build_modify_expr (cp_convert (TREE_TYPE (lhs), TREE_OPERAND (lhs, 2)), modifycode, rhs)); if (cond == error_mark_node) return cond; /* Make sure the code to compute the rhs comes out before the split. */ if (preeval) cond = build (COMPOUND_EXPR, TREE_TYPE (lhs), preeval, cond); return cond; } default: break; } if (modifycode == INIT_EXPR) { if (TREE_CODE (rhs) == CONSTRUCTOR) { if (! same_type_p (TREE_TYPE (rhs), lhstype)) /* Call convert to generate an error; see PR 11063. */ rhs = convert (lhstype, rhs); result = build (INIT_EXPR, lhstype, lhs, rhs); TREE_SIDE_EFFECTS (result) = 1; return result; } else if (! IS_AGGR_TYPE (lhstype)) /* Do the default thing. */; else { result = build_special_member_call (lhs, complete_ctor_identifier, build_tree_list (NULL_TREE, rhs), TYPE_BINFO (lhstype), LOOKUP_NORMAL); if (result == NULL_TREE) return error_mark_node; return result; } } else { if (TREE_CODE (lhstype) == REFERENCE_TYPE) { lhs = convert_from_reference (lhs); olhstype = lhstype = TREE_TYPE (lhs); } lhs = require_complete_type (lhs); if (lhs == error_mark_node) return error_mark_node; if (modifycode == NOP_EXPR) { /* `operator=' is not an inheritable operator. */ if (! IS_AGGR_TYPE (lhstype)) /* Do the default thing. */; else { result = build_new_op (MODIFY_EXPR, LOOKUP_NORMAL, lhs, rhs, make_node (NOP_EXPR), /*overloaded_p=*/NULL); if (result == NULL_TREE) return error_mark_node; return result; } lhstype = olhstype; } else { /* A binary op has been requested. Combine the old LHS value with the RHS producing the value we should actually store into the LHS. */ my_friendly_assert (!PROMOTES_TO_AGGR_TYPE (lhstype, REFERENCE_TYPE), 978652); lhs = stabilize_reference (lhs); newrhs = cp_build_binary_op (modifycode, lhs, rhs); if (newrhs == error_mark_node) { error (" in evaluation of `%Q(%#T, %#T)'", modifycode, TREE_TYPE (lhs), TREE_TYPE (rhs)); return error_mark_node; } /* Now it looks like a plain assignment. */ modifycode = NOP_EXPR; } my_friendly_assert (TREE_CODE (lhstype) != REFERENCE_TYPE, 20011220); my_friendly_assert (TREE_CODE (TREE_TYPE (newrhs)) != REFERENCE_TYPE, 20011220); } /* Handle a cast used as an "lvalue". We have already performed any binary operator using the value as cast. Now convert the result to the cast type of the lhs, and then true type of the lhs and store it there; then convert result back to the cast type to be the value of the assignment. */ switch (TREE_CODE (lhs)) { case NOP_EXPR: case CONVERT_EXPR: case FLOAT_EXPR: case FIX_TRUNC_EXPR: case FIX_FLOOR_EXPR: case FIX_ROUND_EXPR: case FIX_CEIL_EXPR: { tree inner_lhs = TREE_OPERAND (lhs, 0); tree result; if (TREE_CODE (TREE_TYPE (newrhs)) == ARRAY_TYPE || TREE_CODE (TREE_TYPE (newrhs)) == FUNCTION_TYPE || TREE_CODE (TREE_TYPE (newrhs)) == METHOD_TYPE || TREE_CODE (TREE_TYPE (newrhs)) == OFFSET_TYPE) newrhs = decay_conversion (newrhs); /* ISO C++ 5.4/1: The result is an lvalue if T is a reference type, otherwise the result is an rvalue. */ if (! lvalue_p (lhs)) pedwarn ("ISO C++ forbids cast to non-reference type used as lvalue"); result = build_modify_expr (inner_lhs, NOP_EXPR, cp_convert (TREE_TYPE (inner_lhs), cp_convert (lhstype, newrhs))); if (result == error_mark_node) return result; return cp_convert (TREE_TYPE (lhs), result); } default: break; } /* Now we have handled acceptable kinds of LHS that are not truly lvalues. Reject anything strange now. */ if (!lvalue_or_else (lhs, "assignment")) return error_mark_node; /* Warn about modifying something that is `const'. Don't warn if this is initialization. */ if (modifycode != INIT_EXPR && (TREE_READONLY (lhs) || CP_TYPE_CONST_P (lhstype) /* Functions are not modifiable, even though they are lvalues. */ || TREE_CODE (TREE_TYPE (lhs)) == FUNCTION_TYPE || TREE_CODE (TREE_TYPE (lhs)) == METHOD_TYPE /* If it's an aggregate and any field is const, then it is effectively const. */ || (CLASS_TYPE_P (lhstype) && C_TYPE_FIELDS_READONLY (lhstype)))) readonly_error (lhs, "assignment", 0); /* If storing into a structure or union member, it has probably been given type `int'. Compute the type that would go with the actual amount of storage the member occupies. */ if (TREE_CODE (lhs) == COMPONENT_REF && (TREE_CODE (lhstype) == INTEGER_TYPE || TREE_CODE (lhstype) == REAL_TYPE || TREE_CODE (lhstype) == ENUMERAL_TYPE)) { lhstype = TREE_TYPE (get_unwidened (lhs, 0)); /* If storing in a field that is in actuality a short or narrower than one, we must store in the field in its actual type. */ if (lhstype != TREE_TYPE (lhs)) { /* Avoid warnings converting integral types back into enums for enum bit fields. */ if (TREE_CODE (lhstype) == INTEGER_TYPE && TREE_CODE (olhstype) == ENUMERAL_TYPE) { if (TREE_SIDE_EFFECTS (lhs)) lhs = stabilize_reference (lhs); olhs = lhs; } lhs = copy_node (lhs); TREE_TYPE (lhs) = lhstype; } } /* Convert new value to destination type. */ if (TREE_CODE (lhstype) == ARRAY_TYPE) { int from_array; if (!same_or_base_type_p (TYPE_MAIN_VARIANT (lhstype), TYPE_MAIN_VARIANT (TREE_TYPE (rhs)))) { error ("incompatible types in assignment of `%T' to `%T'", TREE_TYPE (rhs), lhstype); return error_mark_node; } /* Allow array assignment in compiler-generated code. */ if (! DECL_ARTIFICIAL (current_function_decl)) pedwarn ("ISO C++ forbids assignment of arrays"); from_array = TREE_CODE (TREE_TYPE (newrhs)) == ARRAY_TYPE ? 1 + (modifycode != INIT_EXPR): 0; return build_vec_init (lhs, NULL_TREE, newrhs, from_array); } if (modifycode == INIT_EXPR) newrhs = convert_for_initialization (lhs, lhstype, newrhs, LOOKUP_NORMAL, "initialization", NULL_TREE, 0); else { /* Avoid warnings on enum bit fields. */ if (TREE_CODE (olhstype) == ENUMERAL_TYPE && TREE_CODE (lhstype) == INTEGER_TYPE) { newrhs = convert_for_assignment (olhstype, newrhs, "assignment", NULL_TREE, 0); newrhs = convert_force (lhstype, newrhs, 0); } else newrhs = convert_for_assignment (lhstype, newrhs, "assignment", NULL_TREE, 0); if (TREE_CODE (newrhs) == CALL_EXPR && TYPE_NEEDS_CONSTRUCTING (lhstype)) newrhs = build_cplus_new (lhstype, newrhs); /* Can't initialize directly from a TARGET_EXPR, since that would cause the lhs to be constructed twice, and possibly result in accidental self-initialization. So we force the TARGET_EXPR to be expanded without a target. */ if (TREE_CODE (newrhs) == TARGET_EXPR) newrhs = build (COMPOUND_EXPR, TREE_TYPE (newrhs), newrhs, TREE_OPERAND (newrhs, 0)); } if (newrhs == error_mark_node) return error_mark_node; result = build (modifycode == NOP_EXPR ? MODIFY_EXPR : INIT_EXPR, lhstype, lhs, newrhs); TREE_SIDE_EFFECTS (result) = 1; /* If we got the LHS in a different type for storing in, convert the result back to the nominal type of LHS so that the value we return always has the same type as the LHS argument. */ if (olhstype == TREE_TYPE (result)) return result; if (olhs) { result = build (COMPOUND_EXPR, olhstype, result, olhs); TREE_NO_UNUSED_WARNING (result) = 1; return result; } return convert_for_assignment (olhstype, result, "assignment", NULL_TREE, 0); } tree build_x_modify_expr (tree lhs, enum tree_code modifycode, tree rhs) { if (processing_template_decl) return build_min_nt (MODOP_EXPR, lhs, build_min_nt (modifycode, NULL_TREE, NULL_TREE), rhs); if (modifycode != NOP_EXPR) { tree rval = build_new_op (MODIFY_EXPR, LOOKUP_NORMAL, lhs, rhs, make_node (modifycode), /*overloaded_p=*/NULL); if (rval) return rval; } return build_modify_expr (lhs, modifycode, rhs); } /* Get difference in deltas for different pointer to member function types. Returns an integer constant of type PTRDIFF_TYPE_NODE. If the conversion is invalid, the constant is zero. If FORCE is true, then allow reverse conversions as well. Note that the naming of FROM and TO is kind of backwards; the return value is what we add to a TO in order to get a FROM. They are named this way because we call this function to find out how to convert from a pointer to member of FROM to a pointer to member of TO. */ static tree get_delta_difference (tree from, tree to, int force) { tree binfo; tree virt_binfo; base_kind kind; binfo = lookup_base (to, from, ba_check, &kind); if (kind == bk_inaccessible || kind == bk_ambig) { error (" in pointer to member function conversion"); goto error; } if (!binfo) { if (!force) { error_not_base_type (from, to); error (" in pointer to member conversion"); goto error; } binfo = lookup_base (from, to, ba_check, &kind); if (!binfo) goto error; virt_binfo = binfo_from_vbase (binfo); if (virt_binfo) { /* This is a reinterpret cast, we choose to do nothing. */ warning ("pointer to member cast via virtual base `%T'", BINFO_TYPE (virt_binfo)); goto error; } return fold (convert_to_integer (ptrdiff_type_node, size_diffop (size_zero_node, BINFO_OFFSET (binfo)))); } virt_binfo = binfo_from_vbase (binfo); if (!virt_binfo) return fold (convert_to_integer (ptrdiff_type_node, BINFO_OFFSET (binfo))); /* This is a reinterpret cast, we choose to do nothing. */ if (force) warning ("pointer to member cast via virtual base `%T'", BINFO_TYPE (virt_binfo)); else error ("pointer to member conversion via virtual base `%T'", BINFO_TYPE (virt_binfo)); error: return fold (convert_to_integer(ptrdiff_type_node, integer_zero_node)); } /* Return a constructor for the pointer-to-member-function TYPE using the other components as specified. */ tree build_ptrmemfunc1 (tree type, tree delta, tree pfn) { tree u = NULL_TREE; tree delta_field; tree pfn_field; /* Pull the FIELD_DECLs out of the type. */ pfn_field = TYPE_FIELDS (type); delta_field = TREE_CHAIN (pfn_field); /* Make sure DELTA has the type we want. */ delta = convert_and_check (delta_type_node, delta); /* Finish creating the initializer. */ u = tree_cons (pfn_field, pfn, build_tree_list (delta_field, delta)); u = build_constructor (type, u); TREE_CONSTANT (u) = TREE_CONSTANT (pfn) && TREE_CONSTANT (delta); TREE_STATIC (u) = (TREE_CONSTANT (u) && (initializer_constant_valid_p (pfn, TREE_TYPE (pfn)) != NULL_TREE) && (initializer_constant_valid_p (delta, TREE_TYPE (delta)) != NULL_TREE)); return u; } /* Build a constructor for a pointer to member function. It can be used to initialize global variables, local variable, or used as a value in expressions. TYPE is the POINTER to METHOD_TYPE we want to be. If FORCE is nonzero, then force this conversion, even if we would rather not do it. Usually set when using an explicit cast. Return error_mark_node, if something goes wrong. */ tree build_ptrmemfunc (tree type, tree pfn, int force) { tree fn; tree pfn_type; tree to_type; if (error_operand_p (pfn)) return error_mark_node; pfn_type = TREE_TYPE (pfn); to_type = build_ptrmemfunc_type (type); /* Handle multiple conversions of pointer to member functions. */ if (TYPE_PTRMEMFUNC_P (pfn_type)) { tree delta = NULL_TREE; tree npfn = NULL_TREE; tree n; if (!force && !can_convert_arg (to_type, TREE_TYPE (pfn), pfn)) error ("invalid conversion to type `%T' from type `%T'", to_type, pfn_type); n = get_delta_difference (TYPE_PTRMEMFUNC_OBJECT_TYPE (pfn_type), TYPE_PTRMEMFUNC_OBJECT_TYPE (to_type), force); /* We don't have to do any conversion to convert a pointer-to-member to its own type. But, we don't want to just return a PTRMEM_CST if there's an explicit cast; that cast should make the expression an invalid template argument. */ if (TREE_CODE (pfn) != PTRMEM_CST) { if (same_type_p (to_type, pfn_type)) return pfn; else if (integer_zerop (n)) return build_reinterpret_cast (to_type, pfn); } if (TREE_SIDE_EFFECTS (pfn)) pfn = save_expr (pfn); /* Obtain the function pointer and the current DELTA. */ if (TREE_CODE (pfn) == PTRMEM_CST) expand_ptrmemfunc_cst (pfn, &delta, &npfn); else { npfn = build_ptrmemfunc_access_expr (pfn, pfn_identifier); delta = build_ptrmemfunc_access_expr (pfn, delta_identifier); } /* Just adjust the DELTA field. */ my_friendly_assert (same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (delta), ptrdiff_type_node), 20030727); if (TARGET_PTRMEMFUNC_VBIT_LOCATION == ptrmemfunc_vbit_in_delta) n = cp_build_binary_op (LSHIFT_EXPR, n, integer_one_node); delta = cp_build_binary_op (PLUS_EXPR, delta, n); return build_ptrmemfunc1 (to_type, delta, npfn); } /* Handle null pointer to member function conversions. */ if (integer_zerop (pfn)) { pfn = build_c_cast (type, integer_zero_node); return build_ptrmemfunc1 (to_type, integer_zero_node, pfn); } if (type_unknown_p (pfn)) return instantiate_type (type, pfn, tf_error | tf_warning); fn = TREE_OPERAND (pfn, 0); my_friendly_assert (TREE_CODE (fn) == FUNCTION_DECL, 0); return make_ptrmem_cst (to_type, fn); } /* Return the DELTA, IDX, PFN, and DELTA2 values for the PTRMEM_CST given by CST. ??? There is no consistency as to the types returned for the above values. Some code acts as if its a sizetype and some as if its integer_type_node. */ void expand_ptrmemfunc_cst (tree cst, tree *delta, tree *pfn) { tree type = TREE_TYPE (cst); tree fn = PTRMEM_CST_MEMBER (cst); tree ptr_class, fn_class; my_friendly_assert (TREE_CODE (fn) == FUNCTION_DECL, 0); /* The class that the function belongs to. */ fn_class = DECL_CONTEXT (fn); /* The class that we're creating a pointer to member of. */ ptr_class = TYPE_PTRMEMFUNC_OBJECT_TYPE (type); /* First, calculate the adjustment to the function's class. */ *delta = get_delta_difference (fn_class, ptr_class, /*force=*/0); if (!DECL_VIRTUAL_P (fn)) *pfn = convert (TYPE_PTRMEMFUNC_FN_TYPE (type), build_addr_func (fn)); else { /* If we're dealing with a virtual function, we have to adjust 'this' again, to point to the base which provides the vtable entry for fn; the call will do the opposite adjustment. */ tree orig_class = DECL_CONTEXT (fn); tree binfo = binfo_or_else (orig_class, fn_class); *delta = fold (build (PLUS_EXPR, TREE_TYPE (*delta), *delta, BINFO_OFFSET (binfo))); /* We set PFN to the vtable offset at which the function can be found, plus one (unless ptrmemfunc_vbit_in_delta, in which case delta is shifted left, and then incremented). */ *pfn = DECL_VINDEX (fn); *pfn = fold (build (MULT_EXPR, integer_type_node, *pfn, TYPE_SIZE_UNIT (vtable_entry_type))); switch (TARGET_PTRMEMFUNC_VBIT_LOCATION) { case ptrmemfunc_vbit_in_pfn: *pfn = fold (build (PLUS_EXPR, integer_type_node, *pfn, integer_one_node)); break; case ptrmemfunc_vbit_in_delta: *delta = fold (build (LSHIFT_EXPR, TREE_TYPE (*delta), *delta, integer_one_node)); *delta = fold (build (PLUS_EXPR, TREE_TYPE (*delta), *delta, integer_one_node)); break; default: abort (); } *pfn = fold (build1 (NOP_EXPR, TYPE_PTRMEMFUNC_FN_TYPE (type), *pfn)); } } /* Return an expression for PFN from the pointer-to-member function given by T. */ tree pfn_from_ptrmemfunc (tree t) { if (TREE_CODE (t) == PTRMEM_CST) { tree delta; tree pfn; expand_ptrmemfunc_cst (t, &delta, &pfn); if (pfn) return pfn; } return build_ptrmemfunc_access_expr (t, pfn_identifier); } /* Expression EXPR is about to be implicitly converted to TYPE. Warn if this is a potentially dangerous thing to do. Returns a possibly marked EXPR. */ tree dubious_conversion_warnings (tree type, tree expr, const char *errtype, tree fndecl, int parmnum) { type = non_reference (type); /* Issue warnings about peculiar, but valid, uses of NULL. */ if (ARITHMETIC_TYPE_P (type) && expr == null_node) { if (fndecl) warning ("passing NULL used for non-pointer %s %P of `%D'", errtype, parmnum, fndecl); else warning ("%s to non-pointer type `%T' from NULL", errtype, type); } /* Warn about assigning a floating-point type to an integer type. */ if (TREE_CODE (TREE_TYPE (expr)) == REAL_TYPE && TREE_CODE (type) == INTEGER_TYPE) { if (fndecl) warning ("passing `%T' for %s %P of `%D'", TREE_TYPE (expr), errtype, parmnum, fndecl); else warning ("%s to `%T' from `%T'", errtype, type, TREE_TYPE (expr)); } /* And warn about assigning a negative value to an unsigned variable. */ else if (TREE_UNSIGNED (type) && TREE_CODE (type) != BOOLEAN_TYPE) { if (TREE_CODE (expr) == INTEGER_CST && TREE_NEGATED_INT (expr)) { if (fndecl) warning ("passing negative value `%E' for %s %P of `%D'", expr, errtype, parmnum, fndecl); else warning ("%s of negative value `%E' to `%T'", errtype, expr, type); } overflow_warning (expr); if (TREE_CONSTANT (expr)) expr = fold (expr); } return expr; } /* Convert value RHS to type TYPE as preparation for an assignment to an lvalue of type TYPE. ERRTYPE is a string to use in error messages: "assignment", "return", etc. If FNDECL is non-NULL, we are doing the conversion in order to pass the PARMNUMth argument of FNDECL. */ static tree convert_for_assignment (tree type, tree rhs, const char *errtype, tree fndecl, int parmnum) { tree rhstype; enum tree_code coder; /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */ if (TREE_CODE (rhs) == NON_LVALUE_EXPR) rhs = TREE_OPERAND (rhs, 0); rhstype = TREE_TYPE (rhs); coder = TREE_CODE (rhstype); if (TREE_CODE (type) == VECTOR_TYPE && coder == VECTOR_TYPE && ((*targetm.vector_opaque_p) (type) || (*targetm.vector_opaque_p) (rhstype))) return convert (type, rhs); if (rhs == error_mark_node || rhstype == error_mark_node) return error_mark_node; if (TREE_CODE (rhs) == TREE_LIST && TREE_VALUE (rhs) == error_mark_node) return error_mark_node; /* The RHS of an assignment cannot have void type. */ if (coder == VOID_TYPE) { error ("void value not ignored as it ought to be"); return error_mark_node; } /* Simplify the RHS if possible. */ if (TREE_CODE (rhs) == CONST_DECL) rhs = DECL_INITIAL (rhs); /* We do not use decl_constant_value here because of this case: const char* const s = "s"; The conversion rules for a string literal are more lax than for a variable; in particular, a string literal can be converted to a "char *" but the variable "s" cannot be converted in the same way. If the conversion is allowed, the optimization should be performed while creating the converted expression. */ /* [expr.ass] The expression is implicitly converted (clause _conv_) to the cv-unqualified type of the left operand. We allow bad conversions here because by the time we get to this point we are committed to doing the conversion. If we end up doing a bad conversion, convert_like will complain. */ if (!can_convert_arg_bad (type, rhstype, rhs)) { /* When -Wno-pmf-conversions is use, we just silently allow conversions from pointers-to-members to plain pointers. If the conversion doesn't work, cp_convert will complain. */ if (!warn_pmf2ptr && TYPE_PTR_P (type) && TYPE_PTRMEMFUNC_P (rhstype)) rhs = cp_convert (strip_top_quals (type), rhs); else { /* If the right-hand side has unknown type, then it is an overloaded function. Call instantiate_type to get error messages. */ if (rhstype == unknown_type_node) instantiate_type (type, rhs, tf_error | tf_warning); else if (fndecl) error ("cannot convert `%T' to `%T' for argument `%P' to `%D'", rhstype, type, parmnum, fndecl); else error ("cannot convert `%T' to `%T' in %s", rhstype, type, errtype); return error_mark_node; } } return perform_implicit_conversion (strip_top_quals (type), rhs); } /* Convert RHS to be of type TYPE. If EXP is nonzero, it is the target of the initialization. ERRTYPE is a string to use in error messages. Two major differences between the behavior of `convert_for_assignment' and `convert_for_initialization' are that references are bashed in the former, while copied in the latter, and aggregates are assigned in the former (operator=) while initialized in the latter (X(X&)). If using constructor make sure no conversion operator exists, if one does exist, an ambiguity exists. If flags doesn't include LOOKUP_COMPLAIN, don't complain about anything. */ tree convert_for_initialization (tree exp, tree type, tree rhs, int flags, const char *errtype, tree fndecl, int parmnum) { enum tree_code codel = TREE_CODE (type); tree rhstype; enum tree_code coder; /* build_c_cast puts on a NOP_EXPR to make the result not an lvalue. Strip such NOP_EXPRs, since RHS is used in non-lvalue context. */ if (TREE_CODE (rhs) == NOP_EXPR && TREE_TYPE (rhs) == TREE_TYPE (TREE_OPERAND (rhs, 0)) && codel != REFERENCE_TYPE) rhs = TREE_OPERAND (rhs, 0); if (rhs == error_mark_node || (TREE_CODE (rhs) == TREE_LIST && TREE_VALUE (rhs) == error_mark_node)) return error_mark_node; if (TREE_CODE (TREE_TYPE (rhs)) == REFERENCE_TYPE) rhs = convert_from_reference (rhs); if ((TREE_CODE (TREE_TYPE (rhs)) == ARRAY_TYPE && TREE_CODE (type) != ARRAY_TYPE && (TREE_CODE (type) != REFERENCE_TYPE || TREE_CODE (TREE_TYPE (type)) != ARRAY_TYPE)) || (TREE_CODE (TREE_TYPE (rhs)) == FUNCTION_TYPE && (TREE_CODE (type) != REFERENCE_TYPE || TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE)) || TREE_CODE (TREE_TYPE (rhs)) == METHOD_TYPE) rhs = decay_conversion (rhs); rhstype = TREE_TYPE (rhs); coder = TREE_CODE (rhstype); if (coder == ERROR_MARK) return error_mark_node; /* We accept references to incomplete types, so we can return here before checking if RHS is of complete type. */ if (codel == REFERENCE_TYPE) { /* This should eventually happen in convert_arguments. */ int savew = 0, savee = 0; if (fndecl) savew = warningcount, savee = errorcount; rhs = initialize_reference (type, rhs, /*decl=*/NULL_TREE, /*cleanup=*/NULL); if (fndecl) { if (warningcount > savew) cp_warning_at ("in passing argument %P of `%+D'", parmnum, fndecl); else if (errorcount > savee) cp_error_at ("in passing argument %P of `%+D'", parmnum, fndecl); } return rhs; } if (exp != 0) exp = require_complete_type (exp); if (exp == error_mark_node) return error_mark_node; rhstype = non_reference (rhstype); type = complete_type (type); if (IS_AGGR_TYPE (type)) return ocp_convert (type, rhs, CONV_IMPLICIT|CONV_FORCE_TEMP, flags); return convert_for_assignment (type, rhs, errtype, fndecl, parmnum); } /* Expand an ASM statement with operands, handling output operands that are not variables or INDIRECT_REFS by transforming such cases into cases that expand_asm_operands can handle. Arguments are same as for expand_asm_operands. We don't do default conversions on all inputs, because it can screw up operands that are expected to be in memory. */ void c_expand_asm_operands (tree string, tree outputs, tree inputs, tree clobbers, int vol, location_t locus) { int noutputs = list_length (outputs); int i; /* o[I] is the place that output number I should be written. */ tree *o = alloca (noutputs * sizeof (tree)); tree tail; /* Record the contents of OUTPUTS before it is modified. */ for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++) o[i] = TREE_VALUE (tail); /* Generate the ASM_OPERANDS insn; store into the TREE_VALUEs of OUTPUTS some trees for where the values were actually stored. */ expand_asm_operands (string, outputs, inputs, clobbers, vol, locus); /* Copy all the intermediate outputs into the specified outputs. */ for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++) { if (o[i] != TREE_VALUE (tail)) { expand_expr (build_modify_expr (o[i], NOP_EXPR, TREE_VALUE (tail)), const0_rtx, VOIDmode, EXPAND_NORMAL); free_temp_slots (); /* Restore the original value so that it's correct the next time we expand this function. */ TREE_VALUE (tail) = o[i]; } /* Detect modification of read-only values. (Otherwise done by build_modify_expr.) */ else { tree type = TREE_TYPE (o[i]); if (type != error_mark_node && (CP_TYPE_CONST_P (type) || (CLASS_TYPE_P (type) && C_TYPE_FIELDS_READONLY (type)))) readonly_error (o[i], "modification by `asm'", 1); } } /* Those MODIFY_EXPRs could do autoincrements. */ emit_queue (); } /* If RETVAL is the address of, or a reference to, a local variable or temporary give an appropriate warning. */ static void maybe_warn_about_returning_address_of_local (tree retval) { tree valtype = TREE_TYPE (DECL_RESULT (current_function_decl)); tree whats_returned = retval; for (;;) { if (TREE_CODE (whats_returned) == COMPOUND_EXPR) whats_returned = TREE_OPERAND (whats_returned, 1); else if (TREE_CODE (whats_returned) == CONVERT_EXPR || TREE_CODE (whats_returned) == NON_LVALUE_EXPR || TREE_CODE (whats_returned) == NOP_EXPR) whats_returned = TREE_OPERAND (whats_returned, 0); else break; } if (TREE_CODE (whats_returned) != ADDR_EXPR) return; whats_returned = TREE_OPERAND (whats_returned, 0); if (TREE_CODE (valtype) == REFERENCE_TYPE) { if (TREE_CODE (whats_returned) == AGGR_INIT_EXPR || TREE_CODE (whats_returned) == TARGET_EXPR) { warning ("returning reference to temporary"); return; } if (TREE_CODE (whats_returned) == VAR_DECL && DECL_NAME (whats_returned) && TEMP_NAME_P (DECL_NAME (whats_returned))) { warning ("reference to non-lvalue returned"); return; } } if (TREE_CODE (whats_returned) == VAR_DECL && DECL_NAME (whats_returned) && DECL_FUNCTION_SCOPE_P (whats_returned) && !(TREE_STATIC (whats_returned) || TREE_PUBLIC (whats_returned))) { if (TREE_CODE (valtype) == REFERENCE_TYPE) cp_warning_at ("reference to local variable `%D' returned", whats_returned); else cp_warning_at ("address of local variable `%D' returned", whats_returned); return; } } /* Check that returning RETVAL from the current function is valid. Return an expression explicitly showing all conversions required to change RETVAL into the function return type, and to assign it to the DECL_RESULT for the function. */ tree check_return_expr (tree retval) { tree result; /* The type actually returned by the function, after any promotions. */ tree valtype; int fn_returns_value_p; /* A `volatile' function is one that isn't supposed to return, ever. (This is a G++ extension, used to get better code for functions that call the `volatile' function.) */ if (TREE_THIS_VOLATILE (current_function_decl)) warning ("function declared `noreturn' has a `return' statement"); /* Check for various simple errors. */ if (DECL_DESTRUCTOR_P (current_function_decl)) { if (retval) error ("returning a value from a destructor"); return NULL_TREE; } else if (DECL_CONSTRUCTOR_P (current_function_decl)) { if (in_function_try_handler) /* If a return statement appears in a handler of the function-try-block of a constructor, the program is ill-formed. */ error ("cannot return from a handler of a function-try-block of a constructor"); else if (retval) /* You can't return a value from a constructor. */ error ("returning a value from a constructor"); return NULL_TREE; } if (processing_template_decl) { current_function_returns_value = 1; return retval; } /* When no explicit return-value is given in a function with a named return value, the named return value is used. */ result = DECL_RESULT (current_function_decl); valtype = TREE_TYPE (result); my_friendly_assert (valtype != NULL_TREE, 19990924); fn_returns_value_p = !VOID_TYPE_P (valtype); if (!retval && DECL_NAME (result) && fn_returns_value_p) retval = result; /* Check for a return statement with no return value in a function that's supposed to return a value. */ if (!retval && fn_returns_value_p) { pedwarn ("return-statement with no value, in function returning '%T'", valtype); /* Clear this, so finish_function won't say that we reach the end of a non-void function (which we don't, we gave a return!). */ current_function_returns_null = 0; } /* Check for a return statement with a value in a function that isn't supposed to return a value. */ else if (retval && !fn_returns_value_p) { if (VOID_TYPE_P (TREE_TYPE (retval))) /* You can return a `void' value from a function of `void' type. In that case, we have to evaluate the expression for its side-effects. */ finish_expr_stmt (retval); else pedwarn ("return-statement with a value, in function " "returning 'void'"); current_function_returns_null = 1; /* There's really no value to return, after all. */ return NULL_TREE; } else if (!retval) /* Remember that this function can sometimes return without a value. */ current_function_returns_null = 1; else /* Remember that this function did return a value. */ current_function_returns_value = 1; /* Check for erroneous operands -- but after giving ourselves a chance to provide an error about returning a value from a void function. */ if (error_operand_p (retval)) { current_function_return_value = error_mark_node; return error_mark_node; } /* Only operator new(...) throw(), can return NULL [expr.new/13]. */ if ((DECL_OVERLOADED_OPERATOR_P (current_function_decl) == NEW_EXPR || DECL_OVERLOADED_OPERATOR_P (current_function_decl) == VEC_NEW_EXPR) && !TYPE_NOTHROW_P (TREE_TYPE (current_function_decl)) && ! flag_check_new && null_ptr_cst_p (retval)) warning ("`operator new' must not return NULL unless it is declared `throw()' (or -fcheck-new is in effect)"); /* Effective C++ rule 15. See also start_function. */ if (warn_ecpp && DECL_NAME (current_function_decl) == ansi_assopname(NOP_EXPR) && retval != current_class_ref) warning ("`operator=' should return a reference to `*this'"); /* The fabled Named Return Value optimization, as per [class.copy]/15: [...] For a function with a class return type, if the expression in the return statement is the name of a local object, and the cv- unqualified type of the local object is the same as the function return type, an implementation is permitted to omit creating the tem- porary object to hold the function return value [...] So, if this is a value-returning function that always returns the same local variable, remember it. It might be nice to be more flexible, and choose the first suitable variable even if the function sometimes returns something else, but then we run the risk of clobbering the variable we chose if the other returned expression uses the chosen variable somehow. And people expect this restriction, anyway. (jason 2000-11-19) See finish_function, cxx_expand_function_start, and cp_copy_res_decl_for_inlining for other pieces of this optimization. */ if (fn_returns_value_p && flag_elide_constructors) { if (retval != NULL_TREE && (current_function_return_value == NULL_TREE || current_function_return_value == retval) && TREE_CODE (retval) == VAR_DECL && DECL_CONTEXT (retval) == current_function_decl && ! TREE_STATIC (retval) && (DECL_ALIGN (retval) >= DECL_ALIGN (DECL_RESULT (current_function_decl))) && same_type_p ((TYPE_MAIN_VARIANT (TREE_TYPE (retval))), (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (current_function_decl)))))) current_function_return_value = retval; else current_function_return_value = error_mark_node; } /* We don't need to do any conversions when there's nothing being returned. */ if (!retval) return NULL_TREE; /* Do any required conversions. */ if (retval == result || DECL_CONSTRUCTOR_P (current_function_decl)) /* No conversions are required. */ ; else { /* The type the function is declared to return. */ tree functype = TREE_TYPE (TREE_TYPE (current_function_decl)); /* First convert the value to the function's return type, then to the type of return value's location to handle the case that functype is smaller than the valtype. */ retval = convert_for_initialization (NULL_TREE, functype, retval, LOOKUP_NORMAL|LOOKUP_ONLYCONVERTING, "return", NULL_TREE, 0); retval = convert (valtype, retval); /* If the conversion failed, treat this just like `return;'. */ if (retval == error_mark_node) return retval; /* We can't initialize a register from a AGGR_INIT_EXPR. */ else if (! current_function_returns_struct && TREE_CODE (retval) == TARGET_EXPR && TREE_CODE (TREE_OPERAND (retval, 1)) == AGGR_INIT_EXPR) retval = build (COMPOUND_EXPR, TREE_TYPE (retval), retval, TREE_OPERAND (retval, 0)); else maybe_warn_about_returning_address_of_local (retval); } /* Actually copy the value returned into the appropriate location. */ if (retval && retval != result) retval = build (INIT_EXPR, TREE_TYPE (result), result, retval); return retval; } /* Returns nonzero if the pointer-type FROM can be converted to the pointer-type TO via a qualification conversion. If CONSTP is -1, then we return nonzero if the pointers are similar, and the cv-qualification signature of FROM is a proper subset of that of TO. If CONSTP is positive, then all outer pointers have been const-qualified. */ static int comp_ptr_ttypes_real (tree to, tree from, int constp) { bool to_more_cv_qualified = false; for (; ; to = TREE_TYPE (to), from = TREE_TYPE (from)) { if (TREE_CODE (to) != TREE_CODE (from)) return 0; if (TREE_CODE (from) == OFFSET_TYPE && !same_type_p (TYPE_OFFSET_BASETYPE (from), TYPE_OFFSET_BASETYPE (to))) return 0; /* Const and volatile mean something different for function types, so the usual checks are not appropriate. */ if (TREE_CODE (to) != FUNCTION_TYPE && TREE_CODE (to) != METHOD_TYPE) { if (!at_least_as_qualified_p (to, from)) return 0; if (!at_least_as_qualified_p (from, to)) { if (constp == 0) return 0; to_more_cv_qualified = true; } if (constp > 0) constp &= TYPE_READONLY (to); } if (TREE_CODE (to) != POINTER_TYPE && !TYPE_PTRMEM_P (to)) return ((constp >= 0 || to_more_cv_qualified) && same_type_ignoring_top_level_qualifiers_p (to, from)); } } /* When comparing, say, char ** to char const **, this function takes the 'char *' and 'char const *'. Do not pass non-pointer/reference types to this function. */ int comp_ptr_ttypes (tree to, tree from) { return comp_ptr_ttypes_real (to, from, 1); } /* Returns 1 if to and from are (possibly multi-level) pointers to the same type or inheritance-related types, regardless of cv-quals. */ int ptr_reasonably_similar (tree to, tree from) { for (; ; to = TREE_TYPE (to), from = TREE_TYPE (from)) { /* Any target type is similar enough to void. */ if (TREE_CODE (to) == VOID_TYPE || TREE_CODE (from) == VOID_TYPE) return 1; if (TREE_CODE (to) != TREE_CODE (from)) return 0; if (TREE_CODE (from) == OFFSET_TYPE && comptypes (TYPE_OFFSET_BASETYPE (to), TYPE_OFFSET_BASETYPE (from), COMPARE_BASE | COMPARE_DERIVED)) continue; if (TREE_CODE (to) == INTEGER_TYPE && TYPE_PRECISION (to) == TYPE_PRECISION (from)) return 1; if (TREE_CODE (to) == FUNCTION_TYPE) return 1; if (TREE_CODE (to) != POINTER_TYPE) return comptypes (TYPE_MAIN_VARIANT (to), TYPE_MAIN_VARIANT (from), COMPARE_BASE | COMPARE_DERIVED); } } /* Like comp_ptr_ttypes, for const_cast. */ static int comp_ptr_ttypes_const (tree to, tree from) { for (; ; to = TREE_TYPE (to), from = TREE_TYPE (from)) { if (TREE_CODE (to) != TREE_CODE (from)) return 0; if (TREE_CODE (from) == OFFSET_TYPE && same_type_p (TYPE_OFFSET_BASETYPE (from), TYPE_OFFSET_BASETYPE (to))) continue; if (TREE_CODE (to) != POINTER_TYPE) return same_type_ignoring_top_level_qualifiers_p (to, from); } } /* Returns the type qualifiers for this type, including the qualifiers on the elements for an array type. */ int cp_type_quals (tree type) { type = strip_array_types (type); if (type == error_mark_node) return TYPE_UNQUALIFIED; return TYPE_QUALS (type); } /* Returns nonzero if the TYPE contains a mutable member. */ bool cp_has_mutable_p (tree type) { type = strip_array_types (type); return CLASS_TYPE_P (type) && CLASSTYPE_HAS_MUTABLE (type); } /* Subroutine of casts_away_constness. Make T1 and T2 point at exemplar types such that casting T1 to T2 is casting away castness if and only if there is no implicit conversion from T1 to T2. */ static void casts_away_constness_r (tree *t1, tree *t2) { int quals1; int quals2; /* [expr.const.cast] For multi-level pointer to members and multi-level mixed pointers and pointers to members (conv.qual), the "member" aspect of a pointer to member level is ignored when determining if a const cv-qualifier has been cast away. */ /* [expr.const.cast] For two pointer types: X1 is T1cv1,1 * ... cv1,N * where T1 is not a pointer type X2 is T2cv2,1 * ... cv2,M * where T2 is not a pointer type K is min(N,M) casting from X1 to X2 casts away constness if, for a non-pointer type T there does not exist an implicit conversion (clause _conv_) from: Tcv1,(N-K+1) * cv1,(N-K+2) * ... cv1,N * to Tcv2,(M-K+1) * cv2,(M-K+2) * ... cv2,M *. */ if ((!TYPE_PTR_P (*t1) && !TYPE_PTRMEM_P (*t1)) || (!TYPE_PTR_P (*t2) && !TYPE_PTRMEM_P (*t2))) { *t1 = cp_build_qualified_type (void_type_node, cp_type_quals (*t1)); *t2 = cp_build_qualified_type (void_type_node, cp_type_quals (*t2)); return; } quals1 = cp_type_quals (*t1); quals2 = cp_type_quals (*t2); if (TYPE_PTRMEM_P (*t1)) *t1 = TYPE_PTRMEM_POINTED_TO_TYPE (*t1); else *t1 = TREE_TYPE (*t1); if (TYPE_PTRMEM_P (*t2)) *t2 = TYPE_PTRMEM_POINTED_TO_TYPE (*t2); else *t2 = TREE_TYPE (*t2); casts_away_constness_r (t1, t2); *t1 = build_pointer_type (*t1); *t2 = build_pointer_type (*t2); *t1 = cp_build_qualified_type (*t1, quals1); *t2 = cp_build_qualified_type (*t2, quals2); } /* Returns nonzero if casting from TYPE1 to TYPE2 casts away constness. */ static bool casts_away_constness (tree t1, tree t2) { if (TREE_CODE (t2) == REFERENCE_TYPE) { /* [expr.const.cast] Casting from an lvalue of type T1 to an lvalue of type T2 using a reference cast casts away constness if a cast from an rvalue of type "pointer to T1" to the type "pointer to T2" casts away constness. */ t1 = (TREE_CODE (t1) == REFERENCE_TYPE ? TREE_TYPE (t1) : t1); return casts_away_constness (build_pointer_type (t1), build_pointer_type (TREE_TYPE (t2))); } if (TYPE_PTRMEM_P (t1) && TYPE_PTRMEM_P (t2)) /* [expr.const.cast] Casting from an rvalue of type "pointer to data member of X of type T1" to the type "pointer to data member of Y of type T2" casts away constness if a cast from an rvalue of type "pointer to T1" to the type "pointer to T2" casts away constness. */ return casts_away_constness (build_pointer_type (TYPE_PTRMEM_POINTED_TO_TYPE (t1)), build_pointer_type (TYPE_PTRMEM_POINTED_TO_TYPE (t2))); /* Casting away constness is only something that makes sense for pointer or reference types. */ if (TREE_CODE (t1) != POINTER_TYPE || TREE_CODE (t2) != POINTER_TYPE) return false; /* Top-level qualifiers don't matter. */ t1 = TYPE_MAIN_VARIANT (t1); t2 = TYPE_MAIN_VARIANT (t2); casts_away_constness_r (&t1, &t2); if (!can_convert (t2, t1)) return true; return false; } /* If T is a REFERENCE_TYPE return the type to which T refers. Otherwise, return T itself. */ tree non_reference (tree t) { if (TREE_CODE (t) == REFERENCE_TYPE) t = TREE_TYPE (t); return t; }