tmpfs: undo fallocation on failure
[linux.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
33
34 static struct vfsmount *shm_mnt;
35
36 #ifdef CONFIG_SHMEM
37 /*
38  * This virtual memory filesystem is heavily based on the ramfs. It
39  * extends ramfs by the ability to use swap and honor resource limits
40  * which makes it a completely usable filesystem.
41  */
42
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/falloc.h>
57 #include <linux/splice.h>
58 #include <linux/security.h>
59 #include <linux/swapops.h>
60 #include <linux/mempolicy.h>
61 #include <linux/namei.h>
62 #include <linux/ctype.h>
63 #include <linux/migrate.h>
64 #include <linux/highmem.h>
65 #include <linux/seq_file.h>
66 #include <linux/magic.h>
67
68 #include <asm/uaccess.h>
69 #include <asm/pgtable.h>
70
71 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
72 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
73
74 /* Pretend that each entry is of this size in directory's i_size */
75 #define BOGO_DIRENT_SIZE 20
76
77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78 #define SHORT_SYMLINK_LEN 128
79
80 struct shmem_xattr {
81         struct list_head list;  /* anchored by shmem_inode_info->xattr_list */
82         char *name;             /* xattr name */
83         size_t size;
84         char value[0];
85 };
86
87 /* Flag allocation requirements to shmem_getpage */
88 enum sgp_type {
89         SGP_READ,       /* don't exceed i_size, don't allocate page */
90         SGP_CACHE,      /* don't exceed i_size, may allocate page */
91         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
92         SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
93         SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
94 };
95
96 #ifdef CONFIG_TMPFS
97 static unsigned long shmem_default_max_blocks(void)
98 {
99         return totalram_pages / 2;
100 }
101
102 static unsigned long shmem_default_max_inodes(void)
103 {
104         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
105 }
106 #endif
107
108 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
109 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
110                                 struct shmem_inode_info *info, pgoff_t index);
111 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
112         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
113
114 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
115         struct page **pagep, enum sgp_type sgp, int *fault_type)
116 {
117         return shmem_getpage_gfp(inode, index, pagep, sgp,
118                         mapping_gfp_mask(inode->i_mapping), fault_type);
119 }
120
121 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
122 {
123         return sb->s_fs_info;
124 }
125
126 /*
127  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
128  * for shared memory and for shared anonymous (/dev/zero) mappings
129  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
130  * consistent with the pre-accounting of private mappings ...
131  */
132 static inline int shmem_acct_size(unsigned long flags, loff_t size)
133 {
134         return (flags & VM_NORESERVE) ?
135                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
136 }
137
138 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
139 {
140         if (!(flags & VM_NORESERVE))
141                 vm_unacct_memory(VM_ACCT(size));
142 }
143
144 /*
145  * ... whereas tmpfs objects are accounted incrementally as
146  * pages are allocated, in order to allow huge sparse files.
147  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
148  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
149  */
150 static inline int shmem_acct_block(unsigned long flags)
151 {
152         return (flags & VM_NORESERVE) ?
153                 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
154 }
155
156 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
157 {
158         if (flags & VM_NORESERVE)
159                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
160 }
161
162 static const struct super_operations shmem_ops;
163 static const struct address_space_operations shmem_aops;
164 static const struct file_operations shmem_file_operations;
165 static const struct inode_operations shmem_inode_operations;
166 static const struct inode_operations shmem_dir_inode_operations;
167 static const struct inode_operations shmem_special_inode_operations;
168 static const struct vm_operations_struct shmem_vm_ops;
169
170 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
171         .ra_pages       = 0,    /* No readahead */
172         .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
173 };
174
175 static LIST_HEAD(shmem_swaplist);
176 static DEFINE_MUTEX(shmem_swaplist_mutex);
177
178 static int shmem_reserve_inode(struct super_block *sb)
179 {
180         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
181         if (sbinfo->max_inodes) {
182                 spin_lock(&sbinfo->stat_lock);
183                 if (!sbinfo->free_inodes) {
184                         spin_unlock(&sbinfo->stat_lock);
185                         return -ENOSPC;
186                 }
187                 sbinfo->free_inodes--;
188                 spin_unlock(&sbinfo->stat_lock);
189         }
190         return 0;
191 }
192
193 static void shmem_free_inode(struct super_block *sb)
194 {
195         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
196         if (sbinfo->max_inodes) {
197                 spin_lock(&sbinfo->stat_lock);
198                 sbinfo->free_inodes++;
199                 spin_unlock(&sbinfo->stat_lock);
200         }
201 }
202
203 /**
204  * shmem_recalc_inode - recalculate the block usage of an inode
205  * @inode: inode to recalc
206  *
207  * We have to calculate the free blocks since the mm can drop
208  * undirtied hole pages behind our back.
209  *
210  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
211  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
212  *
213  * It has to be called with the spinlock held.
214  */
215 static void shmem_recalc_inode(struct inode *inode)
216 {
217         struct shmem_inode_info *info = SHMEM_I(inode);
218         long freed;
219
220         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
221         if (freed > 0) {
222                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
223                 if (sbinfo->max_blocks)
224                         percpu_counter_add(&sbinfo->used_blocks, -freed);
225                 info->alloced -= freed;
226                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
227                 shmem_unacct_blocks(info->flags, freed);
228         }
229 }
230
231 /*
232  * Replace item expected in radix tree by a new item, while holding tree lock.
233  */
234 static int shmem_radix_tree_replace(struct address_space *mapping,
235                         pgoff_t index, void *expected, void *replacement)
236 {
237         void **pslot;
238         void *item = NULL;
239
240         VM_BUG_ON(!expected);
241         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
242         if (pslot)
243                 item = radix_tree_deref_slot_protected(pslot,
244                                                         &mapping->tree_lock);
245         if (item != expected)
246                 return -ENOENT;
247         if (replacement)
248                 radix_tree_replace_slot(pslot, replacement);
249         else
250                 radix_tree_delete(&mapping->page_tree, index);
251         return 0;
252 }
253
254 /*
255  * Like add_to_page_cache_locked, but error if expected item has gone.
256  */
257 static int shmem_add_to_page_cache(struct page *page,
258                                    struct address_space *mapping,
259                                    pgoff_t index, gfp_t gfp, void *expected)
260 {
261         int error = 0;
262
263         VM_BUG_ON(!PageLocked(page));
264         VM_BUG_ON(!PageSwapBacked(page));
265
266         if (!expected)
267                 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
268         if (!error) {
269                 page_cache_get(page);
270                 page->mapping = mapping;
271                 page->index = index;
272
273                 spin_lock_irq(&mapping->tree_lock);
274                 if (!expected)
275                         error = radix_tree_insert(&mapping->page_tree,
276                                                         index, page);
277                 else
278                         error = shmem_radix_tree_replace(mapping, index,
279                                                         expected, page);
280                 if (!error) {
281                         mapping->nrpages++;
282                         __inc_zone_page_state(page, NR_FILE_PAGES);
283                         __inc_zone_page_state(page, NR_SHMEM);
284                         spin_unlock_irq(&mapping->tree_lock);
285                 } else {
286                         page->mapping = NULL;
287                         spin_unlock_irq(&mapping->tree_lock);
288                         page_cache_release(page);
289                 }
290                 if (!expected)
291                         radix_tree_preload_end();
292         }
293         if (error)
294                 mem_cgroup_uncharge_cache_page(page);
295         return error;
296 }
297
298 /*
299  * Like delete_from_page_cache, but substitutes swap for page.
300  */
301 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
302 {
303         struct address_space *mapping = page->mapping;
304         int error;
305
306         spin_lock_irq(&mapping->tree_lock);
307         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
308         page->mapping = NULL;
309         mapping->nrpages--;
310         __dec_zone_page_state(page, NR_FILE_PAGES);
311         __dec_zone_page_state(page, NR_SHMEM);
312         spin_unlock_irq(&mapping->tree_lock);
313         page_cache_release(page);
314         BUG_ON(error);
315 }
316
317 /*
318  * Like find_get_pages, but collecting swap entries as well as pages.
319  */
320 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
321                                         pgoff_t start, unsigned int nr_pages,
322                                         struct page **pages, pgoff_t *indices)
323 {
324         unsigned int i;
325         unsigned int ret;
326         unsigned int nr_found;
327
328         rcu_read_lock();
329 restart:
330         nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
331                                 (void ***)pages, indices, start, nr_pages);
332         ret = 0;
333         for (i = 0; i < nr_found; i++) {
334                 struct page *page;
335 repeat:
336                 page = radix_tree_deref_slot((void **)pages[i]);
337                 if (unlikely(!page))
338                         continue;
339                 if (radix_tree_exception(page)) {
340                         if (radix_tree_deref_retry(page))
341                                 goto restart;
342                         /*
343                          * Otherwise, we must be storing a swap entry
344                          * here as an exceptional entry: so return it
345                          * without attempting to raise page count.
346                          */
347                         goto export;
348                 }
349                 if (!page_cache_get_speculative(page))
350                         goto repeat;
351
352                 /* Has the page moved? */
353                 if (unlikely(page != *((void **)pages[i]))) {
354                         page_cache_release(page);
355                         goto repeat;
356                 }
357 export:
358                 indices[ret] = indices[i];
359                 pages[ret] = page;
360                 ret++;
361         }
362         if (unlikely(!ret && nr_found))
363                 goto restart;
364         rcu_read_unlock();
365         return ret;
366 }
367
368 /*
369  * Remove swap entry from radix tree, free the swap and its page cache.
370  */
371 static int shmem_free_swap(struct address_space *mapping,
372                            pgoff_t index, void *radswap)
373 {
374         int error;
375
376         spin_lock_irq(&mapping->tree_lock);
377         error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
378         spin_unlock_irq(&mapping->tree_lock);
379         if (!error)
380                 free_swap_and_cache(radix_to_swp_entry(radswap));
381         return error;
382 }
383
384 /*
385  * Pagevec may contain swap entries, so shuffle up pages before releasing.
386  */
387 static void shmem_deswap_pagevec(struct pagevec *pvec)
388 {
389         int i, j;
390
391         for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
392                 struct page *page = pvec->pages[i];
393                 if (!radix_tree_exceptional_entry(page))
394                         pvec->pages[j++] = page;
395         }
396         pvec->nr = j;
397 }
398
399 /*
400  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
401  */
402 void shmem_unlock_mapping(struct address_space *mapping)
403 {
404         struct pagevec pvec;
405         pgoff_t indices[PAGEVEC_SIZE];
406         pgoff_t index = 0;
407
408         pagevec_init(&pvec, 0);
409         /*
410          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
411          */
412         while (!mapping_unevictable(mapping)) {
413                 /*
414                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
415                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
416                  */
417                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
418                                         PAGEVEC_SIZE, pvec.pages, indices);
419                 if (!pvec.nr)
420                         break;
421                 index = indices[pvec.nr - 1] + 1;
422                 shmem_deswap_pagevec(&pvec);
423                 check_move_unevictable_pages(pvec.pages, pvec.nr);
424                 pagevec_release(&pvec);
425                 cond_resched();
426         }
427 }
428
429 /*
430  * Remove range of pages and swap entries from radix tree, and free them.
431  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
432  */
433 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
434                                                                  bool unfalloc)
435 {
436         struct address_space *mapping = inode->i_mapping;
437         struct shmem_inode_info *info = SHMEM_I(inode);
438         pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
439         pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
440         unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
441         unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
442         struct pagevec pvec;
443         pgoff_t indices[PAGEVEC_SIZE];
444         long nr_swaps_freed = 0;
445         pgoff_t index;
446         int i;
447
448         if (lend == -1)
449                 end = -1;       /* unsigned, so actually very big */
450
451         pagevec_init(&pvec, 0);
452         index = start;
453         while (index < end) {
454                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
455                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
456                                                         pvec.pages, indices);
457                 if (!pvec.nr)
458                         break;
459                 mem_cgroup_uncharge_start();
460                 for (i = 0; i < pagevec_count(&pvec); i++) {
461                         struct page *page = pvec.pages[i];
462
463                         index = indices[i];
464                         if (index >= end)
465                                 break;
466
467                         if (radix_tree_exceptional_entry(page)) {
468                                 if (unfalloc)
469                                         continue;
470                                 nr_swaps_freed += !shmem_free_swap(mapping,
471                                                                 index, page);
472                                 continue;
473                         }
474
475                         if (!trylock_page(page))
476                                 continue;
477                         if (!unfalloc || !PageUptodate(page)) {
478                                 if (page->mapping == mapping) {
479                                         VM_BUG_ON(PageWriteback(page));
480                                         truncate_inode_page(mapping, page);
481                                 }
482                         }
483                         unlock_page(page);
484                 }
485                 shmem_deswap_pagevec(&pvec);
486                 pagevec_release(&pvec);
487                 mem_cgroup_uncharge_end();
488                 cond_resched();
489                 index++;
490         }
491
492         if (partial_start) {
493                 struct page *page = NULL;
494                 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
495                 if (page) {
496                         unsigned int top = PAGE_CACHE_SIZE;
497                         if (start > end) {
498                                 top = partial_end;
499                                 partial_end = 0;
500                         }
501                         zero_user_segment(page, partial_start, top);
502                         set_page_dirty(page);
503                         unlock_page(page);
504                         page_cache_release(page);
505                 }
506         }
507         if (partial_end) {
508                 struct page *page = NULL;
509                 shmem_getpage(inode, end, &page, SGP_READ, NULL);
510                 if (page) {
511                         zero_user_segment(page, 0, partial_end);
512                         set_page_dirty(page);
513                         unlock_page(page);
514                         page_cache_release(page);
515                 }
516         }
517         if (start >= end)
518                 return;
519
520         index = start;
521         for ( ; ; ) {
522                 cond_resched();
523                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
524                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
525                                                         pvec.pages, indices);
526                 if (!pvec.nr) {
527                         if (index == start || unfalloc)
528                                 break;
529                         index = start;
530                         continue;
531                 }
532                 if ((index == start || unfalloc) && indices[0] >= end) {
533                         shmem_deswap_pagevec(&pvec);
534                         pagevec_release(&pvec);
535                         break;
536                 }
537                 mem_cgroup_uncharge_start();
538                 for (i = 0; i < pagevec_count(&pvec); i++) {
539                         struct page *page = pvec.pages[i];
540
541                         index = indices[i];
542                         if (index >= end)
543                                 break;
544
545                         if (radix_tree_exceptional_entry(page)) {
546                                 if (unfalloc)
547                                         continue;
548                                 nr_swaps_freed += !shmem_free_swap(mapping,
549                                                                 index, page);
550                                 continue;
551                         }
552
553                         lock_page(page);
554                         if (!unfalloc || !PageUptodate(page)) {
555                                 if (page->mapping == mapping) {
556                                         VM_BUG_ON(PageWriteback(page));
557                                         truncate_inode_page(mapping, page);
558                                 }
559                         }
560                         unlock_page(page);
561                 }
562                 shmem_deswap_pagevec(&pvec);
563                 pagevec_release(&pvec);
564                 mem_cgroup_uncharge_end();
565                 index++;
566         }
567
568         spin_lock(&info->lock);
569         info->swapped -= nr_swaps_freed;
570         shmem_recalc_inode(inode);
571         spin_unlock(&info->lock);
572 }
573
574 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
575 {
576         shmem_undo_range(inode, lstart, lend, false);
577         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
578 }
579 EXPORT_SYMBOL_GPL(shmem_truncate_range);
580
581 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
582 {
583         struct inode *inode = dentry->d_inode;
584         int error;
585
586         error = inode_change_ok(inode, attr);
587         if (error)
588                 return error;
589
590         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
591                 loff_t oldsize = inode->i_size;
592                 loff_t newsize = attr->ia_size;
593
594                 if (newsize != oldsize) {
595                         i_size_write(inode, newsize);
596                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
597                 }
598                 if (newsize < oldsize) {
599                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
600                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
601                         shmem_truncate_range(inode, newsize, (loff_t)-1);
602                         /* unmap again to remove racily COWed private pages */
603                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
604                 }
605         }
606
607         setattr_copy(inode, attr);
608 #ifdef CONFIG_TMPFS_POSIX_ACL
609         if (attr->ia_valid & ATTR_MODE)
610                 error = generic_acl_chmod(inode);
611 #endif
612         return error;
613 }
614
615 static void shmem_evict_inode(struct inode *inode)
616 {
617         struct shmem_inode_info *info = SHMEM_I(inode);
618         struct shmem_xattr *xattr, *nxattr;
619
620         if (inode->i_mapping->a_ops == &shmem_aops) {
621                 shmem_unacct_size(info->flags, inode->i_size);
622                 inode->i_size = 0;
623                 shmem_truncate_range(inode, 0, (loff_t)-1);
624                 if (!list_empty(&info->swaplist)) {
625                         mutex_lock(&shmem_swaplist_mutex);
626                         list_del_init(&info->swaplist);
627                         mutex_unlock(&shmem_swaplist_mutex);
628                 }
629         } else
630                 kfree(info->symlink);
631
632         list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
633                 kfree(xattr->name);
634                 kfree(xattr);
635         }
636         BUG_ON(inode->i_blocks);
637         shmem_free_inode(inode->i_sb);
638         clear_inode(inode);
639 }
640
641 /*
642  * If swap found in inode, free it and move page from swapcache to filecache.
643  */
644 static int shmem_unuse_inode(struct shmem_inode_info *info,
645                              swp_entry_t swap, struct page **pagep)
646 {
647         struct address_space *mapping = info->vfs_inode.i_mapping;
648         void *radswap;
649         pgoff_t index;
650         gfp_t gfp;
651         int error = 0;
652
653         radswap = swp_to_radix_entry(swap);
654         index = radix_tree_locate_item(&mapping->page_tree, radswap);
655         if (index == -1)
656                 return 0;
657
658         /*
659          * Move _head_ to start search for next from here.
660          * But be careful: shmem_evict_inode checks list_empty without taking
661          * mutex, and there's an instant in list_move_tail when info->swaplist
662          * would appear empty, if it were the only one on shmem_swaplist.
663          */
664         if (shmem_swaplist.next != &info->swaplist)
665                 list_move_tail(&shmem_swaplist, &info->swaplist);
666
667         gfp = mapping_gfp_mask(mapping);
668         if (shmem_should_replace_page(*pagep, gfp)) {
669                 mutex_unlock(&shmem_swaplist_mutex);
670                 error = shmem_replace_page(pagep, gfp, info, index);
671                 mutex_lock(&shmem_swaplist_mutex);
672                 /*
673                  * We needed to drop mutex to make that restrictive page
674                  * allocation; but the inode might already be freed by now,
675                  * and we cannot refer to inode or mapping or info to check.
676                  * However, we do hold page lock on the PageSwapCache page,
677                  * so can check if that still has our reference remaining.
678                  */
679                 if (!page_swapcount(*pagep))
680                         error = -ENOENT;
681         }
682
683         /*
684          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
685          * but also to hold up shmem_evict_inode(): so inode cannot be freed
686          * beneath us (pagelock doesn't help until the page is in pagecache).
687          */
688         if (!error)
689                 error = shmem_add_to_page_cache(*pagep, mapping, index,
690                                                 GFP_NOWAIT, radswap);
691         if (error != -ENOMEM) {
692                 /*
693                  * Truncation and eviction use free_swap_and_cache(), which
694                  * only does trylock page: if we raced, best clean up here.
695                  */
696                 delete_from_swap_cache(*pagep);
697                 set_page_dirty(*pagep);
698                 if (!error) {
699                         spin_lock(&info->lock);
700                         info->swapped--;
701                         spin_unlock(&info->lock);
702                         swap_free(swap);
703                 }
704                 error = 1;      /* not an error, but entry was found */
705         }
706         return error;
707 }
708
709 /*
710  * Search through swapped inodes to find and replace swap by page.
711  */
712 int shmem_unuse(swp_entry_t swap, struct page *page)
713 {
714         struct list_head *this, *next;
715         struct shmem_inode_info *info;
716         int found = 0;
717         int error = 0;
718
719         /*
720          * There's a faint possibility that swap page was replaced before
721          * caller locked it: it will come back later with the right page.
722          */
723         if (unlikely(!PageSwapCache(page)))
724                 goto out;
725
726         /*
727          * Charge page using GFP_KERNEL while we can wait, before taking
728          * the shmem_swaplist_mutex which might hold up shmem_writepage().
729          * Charged back to the user (not to caller) when swap account is used.
730          */
731         error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
732         if (error)
733                 goto out;
734         /* No radix_tree_preload: swap entry keeps a place for page in tree */
735
736         mutex_lock(&shmem_swaplist_mutex);
737         list_for_each_safe(this, next, &shmem_swaplist) {
738                 info = list_entry(this, struct shmem_inode_info, swaplist);
739                 if (info->swapped)
740                         found = shmem_unuse_inode(info, swap, &page);
741                 else
742                         list_del_init(&info->swaplist);
743                 cond_resched();
744                 if (found)
745                         break;
746         }
747         mutex_unlock(&shmem_swaplist_mutex);
748
749         if (found < 0)
750                 error = found;
751 out:
752         unlock_page(page);
753         page_cache_release(page);
754         return error;
755 }
756
757 /*
758  * Move the page from the page cache to the swap cache.
759  */
760 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
761 {
762         struct shmem_inode_info *info;
763         struct address_space *mapping;
764         struct inode *inode;
765         swp_entry_t swap;
766         pgoff_t index;
767
768         BUG_ON(!PageLocked(page));
769         mapping = page->mapping;
770         index = page->index;
771         inode = mapping->host;
772         info = SHMEM_I(inode);
773         if (info->flags & VM_LOCKED)
774                 goto redirty;
775         if (!total_swap_pages)
776                 goto redirty;
777
778         /*
779          * shmem_backing_dev_info's capabilities prevent regular writeback or
780          * sync from ever calling shmem_writepage; but a stacking filesystem
781          * might use ->writepage of its underlying filesystem, in which case
782          * tmpfs should write out to swap only in response to memory pressure,
783          * and not for the writeback threads or sync.
784          */
785         if (!wbc->for_reclaim) {
786                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
787                 goto redirty;
788         }
789
790         /*
791          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
792          * value into swapfile.c, the only way we can correctly account for a
793          * fallocated page arriving here is now to initialize it and write it.
794          */
795         if (!PageUptodate(page)) {
796                 clear_highpage(page);
797                 flush_dcache_page(page);
798                 SetPageUptodate(page);
799         }
800
801         swap = get_swap_page();
802         if (!swap.val)
803                 goto redirty;
804
805         /*
806          * Add inode to shmem_unuse()'s list of swapped-out inodes,
807          * if it's not already there.  Do it now before the page is
808          * moved to swap cache, when its pagelock no longer protects
809          * the inode from eviction.  But don't unlock the mutex until
810          * we've incremented swapped, because shmem_unuse_inode() will
811          * prune a !swapped inode from the swaplist under this mutex.
812          */
813         mutex_lock(&shmem_swaplist_mutex);
814         if (list_empty(&info->swaplist))
815                 list_add_tail(&info->swaplist, &shmem_swaplist);
816
817         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
818                 swap_shmem_alloc(swap);
819                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
820
821                 spin_lock(&info->lock);
822                 info->swapped++;
823                 shmem_recalc_inode(inode);
824                 spin_unlock(&info->lock);
825
826                 mutex_unlock(&shmem_swaplist_mutex);
827                 BUG_ON(page_mapped(page));
828                 swap_writepage(page, wbc);
829                 return 0;
830         }
831
832         mutex_unlock(&shmem_swaplist_mutex);
833         swapcache_free(swap, NULL);
834 redirty:
835         set_page_dirty(page);
836         if (wbc->for_reclaim)
837                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
838         unlock_page(page);
839         return 0;
840 }
841
842 #ifdef CONFIG_NUMA
843 #ifdef CONFIG_TMPFS
844 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
845 {
846         char buffer[64];
847
848         if (!mpol || mpol->mode == MPOL_DEFAULT)
849                 return;         /* show nothing */
850
851         mpol_to_str(buffer, sizeof(buffer), mpol, 1);
852
853         seq_printf(seq, ",mpol=%s", buffer);
854 }
855
856 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
857 {
858         struct mempolicy *mpol = NULL;
859         if (sbinfo->mpol) {
860                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
861                 mpol = sbinfo->mpol;
862                 mpol_get(mpol);
863                 spin_unlock(&sbinfo->stat_lock);
864         }
865         return mpol;
866 }
867 #endif /* CONFIG_TMPFS */
868
869 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
870                         struct shmem_inode_info *info, pgoff_t index)
871 {
872         struct mempolicy mpol, *spol;
873         struct vm_area_struct pvma;
874
875         spol = mpol_cond_copy(&mpol,
876                         mpol_shared_policy_lookup(&info->policy, index));
877
878         /* Create a pseudo vma that just contains the policy */
879         pvma.vm_start = 0;
880         pvma.vm_pgoff = index;
881         pvma.vm_ops = NULL;
882         pvma.vm_policy = spol;
883         return swapin_readahead(swap, gfp, &pvma, 0);
884 }
885
886 static struct page *shmem_alloc_page(gfp_t gfp,
887                         struct shmem_inode_info *info, pgoff_t index)
888 {
889         struct vm_area_struct pvma;
890
891         /* Create a pseudo vma that just contains the policy */
892         pvma.vm_start = 0;
893         pvma.vm_pgoff = index;
894         pvma.vm_ops = NULL;
895         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
896
897         /*
898          * alloc_page_vma() will drop the shared policy reference
899          */
900         return alloc_page_vma(gfp, &pvma, 0);
901 }
902 #else /* !CONFIG_NUMA */
903 #ifdef CONFIG_TMPFS
904 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
905 {
906 }
907 #endif /* CONFIG_TMPFS */
908
909 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
910                         struct shmem_inode_info *info, pgoff_t index)
911 {
912         return swapin_readahead(swap, gfp, NULL, 0);
913 }
914
915 static inline struct page *shmem_alloc_page(gfp_t gfp,
916                         struct shmem_inode_info *info, pgoff_t index)
917 {
918         return alloc_page(gfp);
919 }
920 #endif /* CONFIG_NUMA */
921
922 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
923 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
924 {
925         return NULL;
926 }
927 #endif
928
929 /*
930  * When a page is moved from swapcache to shmem filecache (either by the
931  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
932  * shmem_unuse_inode()), it may have been read in earlier from swap, in
933  * ignorance of the mapping it belongs to.  If that mapping has special
934  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
935  * we may need to copy to a suitable page before moving to filecache.
936  *
937  * In a future release, this may well be extended to respect cpuset and
938  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
939  * but for now it is a simple matter of zone.
940  */
941 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
942 {
943         return page_zonenum(page) > gfp_zone(gfp);
944 }
945
946 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
947                                 struct shmem_inode_info *info, pgoff_t index)
948 {
949         struct page *oldpage, *newpage;
950         struct address_space *swap_mapping;
951         pgoff_t swap_index;
952         int error;
953
954         oldpage = *pagep;
955         swap_index = page_private(oldpage);
956         swap_mapping = page_mapping(oldpage);
957
958         /*
959          * We have arrived here because our zones are constrained, so don't
960          * limit chance of success by further cpuset and node constraints.
961          */
962         gfp &= ~GFP_CONSTRAINT_MASK;
963         newpage = shmem_alloc_page(gfp, info, index);
964         if (!newpage)
965                 return -ENOMEM;
966         VM_BUG_ON(shmem_should_replace_page(newpage, gfp));
967
968         *pagep = newpage;
969         page_cache_get(newpage);
970         copy_highpage(newpage, oldpage);
971
972         VM_BUG_ON(!PageLocked(oldpage));
973         __set_page_locked(newpage);
974         VM_BUG_ON(!PageUptodate(oldpage));
975         SetPageUptodate(newpage);
976         VM_BUG_ON(!PageSwapBacked(oldpage));
977         SetPageSwapBacked(newpage);
978         VM_BUG_ON(!swap_index);
979         set_page_private(newpage, swap_index);
980         VM_BUG_ON(!PageSwapCache(oldpage));
981         SetPageSwapCache(newpage);
982
983         /*
984          * Our caller will very soon move newpage out of swapcache, but it's
985          * a nice clean interface for us to replace oldpage by newpage there.
986          */
987         spin_lock_irq(&swap_mapping->tree_lock);
988         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
989                                                                    newpage);
990         __inc_zone_page_state(newpage, NR_FILE_PAGES);
991         __dec_zone_page_state(oldpage, NR_FILE_PAGES);
992         spin_unlock_irq(&swap_mapping->tree_lock);
993         BUG_ON(error);
994
995         mem_cgroup_replace_page_cache(oldpage, newpage);
996         lru_cache_add_anon(newpage);
997
998         ClearPageSwapCache(oldpage);
999         set_page_private(oldpage, 0);
1000
1001         unlock_page(oldpage);
1002         page_cache_release(oldpage);
1003         page_cache_release(oldpage);
1004         return 0;
1005 }
1006
1007 /*
1008  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1009  *
1010  * If we allocate a new one we do not mark it dirty. That's up to the
1011  * vm. If we swap it in we mark it dirty since we also free the swap
1012  * entry since a page cannot live in both the swap and page cache
1013  */
1014 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1015         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1016 {
1017         struct address_space *mapping = inode->i_mapping;
1018         struct shmem_inode_info *info;
1019         struct shmem_sb_info *sbinfo;
1020         struct page *page;
1021         swp_entry_t swap;
1022         int error;
1023         int once = 0;
1024         int alloced = 0;
1025
1026         if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1027                 return -EFBIG;
1028 repeat:
1029         swap.val = 0;
1030         page = find_lock_page(mapping, index);
1031         if (radix_tree_exceptional_entry(page)) {
1032                 swap = radix_to_swp_entry(page);
1033                 page = NULL;
1034         }
1035
1036         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1037             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1038                 error = -EINVAL;
1039                 goto failed;
1040         }
1041
1042         /* fallocated page? */
1043         if (page && !PageUptodate(page)) {
1044                 if (sgp != SGP_READ)
1045                         goto clear;
1046                 unlock_page(page);
1047                 page_cache_release(page);
1048                 page = NULL;
1049         }
1050         if (page || (sgp == SGP_READ && !swap.val)) {
1051                 *pagep = page;
1052                 return 0;
1053         }
1054
1055         /*
1056          * Fast cache lookup did not find it:
1057          * bring it back from swap or allocate.
1058          */
1059         info = SHMEM_I(inode);
1060         sbinfo = SHMEM_SB(inode->i_sb);
1061
1062         if (swap.val) {
1063                 /* Look it up and read it in.. */
1064                 page = lookup_swap_cache(swap);
1065                 if (!page) {
1066                         /* here we actually do the io */
1067                         if (fault_type)
1068                                 *fault_type |= VM_FAULT_MAJOR;
1069                         page = shmem_swapin(swap, gfp, info, index);
1070                         if (!page) {
1071                                 error = -ENOMEM;
1072                                 goto failed;
1073                         }
1074                 }
1075
1076                 /* We have to do this with page locked to prevent races */
1077                 lock_page(page);
1078                 if (!PageSwapCache(page) || page->mapping) {
1079                         error = -EEXIST;        /* try again */
1080                         goto failed;
1081                 }
1082                 if (!PageUptodate(page)) {
1083                         error = -EIO;
1084                         goto failed;
1085                 }
1086                 wait_on_page_writeback(page);
1087
1088                 if (shmem_should_replace_page(page, gfp)) {
1089                         error = shmem_replace_page(&page, gfp, info, index);
1090                         if (error)
1091                                 goto failed;
1092                 }
1093
1094                 error = mem_cgroup_cache_charge(page, current->mm,
1095                                                 gfp & GFP_RECLAIM_MASK);
1096                 if (!error)
1097                         error = shmem_add_to_page_cache(page, mapping, index,
1098                                                 gfp, swp_to_radix_entry(swap));
1099                 if (error)
1100                         goto failed;
1101
1102                 spin_lock(&info->lock);
1103                 info->swapped--;
1104                 shmem_recalc_inode(inode);
1105                 spin_unlock(&info->lock);
1106
1107                 delete_from_swap_cache(page);
1108                 set_page_dirty(page);
1109                 swap_free(swap);
1110
1111         } else {
1112                 if (shmem_acct_block(info->flags)) {
1113                         error = -ENOSPC;
1114                         goto failed;
1115                 }
1116                 if (sbinfo->max_blocks) {
1117                         if (percpu_counter_compare(&sbinfo->used_blocks,
1118                                                 sbinfo->max_blocks) >= 0) {
1119                                 error = -ENOSPC;
1120                                 goto unacct;
1121                         }
1122                         percpu_counter_inc(&sbinfo->used_blocks);
1123                 }
1124
1125                 page = shmem_alloc_page(gfp, info, index);
1126                 if (!page) {
1127                         error = -ENOMEM;
1128                         goto decused;
1129                 }
1130
1131                 SetPageSwapBacked(page);
1132                 __set_page_locked(page);
1133                 error = mem_cgroup_cache_charge(page, current->mm,
1134                                                 gfp & GFP_RECLAIM_MASK);
1135                 if (!error)
1136                         error = shmem_add_to_page_cache(page, mapping, index,
1137                                                 gfp, NULL);
1138                 if (error)
1139                         goto decused;
1140                 lru_cache_add_anon(page);
1141
1142                 spin_lock(&info->lock);
1143                 info->alloced++;
1144                 inode->i_blocks += BLOCKS_PER_PAGE;
1145                 shmem_recalc_inode(inode);
1146                 spin_unlock(&info->lock);
1147                 alloced = true;
1148
1149                 /*
1150                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1151                  */
1152                 if (sgp == SGP_FALLOC)
1153                         sgp = SGP_WRITE;
1154 clear:
1155                 /*
1156                  * Let SGP_WRITE caller clear ends if write does not fill page;
1157                  * but SGP_FALLOC on a page fallocated earlier must initialize
1158                  * it now, lest undo on failure cancel our earlier guarantee.
1159                  */
1160                 if (sgp != SGP_WRITE) {
1161                         clear_highpage(page);
1162                         flush_dcache_page(page);
1163                         SetPageUptodate(page);
1164                 }
1165                 if (sgp == SGP_DIRTY)
1166                         set_page_dirty(page);
1167         }
1168
1169         /* Perhaps the file has been truncated since we checked */
1170         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1171             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1172                 error = -EINVAL;
1173                 if (alloced)
1174                         goto trunc;
1175                 else
1176                         goto failed;
1177         }
1178         *pagep = page;
1179         return 0;
1180
1181         /*
1182          * Error recovery.
1183          */
1184 trunc:
1185         info = SHMEM_I(inode);
1186         ClearPageDirty(page);
1187         delete_from_page_cache(page);
1188         spin_lock(&info->lock);
1189         info->alloced--;
1190         inode->i_blocks -= BLOCKS_PER_PAGE;
1191         spin_unlock(&info->lock);
1192 decused:
1193         sbinfo = SHMEM_SB(inode->i_sb);
1194         if (sbinfo->max_blocks)
1195                 percpu_counter_add(&sbinfo->used_blocks, -1);
1196 unacct:
1197         shmem_unacct_blocks(info->flags, 1);
1198 failed:
1199         if (swap.val && error != -EINVAL) {
1200                 struct page *test = find_get_page(mapping, index);
1201                 if (test && !radix_tree_exceptional_entry(test))
1202                         page_cache_release(test);
1203                 /* Have another try if the entry has changed */
1204                 if (test != swp_to_radix_entry(swap))
1205                         error = -EEXIST;
1206         }
1207         if (page) {
1208                 unlock_page(page);
1209                 page_cache_release(page);
1210         }
1211         if (error == -ENOSPC && !once++) {
1212                 info = SHMEM_I(inode);
1213                 spin_lock(&info->lock);
1214                 shmem_recalc_inode(inode);
1215                 spin_unlock(&info->lock);
1216                 goto repeat;
1217         }
1218         if (error == -EEXIST)
1219                 goto repeat;
1220         return error;
1221 }
1222
1223 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1224 {
1225         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1226         int error;
1227         int ret = VM_FAULT_LOCKED;
1228
1229         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1230         if (error)
1231                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1232
1233         if (ret & VM_FAULT_MAJOR) {
1234                 count_vm_event(PGMAJFAULT);
1235                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1236         }
1237         return ret;
1238 }
1239
1240 #ifdef CONFIG_NUMA
1241 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1242 {
1243         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1244         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1245 }
1246
1247 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1248                                           unsigned long addr)
1249 {
1250         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1251         pgoff_t index;
1252
1253         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1254         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1255 }
1256 #endif
1257
1258 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1259 {
1260         struct inode *inode = file->f_path.dentry->d_inode;
1261         struct shmem_inode_info *info = SHMEM_I(inode);
1262         int retval = -ENOMEM;
1263
1264         spin_lock(&info->lock);
1265         if (lock && !(info->flags & VM_LOCKED)) {
1266                 if (!user_shm_lock(inode->i_size, user))
1267                         goto out_nomem;
1268                 info->flags |= VM_LOCKED;
1269                 mapping_set_unevictable(file->f_mapping);
1270         }
1271         if (!lock && (info->flags & VM_LOCKED) && user) {
1272                 user_shm_unlock(inode->i_size, user);
1273                 info->flags &= ~VM_LOCKED;
1274                 mapping_clear_unevictable(file->f_mapping);
1275         }
1276         retval = 0;
1277
1278 out_nomem:
1279         spin_unlock(&info->lock);
1280         return retval;
1281 }
1282
1283 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1284 {
1285         file_accessed(file);
1286         vma->vm_ops = &shmem_vm_ops;
1287         vma->vm_flags |= VM_CAN_NONLINEAR;
1288         return 0;
1289 }
1290
1291 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1292                                      umode_t mode, dev_t dev, unsigned long flags)
1293 {
1294         struct inode *inode;
1295         struct shmem_inode_info *info;
1296         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1297
1298         if (shmem_reserve_inode(sb))
1299                 return NULL;
1300
1301         inode = new_inode(sb);
1302         if (inode) {
1303                 inode->i_ino = get_next_ino();
1304                 inode_init_owner(inode, dir, mode);
1305                 inode->i_blocks = 0;
1306                 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1307                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1308                 inode->i_generation = get_seconds();
1309                 info = SHMEM_I(inode);
1310                 memset(info, 0, (char *)inode - (char *)info);
1311                 spin_lock_init(&info->lock);
1312                 info->flags = flags & VM_NORESERVE;
1313                 INIT_LIST_HEAD(&info->swaplist);
1314                 INIT_LIST_HEAD(&info->xattr_list);
1315                 cache_no_acl(inode);
1316
1317                 switch (mode & S_IFMT) {
1318                 default:
1319                         inode->i_op = &shmem_special_inode_operations;
1320                         init_special_inode(inode, mode, dev);
1321                         break;
1322                 case S_IFREG:
1323                         inode->i_mapping->a_ops = &shmem_aops;
1324                         inode->i_op = &shmem_inode_operations;
1325                         inode->i_fop = &shmem_file_operations;
1326                         mpol_shared_policy_init(&info->policy,
1327                                                  shmem_get_sbmpol(sbinfo));
1328                         break;
1329                 case S_IFDIR:
1330                         inc_nlink(inode);
1331                         /* Some things misbehave if size == 0 on a directory */
1332                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1333                         inode->i_op = &shmem_dir_inode_operations;
1334                         inode->i_fop = &simple_dir_operations;
1335                         break;
1336                 case S_IFLNK:
1337                         /*
1338                          * Must not load anything in the rbtree,
1339                          * mpol_free_shared_policy will not be called.
1340                          */
1341                         mpol_shared_policy_init(&info->policy, NULL);
1342                         break;
1343                 }
1344         } else
1345                 shmem_free_inode(sb);
1346         return inode;
1347 }
1348
1349 #ifdef CONFIG_TMPFS
1350 static const struct inode_operations shmem_symlink_inode_operations;
1351 static const struct inode_operations shmem_short_symlink_operations;
1352
1353 #ifdef CONFIG_TMPFS_XATTR
1354 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1355 #else
1356 #define shmem_initxattrs NULL
1357 #endif
1358
1359 static int
1360 shmem_write_begin(struct file *file, struct address_space *mapping,
1361                         loff_t pos, unsigned len, unsigned flags,
1362                         struct page **pagep, void **fsdata)
1363 {
1364         struct inode *inode = mapping->host;
1365         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1366         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1367 }
1368
1369 static int
1370 shmem_write_end(struct file *file, struct address_space *mapping,
1371                         loff_t pos, unsigned len, unsigned copied,
1372                         struct page *page, void *fsdata)
1373 {
1374         struct inode *inode = mapping->host;
1375
1376         if (pos + copied > inode->i_size)
1377                 i_size_write(inode, pos + copied);
1378
1379         if (!PageUptodate(page)) {
1380                 if (copied < PAGE_CACHE_SIZE) {
1381                         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1382                         zero_user_segments(page, 0, from,
1383                                         from + copied, PAGE_CACHE_SIZE);
1384                 }
1385                 SetPageUptodate(page);
1386         }
1387         set_page_dirty(page);
1388         unlock_page(page);
1389         page_cache_release(page);
1390
1391         return copied;
1392 }
1393
1394 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1395 {
1396         struct inode *inode = filp->f_path.dentry->d_inode;
1397         struct address_space *mapping = inode->i_mapping;
1398         pgoff_t index;
1399         unsigned long offset;
1400         enum sgp_type sgp = SGP_READ;
1401
1402         /*
1403          * Might this read be for a stacking filesystem?  Then when reading
1404          * holes of a sparse file, we actually need to allocate those pages,
1405          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1406          */
1407         if (segment_eq(get_fs(), KERNEL_DS))
1408                 sgp = SGP_DIRTY;
1409
1410         index = *ppos >> PAGE_CACHE_SHIFT;
1411         offset = *ppos & ~PAGE_CACHE_MASK;
1412
1413         for (;;) {
1414                 struct page *page = NULL;
1415                 pgoff_t end_index;
1416                 unsigned long nr, ret;
1417                 loff_t i_size = i_size_read(inode);
1418
1419                 end_index = i_size >> PAGE_CACHE_SHIFT;
1420                 if (index > end_index)
1421                         break;
1422                 if (index == end_index) {
1423                         nr = i_size & ~PAGE_CACHE_MASK;
1424                         if (nr <= offset)
1425                                 break;
1426                 }
1427
1428                 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1429                 if (desc->error) {
1430                         if (desc->error == -EINVAL)
1431                                 desc->error = 0;
1432                         break;
1433                 }
1434                 if (page)
1435                         unlock_page(page);
1436
1437                 /*
1438                  * We must evaluate after, since reads (unlike writes)
1439                  * are called without i_mutex protection against truncate
1440                  */
1441                 nr = PAGE_CACHE_SIZE;
1442                 i_size = i_size_read(inode);
1443                 end_index = i_size >> PAGE_CACHE_SHIFT;
1444                 if (index == end_index) {
1445                         nr = i_size & ~PAGE_CACHE_MASK;
1446                         if (nr <= offset) {
1447                                 if (page)
1448                                         page_cache_release(page);
1449                                 break;
1450                         }
1451                 }
1452                 nr -= offset;
1453
1454                 if (page) {
1455                         /*
1456                          * If users can be writing to this page using arbitrary
1457                          * virtual addresses, take care about potential aliasing
1458                          * before reading the page on the kernel side.
1459                          */
1460                         if (mapping_writably_mapped(mapping))
1461                                 flush_dcache_page(page);
1462                         /*
1463                          * Mark the page accessed if we read the beginning.
1464                          */
1465                         if (!offset)
1466                                 mark_page_accessed(page);
1467                 } else {
1468                         page = ZERO_PAGE(0);
1469                         page_cache_get(page);
1470                 }
1471
1472                 /*
1473                  * Ok, we have the page, and it's up-to-date, so
1474                  * now we can copy it to user space...
1475                  *
1476                  * The actor routine returns how many bytes were actually used..
1477                  * NOTE! This may not be the same as how much of a user buffer
1478                  * we filled up (we may be padding etc), so we can only update
1479                  * "pos" here (the actor routine has to update the user buffer
1480                  * pointers and the remaining count).
1481                  */
1482                 ret = actor(desc, page, offset, nr);
1483                 offset += ret;
1484                 index += offset >> PAGE_CACHE_SHIFT;
1485                 offset &= ~PAGE_CACHE_MASK;
1486
1487                 page_cache_release(page);
1488                 if (ret != nr || !desc->count)
1489                         break;
1490
1491                 cond_resched();
1492         }
1493
1494         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1495         file_accessed(filp);
1496 }
1497
1498 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1499                 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1500 {
1501         struct file *filp = iocb->ki_filp;
1502         ssize_t retval;
1503         unsigned long seg;
1504         size_t count;
1505         loff_t *ppos = &iocb->ki_pos;
1506
1507         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1508         if (retval)
1509                 return retval;
1510
1511         for (seg = 0; seg < nr_segs; seg++) {
1512                 read_descriptor_t desc;
1513
1514                 desc.written = 0;
1515                 desc.arg.buf = iov[seg].iov_base;
1516                 desc.count = iov[seg].iov_len;
1517                 if (desc.count == 0)
1518                         continue;
1519                 desc.error = 0;
1520                 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1521                 retval += desc.written;
1522                 if (desc.error) {
1523                         retval = retval ?: desc.error;
1524                         break;
1525                 }
1526                 if (desc.count > 0)
1527                         break;
1528         }
1529         return retval;
1530 }
1531
1532 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1533                                 struct pipe_inode_info *pipe, size_t len,
1534                                 unsigned int flags)
1535 {
1536         struct address_space *mapping = in->f_mapping;
1537         struct inode *inode = mapping->host;
1538         unsigned int loff, nr_pages, req_pages;
1539         struct page *pages[PIPE_DEF_BUFFERS];
1540         struct partial_page partial[PIPE_DEF_BUFFERS];
1541         struct page *page;
1542         pgoff_t index, end_index;
1543         loff_t isize, left;
1544         int error, page_nr;
1545         struct splice_pipe_desc spd = {
1546                 .pages = pages,
1547                 .partial = partial,
1548                 .flags = flags,
1549                 .ops = &page_cache_pipe_buf_ops,
1550                 .spd_release = spd_release_page,
1551         };
1552
1553         isize = i_size_read(inode);
1554         if (unlikely(*ppos >= isize))
1555                 return 0;
1556
1557         left = isize - *ppos;
1558         if (unlikely(left < len))
1559                 len = left;
1560
1561         if (splice_grow_spd(pipe, &spd))
1562                 return -ENOMEM;
1563
1564         index = *ppos >> PAGE_CACHE_SHIFT;
1565         loff = *ppos & ~PAGE_CACHE_MASK;
1566         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1567         nr_pages = min(req_pages, pipe->buffers);
1568
1569         spd.nr_pages = find_get_pages_contig(mapping, index,
1570                                                 nr_pages, spd.pages);
1571         index += spd.nr_pages;
1572         error = 0;
1573
1574         while (spd.nr_pages < nr_pages) {
1575                 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1576                 if (error)
1577                         break;
1578                 unlock_page(page);
1579                 spd.pages[spd.nr_pages++] = page;
1580                 index++;
1581         }
1582
1583         index = *ppos >> PAGE_CACHE_SHIFT;
1584         nr_pages = spd.nr_pages;
1585         spd.nr_pages = 0;
1586
1587         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1588                 unsigned int this_len;
1589
1590                 if (!len)
1591                         break;
1592
1593                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1594                 page = spd.pages[page_nr];
1595
1596                 if (!PageUptodate(page) || page->mapping != mapping) {
1597                         error = shmem_getpage(inode, index, &page,
1598                                                         SGP_CACHE, NULL);
1599                         if (error)
1600                                 break;
1601                         unlock_page(page);
1602                         page_cache_release(spd.pages[page_nr]);
1603                         spd.pages[page_nr] = page;
1604                 }
1605
1606                 isize = i_size_read(inode);
1607                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1608                 if (unlikely(!isize || index > end_index))
1609                         break;
1610
1611                 if (end_index == index) {
1612                         unsigned int plen;
1613
1614                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1615                         if (plen <= loff)
1616                                 break;
1617
1618                         this_len = min(this_len, plen - loff);
1619                         len = this_len;
1620                 }
1621
1622                 spd.partial[page_nr].offset = loff;
1623                 spd.partial[page_nr].len = this_len;
1624                 len -= this_len;
1625                 loff = 0;
1626                 spd.nr_pages++;
1627                 index++;
1628         }
1629
1630         while (page_nr < nr_pages)
1631                 page_cache_release(spd.pages[page_nr++]);
1632
1633         if (spd.nr_pages)
1634                 error = splice_to_pipe(pipe, &spd);
1635
1636         splice_shrink_spd(pipe, &spd);
1637
1638         if (error > 0) {
1639                 *ppos += error;
1640                 file_accessed(in);
1641         }
1642         return error;
1643 }
1644
1645 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1646                                                          loff_t len)
1647 {
1648         struct inode *inode = file->f_path.dentry->d_inode;
1649         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1650         pgoff_t start, index, end;
1651         int error;
1652
1653         mutex_lock(&inode->i_mutex);
1654
1655         if (mode & FALLOC_FL_PUNCH_HOLE) {
1656                 struct address_space *mapping = file->f_mapping;
1657                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1658                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1659
1660                 if ((u64)unmap_end > (u64)unmap_start)
1661                         unmap_mapping_range(mapping, unmap_start,
1662                                             1 + unmap_end - unmap_start, 0);
1663                 shmem_truncate_range(inode, offset, offset + len - 1);
1664                 /* No need to unmap again: hole-punching leaves COWed pages */
1665                 error = 0;
1666                 goto out;
1667         }
1668
1669         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1670         error = inode_newsize_ok(inode, offset + len);
1671         if (error)
1672                 goto out;
1673
1674         start = offset >> PAGE_CACHE_SHIFT;
1675         end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1676         /* Try to avoid a swapstorm if len is impossible to satisfy */
1677         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1678                 error = -ENOSPC;
1679                 goto out;
1680         }
1681
1682         for (index = start; index < end; index++) {
1683                 struct page *page;
1684
1685                 /*
1686                  * Good, the fallocate(2) manpage permits EINTR: we may have
1687                  * been interrupted because we are using up too much memory.
1688                  */
1689                 if (signal_pending(current))
1690                         error = -EINTR;
1691                 else
1692                         error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1693                                                                         NULL);
1694                 if (error) {
1695                         /* Remove the !PageUptodate pages we added */
1696                         shmem_undo_range(inode,
1697                                 (loff_t)start << PAGE_CACHE_SHIFT,
1698                                 (loff_t)index << PAGE_CACHE_SHIFT, true);
1699                         goto ctime;
1700                 }
1701
1702                 /*
1703                  * If !PageUptodate, leave it that way so that freeable pages
1704                  * can be recognized if we need to rollback on error later.
1705                  * But set_page_dirty so that memory pressure will swap rather
1706                  * than free the pages we are allocating (and SGP_CACHE pages
1707                  * might still be clean: we now need to mark those dirty too).
1708                  */
1709                 set_page_dirty(page);
1710                 unlock_page(page);
1711                 page_cache_release(page);
1712                 cond_resched();
1713         }
1714
1715         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1716                 i_size_write(inode, offset + len);
1717 ctime:
1718         inode->i_ctime = CURRENT_TIME;
1719 out:
1720         mutex_unlock(&inode->i_mutex);
1721         return error;
1722 }
1723
1724 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1725 {
1726         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1727
1728         buf->f_type = TMPFS_MAGIC;
1729         buf->f_bsize = PAGE_CACHE_SIZE;
1730         buf->f_namelen = NAME_MAX;
1731         if (sbinfo->max_blocks) {
1732                 buf->f_blocks = sbinfo->max_blocks;
1733                 buf->f_bavail =
1734                 buf->f_bfree  = sbinfo->max_blocks -
1735                                 percpu_counter_sum(&sbinfo->used_blocks);
1736         }
1737         if (sbinfo->max_inodes) {
1738                 buf->f_files = sbinfo->max_inodes;
1739                 buf->f_ffree = sbinfo->free_inodes;
1740         }
1741         /* else leave those fields 0 like simple_statfs */
1742         return 0;
1743 }
1744
1745 /*
1746  * File creation. Allocate an inode, and we're done..
1747  */
1748 static int
1749 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1750 {
1751         struct inode *inode;
1752         int error = -ENOSPC;
1753
1754         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1755         if (inode) {
1756                 error = security_inode_init_security(inode, dir,
1757                                                      &dentry->d_name,
1758                                                      shmem_initxattrs, NULL);
1759                 if (error) {
1760                         if (error != -EOPNOTSUPP) {
1761                                 iput(inode);
1762                                 return error;
1763                         }
1764                 }
1765 #ifdef CONFIG_TMPFS_POSIX_ACL
1766                 error = generic_acl_init(inode, dir);
1767                 if (error) {
1768                         iput(inode);
1769                         return error;
1770                 }
1771 #else
1772                 error = 0;
1773 #endif
1774                 dir->i_size += BOGO_DIRENT_SIZE;
1775                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1776                 d_instantiate(dentry, inode);
1777                 dget(dentry); /* Extra count - pin the dentry in core */
1778         }
1779         return error;
1780 }
1781
1782 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1783 {
1784         int error;
1785
1786         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1787                 return error;
1788         inc_nlink(dir);
1789         return 0;
1790 }
1791
1792 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1793                 struct nameidata *nd)
1794 {
1795         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1796 }
1797
1798 /*
1799  * Link a file..
1800  */
1801 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1802 {
1803         struct inode *inode = old_dentry->d_inode;
1804         int ret;
1805
1806         /*
1807          * No ordinary (disk based) filesystem counts links as inodes;
1808          * but each new link needs a new dentry, pinning lowmem, and
1809          * tmpfs dentries cannot be pruned until they are unlinked.
1810          */
1811         ret = shmem_reserve_inode(inode->i_sb);
1812         if (ret)
1813                 goto out;
1814
1815         dir->i_size += BOGO_DIRENT_SIZE;
1816         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1817         inc_nlink(inode);
1818         ihold(inode);   /* New dentry reference */
1819         dget(dentry);           /* Extra pinning count for the created dentry */
1820         d_instantiate(dentry, inode);
1821 out:
1822         return ret;
1823 }
1824
1825 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1826 {
1827         struct inode *inode = dentry->d_inode;
1828
1829         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1830                 shmem_free_inode(inode->i_sb);
1831
1832         dir->i_size -= BOGO_DIRENT_SIZE;
1833         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1834         drop_nlink(inode);
1835         dput(dentry);   /* Undo the count from "create" - this does all the work */
1836         return 0;
1837 }
1838
1839 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1840 {
1841         if (!simple_empty(dentry))
1842                 return -ENOTEMPTY;
1843
1844         drop_nlink(dentry->d_inode);
1845         drop_nlink(dir);
1846         return shmem_unlink(dir, dentry);
1847 }
1848
1849 /*
1850  * The VFS layer already does all the dentry stuff for rename,
1851  * we just have to decrement the usage count for the target if
1852  * it exists so that the VFS layer correctly free's it when it
1853  * gets overwritten.
1854  */
1855 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1856 {
1857         struct inode *inode = old_dentry->d_inode;
1858         int they_are_dirs = S_ISDIR(inode->i_mode);
1859
1860         if (!simple_empty(new_dentry))
1861                 return -ENOTEMPTY;
1862
1863         if (new_dentry->d_inode) {
1864                 (void) shmem_unlink(new_dir, new_dentry);
1865                 if (they_are_dirs)
1866                         drop_nlink(old_dir);
1867         } else if (they_are_dirs) {
1868                 drop_nlink(old_dir);
1869                 inc_nlink(new_dir);
1870         }
1871
1872         old_dir->i_size -= BOGO_DIRENT_SIZE;
1873         new_dir->i_size += BOGO_DIRENT_SIZE;
1874         old_dir->i_ctime = old_dir->i_mtime =
1875         new_dir->i_ctime = new_dir->i_mtime =
1876         inode->i_ctime = CURRENT_TIME;
1877         return 0;
1878 }
1879
1880 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1881 {
1882         int error;
1883         int len;
1884         struct inode *inode;
1885         struct page *page;
1886         char *kaddr;
1887         struct shmem_inode_info *info;
1888
1889         len = strlen(symname) + 1;
1890         if (len > PAGE_CACHE_SIZE)
1891                 return -ENAMETOOLONG;
1892
1893         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1894         if (!inode)
1895                 return -ENOSPC;
1896
1897         error = security_inode_init_security(inode, dir, &dentry->d_name,
1898                                              shmem_initxattrs, NULL);
1899         if (error) {
1900                 if (error != -EOPNOTSUPP) {
1901                         iput(inode);
1902                         return error;
1903                 }
1904                 error = 0;
1905         }
1906
1907         info = SHMEM_I(inode);
1908         inode->i_size = len-1;
1909         if (len <= SHORT_SYMLINK_LEN) {
1910                 info->symlink = kmemdup(symname, len, GFP_KERNEL);
1911                 if (!info->symlink) {
1912                         iput(inode);
1913                         return -ENOMEM;
1914                 }
1915                 inode->i_op = &shmem_short_symlink_operations;
1916         } else {
1917                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1918                 if (error) {
1919                         iput(inode);
1920                         return error;
1921                 }
1922                 inode->i_mapping->a_ops = &shmem_aops;
1923                 inode->i_op = &shmem_symlink_inode_operations;
1924                 kaddr = kmap_atomic(page);
1925                 memcpy(kaddr, symname, len);
1926                 kunmap_atomic(kaddr);
1927                 SetPageUptodate(page);
1928                 set_page_dirty(page);
1929                 unlock_page(page);
1930                 page_cache_release(page);
1931         }
1932         dir->i_size += BOGO_DIRENT_SIZE;
1933         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1934         d_instantiate(dentry, inode);
1935         dget(dentry);
1936         return 0;
1937 }
1938
1939 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
1940 {
1941         nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
1942         return NULL;
1943 }
1944
1945 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1946 {
1947         struct page *page = NULL;
1948         int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1949         nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
1950         if (page)
1951                 unlock_page(page);
1952         return page;
1953 }
1954
1955 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1956 {
1957         if (!IS_ERR(nd_get_link(nd))) {
1958                 struct page *page = cookie;
1959                 kunmap(page);
1960                 mark_page_accessed(page);
1961                 page_cache_release(page);
1962         }
1963 }
1964
1965 #ifdef CONFIG_TMPFS_XATTR
1966 /*
1967  * Superblocks without xattr inode operations may get some security.* xattr
1968  * support from the LSM "for free". As soon as we have any other xattrs
1969  * like ACLs, we also need to implement the security.* handlers at
1970  * filesystem level, though.
1971  */
1972
1973 /*
1974  * Allocate new xattr and copy in the value; but leave the name to callers.
1975  */
1976 static struct shmem_xattr *shmem_xattr_alloc(const void *value, size_t size)
1977 {
1978         struct shmem_xattr *new_xattr;
1979         size_t len;
1980
1981         /* wrap around? */
1982         len = sizeof(*new_xattr) + size;
1983         if (len <= sizeof(*new_xattr))
1984                 return NULL;
1985
1986         new_xattr = kmalloc(len, GFP_KERNEL);
1987         if (!new_xattr)
1988                 return NULL;
1989
1990         new_xattr->size = size;
1991         memcpy(new_xattr->value, value, size);
1992         return new_xattr;
1993 }
1994
1995 /*
1996  * Callback for security_inode_init_security() for acquiring xattrs.
1997  */
1998 static int shmem_initxattrs(struct inode *inode,
1999                             const struct xattr *xattr_array,
2000                             void *fs_info)
2001 {
2002         struct shmem_inode_info *info = SHMEM_I(inode);
2003         const struct xattr *xattr;
2004         struct shmem_xattr *new_xattr;
2005         size_t len;
2006
2007         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2008                 new_xattr = shmem_xattr_alloc(xattr->value, xattr->value_len);
2009                 if (!new_xattr)
2010                         return -ENOMEM;
2011
2012                 len = strlen(xattr->name) + 1;
2013                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2014                                           GFP_KERNEL);
2015                 if (!new_xattr->name) {
2016                         kfree(new_xattr);
2017                         return -ENOMEM;
2018                 }
2019
2020                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2021                        XATTR_SECURITY_PREFIX_LEN);
2022                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2023                        xattr->name, len);
2024
2025                 spin_lock(&info->lock);
2026                 list_add(&new_xattr->list, &info->xattr_list);
2027                 spin_unlock(&info->lock);
2028         }
2029
2030         return 0;
2031 }
2032
2033 static int shmem_xattr_get(struct dentry *dentry, const char *name,
2034                            void *buffer, size_t size)
2035 {
2036         struct shmem_inode_info *info;
2037         struct shmem_xattr *xattr;
2038         int ret = -ENODATA;
2039
2040         info = SHMEM_I(dentry->d_inode);
2041
2042         spin_lock(&info->lock);
2043         list_for_each_entry(xattr, &info->xattr_list, list) {
2044                 if (strcmp(name, xattr->name))
2045                         continue;
2046
2047                 ret = xattr->size;
2048                 if (buffer) {
2049                         if (size < xattr->size)
2050                                 ret = -ERANGE;
2051                         else
2052                                 memcpy(buffer, xattr->value, xattr->size);
2053                 }
2054                 break;
2055         }
2056         spin_unlock(&info->lock);
2057         return ret;
2058 }
2059
2060 static int shmem_xattr_set(struct inode *inode, const char *name,
2061                            const void *value, size_t size, int flags)
2062 {
2063         struct shmem_inode_info *info = SHMEM_I(inode);
2064         struct shmem_xattr *xattr;
2065         struct shmem_xattr *new_xattr = NULL;
2066         int err = 0;
2067
2068         /* value == NULL means remove */
2069         if (value) {
2070                 new_xattr = shmem_xattr_alloc(value, size);
2071                 if (!new_xattr)
2072                         return -ENOMEM;
2073
2074                 new_xattr->name = kstrdup(name, GFP_KERNEL);
2075                 if (!new_xattr->name) {
2076                         kfree(new_xattr);
2077                         return -ENOMEM;
2078                 }
2079         }
2080
2081         spin_lock(&info->lock);
2082         list_for_each_entry(xattr, &info->xattr_list, list) {
2083                 if (!strcmp(name, xattr->name)) {
2084                         if (flags & XATTR_CREATE) {
2085                                 xattr = new_xattr;
2086                                 err = -EEXIST;
2087                         } else if (new_xattr) {
2088                                 list_replace(&xattr->list, &new_xattr->list);
2089                         } else {
2090                                 list_del(&xattr->list);
2091                         }
2092                         goto out;
2093                 }
2094         }
2095         if (flags & XATTR_REPLACE) {
2096                 xattr = new_xattr;
2097                 err = -ENODATA;
2098         } else {
2099                 list_add(&new_xattr->list, &info->xattr_list);
2100                 xattr = NULL;
2101         }
2102 out:
2103         spin_unlock(&info->lock);
2104         if (xattr)
2105                 kfree(xattr->name);
2106         kfree(xattr);
2107         return err;
2108 }
2109
2110 static const struct xattr_handler *shmem_xattr_handlers[] = {
2111 #ifdef CONFIG_TMPFS_POSIX_ACL
2112         &generic_acl_access_handler,
2113         &generic_acl_default_handler,
2114 #endif
2115         NULL
2116 };
2117
2118 static int shmem_xattr_validate(const char *name)
2119 {
2120         struct { const char *prefix; size_t len; } arr[] = {
2121                 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2122                 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2123         };
2124         int i;
2125
2126         for (i = 0; i < ARRAY_SIZE(arr); i++) {
2127                 size_t preflen = arr[i].len;
2128                 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2129                         if (!name[preflen])
2130                                 return -EINVAL;
2131                         return 0;
2132                 }
2133         }
2134         return -EOPNOTSUPP;
2135 }
2136
2137 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2138                               void *buffer, size_t size)
2139 {
2140         int err;
2141
2142         /*
2143          * If this is a request for a synthetic attribute in the system.*
2144          * namespace use the generic infrastructure to resolve a handler
2145          * for it via sb->s_xattr.
2146          */
2147         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2148                 return generic_getxattr(dentry, name, buffer, size);
2149
2150         err = shmem_xattr_validate(name);
2151         if (err)
2152                 return err;
2153
2154         return shmem_xattr_get(dentry, name, buffer, size);
2155 }
2156
2157 static int shmem_setxattr(struct dentry *dentry, const char *name,
2158                           const void *value, size_t size, int flags)
2159 {
2160         int err;
2161
2162         /*
2163          * If this is a request for a synthetic attribute in the system.*
2164          * namespace use the generic infrastructure to resolve a handler
2165          * for it via sb->s_xattr.
2166          */
2167         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2168                 return generic_setxattr(dentry, name, value, size, flags);
2169
2170         err = shmem_xattr_validate(name);
2171         if (err)
2172                 return err;
2173
2174         if (size == 0)
2175                 value = "";  /* empty EA, do not remove */
2176
2177         return shmem_xattr_set(dentry->d_inode, name, value, size, flags);
2178
2179 }
2180
2181 static int shmem_removexattr(struct dentry *dentry, const char *name)
2182 {
2183         int err;
2184
2185         /*
2186          * If this is a request for a synthetic attribute in the system.*
2187          * namespace use the generic infrastructure to resolve a handler
2188          * for it via sb->s_xattr.
2189          */
2190         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2191                 return generic_removexattr(dentry, name);
2192
2193         err = shmem_xattr_validate(name);
2194         if (err)
2195                 return err;
2196
2197         return shmem_xattr_set(dentry->d_inode, name, NULL, 0, XATTR_REPLACE);
2198 }
2199
2200 static bool xattr_is_trusted(const char *name)
2201 {
2202         return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2203 }
2204
2205 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2206 {
2207         bool trusted = capable(CAP_SYS_ADMIN);
2208         struct shmem_xattr *xattr;
2209         struct shmem_inode_info *info;
2210         size_t used = 0;
2211
2212         info = SHMEM_I(dentry->d_inode);
2213
2214         spin_lock(&info->lock);
2215         list_for_each_entry(xattr, &info->xattr_list, list) {
2216                 size_t len;
2217
2218                 /* skip "trusted." attributes for unprivileged callers */
2219                 if (!trusted && xattr_is_trusted(xattr->name))
2220                         continue;
2221
2222                 len = strlen(xattr->name) + 1;
2223                 used += len;
2224                 if (buffer) {
2225                         if (size < used) {
2226                                 used = -ERANGE;
2227                                 break;
2228                         }
2229                         memcpy(buffer, xattr->name, len);
2230                         buffer += len;
2231                 }
2232         }
2233         spin_unlock(&info->lock);
2234
2235         return used;
2236 }
2237 #endif /* CONFIG_TMPFS_XATTR */
2238
2239 static const struct inode_operations shmem_short_symlink_operations = {
2240         .readlink       = generic_readlink,
2241         .follow_link    = shmem_follow_short_symlink,
2242 #ifdef CONFIG_TMPFS_XATTR
2243         .setxattr       = shmem_setxattr,
2244         .getxattr       = shmem_getxattr,
2245         .listxattr      = shmem_listxattr,
2246         .removexattr    = shmem_removexattr,
2247 #endif
2248 };
2249
2250 static const struct inode_operations shmem_symlink_inode_operations = {
2251         .readlink       = generic_readlink,
2252         .follow_link    = shmem_follow_link,
2253         .put_link       = shmem_put_link,
2254 #ifdef CONFIG_TMPFS_XATTR
2255         .setxattr       = shmem_setxattr,
2256         .getxattr       = shmem_getxattr,
2257         .listxattr      = shmem_listxattr,
2258         .removexattr    = shmem_removexattr,
2259 #endif
2260 };
2261
2262 static struct dentry *shmem_get_parent(struct dentry *child)
2263 {
2264         return ERR_PTR(-ESTALE);
2265 }
2266
2267 static int shmem_match(struct inode *ino, void *vfh)
2268 {
2269         __u32 *fh = vfh;
2270         __u64 inum = fh[2];
2271         inum = (inum << 32) | fh[1];
2272         return ino->i_ino == inum && fh[0] == ino->i_generation;
2273 }
2274
2275 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2276                 struct fid *fid, int fh_len, int fh_type)
2277 {
2278         struct inode *inode;
2279         struct dentry *dentry = NULL;
2280         u64 inum = fid->raw[2];
2281         inum = (inum << 32) | fid->raw[1];
2282
2283         if (fh_len < 3)
2284                 return NULL;
2285
2286         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2287                         shmem_match, fid->raw);
2288         if (inode) {
2289                 dentry = d_find_alias(inode);
2290                 iput(inode);
2291         }
2292
2293         return dentry;
2294 }
2295
2296 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2297                                 int connectable)
2298 {
2299         struct inode *inode = dentry->d_inode;
2300
2301         if (*len < 3) {
2302                 *len = 3;
2303                 return 255;
2304         }
2305
2306         if (inode_unhashed(inode)) {
2307                 /* Unfortunately insert_inode_hash is not idempotent,
2308                  * so as we hash inodes here rather than at creation
2309                  * time, we need a lock to ensure we only try
2310                  * to do it once
2311                  */
2312                 static DEFINE_SPINLOCK(lock);
2313                 spin_lock(&lock);
2314                 if (inode_unhashed(inode))
2315                         __insert_inode_hash(inode,
2316                                             inode->i_ino + inode->i_generation);
2317                 spin_unlock(&lock);
2318         }
2319
2320         fh[0] = inode->i_generation;
2321         fh[1] = inode->i_ino;
2322         fh[2] = ((__u64)inode->i_ino) >> 32;
2323
2324         *len = 3;
2325         return 1;
2326 }
2327
2328 static const struct export_operations shmem_export_ops = {
2329         .get_parent     = shmem_get_parent,
2330         .encode_fh      = shmem_encode_fh,
2331         .fh_to_dentry   = shmem_fh_to_dentry,
2332 };
2333
2334 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2335                                bool remount)
2336 {
2337         char *this_char, *value, *rest;
2338         uid_t uid;
2339         gid_t gid;
2340
2341         while (options != NULL) {
2342                 this_char = options;
2343                 for (;;) {
2344                         /*
2345                          * NUL-terminate this option: unfortunately,
2346                          * mount options form a comma-separated list,
2347                          * but mpol's nodelist may also contain commas.
2348                          */
2349                         options = strchr(options, ',');
2350                         if (options == NULL)
2351                                 break;
2352                         options++;
2353                         if (!isdigit(*options)) {
2354                                 options[-1] = '\0';
2355                                 break;
2356                         }
2357                 }
2358                 if (!*this_char)
2359                         continue;
2360                 if ((value = strchr(this_char,'=')) != NULL) {
2361                         *value++ = 0;
2362                 } else {
2363                         printk(KERN_ERR
2364                             "tmpfs: No value for mount option '%s'\n",
2365                             this_char);
2366                         return 1;
2367                 }
2368
2369                 if (!strcmp(this_char,"size")) {
2370                         unsigned long long size;
2371                         size = memparse(value,&rest);
2372                         if (*rest == '%') {
2373                                 size <<= PAGE_SHIFT;
2374                                 size *= totalram_pages;
2375                                 do_div(size, 100);
2376                                 rest++;
2377                         }
2378                         if (*rest)
2379                                 goto bad_val;
2380                         sbinfo->max_blocks =
2381                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2382                 } else if (!strcmp(this_char,"nr_blocks")) {
2383                         sbinfo->max_blocks = memparse(value, &rest);
2384                         if (*rest)
2385                                 goto bad_val;
2386                 } else if (!strcmp(this_char,"nr_inodes")) {
2387                         sbinfo->max_inodes = memparse(value, &rest);
2388                         if (*rest)
2389                                 goto bad_val;
2390                 } else if (!strcmp(this_char,"mode")) {
2391                         if (remount)
2392                                 continue;
2393                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2394                         if (*rest)
2395                                 goto bad_val;
2396                 } else if (!strcmp(this_char,"uid")) {
2397                         if (remount)
2398                                 continue;
2399                         uid = simple_strtoul(value, &rest, 0);
2400                         if (*rest)
2401                                 goto bad_val;
2402                         sbinfo->uid = make_kuid(current_user_ns(), uid);
2403                         if (!uid_valid(sbinfo->uid))
2404                                 goto bad_val;
2405                 } else if (!strcmp(this_char,"gid")) {
2406                         if (remount)
2407                                 continue;
2408                         gid = simple_strtoul(value, &rest, 0);
2409                         if (*rest)
2410                                 goto bad_val;
2411                         sbinfo->gid = make_kgid(current_user_ns(), gid);
2412                         if (!gid_valid(sbinfo->gid))
2413                                 goto bad_val;
2414                 } else if (!strcmp(this_char,"mpol")) {
2415                         if (mpol_parse_str(value, &sbinfo->mpol, 1))
2416                                 goto bad_val;
2417                 } else {
2418                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2419                                this_char);
2420                         return 1;
2421                 }
2422         }
2423         return 0;
2424
2425 bad_val:
2426         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2427                value, this_char);
2428         return 1;
2429
2430 }
2431
2432 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2433 {
2434         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2435         struct shmem_sb_info config = *sbinfo;
2436         unsigned long inodes;
2437         int error = -EINVAL;
2438
2439         if (shmem_parse_options(data, &config, true))
2440                 return error;
2441
2442         spin_lock(&sbinfo->stat_lock);
2443         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2444         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2445                 goto out;
2446         if (config.max_inodes < inodes)
2447                 goto out;
2448         /*
2449          * Those tests disallow limited->unlimited while any are in use;
2450          * but we must separately disallow unlimited->limited, because
2451          * in that case we have no record of how much is already in use.
2452          */
2453         if (config.max_blocks && !sbinfo->max_blocks)
2454                 goto out;
2455         if (config.max_inodes && !sbinfo->max_inodes)
2456                 goto out;
2457
2458         error = 0;
2459         sbinfo->max_blocks  = config.max_blocks;
2460         sbinfo->max_inodes  = config.max_inodes;
2461         sbinfo->free_inodes = config.max_inodes - inodes;
2462
2463         mpol_put(sbinfo->mpol);
2464         sbinfo->mpol        = config.mpol;      /* transfers initial ref */
2465 out:
2466         spin_unlock(&sbinfo->stat_lock);
2467         return error;
2468 }
2469
2470 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2471 {
2472         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2473
2474         if (sbinfo->max_blocks != shmem_default_max_blocks())
2475                 seq_printf(seq, ",size=%luk",
2476                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2477         if (sbinfo->max_inodes != shmem_default_max_inodes())
2478                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2479         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2480                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2481         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2482                 seq_printf(seq, ",uid=%u",
2483                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
2484         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2485                 seq_printf(seq, ",gid=%u",
2486                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
2487         shmem_show_mpol(seq, sbinfo->mpol);
2488         return 0;
2489 }
2490 #endif /* CONFIG_TMPFS */
2491
2492 static void shmem_put_super(struct super_block *sb)
2493 {
2494         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2495
2496         percpu_counter_destroy(&sbinfo->used_blocks);
2497         kfree(sbinfo);
2498         sb->s_fs_info = NULL;
2499 }
2500
2501 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2502 {
2503         struct inode *inode;
2504         struct shmem_sb_info *sbinfo;
2505         int err = -ENOMEM;
2506
2507         /* Round up to L1_CACHE_BYTES to resist false sharing */
2508         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2509                                 L1_CACHE_BYTES), GFP_KERNEL);
2510         if (!sbinfo)
2511                 return -ENOMEM;
2512
2513         sbinfo->mode = S_IRWXUGO | S_ISVTX;
2514         sbinfo->uid = current_fsuid();
2515         sbinfo->gid = current_fsgid();
2516         sb->s_fs_info = sbinfo;
2517
2518 #ifdef CONFIG_TMPFS
2519         /*
2520          * Per default we only allow half of the physical ram per
2521          * tmpfs instance, limiting inodes to one per page of lowmem;
2522          * but the internal instance is left unlimited.
2523          */
2524         if (!(sb->s_flags & MS_NOUSER)) {
2525                 sbinfo->max_blocks = shmem_default_max_blocks();
2526                 sbinfo->max_inodes = shmem_default_max_inodes();
2527                 if (shmem_parse_options(data, sbinfo, false)) {
2528                         err = -EINVAL;
2529                         goto failed;
2530                 }
2531         }
2532         sb->s_export_op = &shmem_export_ops;
2533         sb->s_flags |= MS_NOSEC;
2534 #else
2535         sb->s_flags |= MS_NOUSER;
2536 #endif
2537
2538         spin_lock_init(&sbinfo->stat_lock);
2539         if (percpu_counter_init(&sbinfo->used_blocks, 0))
2540                 goto failed;
2541         sbinfo->free_inodes = sbinfo->max_inodes;
2542
2543         sb->s_maxbytes = MAX_LFS_FILESIZE;
2544         sb->s_blocksize = PAGE_CACHE_SIZE;
2545         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2546         sb->s_magic = TMPFS_MAGIC;
2547         sb->s_op = &shmem_ops;
2548         sb->s_time_gran = 1;
2549 #ifdef CONFIG_TMPFS_XATTR
2550         sb->s_xattr = shmem_xattr_handlers;
2551 #endif
2552 #ifdef CONFIG_TMPFS_POSIX_ACL
2553         sb->s_flags |= MS_POSIXACL;
2554 #endif
2555
2556         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2557         if (!inode)
2558                 goto failed;
2559         inode->i_uid = sbinfo->uid;
2560         inode->i_gid = sbinfo->gid;
2561         sb->s_root = d_make_root(inode);
2562         if (!sb->s_root)
2563                 goto failed;
2564         return 0;
2565
2566 failed:
2567         shmem_put_super(sb);
2568         return err;
2569 }
2570
2571 static struct kmem_cache *shmem_inode_cachep;
2572
2573 static struct inode *shmem_alloc_inode(struct super_block *sb)
2574 {
2575         struct shmem_inode_info *info;
2576         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2577         if (!info)
2578                 return NULL;
2579         return &info->vfs_inode;
2580 }
2581
2582 static void shmem_destroy_callback(struct rcu_head *head)
2583 {
2584         struct inode *inode = container_of(head, struct inode, i_rcu);
2585         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2586 }
2587
2588 static void shmem_destroy_inode(struct inode *inode)
2589 {
2590         if (S_ISREG(inode->i_mode))
2591                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2592         call_rcu(&inode->i_rcu, shmem_destroy_callback);
2593 }
2594
2595 static void shmem_init_inode(void *foo)
2596 {
2597         struct shmem_inode_info *info = foo;
2598         inode_init_once(&info->vfs_inode);
2599 }
2600
2601 static int shmem_init_inodecache(void)
2602 {
2603         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2604                                 sizeof(struct shmem_inode_info),
2605                                 0, SLAB_PANIC, shmem_init_inode);
2606         return 0;
2607 }
2608
2609 static void shmem_destroy_inodecache(void)
2610 {
2611         kmem_cache_destroy(shmem_inode_cachep);
2612 }
2613
2614 static const struct address_space_operations shmem_aops = {
2615         .writepage      = shmem_writepage,
2616         .set_page_dirty = __set_page_dirty_no_writeback,
2617 #ifdef CONFIG_TMPFS
2618         .write_begin    = shmem_write_begin,
2619         .write_end      = shmem_write_end,
2620 #endif
2621         .migratepage    = migrate_page,
2622         .error_remove_page = generic_error_remove_page,
2623 };
2624
2625 static const struct file_operations shmem_file_operations = {
2626         .mmap           = shmem_mmap,
2627 #ifdef CONFIG_TMPFS
2628         .llseek         = generic_file_llseek,
2629         .read           = do_sync_read,
2630         .write          = do_sync_write,
2631         .aio_read       = shmem_file_aio_read,
2632         .aio_write      = generic_file_aio_write,
2633         .fsync          = noop_fsync,
2634         .splice_read    = shmem_file_splice_read,
2635         .splice_write   = generic_file_splice_write,
2636         .fallocate      = shmem_fallocate,
2637 #endif
2638 };
2639
2640 static const struct inode_operations shmem_inode_operations = {
2641         .setattr        = shmem_setattr,
2642 #ifdef CONFIG_TMPFS_XATTR
2643         .setxattr       = shmem_setxattr,
2644         .getxattr       = shmem_getxattr,
2645         .listxattr      = shmem_listxattr,
2646         .removexattr    = shmem_removexattr,
2647 #endif
2648 };
2649
2650 static const struct inode_operations shmem_dir_inode_operations = {
2651 #ifdef CONFIG_TMPFS
2652         .create         = shmem_create,
2653         .lookup         = simple_lookup,
2654         .link           = shmem_link,
2655         .unlink         = shmem_unlink,
2656         .symlink        = shmem_symlink,
2657         .mkdir          = shmem_mkdir,
2658         .rmdir          = shmem_rmdir,
2659         .mknod          = shmem_mknod,
2660         .rename         = shmem_rename,
2661 #endif
2662 #ifdef CONFIG_TMPFS_XATTR
2663         .setxattr       = shmem_setxattr,
2664         .getxattr       = shmem_getxattr,
2665         .listxattr      = shmem_listxattr,
2666         .removexattr    = shmem_removexattr,
2667 #endif
2668 #ifdef CONFIG_TMPFS_POSIX_ACL
2669         .setattr        = shmem_setattr,
2670 #endif
2671 };
2672
2673 static const struct inode_operations shmem_special_inode_operations = {
2674 #ifdef CONFIG_TMPFS_XATTR
2675         .setxattr       = shmem_setxattr,
2676         .getxattr       = shmem_getxattr,
2677         .listxattr      = shmem_listxattr,
2678         .removexattr    = shmem_removexattr,
2679 #endif
2680 #ifdef CONFIG_TMPFS_POSIX_ACL
2681         .setattr        = shmem_setattr,
2682 #endif
2683 };
2684
2685 static const struct super_operations shmem_ops = {
2686         .alloc_inode    = shmem_alloc_inode,
2687         .destroy_inode  = shmem_destroy_inode,
2688 #ifdef CONFIG_TMPFS
2689         .statfs         = shmem_statfs,
2690         .remount_fs     = shmem_remount_fs,
2691         .show_options   = shmem_show_options,
2692 #endif
2693         .evict_inode    = shmem_evict_inode,
2694         .drop_inode     = generic_delete_inode,
2695         .put_super      = shmem_put_super,
2696 };
2697
2698 static const struct vm_operations_struct shmem_vm_ops = {
2699         .fault          = shmem_fault,
2700 #ifdef CONFIG_NUMA
2701         .set_policy     = shmem_set_policy,
2702         .get_policy     = shmem_get_policy,
2703 #endif
2704 };
2705
2706 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2707         int flags, const char *dev_name, void *data)
2708 {
2709         return mount_nodev(fs_type, flags, data, shmem_fill_super);
2710 }
2711
2712 static struct file_system_type shmem_fs_type = {
2713         .owner          = THIS_MODULE,
2714         .name           = "tmpfs",
2715         .mount          = shmem_mount,
2716         .kill_sb        = kill_litter_super,
2717 };
2718
2719 int __init shmem_init(void)
2720 {
2721         int error;
2722
2723         error = bdi_init(&shmem_backing_dev_info);
2724         if (error)
2725                 goto out4;
2726
2727         error = shmem_init_inodecache();
2728         if (error)
2729                 goto out3;
2730
2731         error = register_filesystem(&shmem_fs_type);
2732         if (error) {
2733                 printk(KERN_ERR "Could not register tmpfs\n");
2734                 goto out2;
2735         }
2736
2737         shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2738                                  shmem_fs_type.name, NULL);
2739         if (IS_ERR(shm_mnt)) {
2740                 error = PTR_ERR(shm_mnt);
2741                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2742                 goto out1;
2743         }
2744         return 0;
2745
2746 out1:
2747         unregister_filesystem(&shmem_fs_type);
2748 out2:
2749         shmem_destroy_inodecache();
2750 out3:
2751         bdi_destroy(&shmem_backing_dev_info);
2752 out4:
2753         shm_mnt = ERR_PTR(error);
2754         return error;
2755 }
2756
2757 #else /* !CONFIG_SHMEM */
2758
2759 /*
2760  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2761  *
2762  * This is intended for small system where the benefits of the full
2763  * shmem code (swap-backed and resource-limited) are outweighed by
2764  * their complexity. On systems without swap this code should be
2765  * effectively equivalent, but much lighter weight.
2766  */
2767
2768 #include <linux/ramfs.h>
2769
2770 static struct file_system_type shmem_fs_type = {
2771         .name           = "tmpfs",
2772         .mount          = ramfs_mount,
2773         .kill_sb        = kill_litter_super,
2774 };
2775
2776 int __init shmem_init(void)
2777 {
2778         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2779
2780         shm_mnt = kern_mount(&shmem_fs_type);
2781         BUG_ON(IS_ERR(shm_mnt));
2782
2783         return 0;
2784 }
2785
2786 int shmem_unuse(swp_entry_t swap, struct page *page)
2787 {
2788         return 0;
2789 }
2790
2791 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2792 {
2793         return 0;
2794 }
2795
2796 void shmem_unlock_mapping(struct address_space *mapping)
2797 {
2798 }
2799
2800 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2801 {
2802         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2803 }
2804 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2805
2806 #define shmem_vm_ops                            generic_file_vm_ops
2807 #define shmem_file_operations                   ramfs_file_operations
2808 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
2809 #define shmem_acct_size(flags, size)            0
2810 #define shmem_unacct_size(flags, size)          do {} while (0)
2811
2812 #endif /* CONFIG_SHMEM */
2813
2814 /* common code */
2815
2816 /**
2817  * shmem_file_setup - get an unlinked file living in tmpfs
2818  * @name: name for dentry (to be seen in /proc/<pid>/maps
2819  * @size: size to be set for the file
2820  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2821  */
2822 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2823 {
2824         int error;
2825         struct file *file;
2826         struct inode *inode;
2827         struct path path;
2828         struct dentry *root;
2829         struct qstr this;
2830
2831         if (IS_ERR(shm_mnt))
2832                 return (void *)shm_mnt;
2833
2834         if (size < 0 || size > MAX_LFS_FILESIZE)
2835                 return ERR_PTR(-EINVAL);
2836
2837         if (shmem_acct_size(flags, size))
2838                 return ERR_PTR(-ENOMEM);
2839
2840         error = -ENOMEM;
2841         this.name = name;
2842         this.len = strlen(name);
2843         this.hash = 0; /* will go */
2844         root = shm_mnt->mnt_root;
2845         path.dentry = d_alloc(root, &this);
2846         if (!path.dentry)
2847                 goto put_memory;
2848         path.mnt = mntget(shm_mnt);
2849
2850         error = -ENOSPC;
2851         inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2852         if (!inode)
2853                 goto put_dentry;
2854
2855         d_instantiate(path.dentry, inode);
2856         inode->i_size = size;
2857         clear_nlink(inode);     /* It is unlinked */
2858 #ifndef CONFIG_MMU
2859         error = ramfs_nommu_expand_for_mapping(inode, size);
2860         if (error)
2861                 goto put_dentry;
2862 #endif
2863
2864         error = -ENFILE;
2865         file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2866                   &shmem_file_operations);
2867         if (!file)
2868                 goto put_dentry;
2869
2870         return file;
2871
2872 put_dentry:
2873         path_put(&path);
2874 put_memory:
2875         shmem_unacct_size(flags, size);
2876         return ERR_PTR(error);
2877 }
2878 EXPORT_SYMBOL_GPL(shmem_file_setup);
2879
2880 /**
2881  * shmem_zero_setup - setup a shared anonymous mapping
2882  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2883  */
2884 int shmem_zero_setup(struct vm_area_struct *vma)
2885 {
2886         struct file *file;
2887         loff_t size = vma->vm_end - vma->vm_start;
2888
2889         file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2890         if (IS_ERR(file))
2891                 return PTR_ERR(file);
2892
2893         if (vma->vm_file)
2894                 fput(vma->vm_file);
2895         vma->vm_file = file;
2896         vma->vm_ops = &shmem_vm_ops;
2897         vma->vm_flags |= VM_CAN_NONLINEAR;
2898         return 0;
2899 }
2900
2901 /**
2902  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2903  * @mapping:    the page's address_space
2904  * @index:      the page index
2905  * @gfp:        the page allocator flags to use if allocating
2906  *
2907  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2908  * with any new page allocations done using the specified allocation flags.
2909  * But read_cache_page_gfp() uses the ->readpage() method: which does not
2910  * suit tmpfs, since it may have pages in swapcache, and needs to find those
2911  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2912  *
2913  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2914  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2915  */
2916 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2917                                          pgoff_t index, gfp_t gfp)
2918 {
2919 #ifdef CONFIG_SHMEM
2920         struct inode *inode = mapping->host;
2921         struct page *page;
2922         int error;
2923
2924         BUG_ON(mapping->a_ops != &shmem_aops);
2925         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2926         if (error)
2927                 page = ERR_PTR(error);
2928         else
2929                 unlock_page(page);
2930         return page;
2931 #else
2932         /*
2933          * The tiny !SHMEM case uses ramfs without swap
2934          */
2935         return read_cache_page_gfp(mapping, index, gfp);
2936 #endif
2937 }
2938 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);