mm/hmm: factor out pte and pmd handling to simplify hmm_vma_walk_pmd()
[linux.git] / mm / hmm.c
1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * Authors: Jérôme Glisse <jglisse@redhat.com>
15  */
16 /*
17  * Refer to include/linux/hmm.h for information about heterogeneous memory
18  * management or HMM for short.
19  */
20 #include <linux/mm.h>
21 #include <linux/hmm.h>
22 #include <linux/init.h>
23 #include <linux/rmap.h>
24 #include <linux/swap.h>
25 #include <linux/slab.h>
26 #include <linux/sched.h>
27 #include <linux/mmzone.h>
28 #include <linux/pagemap.h>
29 #include <linux/swapops.h>
30 #include <linux/hugetlb.h>
31 #include <linux/memremap.h>
32 #include <linux/jump_label.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/memory_hotplug.h>
35
36 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
37
38 #if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
39 /*
40  * Device private memory see HMM (Documentation/vm/hmm.txt) or hmm.h
41  */
42 DEFINE_STATIC_KEY_FALSE(device_private_key);
43 EXPORT_SYMBOL(device_private_key);
44 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
45
46
47 #if IS_ENABLED(CONFIG_HMM_MIRROR)
48 static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
49
50 /*
51  * struct hmm - HMM per mm struct
52  *
53  * @mm: mm struct this HMM struct is bound to
54  * @lock: lock protecting ranges list
55  * @sequence: we track updates to the CPU page table with a sequence number
56  * @ranges: list of range being snapshotted
57  * @mirrors: list of mirrors for this mm
58  * @mmu_notifier: mmu notifier to track updates to CPU page table
59  * @mirrors_sem: read/write semaphore protecting the mirrors list
60  */
61 struct hmm {
62         struct mm_struct        *mm;
63         spinlock_t              lock;
64         atomic_t                sequence;
65         struct list_head        ranges;
66         struct list_head        mirrors;
67         struct mmu_notifier     mmu_notifier;
68         struct rw_semaphore     mirrors_sem;
69 };
70
71 /*
72  * hmm_register - register HMM against an mm (HMM internal)
73  *
74  * @mm: mm struct to attach to
75  *
76  * This is not intended to be used directly by device drivers. It allocates an
77  * HMM struct if mm does not have one, and initializes it.
78  */
79 static struct hmm *hmm_register(struct mm_struct *mm)
80 {
81         struct hmm *hmm = READ_ONCE(mm->hmm);
82         bool cleanup = false;
83
84         /*
85          * The hmm struct can only be freed once the mm_struct goes away,
86          * hence we should always have pre-allocated an new hmm struct
87          * above.
88          */
89         if (hmm)
90                 return hmm;
91
92         hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
93         if (!hmm)
94                 return NULL;
95         INIT_LIST_HEAD(&hmm->mirrors);
96         init_rwsem(&hmm->mirrors_sem);
97         atomic_set(&hmm->sequence, 0);
98         hmm->mmu_notifier.ops = NULL;
99         INIT_LIST_HEAD(&hmm->ranges);
100         spin_lock_init(&hmm->lock);
101         hmm->mm = mm;
102
103         /*
104          * We should only get here if hold the mmap_sem in write mode ie on
105          * registration of first mirror through hmm_mirror_register()
106          */
107         hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
108         if (__mmu_notifier_register(&hmm->mmu_notifier, mm)) {
109                 kfree(hmm);
110                 return NULL;
111         }
112
113         spin_lock(&mm->page_table_lock);
114         if (!mm->hmm)
115                 mm->hmm = hmm;
116         else
117                 cleanup = true;
118         spin_unlock(&mm->page_table_lock);
119
120         if (cleanup) {
121                 mmu_notifier_unregister(&hmm->mmu_notifier, mm);
122                 kfree(hmm);
123         }
124
125         return mm->hmm;
126 }
127
128 void hmm_mm_destroy(struct mm_struct *mm)
129 {
130         kfree(mm->hmm);
131 }
132
133 static void hmm_invalidate_range(struct hmm *hmm,
134                                  enum hmm_update_type action,
135                                  unsigned long start,
136                                  unsigned long end)
137 {
138         struct hmm_mirror *mirror;
139         struct hmm_range *range;
140
141         spin_lock(&hmm->lock);
142         list_for_each_entry(range, &hmm->ranges, list) {
143                 unsigned long addr, idx, npages;
144
145                 if (end < range->start || start >= range->end)
146                         continue;
147
148                 range->valid = false;
149                 addr = max(start, range->start);
150                 idx = (addr - range->start) >> PAGE_SHIFT;
151                 npages = (min(range->end, end) - addr) >> PAGE_SHIFT;
152                 memset(&range->pfns[idx], 0, sizeof(*range->pfns) * npages);
153         }
154         spin_unlock(&hmm->lock);
155
156         down_read(&hmm->mirrors_sem);
157         list_for_each_entry(mirror, &hmm->mirrors, list)
158                 mirror->ops->sync_cpu_device_pagetables(mirror, action,
159                                                         start, end);
160         up_read(&hmm->mirrors_sem);
161 }
162
163 static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
164 {
165         struct hmm_mirror *mirror;
166         struct hmm *hmm = mm->hmm;
167
168         down_write(&hmm->mirrors_sem);
169         mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
170                                           list);
171         while (mirror) {
172                 list_del_init(&mirror->list);
173                 if (mirror->ops->release) {
174                         /*
175                          * Drop mirrors_sem so callback can wait on any pending
176                          * work that might itself trigger mmu_notifier callback
177                          * and thus would deadlock with us.
178                          */
179                         up_write(&hmm->mirrors_sem);
180                         mirror->ops->release(mirror);
181                         down_write(&hmm->mirrors_sem);
182                 }
183                 mirror = list_first_entry_or_null(&hmm->mirrors,
184                                                   struct hmm_mirror, list);
185         }
186         up_write(&hmm->mirrors_sem);
187 }
188
189 static void hmm_invalidate_range_start(struct mmu_notifier *mn,
190                                        struct mm_struct *mm,
191                                        unsigned long start,
192                                        unsigned long end)
193 {
194         struct hmm *hmm = mm->hmm;
195
196         VM_BUG_ON(!hmm);
197
198         atomic_inc(&hmm->sequence);
199 }
200
201 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
202                                      struct mm_struct *mm,
203                                      unsigned long start,
204                                      unsigned long end)
205 {
206         struct hmm *hmm = mm->hmm;
207
208         VM_BUG_ON(!hmm);
209
210         hmm_invalidate_range(mm->hmm, HMM_UPDATE_INVALIDATE, start, end);
211 }
212
213 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
214         .release                = hmm_release,
215         .invalidate_range_start = hmm_invalidate_range_start,
216         .invalidate_range_end   = hmm_invalidate_range_end,
217 };
218
219 /*
220  * hmm_mirror_register() - register a mirror against an mm
221  *
222  * @mirror: new mirror struct to register
223  * @mm: mm to register against
224  *
225  * To start mirroring a process address space, the device driver must register
226  * an HMM mirror struct.
227  *
228  * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
229  */
230 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
231 {
232         /* Sanity check */
233         if (!mm || !mirror || !mirror->ops)
234                 return -EINVAL;
235
236 again:
237         mirror->hmm = hmm_register(mm);
238         if (!mirror->hmm)
239                 return -ENOMEM;
240
241         down_write(&mirror->hmm->mirrors_sem);
242         if (mirror->hmm->mm == NULL) {
243                 /*
244                  * A racing hmm_mirror_unregister() is about to destroy the hmm
245                  * struct. Try again to allocate a new one.
246                  */
247                 up_write(&mirror->hmm->mirrors_sem);
248                 mirror->hmm = NULL;
249                 goto again;
250         } else {
251                 list_add(&mirror->list, &mirror->hmm->mirrors);
252                 up_write(&mirror->hmm->mirrors_sem);
253         }
254
255         return 0;
256 }
257 EXPORT_SYMBOL(hmm_mirror_register);
258
259 /*
260  * hmm_mirror_unregister() - unregister a mirror
261  *
262  * @mirror: new mirror struct to register
263  *
264  * Stop mirroring a process address space, and cleanup.
265  */
266 void hmm_mirror_unregister(struct hmm_mirror *mirror)
267 {
268         bool should_unregister = false;
269         struct mm_struct *mm;
270         struct hmm *hmm;
271
272         if (mirror->hmm == NULL)
273                 return;
274
275         hmm = mirror->hmm;
276         down_write(&hmm->mirrors_sem);
277         list_del_init(&mirror->list);
278         should_unregister = list_empty(&hmm->mirrors);
279         mirror->hmm = NULL;
280         mm = hmm->mm;
281         hmm->mm = NULL;
282         up_write(&hmm->mirrors_sem);
283
284         if (!should_unregister || mm == NULL)
285                 return;
286
287         spin_lock(&mm->page_table_lock);
288         if (mm->hmm == hmm)
289                 mm->hmm = NULL;
290         spin_unlock(&mm->page_table_lock);
291
292         mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm);
293         kfree(hmm);
294 }
295 EXPORT_SYMBOL(hmm_mirror_unregister);
296
297 struct hmm_vma_walk {
298         struct hmm_range        *range;
299         unsigned long           last;
300         bool                    fault;
301         bool                    block;
302         bool                    write;
303 };
304
305 static int hmm_vma_do_fault(struct mm_walk *walk,
306                             unsigned long addr,
307                             uint64_t *pfn)
308 {
309         unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
310         struct hmm_vma_walk *hmm_vma_walk = walk->private;
311         struct vm_area_struct *vma = walk->vma;
312         int r;
313
314         flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
315         flags |= hmm_vma_walk->write ? FAULT_FLAG_WRITE : 0;
316         r = handle_mm_fault(vma, addr, flags);
317         if (r & VM_FAULT_RETRY)
318                 return -EBUSY;
319         if (r & VM_FAULT_ERROR) {
320                 *pfn = HMM_PFN_ERROR;
321                 return -EFAULT;
322         }
323
324         return -EAGAIN;
325 }
326
327 static int hmm_pfns_bad(unsigned long addr,
328                         unsigned long end,
329                         struct mm_walk *walk)
330 {
331         struct hmm_vma_walk *hmm_vma_walk = walk->private;
332         struct hmm_range *range = hmm_vma_walk->range;
333         uint64_t *pfns = range->pfns;
334         unsigned long i;
335
336         i = (addr - range->start) >> PAGE_SHIFT;
337         for (; addr < end; addr += PAGE_SIZE, i++)
338                 pfns[i] = HMM_PFN_ERROR;
339
340         return 0;
341 }
342
343 /*
344  * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
345  * @start: range virtual start address (inclusive)
346  * @end: range virtual end address (exclusive)
347  * @walk: mm_walk structure
348  * Returns: 0 on success, -EAGAIN after page fault, or page fault error
349  *
350  * This function will be called whenever pmd_none() or pte_none() returns true,
351  * or whenever there is no page directory covering the virtual address range.
352  */
353 static int hmm_vma_walk_hole(unsigned long addr,
354                              unsigned long end,
355                              struct mm_walk *walk)
356 {
357         struct hmm_vma_walk *hmm_vma_walk = walk->private;
358         struct hmm_range *range = hmm_vma_walk->range;
359         uint64_t *pfns = range->pfns;
360         unsigned long i;
361
362         hmm_vma_walk->last = addr;
363         i = (addr - range->start) >> PAGE_SHIFT;
364         for (; addr < end; addr += PAGE_SIZE, i++) {
365                 pfns[i] = 0;
366                 if (hmm_vma_walk->fault) {
367                         int ret;
368
369                         ret = hmm_vma_do_fault(walk, addr, &pfns[i]);
370                         if (ret != -EAGAIN)
371                                 return ret;
372                 }
373         }
374
375         return hmm_vma_walk->fault ? -EAGAIN : 0;
376 }
377
378 static int hmm_vma_handle_pmd(struct mm_walk *walk,
379                               unsigned long addr,
380                               unsigned long end,
381                               uint64_t *pfns,
382                               pmd_t pmd)
383 {
384         struct hmm_vma_walk *hmm_vma_walk = walk->private;
385         unsigned long pfn, i;
386         uint64_t flag = 0;
387
388         if (pmd_protnone(pmd))
389                 return hmm_vma_walk_hole(addr, end, walk);
390
391         if ((hmm_vma_walk->fault & hmm_vma_walk->write) && !pmd_write(pmd))
392                 return hmm_vma_walk_hole(addr, end, walk);
393
394         pfn = pmd_pfn(pmd) + pte_index(addr);
395         flag |= pmd_write(pmd) ? HMM_PFN_WRITE : 0;
396         for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
397                 pfns[i] = hmm_pfn_from_pfn(pfn) | flag;
398         hmm_vma_walk->last = end;
399         return 0;
400 }
401
402 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
403                               unsigned long end, pmd_t *pmdp, pte_t *ptep,
404                               uint64_t *pfn)
405 {
406         struct hmm_vma_walk *hmm_vma_walk = walk->private;
407         struct vm_area_struct *vma = walk->vma;
408         pte_t pte = *ptep;
409
410         *pfn = 0;
411
412         if (pte_none(pte)) {
413                 *pfn = 0;
414                 if (hmm_vma_walk->fault)
415                         goto fault;
416                 return 0;
417         }
418
419         if (!pte_present(pte)) {
420                 swp_entry_t entry = pte_to_swp_entry(pte);
421
422                 if (!non_swap_entry(entry)) {
423                         if (hmm_vma_walk->fault)
424                                 goto fault;
425                         return 0;
426                 }
427
428                 /*
429                  * This is a special swap entry, ignore migration, use
430                  * device and report anything else as error.
431                  */
432                 if (is_device_private_entry(entry)) {
433                         *pfn = hmm_pfn_from_pfn(swp_offset(entry));
434                         if (is_write_device_private_entry(entry)) {
435                                 *pfn |= HMM_PFN_WRITE;
436                         } else if ((hmm_vma_walk->fault & hmm_vma_walk->write))
437                                 goto fault;
438                         *pfn |= HMM_PFN_DEVICE_PRIVATE;
439                         return 0;
440                 }
441
442                 if (is_migration_entry(entry)) {
443                         if (hmm_vma_walk->fault) {
444                                 pte_unmap(ptep);
445                                 hmm_vma_walk->last = addr;
446                                 migration_entry_wait(vma->vm_mm,
447                                                 pmdp, addr);
448                                 return -EAGAIN;
449                         }
450                         return 0;
451                 }
452
453                 /* Report error for everything else */
454                 *pfn = HMM_PFN_ERROR;
455                 return -EFAULT;
456         }
457
458         if ((hmm_vma_walk->fault & hmm_vma_walk->write) && !pte_write(pte))
459                 goto fault;
460
461         *pfn = hmm_pfn_from_pfn(pte_pfn(pte));
462         *pfn |= pte_write(pte) ? HMM_PFN_WRITE : 0;
463         return 0;
464
465 fault:
466         pte_unmap(ptep);
467         /* Fault any virtual address we were asked to fault */
468         return hmm_vma_walk_hole(addr, end, walk);
469 }
470
471 static int hmm_vma_walk_pmd(pmd_t *pmdp,
472                             unsigned long start,
473                             unsigned long end,
474                             struct mm_walk *walk)
475 {
476         struct hmm_vma_walk *hmm_vma_walk = walk->private;
477         struct hmm_range *range = hmm_vma_walk->range;
478         uint64_t *pfns = range->pfns;
479         unsigned long addr = start, i;
480         pte_t *ptep;
481
482         i = (addr - range->start) >> PAGE_SHIFT;
483
484 again:
485         if (pmd_none(*pmdp))
486                 return hmm_vma_walk_hole(start, end, walk);
487
488         if (pmd_huge(*pmdp) && (range->vma->vm_flags & VM_HUGETLB))
489                 return hmm_pfns_bad(start, end, walk);
490
491         if (pmd_devmap(*pmdp) || pmd_trans_huge(*pmdp)) {
492                 pmd_t pmd;
493
494                 /*
495                  * No need to take pmd_lock here, even if some other threads
496                  * is splitting the huge pmd we will get that event through
497                  * mmu_notifier callback.
498                  *
499                  * So just read pmd value and check again its a transparent
500                  * huge or device mapping one and compute corresponding pfn
501                  * values.
502                  */
503                 pmd = pmd_read_atomic(pmdp);
504                 barrier();
505                 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
506                         goto again;
507
508                 return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
509         }
510
511         if (pmd_bad(*pmdp))
512                 return hmm_pfns_bad(start, end, walk);
513
514         ptep = pte_offset_map(pmdp, addr);
515         for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
516                 int r;
517
518                 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
519                 if (r) {
520                         /* hmm_vma_handle_pte() did unmap pte directory */
521                         hmm_vma_walk->last = addr;
522                         return r;
523                 }
524         }
525         pte_unmap(ptep - 1);
526
527         hmm_vma_walk->last = addr;
528         return 0;
529 }
530
531 static void hmm_pfns_clear(uint64_t *pfns,
532                            unsigned long addr,
533                            unsigned long end)
534 {
535         for (; addr < end; addr += PAGE_SIZE, pfns++)
536                 *pfns = 0;
537 }
538
539 static void hmm_pfns_special(struct hmm_range *range)
540 {
541         unsigned long addr = range->start, i = 0;
542
543         for (; addr < range->end; addr += PAGE_SIZE, i++)
544                 range->pfns[i] = HMM_PFN_SPECIAL;
545 }
546
547 /*
548  * hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses
549  * @range: range being snapshotted
550  * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
551  *          vma permission, 0 success
552  *
553  * This snapshots the CPU page table for a range of virtual addresses. Snapshot
554  * validity is tracked by range struct. See hmm_vma_range_done() for further
555  * information.
556  *
557  * The range struct is initialized here. It tracks the CPU page table, but only
558  * if the function returns success (0), in which case the caller must then call
559  * hmm_vma_range_done() to stop CPU page table update tracking on this range.
560  *
561  * NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS
562  * MEMORY CORRUPTION ! YOU HAVE BEEN WARNED !
563  */
564 int hmm_vma_get_pfns(struct hmm_range *range)
565 {
566         struct vm_area_struct *vma = range->vma;
567         struct hmm_vma_walk hmm_vma_walk;
568         struct mm_walk mm_walk;
569         struct hmm *hmm;
570
571         /* Sanity check, this really should not happen ! */
572         if (range->start < vma->vm_start || range->start >= vma->vm_end)
573                 return -EINVAL;
574         if (range->end < vma->vm_start || range->end > vma->vm_end)
575                 return -EINVAL;
576
577         hmm = hmm_register(vma->vm_mm);
578         if (!hmm)
579                 return -ENOMEM;
580         /* Caller must have registered a mirror, via hmm_mirror_register() ! */
581         if (!hmm->mmu_notifier.ops)
582                 return -EINVAL;
583
584         /* FIXME support hugetlb fs */
585         if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) {
586                 hmm_pfns_special(range);
587                 return -EINVAL;
588         }
589
590         if (!(vma->vm_flags & VM_READ)) {
591                 /*
592                  * If vma do not allow read access, then assume that it does
593                  * not allow write access, either. Architecture that allow
594                  * write without read access are not supported by HMM, because
595                  * operations such has atomic access would not work.
596                  */
597                 hmm_pfns_clear(range->pfns, range->start, range->end);
598                 return -EPERM;
599         }
600
601         /* Initialize range to track CPU page table update */
602         spin_lock(&hmm->lock);
603         range->valid = true;
604         list_add_rcu(&range->list, &hmm->ranges);
605         spin_unlock(&hmm->lock);
606
607         hmm_vma_walk.fault = false;
608         hmm_vma_walk.range = range;
609         mm_walk.private = &hmm_vma_walk;
610
611         mm_walk.vma = vma;
612         mm_walk.mm = vma->vm_mm;
613         mm_walk.pte_entry = NULL;
614         mm_walk.test_walk = NULL;
615         mm_walk.hugetlb_entry = NULL;
616         mm_walk.pmd_entry = hmm_vma_walk_pmd;
617         mm_walk.pte_hole = hmm_vma_walk_hole;
618
619         walk_page_range(range->start, range->end, &mm_walk);
620         return 0;
621 }
622 EXPORT_SYMBOL(hmm_vma_get_pfns);
623
624 /*
625  * hmm_vma_range_done() - stop tracking change to CPU page table over a range
626  * @range: range being tracked
627  * Returns: false if range data has been invalidated, true otherwise
628  *
629  * Range struct is used to track updates to the CPU page table after a call to
630  * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done
631  * using the data,  or wants to lock updates to the data it got from those
632  * functions, it must call the hmm_vma_range_done() function, which will then
633  * stop tracking CPU page table updates.
634  *
635  * Note that device driver must still implement general CPU page table update
636  * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using
637  * the mmu_notifier API directly.
638  *
639  * CPU page table update tracking done through hmm_range is only temporary and
640  * to be used while trying to duplicate CPU page table contents for a range of
641  * virtual addresses.
642  *
643  * There are two ways to use this :
644  * again:
645  *   hmm_vma_get_pfns(range); or hmm_vma_fault(...);
646  *   trans = device_build_page_table_update_transaction(pfns);
647  *   device_page_table_lock();
648  *   if (!hmm_vma_range_done(range)) {
649  *     device_page_table_unlock();
650  *     goto again;
651  *   }
652  *   device_commit_transaction(trans);
653  *   device_page_table_unlock();
654  *
655  * Or:
656  *   hmm_vma_get_pfns(range); or hmm_vma_fault(...);
657  *   device_page_table_lock();
658  *   hmm_vma_range_done(range);
659  *   device_update_page_table(range->pfns);
660  *   device_page_table_unlock();
661  */
662 bool hmm_vma_range_done(struct hmm_range *range)
663 {
664         unsigned long npages = (range->end - range->start) >> PAGE_SHIFT;
665         struct hmm *hmm;
666
667         if (range->end <= range->start) {
668                 BUG();
669                 return false;
670         }
671
672         hmm = hmm_register(range->vma->vm_mm);
673         if (!hmm) {
674                 memset(range->pfns, 0, sizeof(*range->pfns) * npages);
675                 return false;
676         }
677
678         spin_lock(&hmm->lock);
679         list_del_rcu(&range->list);
680         spin_unlock(&hmm->lock);
681
682         return range->valid;
683 }
684 EXPORT_SYMBOL(hmm_vma_range_done);
685
686 /*
687  * hmm_vma_fault() - try to fault some address in a virtual address range
688  * @range: range being faulted
689  * @write: is it a write fault
690  * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
691  * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop)
692  *
693  * This is similar to a regular CPU page fault except that it will not trigger
694  * any memory migration if the memory being faulted is not accessible by CPUs.
695  *
696  * On error, for one virtual address in the range, the function will mark the
697  * corresponding HMM pfn entry with an error flag.
698  *
699  * Expected use pattern:
700  * retry:
701  *   down_read(&mm->mmap_sem);
702  *   // Find vma and address device wants to fault, initialize hmm_pfn_t
703  *   // array accordingly
704  *   ret = hmm_vma_fault(range, write, block);
705  *   switch (ret) {
706  *   case -EAGAIN:
707  *     hmm_vma_range_done(range);
708  *     // You might want to rate limit or yield to play nicely, you may
709  *     // also commit any valid pfn in the array assuming that you are
710  *     // getting true from hmm_vma_range_monitor_end()
711  *     goto retry;
712  *   case 0:
713  *     break;
714  *   case -ENOMEM:
715  *   case -EINVAL:
716  *   case -EPERM:
717  *   default:
718  *     // Handle error !
719  *     up_read(&mm->mmap_sem)
720  *     return;
721  *   }
722  *   // Take device driver lock that serialize device page table update
723  *   driver_lock_device_page_table_update();
724  *   hmm_vma_range_done(range);
725  *   // Commit pfns we got from hmm_vma_fault()
726  *   driver_unlock_device_page_table_update();
727  *   up_read(&mm->mmap_sem)
728  *
729  * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0)
730  * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION !
731  *
732  * YOU HAVE BEEN WARNED !
733  */
734 int hmm_vma_fault(struct hmm_range *range, bool write, bool block)
735 {
736         struct vm_area_struct *vma = range->vma;
737         unsigned long start = range->start;
738         struct hmm_vma_walk hmm_vma_walk;
739         struct mm_walk mm_walk;
740         struct hmm *hmm;
741         int ret;
742
743         /* Sanity check, this really should not happen ! */
744         if (range->start < vma->vm_start || range->start >= vma->vm_end)
745                 return -EINVAL;
746         if (range->end < vma->vm_start || range->end > vma->vm_end)
747                 return -EINVAL;
748
749         hmm = hmm_register(vma->vm_mm);
750         if (!hmm) {
751                 hmm_pfns_clear(range->pfns, range->start, range->end);
752                 return -ENOMEM;
753         }
754         /* Caller must have registered a mirror using hmm_mirror_register() */
755         if (!hmm->mmu_notifier.ops)
756                 return -EINVAL;
757
758         /* FIXME support hugetlb fs */
759         if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) {
760                 hmm_pfns_special(range);
761                 return -EINVAL;
762         }
763
764         if (!(vma->vm_flags & VM_READ)) {
765                 /*
766                  * If vma do not allow read access, then assume that it does
767                  * not allow write access, either. Architecture that allow
768                  * write without read access are not supported by HMM, because
769                  * operations such has atomic access would not work.
770                  */
771                 hmm_pfns_clear(range->pfns, range->start, range->end);
772                 return -EPERM;
773         }
774
775         /* Initialize range to track CPU page table update */
776         spin_lock(&hmm->lock);
777         range->valid = true;
778         list_add_rcu(&range->list, &hmm->ranges);
779         spin_unlock(&hmm->lock);
780
781         hmm_vma_walk.fault = true;
782         hmm_vma_walk.write = write;
783         hmm_vma_walk.block = block;
784         hmm_vma_walk.range = range;
785         mm_walk.private = &hmm_vma_walk;
786         hmm_vma_walk.last = range->start;
787
788         mm_walk.vma = vma;
789         mm_walk.mm = vma->vm_mm;
790         mm_walk.pte_entry = NULL;
791         mm_walk.test_walk = NULL;
792         mm_walk.hugetlb_entry = NULL;
793         mm_walk.pmd_entry = hmm_vma_walk_pmd;
794         mm_walk.pte_hole = hmm_vma_walk_hole;
795
796         do {
797                 ret = walk_page_range(start, range->end, &mm_walk);
798                 start = hmm_vma_walk.last;
799         } while (ret == -EAGAIN);
800
801         if (ret) {
802                 unsigned long i;
803
804                 i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
805                 hmm_pfns_clear(&range->pfns[i], hmm_vma_walk.last, range->end);
806                 hmm_vma_range_done(range);
807         }
808         return ret;
809 }
810 EXPORT_SYMBOL(hmm_vma_fault);
811 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
812
813
814 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) ||  IS_ENABLED(CONFIG_DEVICE_PUBLIC)
815 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
816                                        unsigned long addr)
817 {
818         struct page *page;
819
820         page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
821         if (!page)
822                 return NULL;
823         lock_page(page);
824         return page;
825 }
826 EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
827
828
829 static void hmm_devmem_ref_release(struct percpu_ref *ref)
830 {
831         struct hmm_devmem *devmem;
832
833         devmem = container_of(ref, struct hmm_devmem, ref);
834         complete(&devmem->completion);
835 }
836
837 static void hmm_devmem_ref_exit(void *data)
838 {
839         struct percpu_ref *ref = data;
840         struct hmm_devmem *devmem;
841
842         devmem = container_of(ref, struct hmm_devmem, ref);
843         percpu_ref_exit(ref);
844         devm_remove_action(devmem->device, &hmm_devmem_ref_exit, data);
845 }
846
847 static void hmm_devmem_ref_kill(void *data)
848 {
849         struct percpu_ref *ref = data;
850         struct hmm_devmem *devmem;
851
852         devmem = container_of(ref, struct hmm_devmem, ref);
853         percpu_ref_kill(ref);
854         wait_for_completion(&devmem->completion);
855         devm_remove_action(devmem->device, &hmm_devmem_ref_kill, data);
856 }
857
858 static int hmm_devmem_fault(struct vm_area_struct *vma,
859                             unsigned long addr,
860                             const struct page *page,
861                             unsigned int flags,
862                             pmd_t *pmdp)
863 {
864         struct hmm_devmem *devmem = page->pgmap->data;
865
866         return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
867 }
868
869 static void hmm_devmem_free(struct page *page, void *data)
870 {
871         struct hmm_devmem *devmem = data;
872
873         devmem->ops->free(devmem, page);
874 }
875
876 static DEFINE_MUTEX(hmm_devmem_lock);
877 static RADIX_TREE(hmm_devmem_radix, GFP_KERNEL);
878
879 static void hmm_devmem_radix_release(struct resource *resource)
880 {
881         resource_size_t key, align_start, align_size;
882
883         align_start = resource->start & ~(PA_SECTION_SIZE - 1);
884         align_size = ALIGN(resource_size(resource), PA_SECTION_SIZE);
885
886         mutex_lock(&hmm_devmem_lock);
887         for (key = resource->start;
888              key <= resource->end;
889              key += PA_SECTION_SIZE)
890                 radix_tree_delete(&hmm_devmem_radix, key >> PA_SECTION_SHIFT);
891         mutex_unlock(&hmm_devmem_lock);
892 }
893
894 static void hmm_devmem_release(struct device *dev, void *data)
895 {
896         struct hmm_devmem *devmem = data;
897         struct resource *resource = devmem->resource;
898         unsigned long start_pfn, npages;
899         struct zone *zone;
900         struct page *page;
901
902         if (percpu_ref_tryget_live(&devmem->ref)) {
903                 dev_WARN(dev, "%s: page mapping is still live!\n", __func__);
904                 percpu_ref_put(&devmem->ref);
905         }
906
907         /* pages are dead and unused, undo the arch mapping */
908         start_pfn = (resource->start & ~(PA_SECTION_SIZE - 1)) >> PAGE_SHIFT;
909         npages = ALIGN(resource_size(resource), PA_SECTION_SIZE) >> PAGE_SHIFT;
910
911         page = pfn_to_page(start_pfn);
912         zone = page_zone(page);
913
914         mem_hotplug_begin();
915         if (resource->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY)
916                 __remove_pages(zone, start_pfn, npages, NULL);
917         else
918                 arch_remove_memory(start_pfn << PAGE_SHIFT,
919                                    npages << PAGE_SHIFT, NULL);
920         mem_hotplug_done();
921
922         hmm_devmem_radix_release(resource);
923 }
924
925 static struct hmm_devmem *hmm_devmem_find(resource_size_t phys)
926 {
927         WARN_ON_ONCE(!rcu_read_lock_held());
928
929         return radix_tree_lookup(&hmm_devmem_radix, phys >> PA_SECTION_SHIFT);
930 }
931
932 static int hmm_devmem_pages_create(struct hmm_devmem *devmem)
933 {
934         resource_size_t key, align_start, align_size, align_end;
935         struct device *device = devmem->device;
936         int ret, nid, is_ram;
937         unsigned long pfn;
938
939         align_start = devmem->resource->start & ~(PA_SECTION_SIZE - 1);
940         align_size = ALIGN(devmem->resource->start +
941                            resource_size(devmem->resource),
942                            PA_SECTION_SIZE) - align_start;
943
944         is_ram = region_intersects(align_start, align_size,
945                                    IORESOURCE_SYSTEM_RAM,
946                                    IORES_DESC_NONE);
947         if (is_ram == REGION_MIXED) {
948                 WARN_ONCE(1, "%s attempted on mixed region %pr\n",
949                                 __func__, devmem->resource);
950                 return -ENXIO;
951         }
952         if (is_ram == REGION_INTERSECTS)
953                 return -ENXIO;
954
955         if (devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY)
956                 devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
957         else
958                 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
959
960         devmem->pagemap.res = *devmem->resource;
961         devmem->pagemap.page_fault = hmm_devmem_fault;
962         devmem->pagemap.page_free = hmm_devmem_free;
963         devmem->pagemap.dev = devmem->device;
964         devmem->pagemap.ref = &devmem->ref;
965         devmem->pagemap.data = devmem;
966
967         mutex_lock(&hmm_devmem_lock);
968         align_end = align_start + align_size - 1;
969         for (key = align_start; key <= align_end; key += PA_SECTION_SIZE) {
970                 struct hmm_devmem *dup;
971
972                 rcu_read_lock();
973                 dup = hmm_devmem_find(key);
974                 rcu_read_unlock();
975                 if (dup) {
976                         dev_err(device, "%s: collides with mapping for %s\n",
977                                 __func__, dev_name(dup->device));
978                         mutex_unlock(&hmm_devmem_lock);
979                         ret = -EBUSY;
980                         goto error;
981                 }
982                 ret = radix_tree_insert(&hmm_devmem_radix,
983                                         key >> PA_SECTION_SHIFT,
984                                         devmem);
985                 if (ret) {
986                         dev_err(device, "%s: failed: %d\n", __func__, ret);
987                         mutex_unlock(&hmm_devmem_lock);
988                         goto error_radix;
989                 }
990         }
991         mutex_unlock(&hmm_devmem_lock);
992
993         nid = dev_to_node(device);
994         if (nid < 0)
995                 nid = numa_mem_id();
996
997         mem_hotplug_begin();
998         /*
999          * For device private memory we call add_pages() as we only need to
1000          * allocate and initialize struct page for the device memory. More-
1001          * over the device memory is un-accessible thus we do not want to
1002          * create a linear mapping for the memory like arch_add_memory()
1003          * would do.
1004          *
1005          * For device public memory, which is accesible by the CPU, we do
1006          * want the linear mapping and thus use arch_add_memory().
1007          */
1008         if (devmem->pagemap.type == MEMORY_DEVICE_PUBLIC)
1009                 ret = arch_add_memory(nid, align_start, align_size, NULL,
1010                                 false);
1011         else
1012                 ret = add_pages(nid, align_start >> PAGE_SHIFT,
1013                                 align_size >> PAGE_SHIFT, NULL, false);
1014         if (ret) {
1015                 mem_hotplug_done();
1016                 goto error_add_memory;
1017         }
1018         move_pfn_range_to_zone(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
1019                                 align_start >> PAGE_SHIFT,
1020                                 align_size >> PAGE_SHIFT, NULL);
1021         mem_hotplug_done();
1022
1023         for (pfn = devmem->pfn_first; pfn < devmem->pfn_last; pfn++) {
1024                 struct page *page = pfn_to_page(pfn);
1025
1026                 page->pgmap = &devmem->pagemap;
1027         }
1028         return 0;
1029
1030 error_add_memory:
1031         untrack_pfn(NULL, PHYS_PFN(align_start), align_size);
1032 error_radix:
1033         hmm_devmem_radix_release(devmem->resource);
1034 error:
1035         return ret;
1036 }
1037
1038 static int hmm_devmem_match(struct device *dev, void *data, void *match_data)
1039 {
1040         struct hmm_devmem *devmem = data;
1041
1042         return devmem->resource == match_data;
1043 }
1044
1045 static void hmm_devmem_pages_remove(struct hmm_devmem *devmem)
1046 {
1047         devres_release(devmem->device, &hmm_devmem_release,
1048                        &hmm_devmem_match, devmem->resource);
1049 }
1050
1051 /*
1052  * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
1053  *
1054  * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1055  * @device: device struct to bind the resource too
1056  * @size: size in bytes of the device memory to add
1057  * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
1058  *
1059  * This function first finds an empty range of physical address big enough to
1060  * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1061  * in turn allocates struct pages. It does not do anything beyond that; all
1062  * events affecting the memory will go through the various callbacks provided
1063  * by hmm_devmem_ops struct.
1064  *
1065  * Device driver should call this function during device initialization and
1066  * is then responsible of memory management. HMM only provides helpers.
1067  */
1068 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
1069                                   struct device *device,
1070                                   unsigned long size)
1071 {
1072         struct hmm_devmem *devmem;
1073         resource_size_t addr;
1074         int ret;
1075
1076         static_branch_enable(&device_private_key);
1077
1078         devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1079                                    GFP_KERNEL, dev_to_node(device));
1080         if (!devmem)
1081                 return ERR_PTR(-ENOMEM);
1082
1083         init_completion(&devmem->completion);
1084         devmem->pfn_first = -1UL;
1085         devmem->pfn_last = -1UL;
1086         devmem->resource = NULL;
1087         devmem->device = device;
1088         devmem->ops = ops;
1089
1090         ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1091                               0, GFP_KERNEL);
1092         if (ret)
1093                 goto error_percpu_ref;
1094
1095         ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1096         if (ret)
1097                 goto error_devm_add_action;
1098
1099         size = ALIGN(size, PA_SECTION_SIZE);
1100         addr = min((unsigned long)iomem_resource.end,
1101                    (1UL << MAX_PHYSMEM_BITS) - 1);
1102         addr = addr - size + 1UL;
1103
1104         /*
1105          * FIXME add a new helper to quickly walk resource tree and find free
1106          * range
1107          *
1108          * FIXME what about ioport_resource resource ?
1109          */
1110         for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1111                 ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1112                 if (ret != REGION_DISJOINT)
1113                         continue;
1114
1115                 devmem->resource = devm_request_mem_region(device, addr, size,
1116                                                            dev_name(device));
1117                 if (!devmem->resource) {
1118                         ret = -ENOMEM;
1119                         goto error_no_resource;
1120                 }
1121                 break;
1122         }
1123         if (!devmem->resource) {
1124                 ret = -ERANGE;
1125                 goto error_no_resource;
1126         }
1127
1128         devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1129         devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1130         devmem->pfn_last = devmem->pfn_first +
1131                            (resource_size(devmem->resource) >> PAGE_SHIFT);
1132
1133         ret = hmm_devmem_pages_create(devmem);
1134         if (ret)
1135                 goto error_pages;
1136
1137         devres_add(device, devmem);
1138
1139         ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1140         if (ret) {
1141                 hmm_devmem_remove(devmem);
1142                 return ERR_PTR(ret);
1143         }
1144
1145         return devmem;
1146
1147 error_pages:
1148         devm_release_mem_region(device, devmem->resource->start,
1149                                 resource_size(devmem->resource));
1150 error_no_resource:
1151 error_devm_add_action:
1152         hmm_devmem_ref_kill(&devmem->ref);
1153         hmm_devmem_ref_exit(&devmem->ref);
1154 error_percpu_ref:
1155         devres_free(devmem);
1156         return ERR_PTR(ret);
1157 }
1158 EXPORT_SYMBOL(hmm_devmem_add);
1159
1160 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1161                                            struct device *device,
1162                                            struct resource *res)
1163 {
1164         struct hmm_devmem *devmem;
1165         int ret;
1166
1167         if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1168                 return ERR_PTR(-EINVAL);
1169
1170         static_branch_enable(&device_private_key);
1171
1172         devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1173                                    GFP_KERNEL, dev_to_node(device));
1174         if (!devmem)
1175                 return ERR_PTR(-ENOMEM);
1176
1177         init_completion(&devmem->completion);
1178         devmem->pfn_first = -1UL;
1179         devmem->pfn_last = -1UL;
1180         devmem->resource = res;
1181         devmem->device = device;
1182         devmem->ops = ops;
1183
1184         ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1185                               0, GFP_KERNEL);
1186         if (ret)
1187                 goto error_percpu_ref;
1188
1189         ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1190         if (ret)
1191                 goto error_devm_add_action;
1192
1193
1194         devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1195         devmem->pfn_last = devmem->pfn_first +
1196                            (resource_size(devmem->resource) >> PAGE_SHIFT);
1197
1198         ret = hmm_devmem_pages_create(devmem);
1199         if (ret)
1200                 goto error_devm_add_action;
1201
1202         devres_add(device, devmem);
1203
1204         ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1205         if (ret) {
1206                 hmm_devmem_remove(devmem);
1207                 return ERR_PTR(ret);
1208         }
1209
1210         return devmem;
1211
1212 error_devm_add_action:
1213         hmm_devmem_ref_kill(&devmem->ref);
1214         hmm_devmem_ref_exit(&devmem->ref);
1215 error_percpu_ref:
1216         devres_free(devmem);
1217         return ERR_PTR(ret);
1218 }
1219 EXPORT_SYMBOL(hmm_devmem_add_resource);
1220
1221 /*
1222  * hmm_devmem_remove() - remove device memory (kill and free ZONE_DEVICE)
1223  *
1224  * @devmem: hmm_devmem struct use to track and manage the ZONE_DEVICE memory
1225  *
1226  * This will hot-unplug memory that was hotplugged by hmm_devmem_add on behalf
1227  * of the device driver. It will free struct page and remove the resource that
1228  * reserved the physical address range for this device memory.
1229  */
1230 void hmm_devmem_remove(struct hmm_devmem *devmem)
1231 {
1232         resource_size_t start, size;
1233         struct device *device;
1234         bool cdm = false;
1235
1236         if (!devmem)
1237                 return;
1238
1239         device = devmem->device;
1240         start = devmem->resource->start;
1241         size = resource_size(devmem->resource);
1242
1243         cdm = devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY;
1244         hmm_devmem_ref_kill(&devmem->ref);
1245         hmm_devmem_ref_exit(&devmem->ref);
1246         hmm_devmem_pages_remove(devmem);
1247
1248         if (!cdm)
1249                 devm_release_mem_region(device, start, size);
1250 }
1251 EXPORT_SYMBOL(hmm_devmem_remove);
1252
1253 /*
1254  * A device driver that wants to handle multiple devices memory through a
1255  * single fake device can use hmm_device to do so. This is purely a helper
1256  * and it is not needed to make use of any HMM functionality.
1257  */
1258 #define HMM_DEVICE_MAX 256
1259
1260 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1261 static DEFINE_SPINLOCK(hmm_device_lock);
1262 static struct class *hmm_device_class;
1263 static dev_t hmm_device_devt;
1264
1265 static void hmm_device_release(struct device *device)
1266 {
1267         struct hmm_device *hmm_device;
1268
1269         hmm_device = container_of(device, struct hmm_device, device);
1270         spin_lock(&hmm_device_lock);
1271         clear_bit(hmm_device->minor, hmm_device_mask);
1272         spin_unlock(&hmm_device_lock);
1273
1274         kfree(hmm_device);
1275 }
1276
1277 struct hmm_device *hmm_device_new(void *drvdata)
1278 {
1279         struct hmm_device *hmm_device;
1280
1281         hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1282         if (!hmm_device)
1283                 return ERR_PTR(-ENOMEM);
1284
1285         spin_lock(&hmm_device_lock);
1286         hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1287         if (hmm_device->minor >= HMM_DEVICE_MAX) {
1288                 spin_unlock(&hmm_device_lock);
1289                 kfree(hmm_device);
1290                 return ERR_PTR(-EBUSY);
1291         }
1292         set_bit(hmm_device->minor, hmm_device_mask);
1293         spin_unlock(&hmm_device_lock);
1294
1295         dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1296         hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1297                                         hmm_device->minor);
1298         hmm_device->device.release = hmm_device_release;
1299         dev_set_drvdata(&hmm_device->device, drvdata);
1300         hmm_device->device.class = hmm_device_class;
1301         device_initialize(&hmm_device->device);
1302
1303         return hmm_device;
1304 }
1305 EXPORT_SYMBOL(hmm_device_new);
1306
1307 void hmm_device_put(struct hmm_device *hmm_device)
1308 {
1309         put_device(&hmm_device->device);
1310 }
1311 EXPORT_SYMBOL(hmm_device_put);
1312
1313 static int __init hmm_init(void)
1314 {
1315         int ret;
1316
1317         ret = alloc_chrdev_region(&hmm_device_devt, 0,
1318                                   HMM_DEVICE_MAX,
1319                                   "hmm_device");
1320         if (ret)
1321                 return ret;
1322
1323         hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1324         if (IS_ERR(hmm_device_class)) {
1325                 unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1326                 return PTR_ERR(hmm_device_class);
1327         }
1328         return 0;
1329 }
1330
1331 device_initcall(hmm_init);
1332 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */