decnet: always not take dst->__refcnt when inserting dst into hash table
[linux.git] / kernel / cpu.c
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/unistd.h>
14 #include <linux/cpu.h>
15 #include <linux/oom.h>
16 #include <linux/rcupdate.h>
17 #include <linux/export.h>
18 #include <linux/bug.h>
19 #include <linux/kthread.h>
20 #include <linux/stop_machine.h>
21 #include <linux/mutex.h>
22 #include <linux/gfp.h>
23 #include <linux/suspend.h>
24 #include <linux/lockdep.h>
25 #include <linux/tick.h>
26 #include <linux/irq.h>
27 #include <linux/smpboot.h>
28 #include <linux/relay.h>
29 #include <linux/slab.h>
30
31 #include <trace/events/power.h>
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/cpuhp.h>
34
35 #include "smpboot.h"
36
37 /**
38  * cpuhp_cpu_state - Per cpu hotplug state storage
39  * @state:      The current cpu state
40  * @target:     The target state
41  * @thread:     Pointer to the hotplug thread
42  * @should_run: Thread should execute
43  * @rollback:   Perform a rollback
44  * @single:     Single callback invocation
45  * @bringup:    Single callback bringup or teardown selector
46  * @cb_state:   The state for a single callback (install/uninstall)
47  * @result:     Result of the operation
48  * @done:       Signal completion to the issuer of the task
49  */
50 struct cpuhp_cpu_state {
51         enum cpuhp_state        state;
52         enum cpuhp_state        target;
53 #ifdef CONFIG_SMP
54         struct task_struct      *thread;
55         bool                    should_run;
56         bool                    rollback;
57         bool                    single;
58         bool                    bringup;
59         struct hlist_node       *node;
60         enum cpuhp_state        cb_state;
61         int                     result;
62         struct completion       done;
63 #endif
64 };
65
66 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
67
68 /**
69  * cpuhp_step - Hotplug state machine step
70  * @name:       Name of the step
71  * @startup:    Startup function of the step
72  * @teardown:   Teardown function of the step
73  * @skip_onerr: Do not invoke the functions on error rollback
74  *              Will go away once the notifiers are gone
75  * @cant_stop:  Bringup/teardown can't be stopped at this step
76  */
77 struct cpuhp_step {
78         const char              *name;
79         union {
80                 int             (*single)(unsigned int cpu);
81                 int             (*multi)(unsigned int cpu,
82                                          struct hlist_node *node);
83         } startup;
84         union {
85                 int             (*single)(unsigned int cpu);
86                 int             (*multi)(unsigned int cpu,
87                                          struct hlist_node *node);
88         } teardown;
89         struct hlist_head       list;
90         bool                    skip_onerr;
91         bool                    cant_stop;
92         bool                    multi_instance;
93 };
94
95 static DEFINE_MUTEX(cpuhp_state_mutex);
96 static struct cpuhp_step cpuhp_bp_states[];
97 static struct cpuhp_step cpuhp_ap_states[];
98
99 static bool cpuhp_is_ap_state(enum cpuhp_state state)
100 {
101         /*
102          * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
103          * purposes as that state is handled explicitly in cpu_down.
104          */
105         return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
106 }
107
108 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
109 {
110         struct cpuhp_step *sp;
111
112         sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
113         return sp + state;
114 }
115
116 /**
117  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
118  * @cpu:        The cpu for which the callback should be invoked
119  * @step:       The step in the state machine
120  * @bringup:    True if the bringup callback should be invoked
121  *
122  * Called from cpu hotplug and from the state register machinery.
123  */
124 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
125                                  bool bringup, struct hlist_node *node)
126 {
127         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
128         struct cpuhp_step *step = cpuhp_get_step(state);
129         int (*cbm)(unsigned int cpu, struct hlist_node *node);
130         int (*cb)(unsigned int cpu);
131         int ret, cnt;
132
133         if (!step->multi_instance) {
134                 cb = bringup ? step->startup.single : step->teardown.single;
135                 if (!cb)
136                         return 0;
137                 trace_cpuhp_enter(cpu, st->target, state, cb);
138                 ret = cb(cpu);
139                 trace_cpuhp_exit(cpu, st->state, state, ret);
140                 return ret;
141         }
142         cbm = bringup ? step->startup.multi : step->teardown.multi;
143         if (!cbm)
144                 return 0;
145
146         /* Single invocation for instance add/remove */
147         if (node) {
148                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
149                 ret = cbm(cpu, node);
150                 trace_cpuhp_exit(cpu, st->state, state, ret);
151                 return ret;
152         }
153
154         /* State transition. Invoke on all instances */
155         cnt = 0;
156         hlist_for_each(node, &step->list) {
157                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
158                 ret = cbm(cpu, node);
159                 trace_cpuhp_exit(cpu, st->state, state, ret);
160                 if (ret)
161                         goto err;
162                 cnt++;
163         }
164         return 0;
165 err:
166         /* Rollback the instances if one failed */
167         cbm = !bringup ? step->startup.multi : step->teardown.multi;
168         if (!cbm)
169                 return ret;
170
171         hlist_for_each(node, &step->list) {
172                 if (!cnt--)
173                         break;
174                 cbm(cpu, node);
175         }
176         return ret;
177 }
178
179 #ifdef CONFIG_SMP
180 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
181 static DEFINE_MUTEX(cpu_add_remove_lock);
182 bool cpuhp_tasks_frozen;
183 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
184
185 /*
186  * The following two APIs (cpu_maps_update_begin/done) must be used when
187  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
188  */
189 void cpu_maps_update_begin(void)
190 {
191         mutex_lock(&cpu_add_remove_lock);
192 }
193
194 void cpu_maps_update_done(void)
195 {
196         mutex_unlock(&cpu_add_remove_lock);
197 }
198
199 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
200  * Should always be manipulated under cpu_add_remove_lock
201  */
202 static int cpu_hotplug_disabled;
203
204 #ifdef CONFIG_HOTPLUG_CPU
205
206 static struct {
207         struct task_struct *active_writer;
208         /* wait queue to wake up the active_writer */
209         wait_queue_head_t wq;
210         /* verifies that no writer will get active while readers are active */
211         struct mutex lock;
212         /*
213          * Also blocks the new readers during
214          * an ongoing cpu hotplug operation.
215          */
216         atomic_t refcount;
217
218 #ifdef CONFIG_DEBUG_LOCK_ALLOC
219         struct lockdep_map dep_map;
220 #endif
221 } cpu_hotplug = {
222         .active_writer = NULL,
223         .wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq),
224         .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
225 #ifdef CONFIG_DEBUG_LOCK_ALLOC
226         .dep_map = STATIC_LOCKDEP_MAP_INIT("cpu_hotplug.dep_map", &cpu_hotplug.dep_map),
227 #endif
228 };
229
230 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
231 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
232 #define cpuhp_lock_acquire_tryread() \
233                                   lock_map_acquire_tryread(&cpu_hotplug.dep_map)
234 #define cpuhp_lock_acquire()      lock_map_acquire(&cpu_hotplug.dep_map)
235 #define cpuhp_lock_release()      lock_map_release(&cpu_hotplug.dep_map)
236
237
238 void get_online_cpus(void)
239 {
240         might_sleep();
241         if (cpu_hotplug.active_writer == current)
242                 return;
243         cpuhp_lock_acquire_read();
244         mutex_lock(&cpu_hotplug.lock);
245         atomic_inc(&cpu_hotplug.refcount);
246         mutex_unlock(&cpu_hotplug.lock);
247 }
248 EXPORT_SYMBOL_GPL(get_online_cpus);
249
250 void put_online_cpus(void)
251 {
252         int refcount;
253
254         if (cpu_hotplug.active_writer == current)
255                 return;
256
257         refcount = atomic_dec_return(&cpu_hotplug.refcount);
258         if (WARN_ON(refcount < 0)) /* try to fix things up */
259                 atomic_inc(&cpu_hotplug.refcount);
260
261         if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq))
262                 wake_up(&cpu_hotplug.wq);
263
264         cpuhp_lock_release();
265
266 }
267 EXPORT_SYMBOL_GPL(put_online_cpus);
268
269 /*
270  * This ensures that the hotplug operation can begin only when the
271  * refcount goes to zero.
272  *
273  * Note that during a cpu-hotplug operation, the new readers, if any,
274  * will be blocked by the cpu_hotplug.lock
275  *
276  * Since cpu_hotplug_begin() is always called after invoking
277  * cpu_maps_update_begin(), we can be sure that only one writer is active.
278  *
279  * Note that theoretically, there is a possibility of a livelock:
280  * - Refcount goes to zero, last reader wakes up the sleeping
281  *   writer.
282  * - Last reader unlocks the cpu_hotplug.lock.
283  * - A new reader arrives at this moment, bumps up the refcount.
284  * - The writer acquires the cpu_hotplug.lock finds the refcount
285  *   non zero and goes to sleep again.
286  *
287  * However, this is very difficult to achieve in practice since
288  * get_online_cpus() not an api which is called all that often.
289  *
290  */
291 void cpu_hotplug_begin(void)
292 {
293         DEFINE_WAIT(wait);
294
295         cpu_hotplug.active_writer = current;
296         cpuhp_lock_acquire();
297
298         for (;;) {
299                 mutex_lock(&cpu_hotplug.lock);
300                 prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE);
301                 if (likely(!atomic_read(&cpu_hotplug.refcount)))
302                                 break;
303                 mutex_unlock(&cpu_hotplug.lock);
304                 schedule();
305         }
306         finish_wait(&cpu_hotplug.wq, &wait);
307 }
308
309 void cpu_hotplug_done(void)
310 {
311         cpu_hotplug.active_writer = NULL;
312         mutex_unlock(&cpu_hotplug.lock);
313         cpuhp_lock_release();
314 }
315
316 /*
317  * Wait for currently running CPU hotplug operations to complete (if any) and
318  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
319  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
320  * hotplug path before performing hotplug operations. So acquiring that lock
321  * guarantees mutual exclusion from any currently running hotplug operations.
322  */
323 void cpu_hotplug_disable(void)
324 {
325         cpu_maps_update_begin();
326         cpu_hotplug_disabled++;
327         cpu_maps_update_done();
328 }
329 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
330
331 static void __cpu_hotplug_enable(void)
332 {
333         if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
334                 return;
335         cpu_hotplug_disabled--;
336 }
337
338 void cpu_hotplug_enable(void)
339 {
340         cpu_maps_update_begin();
341         __cpu_hotplug_enable();
342         cpu_maps_update_done();
343 }
344 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
345 #endif  /* CONFIG_HOTPLUG_CPU */
346
347 /* Notifier wrappers for transitioning to state machine */
348
349 static int bringup_wait_for_ap(unsigned int cpu)
350 {
351         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
352
353         wait_for_completion(&st->done);
354         return st->result;
355 }
356
357 static int bringup_cpu(unsigned int cpu)
358 {
359         struct task_struct *idle = idle_thread_get(cpu);
360         int ret;
361
362         /*
363          * Some architectures have to walk the irq descriptors to
364          * setup the vector space for the cpu which comes online.
365          * Prevent irq alloc/free across the bringup.
366          */
367         irq_lock_sparse();
368
369         /* Arch-specific enabling code. */
370         ret = __cpu_up(cpu, idle);
371         irq_unlock_sparse();
372         if (ret)
373                 return ret;
374         ret = bringup_wait_for_ap(cpu);
375         BUG_ON(!cpu_online(cpu));
376         return ret;
377 }
378
379 /*
380  * Hotplug state machine related functions
381  */
382 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
383 {
384         for (st->state++; st->state < st->target; st->state++) {
385                 struct cpuhp_step *step = cpuhp_get_step(st->state);
386
387                 if (!step->skip_onerr)
388                         cpuhp_invoke_callback(cpu, st->state, true, NULL);
389         }
390 }
391
392 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
393                                 enum cpuhp_state target)
394 {
395         enum cpuhp_state prev_state = st->state;
396         int ret = 0;
397
398         for (; st->state > target; st->state--) {
399                 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL);
400                 if (ret) {
401                         st->target = prev_state;
402                         undo_cpu_down(cpu, st);
403                         break;
404                 }
405         }
406         return ret;
407 }
408
409 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
410 {
411         for (st->state--; st->state > st->target; st->state--) {
412                 struct cpuhp_step *step = cpuhp_get_step(st->state);
413
414                 if (!step->skip_onerr)
415                         cpuhp_invoke_callback(cpu, st->state, false, NULL);
416         }
417 }
418
419 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
420                               enum cpuhp_state target)
421 {
422         enum cpuhp_state prev_state = st->state;
423         int ret = 0;
424
425         while (st->state < target) {
426                 st->state++;
427                 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL);
428                 if (ret) {
429                         st->target = prev_state;
430                         undo_cpu_up(cpu, st);
431                         break;
432                 }
433         }
434         return ret;
435 }
436
437 /*
438  * The cpu hotplug threads manage the bringup and teardown of the cpus
439  */
440 static void cpuhp_create(unsigned int cpu)
441 {
442         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
443
444         init_completion(&st->done);
445 }
446
447 static int cpuhp_should_run(unsigned int cpu)
448 {
449         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
450
451         return st->should_run;
452 }
453
454 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
455 static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
456 {
457         enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU);
458
459         return cpuhp_down_callbacks(cpu, st, target);
460 }
461
462 /* Execute the online startup callbacks. Used to be CPU_ONLINE */
463 static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
464 {
465         return cpuhp_up_callbacks(cpu, st, st->target);
466 }
467
468 /*
469  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
470  * callbacks when a state gets [un]installed at runtime.
471  */
472 static void cpuhp_thread_fun(unsigned int cpu)
473 {
474         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
475         int ret = 0;
476
477         /*
478          * Paired with the mb() in cpuhp_kick_ap_work and
479          * cpuhp_invoke_ap_callback, so the work set is consistent visible.
480          */
481         smp_mb();
482         if (!st->should_run)
483                 return;
484
485         st->should_run = false;
486
487         /* Single callback invocation for [un]install ? */
488         if (st->single) {
489                 if (st->cb_state < CPUHP_AP_ONLINE) {
490                         local_irq_disable();
491                         ret = cpuhp_invoke_callback(cpu, st->cb_state,
492                                                     st->bringup, st->node);
493                         local_irq_enable();
494                 } else {
495                         ret = cpuhp_invoke_callback(cpu, st->cb_state,
496                                                     st->bringup, st->node);
497                 }
498         } else if (st->rollback) {
499                 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
500
501                 undo_cpu_down(cpu, st);
502                 st->rollback = false;
503         } else {
504                 /* Cannot happen .... */
505                 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
506
507                 /* Regular hotplug work */
508                 if (st->state < st->target)
509                         ret = cpuhp_ap_online(cpu, st);
510                 else if (st->state > st->target)
511                         ret = cpuhp_ap_offline(cpu, st);
512         }
513         st->result = ret;
514         complete(&st->done);
515 }
516
517 /* Invoke a single callback on a remote cpu */
518 static int
519 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
520                          struct hlist_node *node)
521 {
522         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
523
524         if (!cpu_online(cpu))
525                 return 0;
526
527         /*
528          * If we are up and running, use the hotplug thread. For early calls
529          * we invoke the thread function directly.
530          */
531         if (!st->thread)
532                 return cpuhp_invoke_callback(cpu, state, bringup, node);
533
534         st->cb_state = state;
535         st->single = true;
536         st->bringup = bringup;
537         st->node = node;
538
539         /*
540          * Make sure the above stores are visible before should_run becomes
541          * true. Paired with the mb() above in cpuhp_thread_fun()
542          */
543         smp_mb();
544         st->should_run = true;
545         wake_up_process(st->thread);
546         wait_for_completion(&st->done);
547         return st->result;
548 }
549
550 /* Regular hotplug invocation of the AP hotplug thread */
551 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st)
552 {
553         st->result = 0;
554         st->single = false;
555         /*
556          * Make sure the above stores are visible before should_run becomes
557          * true. Paired with the mb() above in cpuhp_thread_fun()
558          */
559         smp_mb();
560         st->should_run = true;
561         wake_up_process(st->thread);
562 }
563
564 static int cpuhp_kick_ap_work(unsigned int cpu)
565 {
566         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
567         enum cpuhp_state state = st->state;
568
569         trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
570         __cpuhp_kick_ap_work(st);
571         wait_for_completion(&st->done);
572         trace_cpuhp_exit(cpu, st->state, state, st->result);
573         return st->result;
574 }
575
576 static struct smp_hotplug_thread cpuhp_threads = {
577         .store                  = &cpuhp_state.thread,
578         .create                 = &cpuhp_create,
579         .thread_should_run      = cpuhp_should_run,
580         .thread_fn              = cpuhp_thread_fun,
581         .thread_comm            = "cpuhp/%u",
582         .selfparking            = true,
583 };
584
585 void __init cpuhp_threads_init(void)
586 {
587         BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
588         kthread_unpark(this_cpu_read(cpuhp_state.thread));
589 }
590
591 #ifdef CONFIG_HOTPLUG_CPU
592 /**
593  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
594  * @cpu: a CPU id
595  *
596  * This function walks all processes, finds a valid mm struct for each one and
597  * then clears a corresponding bit in mm's cpumask.  While this all sounds
598  * trivial, there are various non-obvious corner cases, which this function
599  * tries to solve in a safe manner.
600  *
601  * Also note that the function uses a somewhat relaxed locking scheme, so it may
602  * be called only for an already offlined CPU.
603  */
604 void clear_tasks_mm_cpumask(int cpu)
605 {
606         struct task_struct *p;
607
608         /*
609          * This function is called after the cpu is taken down and marked
610          * offline, so its not like new tasks will ever get this cpu set in
611          * their mm mask. -- Peter Zijlstra
612          * Thus, we may use rcu_read_lock() here, instead of grabbing
613          * full-fledged tasklist_lock.
614          */
615         WARN_ON(cpu_online(cpu));
616         rcu_read_lock();
617         for_each_process(p) {
618                 struct task_struct *t;
619
620                 /*
621                  * Main thread might exit, but other threads may still have
622                  * a valid mm. Find one.
623                  */
624                 t = find_lock_task_mm(p);
625                 if (!t)
626                         continue;
627                 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
628                 task_unlock(t);
629         }
630         rcu_read_unlock();
631 }
632
633 static inline void check_for_tasks(int dead_cpu)
634 {
635         struct task_struct *g, *p;
636
637         read_lock(&tasklist_lock);
638         for_each_process_thread(g, p) {
639                 if (!p->on_rq)
640                         continue;
641                 /*
642                  * We do the check with unlocked task_rq(p)->lock.
643                  * Order the reading to do not warn about a task,
644                  * which was running on this cpu in the past, and
645                  * it's just been woken on another cpu.
646                  */
647                 rmb();
648                 if (task_cpu(p) != dead_cpu)
649                         continue;
650
651                 pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
652                         p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
653         }
654         read_unlock(&tasklist_lock);
655 }
656
657 /* Take this CPU down. */
658 static int take_cpu_down(void *_param)
659 {
660         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
661         enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
662         int err, cpu = smp_processor_id();
663
664         /* Ensure this CPU doesn't handle any more interrupts. */
665         err = __cpu_disable();
666         if (err < 0)
667                 return err;
668
669         /*
670          * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
671          * do this step again.
672          */
673         WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
674         st->state--;
675         /* Invoke the former CPU_DYING callbacks */
676         for (; st->state > target; st->state--)
677                 cpuhp_invoke_callback(cpu, st->state, false, NULL);
678
679         /* Give up timekeeping duties */
680         tick_handover_do_timer();
681         /* Park the stopper thread */
682         stop_machine_park(cpu);
683         return 0;
684 }
685
686 static int takedown_cpu(unsigned int cpu)
687 {
688         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
689         int err;
690
691         /* Park the smpboot threads */
692         kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
693         smpboot_park_threads(cpu);
694
695         /*
696          * Prevent irq alloc/free while the dying cpu reorganizes the
697          * interrupt affinities.
698          */
699         irq_lock_sparse();
700
701         /*
702          * So now all preempt/rcu users must observe !cpu_active().
703          */
704         err = stop_machine(take_cpu_down, NULL, cpumask_of(cpu));
705         if (err) {
706                 /* CPU refused to die */
707                 irq_unlock_sparse();
708                 /* Unpark the hotplug thread so we can rollback there */
709                 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
710                 return err;
711         }
712         BUG_ON(cpu_online(cpu));
713
714         /*
715          * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
716          * runnable tasks from the cpu, there's only the idle task left now
717          * that the migration thread is done doing the stop_machine thing.
718          *
719          * Wait for the stop thread to go away.
720          */
721         wait_for_completion(&st->done);
722         BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
723
724         /* Interrupts are moved away from the dying cpu, reenable alloc/free */
725         irq_unlock_sparse();
726
727         hotplug_cpu__broadcast_tick_pull(cpu);
728         /* This actually kills the CPU. */
729         __cpu_die(cpu);
730
731         tick_cleanup_dead_cpu(cpu);
732         return 0;
733 }
734
735 static void cpuhp_complete_idle_dead(void *arg)
736 {
737         struct cpuhp_cpu_state *st = arg;
738
739         complete(&st->done);
740 }
741
742 void cpuhp_report_idle_dead(void)
743 {
744         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
745
746         BUG_ON(st->state != CPUHP_AP_OFFLINE);
747         rcu_report_dead(smp_processor_id());
748         st->state = CPUHP_AP_IDLE_DEAD;
749         /*
750          * We cannot call complete after rcu_report_dead() so we delegate it
751          * to an online cpu.
752          */
753         smp_call_function_single(cpumask_first(cpu_online_mask),
754                                  cpuhp_complete_idle_dead, st, 0);
755 }
756
757 #else
758 #define takedown_cpu            NULL
759 #endif
760
761 #ifdef CONFIG_HOTPLUG_CPU
762
763 /* Requires cpu_add_remove_lock to be held */
764 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
765                            enum cpuhp_state target)
766 {
767         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
768         int prev_state, ret = 0;
769
770         if (num_online_cpus() == 1)
771                 return -EBUSY;
772
773         if (!cpu_present(cpu))
774                 return -EINVAL;
775
776         cpu_hotplug_begin();
777
778         cpuhp_tasks_frozen = tasks_frozen;
779
780         prev_state = st->state;
781         st->target = target;
782         /*
783          * If the current CPU state is in the range of the AP hotplug thread,
784          * then we need to kick the thread.
785          */
786         if (st->state > CPUHP_TEARDOWN_CPU) {
787                 ret = cpuhp_kick_ap_work(cpu);
788                 /*
789                  * The AP side has done the error rollback already. Just
790                  * return the error code..
791                  */
792                 if (ret)
793                         goto out;
794
795                 /*
796                  * We might have stopped still in the range of the AP hotplug
797                  * thread. Nothing to do anymore.
798                  */
799                 if (st->state > CPUHP_TEARDOWN_CPU)
800                         goto out;
801         }
802         /*
803          * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
804          * to do the further cleanups.
805          */
806         ret = cpuhp_down_callbacks(cpu, st, target);
807         if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
808                 st->target = prev_state;
809                 st->rollback = true;
810                 cpuhp_kick_ap_work(cpu);
811         }
812
813 out:
814         cpu_hotplug_done();
815         return ret;
816 }
817
818 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
819 {
820         int err;
821
822         cpu_maps_update_begin();
823
824         if (cpu_hotplug_disabled) {
825                 err = -EBUSY;
826                 goto out;
827         }
828
829         err = _cpu_down(cpu, 0, target);
830
831 out:
832         cpu_maps_update_done();
833         return err;
834 }
835 int cpu_down(unsigned int cpu)
836 {
837         return do_cpu_down(cpu, CPUHP_OFFLINE);
838 }
839 EXPORT_SYMBOL(cpu_down);
840 #endif /*CONFIG_HOTPLUG_CPU*/
841
842 /**
843  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
844  * @cpu: cpu that just started
845  *
846  * It must be called by the arch code on the new cpu, before the new cpu
847  * enables interrupts and before the "boot" cpu returns from __cpu_up().
848  */
849 void notify_cpu_starting(unsigned int cpu)
850 {
851         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
852         enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
853
854         rcu_cpu_starting(cpu);  /* Enables RCU usage on this CPU. */
855         while (st->state < target) {
856                 st->state++;
857                 cpuhp_invoke_callback(cpu, st->state, true, NULL);
858         }
859 }
860
861 /*
862  * Called from the idle task. We need to set active here, so we can kick off
863  * the stopper thread and unpark the smpboot threads. If the target state is
864  * beyond CPUHP_AP_ONLINE_IDLE we kick cpuhp thread and let it bring up the
865  * cpu further.
866  */
867 void cpuhp_online_idle(enum cpuhp_state state)
868 {
869         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
870         unsigned int cpu = smp_processor_id();
871
872         /* Happens for the boot cpu */
873         if (state != CPUHP_AP_ONLINE_IDLE)
874                 return;
875
876         st->state = CPUHP_AP_ONLINE_IDLE;
877
878         /* Unpark the stopper thread and the hotplug thread of this cpu */
879         stop_machine_unpark(cpu);
880         kthread_unpark(st->thread);
881
882         /* Should we go further up ? */
883         if (st->target > CPUHP_AP_ONLINE_IDLE)
884                 __cpuhp_kick_ap_work(st);
885         else
886                 complete(&st->done);
887 }
888
889 /* Requires cpu_add_remove_lock to be held */
890 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
891 {
892         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
893         struct task_struct *idle;
894         int ret = 0;
895
896         cpu_hotplug_begin();
897
898         if (!cpu_present(cpu)) {
899                 ret = -EINVAL;
900                 goto out;
901         }
902
903         /*
904          * The caller of do_cpu_up might have raced with another
905          * caller. Ignore it for now.
906          */
907         if (st->state >= target)
908                 goto out;
909
910         if (st->state == CPUHP_OFFLINE) {
911                 /* Let it fail before we try to bring the cpu up */
912                 idle = idle_thread_get(cpu);
913                 if (IS_ERR(idle)) {
914                         ret = PTR_ERR(idle);
915                         goto out;
916                 }
917         }
918
919         cpuhp_tasks_frozen = tasks_frozen;
920
921         st->target = target;
922         /*
923          * If the current CPU state is in the range of the AP hotplug thread,
924          * then we need to kick the thread once more.
925          */
926         if (st->state > CPUHP_BRINGUP_CPU) {
927                 ret = cpuhp_kick_ap_work(cpu);
928                 /*
929                  * The AP side has done the error rollback already. Just
930                  * return the error code..
931                  */
932                 if (ret)
933                         goto out;
934         }
935
936         /*
937          * Try to reach the target state. We max out on the BP at
938          * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
939          * responsible for bringing it up to the target state.
940          */
941         target = min((int)target, CPUHP_BRINGUP_CPU);
942         ret = cpuhp_up_callbacks(cpu, st, target);
943 out:
944         cpu_hotplug_done();
945         return ret;
946 }
947
948 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
949 {
950         int err = 0;
951
952         if (!cpu_possible(cpu)) {
953                 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
954                        cpu);
955 #if defined(CONFIG_IA64)
956                 pr_err("please check additional_cpus= boot parameter\n");
957 #endif
958                 return -EINVAL;
959         }
960
961         err = try_online_node(cpu_to_node(cpu));
962         if (err)
963                 return err;
964
965         cpu_maps_update_begin();
966
967         if (cpu_hotplug_disabled) {
968                 err = -EBUSY;
969                 goto out;
970         }
971
972         err = _cpu_up(cpu, 0, target);
973 out:
974         cpu_maps_update_done();
975         return err;
976 }
977
978 int cpu_up(unsigned int cpu)
979 {
980         return do_cpu_up(cpu, CPUHP_ONLINE);
981 }
982 EXPORT_SYMBOL_GPL(cpu_up);
983
984 #ifdef CONFIG_PM_SLEEP_SMP
985 static cpumask_var_t frozen_cpus;
986
987 int freeze_secondary_cpus(int primary)
988 {
989         int cpu, error = 0;
990
991         cpu_maps_update_begin();
992         if (!cpu_online(primary))
993                 primary = cpumask_first(cpu_online_mask);
994         /*
995          * We take down all of the non-boot CPUs in one shot to avoid races
996          * with the userspace trying to use the CPU hotplug at the same time
997          */
998         cpumask_clear(frozen_cpus);
999
1000         pr_info("Disabling non-boot CPUs ...\n");
1001         for_each_online_cpu(cpu) {
1002                 if (cpu == primary)
1003                         continue;
1004                 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1005                 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1006                 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1007                 if (!error)
1008                         cpumask_set_cpu(cpu, frozen_cpus);
1009                 else {
1010                         pr_err("Error taking CPU%d down: %d\n", cpu, error);
1011                         break;
1012                 }
1013         }
1014
1015         if (!error)
1016                 BUG_ON(num_online_cpus() > 1);
1017         else
1018                 pr_err("Non-boot CPUs are not disabled\n");
1019
1020         /*
1021          * Make sure the CPUs won't be enabled by someone else. We need to do
1022          * this even in case of failure as all disable_nonboot_cpus() users are
1023          * supposed to do enable_nonboot_cpus() on the failure path.
1024          */
1025         cpu_hotplug_disabled++;
1026
1027         cpu_maps_update_done();
1028         return error;
1029 }
1030
1031 void __weak arch_enable_nonboot_cpus_begin(void)
1032 {
1033 }
1034
1035 void __weak arch_enable_nonboot_cpus_end(void)
1036 {
1037 }
1038
1039 void enable_nonboot_cpus(void)
1040 {
1041         int cpu, error;
1042
1043         /* Allow everyone to use the CPU hotplug again */
1044         cpu_maps_update_begin();
1045         __cpu_hotplug_enable();
1046         if (cpumask_empty(frozen_cpus))
1047                 goto out;
1048
1049         pr_info("Enabling non-boot CPUs ...\n");
1050
1051         arch_enable_nonboot_cpus_begin();
1052
1053         for_each_cpu(cpu, frozen_cpus) {
1054                 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1055                 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1056                 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1057                 if (!error) {
1058                         pr_info("CPU%d is up\n", cpu);
1059                         continue;
1060                 }
1061                 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1062         }
1063
1064         arch_enable_nonboot_cpus_end();
1065
1066         cpumask_clear(frozen_cpus);
1067 out:
1068         cpu_maps_update_done();
1069 }
1070
1071 static int __init alloc_frozen_cpus(void)
1072 {
1073         if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1074                 return -ENOMEM;
1075         return 0;
1076 }
1077 core_initcall(alloc_frozen_cpus);
1078
1079 /*
1080  * When callbacks for CPU hotplug notifications are being executed, we must
1081  * ensure that the state of the system with respect to the tasks being frozen
1082  * or not, as reported by the notification, remains unchanged *throughout the
1083  * duration* of the execution of the callbacks.
1084  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1085  *
1086  * This synchronization is implemented by mutually excluding regular CPU
1087  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1088  * Hibernate notifications.
1089  */
1090 static int
1091 cpu_hotplug_pm_callback(struct notifier_block *nb,
1092                         unsigned long action, void *ptr)
1093 {
1094         switch (action) {
1095
1096         case PM_SUSPEND_PREPARE:
1097         case PM_HIBERNATION_PREPARE:
1098                 cpu_hotplug_disable();
1099                 break;
1100
1101         case PM_POST_SUSPEND:
1102         case PM_POST_HIBERNATION:
1103                 cpu_hotplug_enable();
1104                 break;
1105
1106         default:
1107                 return NOTIFY_DONE;
1108         }
1109
1110         return NOTIFY_OK;
1111 }
1112
1113
1114 static int __init cpu_hotplug_pm_sync_init(void)
1115 {
1116         /*
1117          * cpu_hotplug_pm_callback has higher priority than x86
1118          * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1119          * to disable cpu hotplug to avoid cpu hotplug race.
1120          */
1121         pm_notifier(cpu_hotplug_pm_callback, 0);
1122         return 0;
1123 }
1124 core_initcall(cpu_hotplug_pm_sync_init);
1125
1126 #endif /* CONFIG_PM_SLEEP_SMP */
1127
1128 int __boot_cpu_id;
1129
1130 #endif /* CONFIG_SMP */
1131
1132 /* Boot processor state steps */
1133 static struct cpuhp_step cpuhp_bp_states[] = {
1134         [CPUHP_OFFLINE] = {
1135                 .name                   = "offline",
1136                 .startup.single         = NULL,
1137                 .teardown.single        = NULL,
1138         },
1139 #ifdef CONFIG_SMP
1140         [CPUHP_CREATE_THREADS]= {
1141                 .name                   = "threads:prepare",
1142                 .startup.single         = smpboot_create_threads,
1143                 .teardown.single        = NULL,
1144                 .cant_stop              = true,
1145         },
1146         [CPUHP_PERF_PREPARE] = {
1147                 .name                   = "perf:prepare",
1148                 .startup.single         = perf_event_init_cpu,
1149                 .teardown.single        = perf_event_exit_cpu,
1150         },
1151         [CPUHP_WORKQUEUE_PREP] = {
1152                 .name                   = "workqueue:prepare",
1153                 .startup.single         = workqueue_prepare_cpu,
1154                 .teardown.single        = NULL,
1155         },
1156         [CPUHP_HRTIMERS_PREPARE] = {
1157                 .name                   = "hrtimers:prepare",
1158                 .startup.single         = hrtimers_prepare_cpu,
1159                 .teardown.single        = hrtimers_dead_cpu,
1160         },
1161         [CPUHP_SMPCFD_PREPARE] = {
1162                 .name                   = "smpcfd:prepare",
1163                 .startup.single         = smpcfd_prepare_cpu,
1164                 .teardown.single        = smpcfd_dead_cpu,
1165         },
1166         [CPUHP_RELAY_PREPARE] = {
1167                 .name                   = "relay:prepare",
1168                 .startup.single         = relay_prepare_cpu,
1169                 .teardown.single        = NULL,
1170         },
1171         [CPUHP_SLAB_PREPARE] = {
1172                 .name                   = "slab:prepare",
1173                 .startup.single         = slab_prepare_cpu,
1174                 .teardown.single        = slab_dead_cpu,
1175         },
1176         [CPUHP_RCUTREE_PREP] = {
1177                 .name                   = "RCU/tree:prepare",
1178                 .startup.single         = rcutree_prepare_cpu,
1179                 .teardown.single        = rcutree_dead_cpu,
1180         },
1181         /*
1182          * On the tear-down path, timers_dead_cpu() must be invoked
1183          * before blk_mq_queue_reinit_notify() from notify_dead(),
1184          * otherwise a RCU stall occurs.
1185          */
1186         [CPUHP_TIMERS_DEAD] = {
1187                 .name                   = "timers:dead",
1188                 .startup.single         = NULL,
1189                 .teardown.single        = timers_dead_cpu,
1190         },
1191         /* Kicks the plugged cpu into life */
1192         [CPUHP_BRINGUP_CPU] = {
1193                 .name                   = "cpu:bringup",
1194                 .startup.single         = bringup_cpu,
1195                 .teardown.single        = NULL,
1196                 .cant_stop              = true,
1197         },
1198         [CPUHP_AP_SMPCFD_DYING] = {
1199                 .name                   = "smpcfd:dying",
1200                 .startup.single         = NULL,
1201                 .teardown.single        = smpcfd_dying_cpu,
1202         },
1203         /*
1204          * Handled on controll processor until the plugged processor manages
1205          * this itself.
1206          */
1207         [CPUHP_TEARDOWN_CPU] = {
1208                 .name                   = "cpu:teardown",
1209                 .startup.single         = NULL,
1210                 .teardown.single        = takedown_cpu,
1211                 .cant_stop              = true,
1212         },
1213 #else
1214         [CPUHP_BRINGUP_CPU] = { },
1215 #endif
1216 };
1217
1218 /* Application processor state steps */
1219 static struct cpuhp_step cpuhp_ap_states[] = {
1220 #ifdef CONFIG_SMP
1221         /* Final state before CPU kills itself */
1222         [CPUHP_AP_IDLE_DEAD] = {
1223                 .name                   = "idle:dead",
1224         },
1225         /*
1226          * Last state before CPU enters the idle loop to die. Transient state
1227          * for synchronization.
1228          */
1229         [CPUHP_AP_OFFLINE] = {
1230                 .name                   = "ap:offline",
1231                 .cant_stop              = true,
1232         },
1233         /* First state is scheduler control. Interrupts are disabled */
1234         [CPUHP_AP_SCHED_STARTING] = {
1235                 .name                   = "sched:starting",
1236                 .startup.single         = sched_cpu_starting,
1237                 .teardown.single        = sched_cpu_dying,
1238         },
1239         [CPUHP_AP_RCUTREE_DYING] = {
1240                 .name                   = "RCU/tree:dying",
1241                 .startup.single         = NULL,
1242                 .teardown.single        = rcutree_dying_cpu,
1243         },
1244         /* Entry state on starting. Interrupts enabled from here on. Transient
1245          * state for synchronsization */
1246         [CPUHP_AP_ONLINE] = {
1247                 .name                   = "ap:online",
1248         },
1249         /* Handle smpboot threads park/unpark */
1250         [CPUHP_AP_SMPBOOT_THREADS] = {
1251                 .name                   = "smpboot/threads:online",
1252                 .startup.single         = smpboot_unpark_threads,
1253                 .teardown.single        = NULL,
1254         },
1255         [CPUHP_AP_PERF_ONLINE] = {
1256                 .name                   = "perf:online",
1257                 .startup.single         = perf_event_init_cpu,
1258                 .teardown.single        = perf_event_exit_cpu,
1259         },
1260         [CPUHP_AP_WORKQUEUE_ONLINE] = {
1261                 .name                   = "workqueue:online",
1262                 .startup.single         = workqueue_online_cpu,
1263                 .teardown.single        = workqueue_offline_cpu,
1264         },
1265         [CPUHP_AP_RCUTREE_ONLINE] = {
1266                 .name                   = "RCU/tree:online",
1267                 .startup.single         = rcutree_online_cpu,
1268                 .teardown.single        = rcutree_offline_cpu,
1269         },
1270 #endif
1271         /*
1272          * The dynamically registered state space is here
1273          */
1274
1275 #ifdef CONFIG_SMP
1276         /* Last state is scheduler control setting the cpu active */
1277         [CPUHP_AP_ACTIVE] = {
1278                 .name                   = "sched:active",
1279                 .startup.single         = sched_cpu_activate,
1280                 .teardown.single        = sched_cpu_deactivate,
1281         },
1282 #endif
1283
1284         /* CPU is fully up and running. */
1285         [CPUHP_ONLINE] = {
1286                 .name                   = "online",
1287                 .startup.single         = NULL,
1288                 .teardown.single        = NULL,
1289         },
1290 };
1291
1292 /* Sanity check for callbacks */
1293 static int cpuhp_cb_check(enum cpuhp_state state)
1294 {
1295         if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1296                 return -EINVAL;
1297         return 0;
1298 }
1299
1300 /*
1301  * Returns a free for dynamic slot assignment of the Online state. The states
1302  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1303  * by having no name assigned.
1304  */
1305 static int cpuhp_reserve_state(enum cpuhp_state state)
1306 {
1307         enum cpuhp_state i, end;
1308         struct cpuhp_step *step;
1309
1310         switch (state) {
1311         case CPUHP_AP_ONLINE_DYN:
1312                 step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN;
1313                 end = CPUHP_AP_ONLINE_DYN_END;
1314                 break;
1315         case CPUHP_BP_PREPARE_DYN:
1316                 step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN;
1317                 end = CPUHP_BP_PREPARE_DYN_END;
1318                 break;
1319         default:
1320                 return -EINVAL;
1321         }
1322
1323         for (i = state; i <= end; i++, step++) {
1324                 if (!step->name)
1325                         return i;
1326         }
1327         WARN(1, "No more dynamic states available for CPU hotplug\n");
1328         return -ENOSPC;
1329 }
1330
1331 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1332                                  int (*startup)(unsigned int cpu),
1333                                  int (*teardown)(unsigned int cpu),
1334                                  bool multi_instance)
1335 {
1336         /* (Un)Install the callbacks for further cpu hotplug operations */
1337         struct cpuhp_step *sp;
1338         int ret = 0;
1339
1340         if (state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN) {
1341                 ret = cpuhp_reserve_state(state);
1342                 if (ret < 0)
1343                         return ret;
1344                 state = ret;
1345         }
1346         sp = cpuhp_get_step(state);
1347         if (name && sp->name)
1348                 return -EBUSY;
1349
1350         sp->startup.single = startup;
1351         sp->teardown.single = teardown;
1352         sp->name = name;
1353         sp->multi_instance = multi_instance;
1354         INIT_HLIST_HEAD(&sp->list);
1355         return ret;
1356 }
1357
1358 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1359 {
1360         return cpuhp_get_step(state)->teardown.single;
1361 }
1362
1363 /*
1364  * Call the startup/teardown function for a step either on the AP or
1365  * on the current CPU.
1366  */
1367 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1368                             struct hlist_node *node)
1369 {
1370         struct cpuhp_step *sp = cpuhp_get_step(state);
1371         int ret;
1372
1373         if ((bringup && !sp->startup.single) ||
1374             (!bringup && !sp->teardown.single))
1375                 return 0;
1376         /*
1377          * The non AP bound callbacks can fail on bringup. On teardown
1378          * e.g. module removal we crash for now.
1379          */
1380 #ifdef CONFIG_SMP
1381         if (cpuhp_is_ap_state(state))
1382                 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1383         else
1384                 ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1385 #else
1386         ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1387 #endif
1388         BUG_ON(ret && !bringup);
1389         return ret;
1390 }
1391
1392 /*
1393  * Called from __cpuhp_setup_state on a recoverable failure.
1394  *
1395  * Note: The teardown callbacks for rollback are not allowed to fail!
1396  */
1397 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1398                                    struct hlist_node *node)
1399 {
1400         int cpu;
1401
1402         /* Roll back the already executed steps on the other cpus */
1403         for_each_present_cpu(cpu) {
1404                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1405                 int cpustate = st->state;
1406
1407                 if (cpu >= failedcpu)
1408                         break;
1409
1410                 /* Did we invoke the startup call on that cpu ? */
1411                 if (cpustate >= state)
1412                         cpuhp_issue_call(cpu, state, false, node);
1413         }
1414 }
1415
1416 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1417                                bool invoke)
1418 {
1419         struct cpuhp_step *sp;
1420         int cpu;
1421         int ret;
1422
1423         sp = cpuhp_get_step(state);
1424         if (sp->multi_instance == false)
1425                 return -EINVAL;
1426
1427         get_online_cpus();
1428         mutex_lock(&cpuhp_state_mutex);
1429
1430         if (!invoke || !sp->startup.multi)
1431                 goto add_node;
1432
1433         /*
1434          * Try to call the startup callback for each present cpu
1435          * depending on the hotplug state of the cpu.
1436          */
1437         for_each_present_cpu(cpu) {
1438                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1439                 int cpustate = st->state;
1440
1441                 if (cpustate < state)
1442                         continue;
1443
1444                 ret = cpuhp_issue_call(cpu, state, true, node);
1445                 if (ret) {
1446                         if (sp->teardown.multi)
1447                                 cpuhp_rollback_install(cpu, state, node);
1448                         goto unlock;
1449                 }
1450         }
1451 add_node:
1452         ret = 0;
1453         hlist_add_head(node, &sp->list);
1454 unlock:
1455         mutex_unlock(&cpuhp_state_mutex);
1456         put_online_cpus();
1457         return ret;
1458 }
1459 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1460
1461 /**
1462  * __cpuhp_setup_state - Setup the callbacks for an hotplug machine state
1463  * @state:              The state to setup
1464  * @invoke:             If true, the startup function is invoked for cpus where
1465  *                      cpu state >= @state
1466  * @startup:            startup callback function
1467  * @teardown:           teardown callback function
1468  * @multi_instance:     State is set up for multiple instances which get
1469  *                      added afterwards.
1470  *
1471  * Returns:
1472  *   On success:
1473  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1474  *      0 for all other states
1475  *   On failure: proper (negative) error code
1476  */
1477 int __cpuhp_setup_state(enum cpuhp_state state,
1478                         const char *name, bool invoke,
1479                         int (*startup)(unsigned int cpu),
1480                         int (*teardown)(unsigned int cpu),
1481                         bool multi_instance)
1482 {
1483         int cpu, ret = 0;
1484         bool dynstate;
1485
1486         if (cpuhp_cb_check(state) || !name)
1487                 return -EINVAL;
1488
1489         get_online_cpus();
1490         mutex_lock(&cpuhp_state_mutex);
1491
1492         ret = cpuhp_store_callbacks(state, name, startup, teardown,
1493                                     multi_instance);
1494
1495         dynstate = state == CPUHP_AP_ONLINE_DYN;
1496         if (ret > 0 && dynstate) {
1497                 state = ret;
1498                 ret = 0;
1499         }
1500
1501         if (ret || !invoke || !startup)
1502                 goto out;
1503
1504         /*
1505          * Try to call the startup callback for each present cpu
1506          * depending on the hotplug state of the cpu.
1507          */
1508         for_each_present_cpu(cpu) {
1509                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1510                 int cpustate = st->state;
1511
1512                 if (cpustate < state)
1513                         continue;
1514
1515                 ret = cpuhp_issue_call(cpu, state, true, NULL);
1516                 if (ret) {
1517                         if (teardown)
1518                                 cpuhp_rollback_install(cpu, state, NULL);
1519                         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1520                         goto out;
1521                 }
1522         }
1523 out:
1524         mutex_unlock(&cpuhp_state_mutex);
1525         put_online_cpus();
1526         /*
1527          * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1528          * dynamically allocated state in case of success.
1529          */
1530         if (!ret && dynstate)
1531                 return state;
1532         return ret;
1533 }
1534 EXPORT_SYMBOL(__cpuhp_setup_state);
1535
1536 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1537                                   struct hlist_node *node, bool invoke)
1538 {
1539         struct cpuhp_step *sp = cpuhp_get_step(state);
1540         int cpu;
1541
1542         BUG_ON(cpuhp_cb_check(state));
1543
1544         if (!sp->multi_instance)
1545                 return -EINVAL;
1546
1547         get_online_cpus();
1548         mutex_lock(&cpuhp_state_mutex);
1549
1550         if (!invoke || !cpuhp_get_teardown_cb(state))
1551                 goto remove;
1552         /*
1553          * Call the teardown callback for each present cpu depending
1554          * on the hotplug state of the cpu. This function is not
1555          * allowed to fail currently!
1556          */
1557         for_each_present_cpu(cpu) {
1558                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1559                 int cpustate = st->state;
1560
1561                 if (cpustate >= state)
1562                         cpuhp_issue_call(cpu, state, false, node);
1563         }
1564
1565 remove:
1566         hlist_del(node);
1567         mutex_unlock(&cpuhp_state_mutex);
1568         put_online_cpus();
1569
1570         return 0;
1571 }
1572 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1573
1574 /**
1575  * __cpuhp_remove_state - Remove the callbacks for an hotplug machine state
1576  * @state:      The state to remove
1577  * @invoke:     If true, the teardown function is invoked for cpus where
1578  *              cpu state >= @state
1579  *
1580  * The teardown callback is currently not allowed to fail. Think
1581  * about module removal!
1582  */
1583 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1584 {
1585         struct cpuhp_step *sp = cpuhp_get_step(state);
1586         int cpu;
1587
1588         BUG_ON(cpuhp_cb_check(state));
1589
1590         get_online_cpus();
1591
1592         mutex_lock(&cpuhp_state_mutex);
1593         if (sp->multi_instance) {
1594                 WARN(!hlist_empty(&sp->list),
1595                      "Error: Removing state %d which has instances left.\n",
1596                      state);
1597                 goto remove;
1598         }
1599
1600         if (!invoke || !cpuhp_get_teardown_cb(state))
1601                 goto remove;
1602
1603         /*
1604          * Call the teardown callback for each present cpu depending
1605          * on the hotplug state of the cpu. This function is not
1606          * allowed to fail currently!
1607          */
1608         for_each_present_cpu(cpu) {
1609                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1610                 int cpustate = st->state;
1611
1612                 if (cpustate >= state)
1613                         cpuhp_issue_call(cpu, state, false, NULL);
1614         }
1615 remove:
1616         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1617         mutex_unlock(&cpuhp_state_mutex);
1618         put_online_cpus();
1619 }
1620 EXPORT_SYMBOL(__cpuhp_remove_state);
1621
1622 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1623 static ssize_t show_cpuhp_state(struct device *dev,
1624                                 struct device_attribute *attr, char *buf)
1625 {
1626         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1627
1628         return sprintf(buf, "%d\n", st->state);
1629 }
1630 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1631
1632 static ssize_t write_cpuhp_target(struct device *dev,
1633                                   struct device_attribute *attr,
1634                                   const char *buf, size_t count)
1635 {
1636         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1637         struct cpuhp_step *sp;
1638         int target, ret;
1639
1640         ret = kstrtoint(buf, 10, &target);
1641         if (ret)
1642                 return ret;
1643
1644 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1645         if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1646                 return -EINVAL;
1647 #else
1648         if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1649                 return -EINVAL;
1650 #endif
1651
1652         ret = lock_device_hotplug_sysfs();
1653         if (ret)
1654                 return ret;
1655
1656         mutex_lock(&cpuhp_state_mutex);
1657         sp = cpuhp_get_step(target);
1658         ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1659         mutex_unlock(&cpuhp_state_mutex);
1660         if (ret)
1661                 goto out;
1662
1663         if (st->state < target)
1664                 ret = do_cpu_up(dev->id, target);
1665         else
1666                 ret = do_cpu_down(dev->id, target);
1667 out:
1668         unlock_device_hotplug();
1669         return ret ? ret : count;
1670 }
1671
1672 static ssize_t show_cpuhp_target(struct device *dev,
1673                                  struct device_attribute *attr, char *buf)
1674 {
1675         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1676
1677         return sprintf(buf, "%d\n", st->target);
1678 }
1679 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1680
1681 static struct attribute *cpuhp_cpu_attrs[] = {
1682         &dev_attr_state.attr,
1683         &dev_attr_target.attr,
1684         NULL
1685 };
1686
1687 static struct attribute_group cpuhp_cpu_attr_group = {
1688         .attrs = cpuhp_cpu_attrs,
1689         .name = "hotplug",
1690         NULL
1691 };
1692
1693 static ssize_t show_cpuhp_states(struct device *dev,
1694                                  struct device_attribute *attr, char *buf)
1695 {
1696         ssize_t cur, res = 0;
1697         int i;
1698
1699         mutex_lock(&cpuhp_state_mutex);
1700         for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1701                 struct cpuhp_step *sp = cpuhp_get_step(i);
1702
1703                 if (sp->name) {
1704                         cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1705                         buf += cur;
1706                         res += cur;
1707                 }
1708         }
1709         mutex_unlock(&cpuhp_state_mutex);
1710         return res;
1711 }
1712 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1713
1714 static struct attribute *cpuhp_cpu_root_attrs[] = {
1715         &dev_attr_states.attr,
1716         NULL
1717 };
1718
1719 static struct attribute_group cpuhp_cpu_root_attr_group = {
1720         .attrs = cpuhp_cpu_root_attrs,
1721         .name = "hotplug",
1722         NULL
1723 };
1724
1725 static int __init cpuhp_sysfs_init(void)
1726 {
1727         int cpu, ret;
1728
1729         ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1730                                  &cpuhp_cpu_root_attr_group);
1731         if (ret)
1732                 return ret;
1733
1734         for_each_possible_cpu(cpu) {
1735                 struct device *dev = get_cpu_device(cpu);
1736
1737                 if (!dev)
1738                         continue;
1739                 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1740                 if (ret)
1741                         return ret;
1742         }
1743         return 0;
1744 }
1745 device_initcall(cpuhp_sysfs_init);
1746 #endif
1747
1748 /*
1749  * cpu_bit_bitmap[] is a special, "compressed" data structure that
1750  * represents all NR_CPUS bits binary values of 1<<nr.
1751  *
1752  * It is used by cpumask_of() to get a constant address to a CPU
1753  * mask value that has a single bit set only.
1754  */
1755
1756 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1757 #define MASK_DECLARE_1(x)       [x+1][0] = (1UL << (x))
1758 #define MASK_DECLARE_2(x)       MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1759 #define MASK_DECLARE_4(x)       MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1760 #define MASK_DECLARE_8(x)       MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1761
1762 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1763
1764         MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
1765         MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
1766 #if BITS_PER_LONG > 32
1767         MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
1768         MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
1769 #endif
1770 };
1771 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1772
1773 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1774 EXPORT_SYMBOL(cpu_all_bits);
1775
1776 #ifdef CONFIG_INIT_ALL_POSSIBLE
1777 struct cpumask __cpu_possible_mask __read_mostly
1778         = {CPU_BITS_ALL};
1779 #else
1780 struct cpumask __cpu_possible_mask __read_mostly;
1781 #endif
1782 EXPORT_SYMBOL(__cpu_possible_mask);
1783
1784 struct cpumask __cpu_online_mask __read_mostly;
1785 EXPORT_SYMBOL(__cpu_online_mask);
1786
1787 struct cpumask __cpu_present_mask __read_mostly;
1788 EXPORT_SYMBOL(__cpu_present_mask);
1789
1790 struct cpumask __cpu_active_mask __read_mostly;
1791 EXPORT_SYMBOL(__cpu_active_mask);
1792
1793 void init_cpu_present(const struct cpumask *src)
1794 {
1795         cpumask_copy(&__cpu_present_mask, src);
1796 }
1797
1798 void init_cpu_possible(const struct cpumask *src)
1799 {
1800         cpumask_copy(&__cpu_possible_mask, src);
1801 }
1802
1803 void init_cpu_online(const struct cpumask *src)
1804 {
1805         cpumask_copy(&__cpu_online_mask, src);
1806 }
1807
1808 /*
1809  * Activate the first processor.
1810  */
1811 void __init boot_cpu_init(void)
1812 {
1813         int cpu = smp_processor_id();
1814
1815         /* Mark the boot cpu "present", "online" etc for SMP and UP case */
1816         set_cpu_online(cpu, true);
1817         set_cpu_active(cpu, true);
1818         set_cpu_present(cpu, true);
1819         set_cpu_possible(cpu, true);
1820
1821 #ifdef CONFIG_SMP
1822         __boot_cpu_id = cpu;
1823 #endif
1824 }
1825
1826 /*
1827  * Must be called _AFTER_ setting up the per_cpu areas
1828  */
1829 void __init boot_cpu_state_init(void)
1830 {
1831         per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
1832 }