Merge tag 'vfs-6.10-rc4.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[linux.git] / arch / x86 / kernel / machine_kexec_64.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * handle transition of Linux booting another kernel
4  * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
5  */
6
7 #define pr_fmt(fmt)     "kexec: " fmt
8
9 #include <linux/mm.h>
10 #include <linux/kexec.h>
11 #include <linux/string.h>
12 #include <linux/gfp.h>
13 #include <linux/reboot.h>
14 #include <linux/numa.h>
15 #include <linux/ftrace.h>
16 #include <linux/io.h>
17 #include <linux/suspend.h>
18 #include <linux/vmalloc.h>
19 #include <linux/efi.h>
20 #include <linux/cc_platform.h>
21
22 #include <asm/init.h>
23 #include <asm/tlbflush.h>
24 #include <asm/mmu_context.h>
25 #include <asm/io_apic.h>
26 #include <asm/debugreg.h>
27 #include <asm/kexec-bzimage64.h>
28 #include <asm/setup.h>
29 #include <asm/set_memory.h>
30 #include <asm/cpu.h>
31
32 #ifdef CONFIG_ACPI
33 /*
34  * Used while adding mapping for ACPI tables.
35  * Can be reused when other iomem regions need be mapped
36  */
37 struct init_pgtable_data {
38         struct x86_mapping_info *info;
39         pgd_t *level4p;
40 };
41
42 static int mem_region_callback(struct resource *res, void *arg)
43 {
44         struct init_pgtable_data *data = arg;
45
46         return kernel_ident_mapping_init(data->info, data->level4p,
47                                          res->start, res->end + 1);
48 }
49
50 static int
51 map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
52 {
53         struct init_pgtable_data data;
54         unsigned long flags;
55         int ret;
56
57         data.info = info;
58         data.level4p = level4p;
59         flags = IORESOURCE_MEM | IORESOURCE_BUSY;
60
61         ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
62                                   &data, mem_region_callback);
63         if (ret && ret != -EINVAL)
64                 return ret;
65
66         /* ACPI tables could be located in ACPI Non-volatile Storage region */
67         ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
68                                   &data, mem_region_callback);
69         if (ret && ret != -EINVAL)
70                 return ret;
71
72         return 0;
73 }
74 #else
75 static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
76 #endif
77
78 #ifdef CONFIG_KEXEC_FILE
79 const struct kexec_file_ops * const kexec_file_loaders[] = {
80                 &kexec_bzImage64_ops,
81                 NULL
82 };
83 #endif
84
85 static int
86 map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
87 {
88 #ifdef CONFIG_EFI
89         unsigned long mstart, mend;
90
91         if (!efi_enabled(EFI_BOOT))
92                 return 0;
93
94         mstart = (boot_params.efi_info.efi_systab |
95                         ((u64)boot_params.efi_info.efi_systab_hi<<32));
96
97         if (efi_enabled(EFI_64BIT))
98                 mend = mstart + sizeof(efi_system_table_64_t);
99         else
100                 mend = mstart + sizeof(efi_system_table_32_t);
101
102         if (!mstart)
103                 return 0;
104
105         return kernel_ident_mapping_init(info, level4p, mstart, mend);
106 #endif
107         return 0;
108 }
109
110 static void free_transition_pgtable(struct kimage *image)
111 {
112         free_page((unsigned long)image->arch.p4d);
113         image->arch.p4d = NULL;
114         free_page((unsigned long)image->arch.pud);
115         image->arch.pud = NULL;
116         free_page((unsigned long)image->arch.pmd);
117         image->arch.pmd = NULL;
118         free_page((unsigned long)image->arch.pte);
119         image->arch.pte = NULL;
120 }
121
122 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
123 {
124         pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
125         unsigned long vaddr, paddr;
126         int result = -ENOMEM;
127         p4d_t *p4d;
128         pud_t *pud;
129         pmd_t *pmd;
130         pte_t *pte;
131
132         vaddr = (unsigned long)relocate_kernel;
133         paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
134         pgd += pgd_index(vaddr);
135         if (!pgd_present(*pgd)) {
136                 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
137                 if (!p4d)
138                         goto err;
139                 image->arch.p4d = p4d;
140                 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
141         }
142         p4d = p4d_offset(pgd, vaddr);
143         if (!p4d_present(*p4d)) {
144                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
145                 if (!pud)
146                         goto err;
147                 image->arch.pud = pud;
148                 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
149         }
150         pud = pud_offset(p4d, vaddr);
151         if (!pud_present(*pud)) {
152                 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
153                 if (!pmd)
154                         goto err;
155                 image->arch.pmd = pmd;
156                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
157         }
158         pmd = pmd_offset(pud, vaddr);
159         if (!pmd_present(*pmd)) {
160                 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
161                 if (!pte)
162                         goto err;
163                 image->arch.pte = pte;
164                 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
165         }
166         pte = pte_offset_kernel(pmd, vaddr);
167
168         if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
169                 prot = PAGE_KERNEL_EXEC;
170
171         set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
172         return 0;
173 err:
174         return result;
175 }
176
177 static void *alloc_pgt_page(void *data)
178 {
179         struct kimage *image = (struct kimage *)data;
180         struct page *page;
181         void *p = NULL;
182
183         page = kimage_alloc_control_pages(image, 0);
184         if (page) {
185                 p = page_address(page);
186                 clear_page(p);
187         }
188
189         return p;
190 }
191
192 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
193 {
194         struct x86_mapping_info info = {
195                 .alloc_pgt_page = alloc_pgt_page,
196                 .context        = image,
197                 .page_flag      = __PAGE_KERNEL_LARGE_EXEC,
198                 .kernpg_flag    = _KERNPG_TABLE_NOENC,
199         };
200         unsigned long mstart, mend;
201         pgd_t *level4p;
202         int result;
203         int i;
204
205         level4p = (pgd_t *)__va(start_pgtable);
206         clear_page(level4p);
207
208         if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
209                 info.page_flag   |= _PAGE_ENC;
210                 info.kernpg_flag |= _PAGE_ENC;
211         }
212
213         if (direct_gbpages)
214                 info.direct_gbpages = true;
215
216         for (i = 0; i < nr_pfn_mapped; i++) {
217                 mstart = pfn_mapped[i].start << PAGE_SHIFT;
218                 mend   = pfn_mapped[i].end << PAGE_SHIFT;
219
220                 result = kernel_ident_mapping_init(&info,
221                                                  level4p, mstart, mend);
222                 if (result)
223                         return result;
224         }
225
226         /*
227          * segments's mem ranges could be outside 0 ~ max_pfn,
228          * for example when jump back to original kernel from kexeced kernel.
229          * or first kernel is booted with user mem map, and second kernel
230          * could be loaded out of that range.
231          */
232         for (i = 0; i < image->nr_segments; i++) {
233                 mstart = image->segment[i].mem;
234                 mend   = mstart + image->segment[i].memsz;
235
236                 result = kernel_ident_mapping_init(&info,
237                                                  level4p, mstart, mend);
238
239                 if (result)
240                         return result;
241         }
242
243         /*
244          * Prepare EFI systab and ACPI tables for kexec kernel since they are
245          * not covered by pfn_mapped.
246          */
247         result = map_efi_systab(&info, level4p);
248         if (result)
249                 return result;
250
251         result = map_acpi_tables(&info, level4p);
252         if (result)
253                 return result;
254
255         return init_transition_pgtable(image, level4p);
256 }
257
258 static void load_segments(void)
259 {
260         __asm__ __volatile__ (
261                 "\tmovl %0,%%ds\n"
262                 "\tmovl %0,%%es\n"
263                 "\tmovl %0,%%ss\n"
264                 "\tmovl %0,%%fs\n"
265                 "\tmovl %0,%%gs\n"
266                 : : "a" (__KERNEL_DS) : "memory"
267                 );
268 }
269
270 int machine_kexec_prepare(struct kimage *image)
271 {
272         unsigned long start_pgtable;
273         int result;
274
275         /* Calculate the offsets */
276         start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
277
278         /* Setup the identity mapped 64bit page table */
279         result = init_pgtable(image, start_pgtable);
280         if (result)
281                 return result;
282
283         return 0;
284 }
285
286 void machine_kexec_cleanup(struct kimage *image)
287 {
288         free_transition_pgtable(image);
289 }
290
291 /*
292  * Do not allocate memory (or fail in any way) in machine_kexec().
293  * We are past the point of no return, committed to rebooting now.
294  */
295 void machine_kexec(struct kimage *image)
296 {
297         unsigned long page_list[PAGES_NR];
298         unsigned int host_mem_enc_active;
299         int save_ftrace_enabled;
300         void *control_page;
301
302         /*
303          * This must be done before load_segments() since if call depth tracking
304          * is used then GS must be valid to make any function calls.
305          */
306         host_mem_enc_active = cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT);
307
308 #ifdef CONFIG_KEXEC_JUMP
309         if (image->preserve_context)
310                 save_processor_state();
311 #endif
312
313         save_ftrace_enabled = __ftrace_enabled_save();
314
315         /* Interrupts aren't acceptable while we reboot */
316         local_irq_disable();
317         hw_breakpoint_disable();
318         cet_disable();
319
320         if (image->preserve_context) {
321 #ifdef CONFIG_X86_IO_APIC
322                 /*
323                  * We need to put APICs in legacy mode so that we can
324                  * get timer interrupts in second kernel. kexec/kdump
325                  * paths already have calls to restore_boot_irq_mode()
326                  * in one form or other. kexec jump path also need one.
327                  */
328                 clear_IO_APIC();
329                 restore_boot_irq_mode();
330 #endif
331         }
332
333         control_page = page_address(image->control_code_page) + PAGE_SIZE;
334         __memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
335
336         page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
337         page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
338         page_list[PA_TABLE_PAGE] =
339           (unsigned long)__pa(page_address(image->control_code_page));
340
341         if (image->type == KEXEC_TYPE_DEFAULT)
342                 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
343                                                 << PAGE_SHIFT);
344
345         /*
346          * The segment registers are funny things, they have both a
347          * visible and an invisible part.  Whenever the visible part is
348          * set to a specific selector, the invisible part is loaded
349          * with from a table in memory.  At no other time is the
350          * descriptor table in memory accessed.
351          *
352          * I take advantage of this here by force loading the
353          * segments, before I zap the gdt with an invalid value.
354          */
355         load_segments();
356         /*
357          * The gdt & idt are now invalid.
358          * If you want to load them you must set up your own idt & gdt.
359          */
360         native_idt_invalidate();
361         native_gdt_invalidate();
362
363         /* now call it */
364         image->start = relocate_kernel((unsigned long)image->head,
365                                        (unsigned long)page_list,
366                                        image->start,
367                                        image->preserve_context,
368                                        host_mem_enc_active);
369
370 #ifdef CONFIG_KEXEC_JUMP
371         if (image->preserve_context)
372                 restore_processor_state();
373 #endif
374
375         __ftrace_enabled_restore(save_ftrace_enabled);
376 }
377
378 /* arch-dependent functionality related to kexec file-based syscall */
379
380 #ifdef CONFIG_KEXEC_FILE
381 /*
382  * Apply purgatory relocations.
383  *
384  * @pi:         Purgatory to be relocated.
385  * @section:    Section relocations applying to.
386  * @relsec:     Section containing RELAs.
387  * @symtabsec:  Corresponding symtab.
388  *
389  * TODO: Some of the code belongs to generic code. Move that in kexec.c.
390  */
391 int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
392                                      Elf_Shdr *section, const Elf_Shdr *relsec,
393                                      const Elf_Shdr *symtabsec)
394 {
395         unsigned int i;
396         Elf64_Rela *rel;
397         Elf64_Sym *sym;
398         void *location;
399         unsigned long address, sec_base, value;
400         const char *strtab, *name, *shstrtab;
401         const Elf_Shdr *sechdrs;
402
403         /* String & section header string table */
404         sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
405         strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
406         shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
407
408         rel = (void *)pi->ehdr + relsec->sh_offset;
409
410         pr_debug("Applying relocate section %s to %u\n",
411                  shstrtab + relsec->sh_name, relsec->sh_info);
412
413         for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
414
415                 /*
416                  * rel[i].r_offset contains byte offset from beginning
417                  * of section to the storage unit affected.
418                  *
419                  * This is location to update. This is temporary buffer
420                  * where section is currently loaded. This will finally be
421                  * loaded to a different address later, pointed to by
422                  * ->sh_addr. kexec takes care of moving it
423                  *  (kexec_load_segment()).
424                  */
425                 location = pi->purgatory_buf;
426                 location += section->sh_offset;
427                 location += rel[i].r_offset;
428
429                 /* Final address of the location */
430                 address = section->sh_addr + rel[i].r_offset;
431
432                 /*
433                  * rel[i].r_info contains information about symbol table index
434                  * w.r.t which relocation must be made and type of relocation
435                  * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
436                  * these respectively.
437                  */
438                 sym = (void *)pi->ehdr + symtabsec->sh_offset;
439                 sym += ELF64_R_SYM(rel[i].r_info);
440
441                 if (sym->st_name)
442                         name = strtab + sym->st_name;
443                 else
444                         name = shstrtab + sechdrs[sym->st_shndx].sh_name;
445
446                 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
447                          name, sym->st_info, sym->st_shndx, sym->st_value,
448                          sym->st_size);
449
450                 if (sym->st_shndx == SHN_UNDEF) {
451                         pr_err("Undefined symbol: %s\n", name);
452                         return -ENOEXEC;
453                 }
454
455                 if (sym->st_shndx == SHN_COMMON) {
456                         pr_err("symbol '%s' in common section\n", name);
457                         return -ENOEXEC;
458                 }
459
460                 if (sym->st_shndx == SHN_ABS)
461                         sec_base = 0;
462                 else if (sym->st_shndx >= pi->ehdr->e_shnum) {
463                         pr_err("Invalid section %d for symbol %s\n",
464                                sym->st_shndx, name);
465                         return -ENOEXEC;
466                 } else
467                         sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
468
469                 value = sym->st_value;
470                 value += sec_base;
471                 value += rel[i].r_addend;
472
473                 switch (ELF64_R_TYPE(rel[i].r_info)) {
474                 case R_X86_64_NONE:
475                         break;
476                 case R_X86_64_64:
477                         *(u64 *)location = value;
478                         break;
479                 case R_X86_64_32:
480                         *(u32 *)location = value;
481                         if (value != *(u32 *)location)
482                                 goto overflow;
483                         break;
484                 case R_X86_64_32S:
485                         *(s32 *)location = value;
486                         if ((s64)value != *(s32 *)location)
487                                 goto overflow;
488                         break;
489                 case R_X86_64_PC32:
490                 case R_X86_64_PLT32:
491                         value -= (u64)address;
492                         *(u32 *)location = value;
493                         break;
494                 default:
495                         pr_err("Unknown rela relocation: %llu\n",
496                                ELF64_R_TYPE(rel[i].r_info));
497                         return -ENOEXEC;
498                 }
499         }
500         return 0;
501
502 overflow:
503         pr_err("Overflow in relocation type %d value 0x%lx\n",
504                (int)ELF64_R_TYPE(rel[i].r_info), value);
505         return -ENOEXEC;
506 }
507
508 int arch_kimage_file_post_load_cleanup(struct kimage *image)
509 {
510         vfree(image->elf_headers);
511         image->elf_headers = NULL;
512         image->elf_headers_sz = 0;
513
514         return kexec_image_post_load_cleanup_default(image);
515 }
516 #endif /* CONFIG_KEXEC_FILE */
517
518 #ifdef CONFIG_CRASH_DUMP
519
520 static int
521 kexec_mark_range(unsigned long start, unsigned long end, bool protect)
522 {
523         struct page *page;
524         unsigned int nr_pages;
525
526         /*
527          * For physical range: [start, end]. We must skip the unassigned
528          * crashk resource with zero-valued "end" member.
529          */
530         if (!end || start > end)
531                 return 0;
532
533         page = pfn_to_page(start >> PAGE_SHIFT);
534         nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
535         if (protect)
536                 return set_pages_ro(page, nr_pages);
537         else
538                 return set_pages_rw(page, nr_pages);
539 }
540
541 static void kexec_mark_crashkres(bool protect)
542 {
543         unsigned long control;
544
545         kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
546
547         /* Don't touch the control code page used in crash_kexec().*/
548         control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
549         /* Control code page is located in the 2nd page. */
550         kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
551         control += KEXEC_CONTROL_PAGE_SIZE;
552         kexec_mark_range(control, crashk_res.end, protect);
553 }
554
555 void arch_kexec_protect_crashkres(void)
556 {
557         kexec_mark_crashkres(true);
558 }
559
560 void arch_kexec_unprotect_crashkres(void)
561 {
562         kexec_mark_crashkres(false);
563 }
564 #endif
565
566 /*
567  * During a traditional boot under SME, SME will encrypt the kernel,
568  * so the SME kexec kernel also needs to be un-encrypted in order to
569  * replicate a normal SME boot.
570  *
571  * During a traditional boot under SEV, the kernel has already been
572  * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
573  * order to replicate a normal SEV boot.
574  */
575 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
576 {
577         if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
578                 return 0;
579
580         /*
581          * If host memory encryption is active we need to be sure that kexec
582          * pages are not encrypted because when we boot to the new kernel the
583          * pages won't be accessed encrypted (initially).
584          */
585         return set_memory_decrypted((unsigned long)vaddr, pages);
586 }
587
588 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
589 {
590         if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
591                 return;
592
593         /*
594          * If host memory encryption is active we need to reset the pages back
595          * to being an encrypted mapping before freeing them.
596          */
597         set_memory_encrypted((unsigned long)vaddr, pages);
598 }