hwmon: (lm75) remove now-unused include
[linux.git] / lib / scatterlist.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
4  *
5  * Scatterlist handling helpers.
6  */
7 #include <linux/export.h>
8 #include <linux/slab.h>
9 #include <linux/scatterlist.h>
10 #include <linux/highmem.h>
11 #include <linux/kmemleak.h>
12 #include <linux/bvec.h>
13 #include <linux/uio.h>
14
15 /**
16  * sg_next - return the next scatterlist entry in a list
17  * @sg:         The current sg entry
18  *
19  * Description:
20  *   Usually the next entry will be @sg@ + 1, but if this sg element is part
21  *   of a chained scatterlist, it could jump to the start of a new
22  *   scatterlist array.
23  *
24  **/
25 struct scatterlist *sg_next(struct scatterlist *sg)
26 {
27         if (sg_is_last(sg))
28                 return NULL;
29
30         sg++;
31         if (unlikely(sg_is_chain(sg)))
32                 sg = sg_chain_ptr(sg);
33
34         return sg;
35 }
36 EXPORT_SYMBOL(sg_next);
37
38 /**
39  * sg_nents - return total count of entries in scatterlist
40  * @sg:         The scatterlist
41  *
42  * Description:
43  * Allows to know how many entries are in sg, taking into account
44  * chaining as well
45  *
46  **/
47 int sg_nents(struct scatterlist *sg)
48 {
49         int nents;
50         for (nents = 0; sg; sg = sg_next(sg))
51                 nents++;
52         return nents;
53 }
54 EXPORT_SYMBOL(sg_nents);
55
56 /**
57  * sg_nents_for_len - return total count of entries in scatterlist
58  *                    needed to satisfy the supplied length
59  * @sg:         The scatterlist
60  * @len:        The total required length
61  *
62  * Description:
63  * Determines the number of entries in sg that are required to meet
64  * the supplied length, taking into account chaining as well
65  *
66  * Returns:
67  *   the number of sg entries needed, negative error on failure
68  *
69  **/
70 int sg_nents_for_len(struct scatterlist *sg, u64 len)
71 {
72         int nents;
73         u64 total;
74
75         if (!len)
76                 return 0;
77
78         for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
79                 nents++;
80                 total += sg->length;
81                 if (total >= len)
82                         return nents;
83         }
84
85         return -EINVAL;
86 }
87 EXPORT_SYMBOL(sg_nents_for_len);
88
89 /**
90  * sg_last - return the last scatterlist entry in a list
91  * @sgl:        First entry in the scatterlist
92  * @nents:      Number of entries in the scatterlist
93  *
94  * Description:
95  *   Should only be used casually, it (currently) scans the entire list
96  *   to get the last entry.
97  *
98  *   Note that the @sgl@ pointer passed in need not be the first one,
99  *   the important bit is that @nents@ denotes the number of entries that
100  *   exist from @sgl@.
101  *
102  **/
103 struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
104 {
105         struct scatterlist *sg, *ret = NULL;
106         unsigned int i;
107
108         for_each_sg(sgl, sg, nents, i)
109                 ret = sg;
110
111         BUG_ON(!sg_is_last(ret));
112         return ret;
113 }
114 EXPORT_SYMBOL(sg_last);
115
116 /**
117  * sg_init_table - Initialize SG table
118  * @sgl:           The SG table
119  * @nents:         Number of entries in table
120  *
121  * Notes:
122  *   If this is part of a chained sg table, sg_mark_end() should be
123  *   used only on the last table part.
124  *
125  **/
126 void sg_init_table(struct scatterlist *sgl, unsigned int nents)
127 {
128         memset(sgl, 0, sizeof(*sgl) * nents);
129         sg_init_marker(sgl, nents);
130 }
131 EXPORT_SYMBOL(sg_init_table);
132
133 /**
134  * sg_init_one - Initialize a single entry sg list
135  * @sg:          SG entry
136  * @buf:         Virtual address for IO
137  * @buflen:      IO length
138  *
139  **/
140 void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
141 {
142         sg_init_table(sg, 1);
143         sg_set_buf(sg, buf, buflen);
144 }
145 EXPORT_SYMBOL(sg_init_one);
146
147 /*
148  * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
149  * helpers.
150  */
151 static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
152 {
153         if (nents == SG_MAX_SINGLE_ALLOC) {
154                 /*
155                  * Kmemleak doesn't track page allocations as they are not
156                  * commonly used (in a raw form) for kernel data structures.
157                  * As we chain together a list of pages and then a normal
158                  * kmalloc (tracked by kmemleak), in order to for that last
159                  * allocation not to become decoupled (and thus a
160                  * false-positive) we need to inform kmemleak of all the
161                  * intermediate allocations.
162                  */
163                 void *ptr = (void *) __get_free_page(gfp_mask);
164                 kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
165                 return ptr;
166         } else
167                 return kmalloc_array(nents, sizeof(struct scatterlist),
168                                      gfp_mask);
169 }
170
171 static void sg_kfree(struct scatterlist *sg, unsigned int nents)
172 {
173         if (nents == SG_MAX_SINGLE_ALLOC) {
174                 kmemleak_free(sg);
175                 free_page((unsigned long) sg);
176         } else
177                 kfree(sg);
178 }
179
180 /**
181  * __sg_free_table - Free a previously mapped sg table
182  * @table:      The sg table header to use
183  * @max_ents:   The maximum number of entries per single scatterlist
184  * @nents_first_chunk: Number of entries int the (preallocated) first
185  *      scatterlist chunk, 0 means no such preallocated first chunk
186  * @free_fn:    Free function
187  * @num_ents:   Number of entries in the table
188  *
189  *  Description:
190  *    Free an sg table previously allocated and setup with
191  *    __sg_alloc_table().  The @max_ents value must be identical to
192  *    that previously used with __sg_alloc_table().
193  *
194  **/
195 void __sg_free_table(struct sg_table *table, unsigned int max_ents,
196                      unsigned int nents_first_chunk, sg_free_fn *free_fn,
197                      unsigned int num_ents)
198 {
199         struct scatterlist *sgl, *next;
200         unsigned curr_max_ents = nents_first_chunk ?: max_ents;
201
202         if (unlikely(!table->sgl))
203                 return;
204
205         sgl = table->sgl;
206         while (num_ents) {
207                 unsigned int alloc_size = num_ents;
208                 unsigned int sg_size;
209
210                 /*
211                  * If we have more than max_ents segments left,
212                  * then assign 'next' to the sg table after the current one.
213                  * sg_size is then one less than alloc size, since the last
214                  * element is the chain pointer.
215                  */
216                 if (alloc_size > curr_max_ents) {
217                         next = sg_chain_ptr(&sgl[curr_max_ents - 1]);
218                         alloc_size = curr_max_ents;
219                         sg_size = alloc_size - 1;
220                 } else {
221                         sg_size = alloc_size;
222                         next = NULL;
223                 }
224
225                 num_ents -= sg_size;
226                 if (nents_first_chunk)
227                         nents_first_chunk = 0;
228                 else
229                         free_fn(sgl, alloc_size);
230                 sgl = next;
231                 curr_max_ents = max_ents;
232         }
233
234         table->sgl = NULL;
235 }
236 EXPORT_SYMBOL(__sg_free_table);
237
238 /**
239  * sg_free_append_table - Free a previously allocated append sg table.
240  * @table:       The mapped sg append table header
241  *
242  **/
243 void sg_free_append_table(struct sg_append_table *table)
244 {
245         __sg_free_table(&table->sgt, SG_MAX_SINGLE_ALLOC, 0, sg_kfree,
246                         table->total_nents);
247 }
248 EXPORT_SYMBOL(sg_free_append_table);
249
250
251 /**
252  * sg_free_table - Free a previously allocated sg table
253  * @table:      The mapped sg table header
254  *
255  **/
256 void sg_free_table(struct sg_table *table)
257 {
258         __sg_free_table(table, SG_MAX_SINGLE_ALLOC, 0, sg_kfree,
259                         table->orig_nents);
260 }
261 EXPORT_SYMBOL(sg_free_table);
262
263 /**
264  * __sg_alloc_table - Allocate and initialize an sg table with given allocator
265  * @table:      The sg table header to use
266  * @nents:      Number of entries in sg list
267  * @max_ents:   The maximum number of entries the allocator returns per call
268  * @first_chunk: first SGL if preallocated (may be %NULL)
269  * @nents_first_chunk: Number of entries in the (preallocated) first
270  *      scatterlist chunk, 0 means no such preallocated chunk provided by user
271  * @gfp_mask:   GFP allocation mask
272  * @alloc_fn:   Allocator to use
273  *
274  * Description:
275  *   This function returns a @table @nents long. The allocator is
276  *   defined to return scatterlist chunks of maximum size @max_ents.
277  *   Thus if @nents is bigger than @max_ents, the scatterlists will be
278  *   chained in units of @max_ents.
279  *
280  * Notes:
281  *   If this function returns non-0 (eg failure), the caller must call
282  *   __sg_free_table() to cleanup any leftover allocations.
283  *
284  **/
285 int __sg_alloc_table(struct sg_table *table, unsigned int nents,
286                      unsigned int max_ents, struct scatterlist *first_chunk,
287                      unsigned int nents_first_chunk, gfp_t gfp_mask,
288                      sg_alloc_fn *alloc_fn)
289 {
290         struct scatterlist *sg, *prv;
291         unsigned int left;
292         unsigned curr_max_ents = nents_first_chunk ?: max_ents;
293         unsigned prv_max_ents;
294
295         memset(table, 0, sizeof(*table));
296
297         if (nents == 0)
298                 return -EINVAL;
299 #ifdef CONFIG_ARCH_NO_SG_CHAIN
300         if (WARN_ON_ONCE(nents > max_ents))
301                 return -EINVAL;
302 #endif
303
304         left = nents;
305         prv = NULL;
306         do {
307                 unsigned int sg_size, alloc_size = left;
308
309                 if (alloc_size > curr_max_ents) {
310                         alloc_size = curr_max_ents;
311                         sg_size = alloc_size - 1;
312                 } else
313                         sg_size = alloc_size;
314
315                 left -= sg_size;
316
317                 if (first_chunk) {
318                         sg = first_chunk;
319                         first_chunk = NULL;
320                 } else {
321                         sg = alloc_fn(alloc_size, gfp_mask);
322                 }
323                 if (unlikely(!sg)) {
324                         /*
325                          * Adjust entry count to reflect that the last
326                          * entry of the previous table won't be used for
327                          * linkage.  Without this, sg_kfree() may get
328                          * confused.
329                          */
330                         if (prv)
331                                 table->nents = ++table->orig_nents;
332
333                         return -ENOMEM;
334                 }
335
336                 sg_init_table(sg, alloc_size);
337                 table->nents = table->orig_nents += sg_size;
338
339                 /*
340                  * If this is the first mapping, assign the sg table header.
341                  * If this is not the first mapping, chain previous part.
342                  */
343                 if (prv)
344                         sg_chain(prv, prv_max_ents, sg);
345                 else
346                         table->sgl = sg;
347
348                 /*
349                  * If no more entries after this one, mark the end
350                  */
351                 if (!left)
352                         sg_mark_end(&sg[sg_size - 1]);
353
354                 prv = sg;
355                 prv_max_ents = curr_max_ents;
356                 curr_max_ents = max_ents;
357         } while (left);
358
359         return 0;
360 }
361 EXPORT_SYMBOL(__sg_alloc_table);
362
363 /**
364  * sg_alloc_table - Allocate and initialize an sg table
365  * @table:      The sg table header to use
366  * @nents:      Number of entries in sg list
367  * @gfp_mask:   GFP allocation mask
368  *
369  *  Description:
370  *    Allocate and initialize an sg table. If @nents@ is larger than
371  *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
372  *
373  **/
374 int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
375 {
376         int ret;
377
378         ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
379                                NULL, 0, gfp_mask, sg_kmalloc);
380         if (unlikely(ret))
381                 sg_free_table(table);
382         return ret;
383 }
384 EXPORT_SYMBOL(sg_alloc_table);
385
386 static struct scatterlist *get_next_sg(struct sg_append_table *table,
387                                        struct scatterlist *cur,
388                                        unsigned long needed_sges,
389                                        gfp_t gfp_mask)
390 {
391         struct scatterlist *new_sg, *next_sg;
392         unsigned int alloc_size;
393
394         if (cur) {
395                 next_sg = sg_next(cur);
396                 /* Check if last entry should be keeped for chainning */
397                 if (!sg_is_last(next_sg) || needed_sges == 1)
398                         return next_sg;
399         }
400
401         alloc_size = min_t(unsigned long, needed_sges, SG_MAX_SINGLE_ALLOC);
402         new_sg = sg_kmalloc(alloc_size, gfp_mask);
403         if (!new_sg)
404                 return ERR_PTR(-ENOMEM);
405         sg_init_table(new_sg, alloc_size);
406         if (cur) {
407                 table->total_nents += alloc_size - 1;
408                 __sg_chain(next_sg, new_sg);
409         } else {
410                 table->sgt.sgl = new_sg;
411                 table->total_nents = alloc_size;
412         }
413         return new_sg;
414 }
415
416 static bool pages_are_mergeable(struct page *a, struct page *b)
417 {
418         if (page_to_pfn(a) != page_to_pfn(b) + 1)
419                 return false;
420         if (!zone_device_pages_have_same_pgmap(a, b))
421                 return false;
422         return true;
423 }
424
425 /**
426  * sg_alloc_append_table_from_pages - Allocate and initialize an append sg
427  *                                    table from an array of pages
428  * @sgt_append:  The sg append table to use
429  * @pages:       Pointer to an array of page pointers
430  * @n_pages:     Number of pages in the pages array
431  * @offset:      Offset from start of the first page to the start of a buffer
432  * @size:        Number of valid bytes in the buffer (after offset)
433  * @max_segment: Maximum size of a scatterlist element in bytes
434  * @left_pages:  Left pages caller have to set after this call
435  * @gfp_mask:    GFP allocation mask
436  *
437  * Description:
438  *    In the first call it allocate and initialize an sg table from a list of
439  *    pages, else reuse the scatterlist from sgt_append. Contiguous ranges of
440  *    the pages are squashed into a single scatterlist entry up to the maximum
441  *    size specified in @max_segment.  A user may provide an offset at a start
442  *    and a size of valid data in a buffer specified by the page array. The
443  *    returned sg table is released by sg_free_append_table
444  *
445  * Returns:
446  *   0 on success, negative error on failure
447  *
448  * Notes:
449  *   If this function returns non-0 (eg failure), the caller must call
450  *   sg_free_append_table() to cleanup any leftover allocations.
451  *
452  *   In the fist call, sgt_append must by initialized.
453  */
454 int sg_alloc_append_table_from_pages(struct sg_append_table *sgt_append,
455                 struct page **pages, unsigned int n_pages, unsigned int offset,
456                 unsigned long size, unsigned int max_segment,
457                 unsigned int left_pages, gfp_t gfp_mask)
458 {
459         unsigned int chunks, cur_page, seg_len, i, prv_len = 0;
460         unsigned int added_nents = 0;
461         struct scatterlist *s = sgt_append->prv;
462         struct page *last_pg;
463
464         /*
465          * The algorithm below requires max_segment to be aligned to PAGE_SIZE
466          * otherwise it can overshoot.
467          */
468         max_segment = ALIGN_DOWN(max_segment, PAGE_SIZE);
469         if (WARN_ON(max_segment < PAGE_SIZE))
470                 return -EINVAL;
471
472         if (IS_ENABLED(CONFIG_ARCH_NO_SG_CHAIN) && sgt_append->prv)
473                 return -EOPNOTSUPP;
474
475         if (sgt_append->prv) {
476                 unsigned long next_pfn = (page_to_phys(sg_page(sgt_append->prv)) +
477                         sgt_append->prv->offset + sgt_append->prv->length) / PAGE_SIZE;
478
479                 if (WARN_ON(offset))
480                         return -EINVAL;
481
482                 /* Merge contiguous pages into the last SG */
483                 prv_len = sgt_append->prv->length;
484                 if (page_to_pfn(pages[0]) == next_pfn) {
485                         last_pg = pfn_to_page(next_pfn - 1);
486                         while (n_pages && pages_are_mergeable(pages[0], last_pg)) {
487                                 if (sgt_append->prv->length + PAGE_SIZE > max_segment)
488                                         break;
489                                 sgt_append->prv->length += PAGE_SIZE;
490                                 last_pg = pages[0];
491                                 pages++;
492                                 n_pages--;
493                         }
494                         if (!n_pages)
495                                 goto out;
496                 }
497         }
498
499         /* compute number of contiguous chunks */
500         chunks = 1;
501         seg_len = 0;
502         for (i = 1; i < n_pages; i++) {
503                 seg_len += PAGE_SIZE;
504                 if (seg_len >= max_segment ||
505                     !pages_are_mergeable(pages[i], pages[i - 1])) {
506                         chunks++;
507                         seg_len = 0;
508                 }
509         }
510
511         /* merging chunks and putting them into the scatterlist */
512         cur_page = 0;
513         for (i = 0; i < chunks; i++) {
514                 unsigned int j, chunk_size;
515
516                 /* look for the end of the current chunk */
517                 seg_len = 0;
518                 for (j = cur_page + 1; j < n_pages; j++) {
519                         seg_len += PAGE_SIZE;
520                         if (seg_len >= max_segment ||
521                             !pages_are_mergeable(pages[j], pages[j - 1]))
522                                 break;
523                 }
524
525                 /* Pass how many chunks might be left */
526                 s = get_next_sg(sgt_append, s, chunks - i + left_pages,
527                                 gfp_mask);
528                 if (IS_ERR(s)) {
529                         /*
530                          * Adjust entry length to be as before function was
531                          * called.
532                          */
533                         if (sgt_append->prv)
534                                 sgt_append->prv->length = prv_len;
535                         return PTR_ERR(s);
536                 }
537                 chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
538                 sg_set_page(s, pages[cur_page],
539                             min_t(unsigned long, size, chunk_size), offset);
540                 added_nents++;
541                 size -= chunk_size;
542                 offset = 0;
543                 cur_page = j;
544         }
545         sgt_append->sgt.nents += added_nents;
546         sgt_append->sgt.orig_nents = sgt_append->sgt.nents;
547         sgt_append->prv = s;
548 out:
549         if (!left_pages)
550                 sg_mark_end(s);
551         return 0;
552 }
553 EXPORT_SYMBOL(sg_alloc_append_table_from_pages);
554
555 /**
556  * sg_alloc_table_from_pages_segment - Allocate and initialize an sg table from
557  *                                     an array of pages and given maximum
558  *                                     segment.
559  * @sgt:         The sg table header to use
560  * @pages:       Pointer to an array of page pointers
561  * @n_pages:     Number of pages in the pages array
562  * @offset:      Offset from start of the first page to the start of a buffer
563  * @size:        Number of valid bytes in the buffer (after offset)
564  * @max_segment: Maximum size of a scatterlist element in bytes
565  * @gfp_mask:    GFP allocation mask
566  *
567  *  Description:
568  *    Allocate and initialize an sg table from a list of pages. Contiguous
569  *    ranges of the pages are squashed into a single scatterlist node up to the
570  *    maximum size specified in @max_segment. A user may provide an offset at a
571  *    start and a size of valid data in a buffer specified by the page array.
572  *
573  *    The returned sg table is released by sg_free_table.
574  *
575  *  Returns:
576  *   0 on success, negative error on failure
577  */
578 int sg_alloc_table_from_pages_segment(struct sg_table *sgt, struct page **pages,
579                                 unsigned int n_pages, unsigned int offset,
580                                 unsigned long size, unsigned int max_segment,
581                                 gfp_t gfp_mask)
582 {
583         struct sg_append_table append = {};
584         int err;
585
586         err = sg_alloc_append_table_from_pages(&append, pages, n_pages, offset,
587                                                size, max_segment, 0, gfp_mask);
588         if (err) {
589                 sg_free_append_table(&append);
590                 return err;
591         }
592         memcpy(sgt, &append.sgt, sizeof(*sgt));
593         WARN_ON(append.total_nents != sgt->orig_nents);
594         return 0;
595 }
596 EXPORT_SYMBOL(sg_alloc_table_from_pages_segment);
597
598 #ifdef CONFIG_SGL_ALLOC
599
600 /**
601  * sgl_alloc_order - allocate a scatterlist and its pages
602  * @length: Length in bytes of the scatterlist. Must be at least one
603  * @order: Second argument for alloc_pages()
604  * @chainable: Whether or not to allocate an extra element in the scatterlist
605  *      for scatterlist chaining purposes
606  * @gfp: Memory allocation flags
607  * @nent_p: [out] Number of entries in the scatterlist that have pages
608  *
609  * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
610  */
611 struct scatterlist *sgl_alloc_order(unsigned long long length,
612                                     unsigned int order, bool chainable,
613                                     gfp_t gfp, unsigned int *nent_p)
614 {
615         struct scatterlist *sgl, *sg;
616         struct page *page;
617         unsigned int nent, nalloc;
618         u32 elem_len;
619
620         nent = round_up(length, PAGE_SIZE << order) >> (PAGE_SHIFT + order);
621         /* Check for integer overflow */
622         if (length > (nent << (PAGE_SHIFT + order)))
623                 return NULL;
624         nalloc = nent;
625         if (chainable) {
626                 /* Check for integer overflow */
627                 if (nalloc + 1 < nalloc)
628                         return NULL;
629                 nalloc++;
630         }
631         sgl = kmalloc_array(nalloc, sizeof(struct scatterlist),
632                             gfp & ~GFP_DMA);
633         if (!sgl)
634                 return NULL;
635
636         sg_init_table(sgl, nalloc);
637         sg = sgl;
638         while (length) {
639                 elem_len = min_t(u64, length, PAGE_SIZE << order);
640                 page = alloc_pages(gfp, order);
641                 if (!page) {
642                         sgl_free_order(sgl, order);
643                         return NULL;
644                 }
645
646                 sg_set_page(sg, page, elem_len, 0);
647                 length -= elem_len;
648                 sg = sg_next(sg);
649         }
650         WARN_ONCE(length, "length = %lld\n", length);
651         if (nent_p)
652                 *nent_p = nent;
653         return sgl;
654 }
655 EXPORT_SYMBOL(sgl_alloc_order);
656
657 /**
658  * sgl_alloc - allocate a scatterlist and its pages
659  * @length: Length in bytes of the scatterlist
660  * @gfp: Memory allocation flags
661  * @nent_p: [out] Number of entries in the scatterlist
662  *
663  * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
664  */
665 struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp,
666                               unsigned int *nent_p)
667 {
668         return sgl_alloc_order(length, 0, false, gfp, nent_p);
669 }
670 EXPORT_SYMBOL(sgl_alloc);
671
672 /**
673  * sgl_free_n_order - free a scatterlist and its pages
674  * @sgl: Scatterlist with one or more elements
675  * @nents: Maximum number of elements to free
676  * @order: Second argument for __free_pages()
677  *
678  * Notes:
679  * - If several scatterlists have been chained and each chain element is
680  *   freed separately then it's essential to set nents correctly to avoid that a
681  *   page would get freed twice.
682  * - All pages in a chained scatterlist can be freed at once by setting @nents
683  *   to a high number.
684  */
685 void sgl_free_n_order(struct scatterlist *sgl, int nents, int order)
686 {
687         struct scatterlist *sg;
688         struct page *page;
689         int i;
690
691         for_each_sg(sgl, sg, nents, i) {
692                 if (!sg)
693                         break;
694                 page = sg_page(sg);
695                 if (page)
696                         __free_pages(page, order);
697         }
698         kfree(sgl);
699 }
700 EXPORT_SYMBOL(sgl_free_n_order);
701
702 /**
703  * sgl_free_order - free a scatterlist and its pages
704  * @sgl: Scatterlist with one or more elements
705  * @order: Second argument for __free_pages()
706  */
707 void sgl_free_order(struct scatterlist *sgl, int order)
708 {
709         sgl_free_n_order(sgl, INT_MAX, order);
710 }
711 EXPORT_SYMBOL(sgl_free_order);
712
713 /**
714  * sgl_free - free a scatterlist and its pages
715  * @sgl: Scatterlist with one or more elements
716  */
717 void sgl_free(struct scatterlist *sgl)
718 {
719         sgl_free_order(sgl, 0);
720 }
721 EXPORT_SYMBOL(sgl_free);
722
723 #endif /* CONFIG_SGL_ALLOC */
724
725 void __sg_page_iter_start(struct sg_page_iter *piter,
726                           struct scatterlist *sglist, unsigned int nents,
727                           unsigned long pgoffset)
728 {
729         piter->__pg_advance = 0;
730         piter->__nents = nents;
731
732         piter->sg = sglist;
733         piter->sg_pgoffset = pgoffset;
734 }
735 EXPORT_SYMBOL(__sg_page_iter_start);
736
737 static int sg_page_count(struct scatterlist *sg)
738 {
739         return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
740 }
741
742 bool __sg_page_iter_next(struct sg_page_iter *piter)
743 {
744         if (!piter->__nents || !piter->sg)
745                 return false;
746
747         piter->sg_pgoffset += piter->__pg_advance;
748         piter->__pg_advance = 1;
749
750         while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
751                 piter->sg_pgoffset -= sg_page_count(piter->sg);
752                 piter->sg = sg_next(piter->sg);
753                 if (!--piter->__nents || !piter->sg)
754                         return false;
755         }
756
757         return true;
758 }
759 EXPORT_SYMBOL(__sg_page_iter_next);
760
761 static int sg_dma_page_count(struct scatterlist *sg)
762 {
763         return PAGE_ALIGN(sg->offset + sg_dma_len(sg)) >> PAGE_SHIFT;
764 }
765
766 bool __sg_page_iter_dma_next(struct sg_dma_page_iter *dma_iter)
767 {
768         struct sg_page_iter *piter = &dma_iter->base;
769
770         if (!piter->__nents || !piter->sg)
771                 return false;
772
773         piter->sg_pgoffset += piter->__pg_advance;
774         piter->__pg_advance = 1;
775
776         while (piter->sg_pgoffset >= sg_dma_page_count(piter->sg)) {
777                 piter->sg_pgoffset -= sg_dma_page_count(piter->sg);
778                 piter->sg = sg_next(piter->sg);
779                 if (!--piter->__nents || !piter->sg)
780                         return false;
781         }
782
783         return true;
784 }
785 EXPORT_SYMBOL(__sg_page_iter_dma_next);
786
787 /**
788  * sg_miter_start - start mapping iteration over a sg list
789  * @miter: sg mapping iter to be started
790  * @sgl: sg list to iterate over
791  * @nents: number of sg entries
792  * @flags: sg iterator flags
793  *
794  * Description:
795  *   Starts mapping iterator @miter.
796  *
797  * Context:
798  *   Don't care.
799  */
800 void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
801                     unsigned int nents, unsigned int flags)
802 {
803         memset(miter, 0, sizeof(struct sg_mapping_iter));
804
805         __sg_page_iter_start(&miter->piter, sgl, nents, 0);
806         WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
807         miter->__flags = flags;
808 }
809 EXPORT_SYMBOL(sg_miter_start);
810
811 static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
812 {
813         if (!miter->__remaining) {
814                 struct scatterlist *sg;
815
816                 if (!__sg_page_iter_next(&miter->piter))
817                         return false;
818
819                 sg = miter->piter.sg;
820
821                 miter->__offset = miter->piter.sg_pgoffset ? 0 : sg->offset;
822                 miter->piter.sg_pgoffset += miter->__offset >> PAGE_SHIFT;
823                 miter->__offset &= PAGE_SIZE - 1;
824                 miter->__remaining = sg->offset + sg->length -
825                                      (miter->piter.sg_pgoffset << PAGE_SHIFT) -
826                                      miter->__offset;
827                 miter->__remaining = min_t(unsigned long, miter->__remaining,
828                                            PAGE_SIZE - miter->__offset);
829         }
830
831         return true;
832 }
833
834 /**
835  * sg_miter_skip - reposition mapping iterator
836  * @miter: sg mapping iter to be skipped
837  * @offset: number of bytes to plus the current location
838  *
839  * Description:
840  *   Sets the offset of @miter to its current location plus @offset bytes.
841  *   If mapping iterator @miter has been proceeded by sg_miter_next(), this
842  *   stops @miter.
843  *
844  * Context:
845  *   Don't care.
846  *
847  * Returns:
848  *   true if @miter contains the valid mapping.  false if end of sg
849  *   list is reached.
850  */
851 bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
852 {
853         sg_miter_stop(miter);
854
855         while (offset) {
856                 off_t consumed;
857
858                 if (!sg_miter_get_next_page(miter))
859                         return false;
860
861                 consumed = min_t(off_t, offset, miter->__remaining);
862                 miter->__offset += consumed;
863                 miter->__remaining -= consumed;
864                 offset -= consumed;
865         }
866
867         return true;
868 }
869 EXPORT_SYMBOL(sg_miter_skip);
870
871 /**
872  * sg_miter_next - proceed mapping iterator to the next mapping
873  * @miter: sg mapping iter to proceed
874  *
875  * Description:
876  *   Proceeds @miter to the next mapping.  @miter should have been started
877  *   using sg_miter_start().  On successful return, @miter->page,
878  *   @miter->addr and @miter->length point to the current mapping.
879  *
880  * Context:
881  *   May sleep if !SG_MITER_ATOMIC.
882  *
883  * Returns:
884  *   true if @miter contains the next mapping.  false if end of sg
885  *   list is reached.
886  */
887 bool sg_miter_next(struct sg_mapping_iter *miter)
888 {
889         sg_miter_stop(miter);
890
891         /*
892          * Get to the next page if necessary.
893          * __remaining, __offset is adjusted by sg_miter_stop
894          */
895         if (!sg_miter_get_next_page(miter))
896                 return false;
897
898         miter->page = sg_page_iter_page(&miter->piter);
899         miter->consumed = miter->length = miter->__remaining;
900
901         if (miter->__flags & SG_MITER_ATOMIC)
902                 miter->addr = kmap_atomic(miter->page) + miter->__offset;
903         else
904                 miter->addr = kmap(miter->page) + miter->__offset;
905
906         return true;
907 }
908 EXPORT_SYMBOL(sg_miter_next);
909
910 /**
911  * sg_miter_stop - stop mapping iteration
912  * @miter: sg mapping iter to be stopped
913  *
914  * Description:
915  *   Stops mapping iterator @miter.  @miter should have been started
916  *   using sg_miter_start().  A stopped iteration can be resumed by
917  *   calling sg_miter_next() on it.  This is useful when resources (kmap)
918  *   need to be released during iteration.
919  *
920  * Context:
921  *   Don't care otherwise.
922  */
923 void sg_miter_stop(struct sg_mapping_iter *miter)
924 {
925         WARN_ON(miter->consumed > miter->length);
926
927         /* drop resources from the last iteration */
928         if (miter->addr) {
929                 miter->__offset += miter->consumed;
930                 miter->__remaining -= miter->consumed;
931
932                 if (miter->__flags & SG_MITER_TO_SG)
933                         flush_dcache_page(miter->page);
934
935                 if (miter->__flags & SG_MITER_ATOMIC) {
936                         WARN_ON_ONCE(!pagefault_disabled());
937                         kunmap_atomic(miter->addr);
938                 } else
939                         kunmap(miter->page);
940
941                 miter->page = NULL;
942                 miter->addr = NULL;
943                 miter->length = 0;
944                 miter->consumed = 0;
945         }
946 }
947 EXPORT_SYMBOL(sg_miter_stop);
948
949 /**
950  * sg_copy_buffer - Copy data between a linear buffer and an SG list
951  * @sgl:                 The SG list
952  * @nents:               Number of SG entries
953  * @buf:                 Where to copy from
954  * @buflen:              The number of bytes to copy
955  * @skip:                Number of bytes to skip before copying
956  * @to_buffer:           transfer direction (true == from an sg list to a
957  *                       buffer, false == from a buffer to an sg list)
958  *
959  * Returns the number of copied bytes.
960  *
961  **/
962 size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
963                       size_t buflen, off_t skip, bool to_buffer)
964 {
965         unsigned int offset = 0;
966         struct sg_mapping_iter miter;
967         unsigned int sg_flags = SG_MITER_ATOMIC;
968
969         if (to_buffer)
970                 sg_flags |= SG_MITER_FROM_SG;
971         else
972                 sg_flags |= SG_MITER_TO_SG;
973
974         sg_miter_start(&miter, sgl, nents, sg_flags);
975
976         if (!sg_miter_skip(&miter, skip))
977                 return 0;
978
979         while ((offset < buflen) && sg_miter_next(&miter)) {
980                 unsigned int len;
981
982                 len = min(miter.length, buflen - offset);
983
984                 if (to_buffer)
985                         memcpy(buf + offset, miter.addr, len);
986                 else
987                         memcpy(miter.addr, buf + offset, len);
988
989                 offset += len;
990         }
991
992         sg_miter_stop(&miter);
993
994         return offset;
995 }
996 EXPORT_SYMBOL(sg_copy_buffer);
997
998 /**
999  * sg_copy_from_buffer - Copy from a linear buffer to an SG list
1000  * @sgl:                 The SG list
1001  * @nents:               Number of SG entries
1002  * @buf:                 Where to copy from
1003  * @buflen:              The number of bytes to copy
1004  *
1005  * Returns the number of copied bytes.
1006  *
1007  **/
1008 size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
1009                            const void *buf, size_t buflen)
1010 {
1011         return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
1012 }
1013 EXPORT_SYMBOL(sg_copy_from_buffer);
1014
1015 /**
1016  * sg_copy_to_buffer - Copy from an SG list to a linear buffer
1017  * @sgl:                 The SG list
1018  * @nents:               Number of SG entries
1019  * @buf:                 Where to copy to
1020  * @buflen:              The number of bytes to copy
1021  *
1022  * Returns the number of copied bytes.
1023  *
1024  **/
1025 size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
1026                          void *buf, size_t buflen)
1027 {
1028         return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
1029 }
1030 EXPORT_SYMBOL(sg_copy_to_buffer);
1031
1032 /**
1033  * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
1034  * @sgl:                 The SG list
1035  * @nents:               Number of SG entries
1036  * @buf:                 Where to copy from
1037  * @buflen:              The number of bytes to copy
1038  * @skip:                Number of bytes to skip before copying
1039  *
1040  * Returns the number of copied bytes.
1041  *
1042  **/
1043 size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
1044                             const void *buf, size_t buflen, off_t skip)
1045 {
1046         return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
1047 }
1048 EXPORT_SYMBOL(sg_pcopy_from_buffer);
1049
1050 /**
1051  * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
1052  * @sgl:                 The SG list
1053  * @nents:               Number of SG entries
1054  * @buf:                 Where to copy to
1055  * @buflen:              The number of bytes to copy
1056  * @skip:                Number of bytes to skip before copying
1057  *
1058  * Returns the number of copied bytes.
1059  *
1060  **/
1061 size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
1062                           void *buf, size_t buflen, off_t skip)
1063 {
1064         return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
1065 }
1066 EXPORT_SYMBOL(sg_pcopy_to_buffer);
1067
1068 /**
1069  * sg_zero_buffer - Zero-out a part of a SG list
1070  * @sgl:                 The SG list
1071  * @nents:               Number of SG entries
1072  * @buflen:              The number of bytes to zero out
1073  * @skip:                Number of bytes to skip before zeroing
1074  *
1075  * Returns the number of bytes zeroed.
1076  **/
1077 size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents,
1078                        size_t buflen, off_t skip)
1079 {
1080         unsigned int offset = 0;
1081         struct sg_mapping_iter miter;
1082         unsigned int sg_flags = SG_MITER_ATOMIC | SG_MITER_TO_SG;
1083
1084         sg_miter_start(&miter, sgl, nents, sg_flags);
1085
1086         if (!sg_miter_skip(&miter, skip))
1087                 return false;
1088
1089         while (offset < buflen && sg_miter_next(&miter)) {
1090                 unsigned int len;
1091
1092                 len = min(miter.length, buflen - offset);
1093                 memset(miter.addr, 0, len);
1094
1095                 offset += len;
1096         }
1097
1098         sg_miter_stop(&miter);
1099         return offset;
1100 }
1101 EXPORT_SYMBOL(sg_zero_buffer);
1102
1103 /*
1104  * Extract and pin a list of up to sg_max pages from UBUF- or IOVEC-class
1105  * iterators, and add them to the scatterlist.
1106  */
1107 static ssize_t extract_user_to_sg(struct iov_iter *iter,
1108                                   ssize_t maxsize,
1109                                   struct sg_table *sgtable,
1110                                   unsigned int sg_max,
1111                                   iov_iter_extraction_t extraction_flags)
1112 {
1113         struct scatterlist *sg = sgtable->sgl + sgtable->nents;
1114         struct page **pages;
1115         unsigned int npages;
1116         ssize_t ret = 0, res;
1117         size_t len, off;
1118
1119         /* We decant the page list into the tail of the scatterlist */
1120         pages = (void *)sgtable->sgl +
1121                 array_size(sg_max, sizeof(struct scatterlist));
1122         pages -= sg_max;
1123
1124         do {
1125                 res = iov_iter_extract_pages(iter, &pages, maxsize, sg_max,
1126                                              extraction_flags, &off);
1127                 if (res < 0)
1128                         goto failed;
1129
1130                 len = res;
1131                 maxsize -= len;
1132                 ret += len;
1133                 npages = DIV_ROUND_UP(off + len, PAGE_SIZE);
1134                 sg_max -= npages;
1135
1136                 for (; npages > 0; npages--) {
1137                         struct page *page = *pages;
1138                         size_t seg = min_t(size_t, PAGE_SIZE - off, len);
1139
1140                         *pages++ = NULL;
1141                         sg_set_page(sg, page, seg, off);
1142                         sgtable->nents++;
1143                         sg++;
1144                         len -= seg;
1145                         off = 0;
1146                 }
1147         } while (maxsize > 0 && sg_max > 0);
1148
1149         return ret;
1150
1151 failed:
1152         while (sgtable->nents > sgtable->orig_nents)
1153                 unpin_user_page(sg_page(&sgtable->sgl[--sgtable->nents]));
1154         return res;
1155 }
1156
1157 /*
1158  * Extract up to sg_max pages from a BVEC-type iterator and add them to the
1159  * scatterlist.  The pages are not pinned.
1160  */
1161 static ssize_t extract_bvec_to_sg(struct iov_iter *iter,
1162                                   ssize_t maxsize,
1163                                   struct sg_table *sgtable,
1164                                   unsigned int sg_max,
1165                                   iov_iter_extraction_t extraction_flags)
1166 {
1167         const struct bio_vec *bv = iter->bvec;
1168         struct scatterlist *sg = sgtable->sgl + sgtable->nents;
1169         unsigned long start = iter->iov_offset;
1170         unsigned int i;
1171         ssize_t ret = 0;
1172
1173         for (i = 0; i < iter->nr_segs; i++) {
1174                 size_t off, len;
1175
1176                 len = bv[i].bv_len;
1177                 if (start >= len) {
1178                         start -= len;
1179                         continue;
1180                 }
1181
1182                 len = min_t(size_t, maxsize, len - start);
1183                 off = bv[i].bv_offset + start;
1184
1185                 sg_set_page(sg, bv[i].bv_page, len, off);
1186                 sgtable->nents++;
1187                 sg++;
1188                 sg_max--;
1189
1190                 ret += len;
1191                 maxsize -= len;
1192                 if (maxsize <= 0 || sg_max == 0)
1193                         break;
1194                 start = 0;
1195         }
1196
1197         if (ret > 0)
1198                 iov_iter_advance(iter, ret);
1199         return ret;
1200 }
1201
1202 /*
1203  * Extract up to sg_max pages from a KVEC-type iterator and add them to the
1204  * scatterlist.  This can deal with vmalloc'd buffers as well as kmalloc'd or
1205  * static buffers.  The pages are not pinned.
1206  */
1207 static ssize_t extract_kvec_to_sg(struct iov_iter *iter,
1208                                   ssize_t maxsize,
1209                                   struct sg_table *sgtable,
1210                                   unsigned int sg_max,
1211                                   iov_iter_extraction_t extraction_flags)
1212 {
1213         const struct kvec *kv = iter->kvec;
1214         struct scatterlist *sg = sgtable->sgl + sgtable->nents;
1215         unsigned long start = iter->iov_offset;
1216         unsigned int i;
1217         ssize_t ret = 0;
1218
1219         for (i = 0; i < iter->nr_segs; i++) {
1220                 struct page *page;
1221                 unsigned long kaddr;
1222                 size_t off, len, seg;
1223
1224                 len = kv[i].iov_len;
1225                 if (start >= len) {
1226                         start -= len;
1227                         continue;
1228                 }
1229
1230                 kaddr = (unsigned long)kv[i].iov_base + start;
1231                 off = kaddr & ~PAGE_MASK;
1232                 len = min_t(size_t, maxsize, len - start);
1233                 kaddr &= PAGE_MASK;
1234
1235                 maxsize -= len;
1236                 ret += len;
1237                 do {
1238                         seg = min_t(size_t, len, PAGE_SIZE - off);
1239                         if (is_vmalloc_or_module_addr((void *)kaddr))
1240                                 page = vmalloc_to_page((void *)kaddr);
1241                         else
1242                                 page = virt_to_page((void *)kaddr);
1243
1244                         sg_set_page(sg, page, len, off);
1245                         sgtable->nents++;
1246                         sg++;
1247                         sg_max--;
1248
1249                         len -= seg;
1250                         kaddr += PAGE_SIZE;
1251                         off = 0;
1252                 } while (len > 0 && sg_max > 0);
1253
1254                 if (maxsize <= 0 || sg_max == 0)
1255                         break;
1256                 start = 0;
1257         }
1258
1259         if (ret > 0)
1260                 iov_iter_advance(iter, ret);
1261         return ret;
1262 }
1263
1264 /*
1265  * Extract up to sg_max folios from an XARRAY-type iterator and add them to
1266  * the scatterlist.  The pages are not pinned.
1267  */
1268 static ssize_t extract_xarray_to_sg(struct iov_iter *iter,
1269                                     ssize_t maxsize,
1270                                     struct sg_table *sgtable,
1271                                     unsigned int sg_max,
1272                                     iov_iter_extraction_t extraction_flags)
1273 {
1274         struct scatterlist *sg = sgtable->sgl + sgtable->nents;
1275         struct xarray *xa = iter->xarray;
1276         struct folio *folio;
1277         loff_t start = iter->xarray_start + iter->iov_offset;
1278         pgoff_t index = start / PAGE_SIZE;
1279         ssize_t ret = 0;
1280         size_t offset, len;
1281         XA_STATE(xas, xa, index);
1282
1283         rcu_read_lock();
1284
1285         xas_for_each(&xas, folio, ULONG_MAX) {
1286                 if (xas_retry(&xas, folio))
1287                         continue;
1288                 if (WARN_ON(xa_is_value(folio)))
1289                         break;
1290                 if (WARN_ON(folio_test_hugetlb(folio)))
1291                         break;
1292
1293                 offset = offset_in_folio(folio, start);
1294                 len = min_t(size_t, maxsize, folio_size(folio) - offset);
1295
1296                 sg_set_page(sg, folio_page(folio, 0), len, offset);
1297                 sgtable->nents++;
1298                 sg++;
1299                 sg_max--;
1300
1301                 maxsize -= len;
1302                 ret += len;
1303                 if (maxsize <= 0 || sg_max == 0)
1304                         break;
1305         }
1306
1307         rcu_read_unlock();
1308         if (ret > 0)
1309                 iov_iter_advance(iter, ret);
1310         return ret;
1311 }
1312
1313 /**
1314  * extract_iter_to_sg - Extract pages from an iterator and add to an sglist
1315  * @iter: The iterator to extract from
1316  * @maxsize: The amount of iterator to copy
1317  * @sgtable: The scatterlist table to fill in
1318  * @sg_max: Maximum number of elements in @sgtable that may be filled
1319  * @extraction_flags: Flags to qualify the request
1320  *
1321  * Extract the page fragments from the given amount of the source iterator and
1322  * add them to a scatterlist that refers to all of those bits, to a maximum
1323  * addition of @sg_max elements.
1324  *
1325  * The pages referred to by UBUF- and IOVEC-type iterators are extracted and
1326  * pinned; BVEC-, KVEC- and XARRAY-type are extracted but aren't pinned; PIPE-
1327  * and DISCARD-type are not supported.
1328  *
1329  * No end mark is placed on the scatterlist; that's left to the caller.
1330  *
1331  * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
1332  * be allowed on the pages extracted.
1333  *
1334  * If successful, @sgtable->nents is updated to include the number of elements
1335  * added and the number of bytes added is returned.  @sgtable->orig_nents is
1336  * left unaltered.
1337  *
1338  * The iov_iter_extract_mode() function should be used to query how cleanup
1339  * should be performed.
1340  */
1341 ssize_t extract_iter_to_sg(struct iov_iter *iter, size_t maxsize,
1342                            struct sg_table *sgtable, unsigned int sg_max,
1343                            iov_iter_extraction_t extraction_flags)
1344 {
1345         if (maxsize == 0)
1346                 return 0;
1347
1348         switch (iov_iter_type(iter)) {
1349         case ITER_UBUF:
1350         case ITER_IOVEC:
1351                 return extract_user_to_sg(iter, maxsize, sgtable, sg_max,
1352                                           extraction_flags);
1353         case ITER_BVEC:
1354                 return extract_bvec_to_sg(iter, maxsize, sgtable, sg_max,
1355                                           extraction_flags);
1356         case ITER_KVEC:
1357                 return extract_kvec_to_sg(iter, maxsize, sgtable, sg_max,
1358                                           extraction_flags);
1359         case ITER_XARRAY:
1360                 return extract_xarray_to_sg(iter, maxsize, sgtable, sg_max,
1361                                             extraction_flags);
1362         default:
1363                 pr_err("%s(%u) unsupported\n", __func__, iov_iter_type(iter));
1364                 WARN_ON_ONCE(1);
1365                 return -EIO;
1366         }
1367 }
1368 EXPORT_SYMBOL_GPL(extract_iter_to_sg);