nvme-loop: use nvme core helpers to cancel all requests in a tagset
[linux.git] / drivers / nvme / target / loop.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics loopback device.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/scatterlist.h>
8 #include <linux/blk-mq.h>
9 #include <linux/nvme.h>
10 #include <linux/module.h>
11 #include <linux/parser.h>
12 #include "nvmet.h"
13 #include "../host/nvme.h"
14 #include "../host/fabrics.h"
15
16 #define NVME_LOOP_MAX_SEGMENTS          256
17
18 struct nvme_loop_iod {
19         struct nvme_request     nvme_req;
20         struct nvme_command     cmd;
21         struct nvme_completion  cqe;
22         struct nvmet_req        req;
23         struct nvme_loop_queue  *queue;
24         struct work_struct      work;
25         struct sg_table         sg_table;
26         struct scatterlist      first_sgl[];
27 };
28
29 struct nvme_loop_ctrl {
30         struct nvme_loop_queue  *queues;
31
32         struct blk_mq_tag_set   admin_tag_set;
33
34         struct list_head        list;
35         struct blk_mq_tag_set   tag_set;
36         struct nvme_loop_iod    async_event_iod;
37         struct nvme_ctrl        ctrl;
38
39         struct nvmet_port       *port;
40 };
41
42 static inline struct nvme_loop_ctrl *to_loop_ctrl(struct nvme_ctrl *ctrl)
43 {
44         return container_of(ctrl, struct nvme_loop_ctrl, ctrl);
45 }
46
47 enum nvme_loop_queue_flags {
48         NVME_LOOP_Q_LIVE        = 0,
49 };
50
51 struct nvme_loop_queue {
52         struct nvmet_cq         nvme_cq;
53         struct nvmet_sq         nvme_sq;
54         struct nvme_loop_ctrl   *ctrl;
55         unsigned long           flags;
56 };
57
58 static LIST_HEAD(nvme_loop_ports);
59 static DEFINE_MUTEX(nvme_loop_ports_mutex);
60
61 static LIST_HEAD(nvme_loop_ctrl_list);
62 static DEFINE_MUTEX(nvme_loop_ctrl_mutex);
63
64 static void nvme_loop_queue_response(struct nvmet_req *nvme_req);
65 static void nvme_loop_delete_ctrl(struct nvmet_ctrl *ctrl);
66
67 static const struct nvmet_fabrics_ops nvme_loop_ops;
68
69 static inline int nvme_loop_queue_idx(struct nvme_loop_queue *queue)
70 {
71         return queue - queue->ctrl->queues;
72 }
73
74 static void nvme_loop_complete_rq(struct request *req)
75 {
76         struct nvme_loop_iod *iod = blk_mq_rq_to_pdu(req);
77
78         sg_free_table_chained(&iod->sg_table, NVME_INLINE_SG_CNT);
79         nvme_complete_rq(req);
80 }
81
82 static struct blk_mq_tags *nvme_loop_tagset(struct nvme_loop_queue *queue)
83 {
84         u32 queue_idx = nvme_loop_queue_idx(queue);
85
86         if (queue_idx == 0)
87                 return queue->ctrl->admin_tag_set.tags[queue_idx];
88         return queue->ctrl->tag_set.tags[queue_idx - 1];
89 }
90
91 static void nvme_loop_queue_response(struct nvmet_req *req)
92 {
93         struct nvme_loop_queue *queue =
94                 container_of(req->sq, struct nvme_loop_queue, nvme_sq);
95         struct nvme_completion *cqe = req->cqe;
96
97         /*
98          * AEN requests are special as they don't time out and can
99          * survive any kind of queue freeze and often don't respond to
100          * aborts.  We don't even bother to allocate a struct request
101          * for them but rather special case them here.
102          */
103         if (unlikely(nvme_is_aen_req(nvme_loop_queue_idx(queue),
104                                      cqe->command_id))) {
105                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
106                                 &cqe->result);
107         } else {
108                 struct request *rq;
109
110                 rq = nvme_find_rq(nvme_loop_tagset(queue), cqe->command_id);
111                 if (!rq) {
112                         dev_err(queue->ctrl->ctrl.device,
113                                 "got bad command_id %#x on queue %d\n",
114                                 cqe->command_id, nvme_loop_queue_idx(queue));
115                         return;
116                 }
117
118                 if (!nvme_try_complete_req(rq, cqe->status, cqe->result))
119                         nvme_loop_complete_rq(rq);
120         }
121 }
122
123 static void nvme_loop_execute_work(struct work_struct *work)
124 {
125         struct nvme_loop_iod *iod =
126                 container_of(work, struct nvme_loop_iod, work);
127
128         iod->req.execute(&iod->req);
129 }
130
131 static blk_status_t nvme_loop_queue_rq(struct blk_mq_hw_ctx *hctx,
132                 const struct blk_mq_queue_data *bd)
133 {
134         struct nvme_ns *ns = hctx->queue->queuedata;
135         struct nvme_loop_queue *queue = hctx->driver_data;
136         struct request *req = bd->rq;
137         struct nvme_loop_iod *iod = blk_mq_rq_to_pdu(req);
138         bool queue_ready = test_bit(NVME_LOOP_Q_LIVE, &queue->flags);
139         blk_status_t ret;
140
141         if (!nvme_check_ready(&queue->ctrl->ctrl, req, queue_ready))
142                 return nvme_fail_nonready_command(&queue->ctrl->ctrl, req);
143
144         ret = nvme_setup_cmd(ns, req);
145         if (ret)
146                 return ret;
147
148         blk_mq_start_request(req);
149         iod->cmd.common.flags |= NVME_CMD_SGL_METABUF;
150         iod->req.port = queue->ctrl->port;
151         if (!nvmet_req_init(&iod->req, &queue->nvme_cq,
152                         &queue->nvme_sq, &nvme_loop_ops))
153                 return BLK_STS_OK;
154
155         if (blk_rq_nr_phys_segments(req)) {
156                 iod->sg_table.sgl = iod->first_sgl;
157                 if (sg_alloc_table_chained(&iod->sg_table,
158                                 blk_rq_nr_phys_segments(req),
159                                 iod->sg_table.sgl, NVME_INLINE_SG_CNT)) {
160                         nvme_cleanup_cmd(req);
161                         return BLK_STS_RESOURCE;
162                 }
163
164                 iod->req.sg = iod->sg_table.sgl;
165                 iod->req.sg_cnt = blk_rq_map_sg(req->q, req, iod->sg_table.sgl);
166                 iod->req.transfer_len = blk_rq_payload_bytes(req);
167         }
168
169         queue_work(nvmet_wq, &iod->work);
170         return BLK_STS_OK;
171 }
172
173 static void nvme_loop_submit_async_event(struct nvme_ctrl *arg)
174 {
175         struct nvme_loop_ctrl *ctrl = to_loop_ctrl(arg);
176         struct nvme_loop_queue *queue = &ctrl->queues[0];
177         struct nvme_loop_iod *iod = &ctrl->async_event_iod;
178
179         memset(&iod->cmd, 0, sizeof(iod->cmd));
180         iod->cmd.common.opcode = nvme_admin_async_event;
181         iod->cmd.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
182         iod->cmd.common.flags |= NVME_CMD_SGL_METABUF;
183
184         if (!nvmet_req_init(&iod->req, &queue->nvme_cq, &queue->nvme_sq,
185                         &nvme_loop_ops)) {
186                 dev_err(ctrl->ctrl.device, "failed async event work\n");
187                 return;
188         }
189
190         queue_work(nvmet_wq, &iod->work);
191 }
192
193 static int nvme_loop_init_iod(struct nvme_loop_ctrl *ctrl,
194                 struct nvme_loop_iod *iod, unsigned int queue_idx)
195 {
196         iod->req.cmd = &iod->cmd;
197         iod->req.cqe = &iod->cqe;
198         iod->queue = &ctrl->queues[queue_idx];
199         INIT_WORK(&iod->work, nvme_loop_execute_work);
200         return 0;
201 }
202
203 static int nvme_loop_init_request(struct blk_mq_tag_set *set,
204                 struct request *req, unsigned int hctx_idx,
205                 unsigned int numa_node)
206 {
207         struct nvme_loop_ctrl *ctrl = set->driver_data;
208         struct nvme_loop_iod *iod = blk_mq_rq_to_pdu(req);
209
210         nvme_req(req)->ctrl = &ctrl->ctrl;
211         nvme_req(req)->cmd = &iod->cmd;
212         return nvme_loop_init_iod(ctrl, blk_mq_rq_to_pdu(req),
213                         (set == &ctrl->tag_set) ? hctx_idx + 1 : 0);
214 }
215
216 static struct lock_class_key loop_hctx_fq_lock_key;
217
218 static int nvme_loop_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
219                 unsigned int hctx_idx)
220 {
221         struct nvme_loop_ctrl *ctrl = data;
222         struct nvme_loop_queue *queue = &ctrl->queues[hctx_idx + 1];
223
224         BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
225
226         /*
227          * flush_end_io() can be called recursively for us, so use our own
228          * lock class key for avoiding lockdep possible recursive locking,
229          * then we can remove the dynamically allocated lock class for each
230          * flush queue, that way may cause horrible boot delay.
231          */
232         blk_mq_hctx_set_fq_lock_class(hctx, &loop_hctx_fq_lock_key);
233
234         hctx->driver_data = queue;
235         return 0;
236 }
237
238 static int nvme_loop_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
239                 unsigned int hctx_idx)
240 {
241         struct nvme_loop_ctrl *ctrl = data;
242         struct nvme_loop_queue *queue = &ctrl->queues[0];
243
244         BUG_ON(hctx_idx != 0);
245
246         hctx->driver_data = queue;
247         return 0;
248 }
249
250 static const struct blk_mq_ops nvme_loop_mq_ops = {
251         .queue_rq       = nvme_loop_queue_rq,
252         .complete       = nvme_loop_complete_rq,
253         .init_request   = nvme_loop_init_request,
254         .init_hctx      = nvme_loop_init_hctx,
255 };
256
257 static const struct blk_mq_ops nvme_loop_admin_mq_ops = {
258         .queue_rq       = nvme_loop_queue_rq,
259         .complete       = nvme_loop_complete_rq,
260         .init_request   = nvme_loop_init_request,
261         .init_hctx      = nvme_loop_init_admin_hctx,
262 };
263
264 static void nvme_loop_destroy_admin_queue(struct nvme_loop_ctrl *ctrl)
265 {
266         if (!test_and_clear_bit(NVME_LOOP_Q_LIVE, &ctrl->queues[0].flags))
267                 return;
268         nvmet_sq_destroy(&ctrl->queues[0].nvme_sq);
269         blk_mq_destroy_queue(ctrl->ctrl.admin_q);
270         blk_mq_destroy_queue(ctrl->ctrl.fabrics_q);
271         blk_mq_free_tag_set(&ctrl->admin_tag_set);
272 }
273
274 static void nvme_loop_free_ctrl(struct nvme_ctrl *nctrl)
275 {
276         struct nvme_loop_ctrl *ctrl = to_loop_ctrl(nctrl);
277
278         if (list_empty(&ctrl->list))
279                 goto free_ctrl;
280
281         mutex_lock(&nvme_loop_ctrl_mutex);
282         list_del(&ctrl->list);
283         mutex_unlock(&nvme_loop_ctrl_mutex);
284
285         if (nctrl->tagset) {
286                 blk_mq_destroy_queue(ctrl->ctrl.connect_q);
287                 blk_mq_free_tag_set(&ctrl->tag_set);
288         }
289         kfree(ctrl->queues);
290         nvmf_free_options(nctrl->opts);
291 free_ctrl:
292         kfree(ctrl);
293 }
294
295 static void nvme_loop_destroy_io_queues(struct nvme_loop_ctrl *ctrl)
296 {
297         int i;
298
299         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
300                 clear_bit(NVME_LOOP_Q_LIVE, &ctrl->queues[i].flags);
301                 nvmet_sq_destroy(&ctrl->queues[i].nvme_sq);
302         }
303         ctrl->ctrl.queue_count = 1;
304 }
305
306 static int nvme_loop_init_io_queues(struct nvme_loop_ctrl *ctrl)
307 {
308         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
309         unsigned int nr_io_queues;
310         int ret, i;
311
312         nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
313         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
314         if (ret || !nr_io_queues)
315                 return ret;
316
317         dev_info(ctrl->ctrl.device, "creating %d I/O queues.\n", nr_io_queues);
318
319         for (i = 1; i <= nr_io_queues; i++) {
320                 ctrl->queues[i].ctrl = ctrl;
321                 ret = nvmet_sq_init(&ctrl->queues[i].nvme_sq);
322                 if (ret)
323                         goto out_destroy_queues;
324
325                 ctrl->ctrl.queue_count++;
326         }
327
328         return 0;
329
330 out_destroy_queues:
331         nvme_loop_destroy_io_queues(ctrl);
332         return ret;
333 }
334
335 static int nvme_loop_connect_io_queues(struct nvme_loop_ctrl *ctrl)
336 {
337         int i, ret;
338
339         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
340                 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
341                 if (ret)
342                         return ret;
343                 set_bit(NVME_LOOP_Q_LIVE, &ctrl->queues[i].flags);
344         }
345
346         return 0;
347 }
348
349 static int nvme_loop_configure_admin_queue(struct nvme_loop_ctrl *ctrl)
350 {
351         int error;
352
353         memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
354         ctrl->admin_tag_set.ops = &nvme_loop_admin_mq_ops;
355         ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
356         ctrl->admin_tag_set.reserved_tags = NVMF_RESERVED_TAGS;
357         ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node;
358         ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_loop_iod) +
359                 NVME_INLINE_SG_CNT * sizeof(struct scatterlist);
360         ctrl->admin_tag_set.driver_data = ctrl;
361         ctrl->admin_tag_set.nr_hw_queues = 1;
362         ctrl->admin_tag_set.timeout = NVME_ADMIN_TIMEOUT;
363         ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
364
365         ctrl->queues[0].ctrl = ctrl;
366         error = nvmet_sq_init(&ctrl->queues[0].nvme_sq);
367         if (error)
368                 return error;
369         ctrl->ctrl.queue_count = 1;
370
371         error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
372         if (error)
373                 goto out_free_sq;
374         ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
375
376         ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
377         if (IS_ERR(ctrl->ctrl.fabrics_q)) {
378                 error = PTR_ERR(ctrl->ctrl.fabrics_q);
379                 goto out_free_tagset;
380         }
381
382         ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
383         if (IS_ERR(ctrl->ctrl.admin_q)) {
384                 error = PTR_ERR(ctrl->ctrl.admin_q);
385                 goto out_cleanup_fabrics_q;
386         }
387         /* reset stopped state for the fresh admin queue */
388         clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->ctrl.flags);
389
390         error = nvmf_connect_admin_queue(&ctrl->ctrl);
391         if (error)
392                 goto out_cleanup_queue;
393
394         set_bit(NVME_LOOP_Q_LIVE, &ctrl->queues[0].flags);
395
396         error = nvme_enable_ctrl(&ctrl->ctrl);
397         if (error)
398                 goto out_cleanup_queue;
399
400         ctrl->ctrl.max_hw_sectors =
401                 (NVME_LOOP_MAX_SEGMENTS - 1) << (PAGE_SHIFT - 9);
402
403         nvme_start_admin_queue(&ctrl->ctrl);
404
405         error = nvme_init_ctrl_finish(&ctrl->ctrl);
406         if (error)
407                 goto out_cleanup_queue;
408
409         return 0;
410
411 out_cleanup_queue:
412         clear_bit(NVME_LOOP_Q_LIVE, &ctrl->queues[0].flags);
413         blk_mq_destroy_queue(ctrl->ctrl.admin_q);
414 out_cleanup_fabrics_q:
415         blk_mq_destroy_queue(ctrl->ctrl.fabrics_q);
416 out_free_tagset:
417         blk_mq_free_tag_set(&ctrl->admin_tag_set);
418 out_free_sq:
419         nvmet_sq_destroy(&ctrl->queues[0].nvme_sq);
420         return error;
421 }
422
423 static void nvme_loop_shutdown_ctrl(struct nvme_loop_ctrl *ctrl)
424 {
425         if (ctrl->ctrl.queue_count > 1) {
426                 nvme_stop_queues(&ctrl->ctrl);
427                 nvme_cancel_tagset(&ctrl->ctrl);
428                 nvme_loop_destroy_io_queues(ctrl);
429         }
430
431         nvme_stop_admin_queue(&ctrl->ctrl);
432         if (ctrl->ctrl.state == NVME_CTRL_LIVE)
433                 nvme_shutdown_ctrl(&ctrl->ctrl);
434
435         nvme_cancel_admin_tagset(&ctrl->ctrl);
436         nvme_loop_destroy_admin_queue(ctrl);
437 }
438
439 static void nvme_loop_delete_ctrl_host(struct nvme_ctrl *ctrl)
440 {
441         nvme_loop_shutdown_ctrl(to_loop_ctrl(ctrl));
442 }
443
444 static void nvme_loop_delete_ctrl(struct nvmet_ctrl *nctrl)
445 {
446         struct nvme_loop_ctrl *ctrl;
447
448         mutex_lock(&nvme_loop_ctrl_mutex);
449         list_for_each_entry(ctrl, &nvme_loop_ctrl_list, list) {
450                 if (ctrl->ctrl.cntlid == nctrl->cntlid)
451                         nvme_delete_ctrl(&ctrl->ctrl);
452         }
453         mutex_unlock(&nvme_loop_ctrl_mutex);
454 }
455
456 static void nvme_loop_reset_ctrl_work(struct work_struct *work)
457 {
458         struct nvme_loop_ctrl *ctrl =
459                 container_of(work, struct nvme_loop_ctrl, ctrl.reset_work);
460         int ret;
461
462         nvme_stop_ctrl(&ctrl->ctrl);
463         nvme_loop_shutdown_ctrl(ctrl);
464
465         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
466                 if (ctrl->ctrl.state != NVME_CTRL_DELETING &&
467                     ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO)
468                         /* state change failure for non-deleted ctrl? */
469                         WARN_ON_ONCE(1);
470                 return;
471         }
472
473         ret = nvme_loop_configure_admin_queue(ctrl);
474         if (ret)
475                 goto out_disable;
476
477         ret = nvme_loop_init_io_queues(ctrl);
478         if (ret)
479                 goto out_destroy_admin;
480
481         ret = nvme_loop_connect_io_queues(ctrl);
482         if (ret)
483                 goto out_destroy_io;
484
485         blk_mq_update_nr_hw_queues(&ctrl->tag_set,
486                         ctrl->ctrl.queue_count - 1);
487
488         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE))
489                 WARN_ON_ONCE(1);
490
491         nvme_start_ctrl(&ctrl->ctrl);
492
493         return;
494
495 out_destroy_io:
496         nvme_loop_destroy_io_queues(ctrl);
497 out_destroy_admin:
498         nvme_loop_destroy_admin_queue(ctrl);
499 out_disable:
500         dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
501         nvme_uninit_ctrl(&ctrl->ctrl);
502 }
503
504 static const struct nvme_ctrl_ops nvme_loop_ctrl_ops = {
505         .name                   = "loop",
506         .module                 = THIS_MODULE,
507         .flags                  = NVME_F_FABRICS,
508         .reg_read32             = nvmf_reg_read32,
509         .reg_read64             = nvmf_reg_read64,
510         .reg_write32            = nvmf_reg_write32,
511         .free_ctrl              = nvme_loop_free_ctrl,
512         .submit_async_event     = nvme_loop_submit_async_event,
513         .delete_ctrl            = nvme_loop_delete_ctrl_host,
514         .get_address            = nvmf_get_address,
515 };
516
517 static int nvme_loop_create_io_queues(struct nvme_loop_ctrl *ctrl)
518 {
519         int ret;
520
521         ret = nvme_loop_init_io_queues(ctrl);
522         if (ret)
523                 return ret;
524
525         memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
526         ctrl->tag_set.ops = &nvme_loop_mq_ops;
527         ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
528         ctrl->tag_set.reserved_tags = NVMF_RESERVED_TAGS;
529         ctrl->tag_set.numa_node = ctrl->ctrl.numa_node;
530         ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
531         ctrl->tag_set.cmd_size = sizeof(struct nvme_loop_iod) +
532                 NVME_INLINE_SG_CNT * sizeof(struct scatterlist);
533         ctrl->tag_set.driver_data = ctrl;
534         ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
535         ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
536         ctrl->ctrl.tagset = &ctrl->tag_set;
537
538         ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
539         if (ret)
540                 goto out_destroy_queues;
541
542         ret = nvme_ctrl_init_connect_q(&(ctrl->ctrl));
543         if (ret)
544                 goto out_free_tagset;
545
546         ret = nvme_loop_connect_io_queues(ctrl);
547         if (ret)
548                 goto out_cleanup_connect_q;
549
550         return 0;
551
552 out_cleanup_connect_q:
553         blk_mq_destroy_queue(ctrl->ctrl.connect_q);
554 out_free_tagset:
555         blk_mq_free_tag_set(&ctrl->tag_set);
556 out_destroy_queues:
557         nvme_loop_destroy_io_queues(ctrl);
558         return ret;
559 }
560
561 static struct nvmet_port *nvme_loop_find_port(struct nvme_ctrl *ctrl)
562 {
563         struct nvmet_port *p, *found = NULL;
564
565         mutex_lock(&nvme_loop_ports_mutex);
566         list_for_each_entry(p, &nvme_loop_ports, entry) {
567                 /* if no transport address is specified use the first port */
568                 if ((ctrl->opts->mask & NVMF_OPT_TRADDR) &&
569                     strcmp(ctrl->opts->traddr, p->disc_addr.traddr))
570                         continue;
571                 found = p;
572                 break;
573         }
574         mutex_unlock(&nvme_loop_ports_mutex);
575         return found;
576 }
577
578 static struct nvme_ctrl *nvme_loop_create_ctrl(struct device *dev,
579                 struct nvmf_ctrl_options *opts)
580 {
581         struct nvme_loop_ctrl *ctrl;
582         int ret;
583
584         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
585         if (!ctrl)
586                 return ERR_PTR(-ENOMEM);
587         ctrl->ctrl.opts = opts;
588         INIT_LIST_HEAD(&ctrl->list);
589
590         INIT_WORK(&ctrl->ctrl.reset_work, nvme_loop_reset_ctrl_work);
591
592         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_loop_ctrl_ops,
593                                 0 /* no quirks, we're perfect! */);
594         if (ret) {
595                 kfree(ctrl);
596                 goto out;
597         }
598
599         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
600                 WARN_ON_ONCE(1);
601
602         ret = -ENOMEM;
603
604         ctrl->ctrl.sqsize = opts->queue_size - 1;
605         ctrl->ctrl.kato = opts->kato;
606         ctrl->port = nvme_loop_find_port(&ctrl->ctrl);
607
608         ctrl->queues = kcalloc(opts->nr_io_queues + 1, sizeof(*ctrl->queues),
609                         GFP_KERNEL);
610         if (!ctrl->queues)
611                 goto out_uninit_ctrl;
612
613         ret = nvme_loop_configure_admin_queue(ctrl);
614         if (ret)
615                 goto out_free_queues;
616
617         if (opts->queue_size > ctrl->ctrl.maxcmd) {
618                 /* warn if maxcmd is lower than queue_size */
619                 dev_warn(ctrl->ctrl.device,
620                         "queue_size %zu > ctrl maxcmd %u, clamping down\n",
621                         opts->queue_size, ctrl->ctrl.maxcmd);
622                 opts->queue_size = ctrl->ctrl.maxcmd;
623         }
624
625         if (opts->nr_io_queues) {
626                 ret = nvme_loop_create_io_queues(ctrl);
627                 if (ret)
628                         goto out_remove_admin_queue;
629         }
630
631         nvme_loop_init_iod(ctrl, &ctrl->async_event_iod, 0);
632
633         dev_info(ctrl->ctrl.device,
634                  "new ctrl: \"%s\"\n", ctrl->ctrl.opts->subsysnqn);
635
636         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE))
637                 WARN_ON_ONCE(1);
638
639         mutex_lock(&nvme_loop_ctrl_mutex);
640         list_add_tail(&ctrl->list, &nvme_loop_ctrl_list);
641         mutex_unlock(&nvme_loop_ctrl_mutex);
642
643         nvme_start_ctrl(&ctrl->ctrl);
644
645         return &ctrl->ctrl;
646
647 out_remove_admin_queue:
648         nvme_loop_destroy_admin_queue(ctrl);
649 out_free_queues:
650         kfree(ctrl->queues);
651 out_uninit_ctrl:
652         nvme_uninit_ctrl(&ctrl->ctrl);
653         nvme_put_ctrl(&ctrl->ctrl);
654 out:
655         if (ret > 0)
656                 ret = -EIO;
657         return ERR_PTR(ret);
658 }
659
660 static int nvme_loop_add_port(struct nvmet_port *port)
661 {
662         mutex_lock(&nvme_loop_ports_mutex);
663         list_add_tail(&port->entry, &nvme_loop_ports);
664         mutex_unlock(&nvme_loop_ports_mutex);
665         return 0;
666 }
667
668 static void nvme_loop_remove_port(struct nvmet_port *port)
669 {
670         mutex_lock(&nvme_loop_ports_mutex);
671         list_del_init(&port->entry);
672         mutex_unlock(&nvme_loop_ports_mutex);
673
674         /*
675          * Ensure any ctrls that are in the process of being
676          * deleted are in fact deleted before we return
677          * and free the port. This is to prevent active
678          * ctrls from using a port after it's freed.
679          */
680         flush_workqueue(nvme_delete_wq);
681 }
682
683 static const struct nvmet_fabrics_ops nvme_loop_ops = {
684         .owner          = THIS_MODULE,
685         .type           = NVMF_TRTYPE_LOOP,
686         .add_port       = nvme_loop_add_port,
687         .remove_port    = nvme_loop_remove_port,
688         .queue_response = nvme_loop_queue_response,
689         .delete_ctrl    = nvme_loop_delete_ctrl,
690 };
691
692 static struct nvmf_transport_ops nvme_loop_transport = {
693         .name           = "loop",
694         .module         = THIS_MODULE,
695         .create_ctrl    = nvme_loop_create_ctrl,
696         .allowed_opts   = NVMF_OPT_TRADDR,
697 };
698
699 static int __init nvme_loop_init_module(void)
700 {
701         int ret;
702
703         ret = nvmet_register_transport(&nvme_loop_ops);
704         if (ret)
705                 return ret;
706
707         ret = nvmf_register_transport(&nvme_loop_transport);
708         if (ret)
709                 nvmet_unregister_transport(&nvme_loop_ops);
710
711         return ret;
712 }
713
714 static void __exit nvme_loop_cleanup_module(void)
715 {
716         struct nvme_loop_ctrl *ctrl, *next;
717
718         nvmf_unregister_transport(&nvme_loop_transport);
719         nvmet_unregister_transport(&nvme_loop_ops);
720
721         mutex_lock(&nvme_loop_ctrl_mutex);
722         list_for_each_entry_safe(ctrl, next, &nvme_loop_ctrl_list, list)
723                 nvme_delete_ctrl(&ctrl->ctrl);
724         mutex_unlock(&nvme_loop_ctrl_mutex);
725
726         flush_workqueue(nvme_delete_wq);
727 }
728
729 module_init(nvme_loop_init_module);
730 module_exit(nvme_loop_cleanup_module);
731
732 MODULE_LICENSE("GPL v2");
733 MODULE_ALIAS("nvmet-transport-254"); /* 254 == NVMF_TRTYPE_LOOP */