Merge from vendor branch ATHEROS:
[dragonfly.git] / sys / dev / raid / aac / aac.c
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2001 Scott Long
4  * Copyright (c) 2000 BSDi
5  * Copyright (c) 2001 Adaptec, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *      $FreeBSD: src/sys/dev/aac/aac.c,v 1.9.2.14 2003/04/08 13:22:08 scottl Exp $
30  *      $DragonFly: src/sys/dev/raid/aac/aac.c,v 1.23 2006/04/30 17:22:16 dillon Exp $
31  */
32
33 /*
34  * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
35  */
36
37 #include "opt_aac.h"
38
39 /* #include <stddef.h> */
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/kthread.h>
45 #include <sys/sysctl.h>
46 #include <sys/poll.h>
47 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
48 #include <sys/selinfo.h>
49 #else
50 #include <sys/select.h>
51 #endif
52
53 #include "aac_compat.h"
54
55 #include <sys/bus.h>
56 #include <sys/conf.h>
57 #include <sys/devicestat.h>
58 #include <sys/disk.h>
59 #include <sys/signalvar.h>
60 #include <sys/time.h>
61 #include <sys/eventhandler.h>
62
63 #include <machine/bus_memio.h>
64 #include <machine/bus.h>
65 #include <machine/resource.h>
66
67 #include "aacreg.h"
68 #include "aac_ioctl.h"
69 #include "aacvar.h"
70 #include "aac_tables.h"
71 #include "aac_cam.h"
72
73 static void     aac_startup(void *arg);
74 static void     aac_add_container(struct aac_softc *sc,
75                                   struct aac_mntinforesp *mir, int f);
76 static void     aac_get_bus_info(struct aac_softc *sc);
77
78 /* Command Processing */
79 static void     aac_timeout(void *ssc);
80 static int      aac_start(struct aac_command *cm);
81 static void     aac_complete(void *context, int pending);
82 static int      aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
83 static void     aac_bio_complete(struct aac_command *cm);
84 static int      aac_wait_command(struct aac_command *cm, int timeout);
85 static void     aac_host_command(struct aac_softc *sc);
86 static void     aac_host_response(struct aac_softc *sc);
87
88 /* Command Buffer Management */
89 static void     aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
90                                        int nseg, int error);
91 static int      aac_alloc_commands(struct aac_softc *sc);
92 static void     aac_free_commands(struct aac_softc *sc);
93 static void     aac_map_command(struct aac_command *cm);
94 static void     aac_unmap_command(struct aac_command *cm);
95
96 /* Hardware Interface */
97 static void     aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
98                                int error);
99 static int      aac_check_firmware(struct aac_softc *sc);
100 static int      aac_init(struct aac_softc *sc);
101 static int      aac_sync_command(struct aac_softc *sc, u_int32_t command,
102                                  u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
103                                  u_int32_t arg3, u_int32_t *sp);
104 static int      aac_enqueue_fib(struct aac_softc *sc, int queue,
105                                 struct aac_command *cm);
106 static int      aac_dequeue_fib(struct aac_softc *sc, int queue,
107                                 u_int32_t *fib_size, struct aac_fib **fib_addr);
108 static int      aac_enqueue_response(struct aac_softc *sc, int queue,
109                                      struct aac_fib *fib);
110
111 /* Falcon/PPC interface */
112 static int      aac_fa_get_fwstatus(struct aac_softc *sc);
113 static void     aac_fa_qnotify(struct aac_softc *sc, int qbit);
114 static int      aac_fa_get_istatus(struct aac_softc *sc);
115 static void     aac_fa_clear_istatus(struct aac_softc *sc, int mask);
116 static void     aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
117                                    u_int32_t arg0, u_int32_t arg1,
118                                    u_int32_t arg2, u_int32_t arg3);
119 static int      aac_fa_get_mailbox(struct aac_softc *sc, int mb);
120 static void     aac_fa_set_interrupts(struct aac_softc *sc, int enable);
121
122 struct aac_interface aac_fa_interface = {
123         aac_fa_get_fwstatus,
124         aac_fa_qnotify,
125         aac_fa_get_istatus,
126         aac_fa_clear_istatus,
127         aac_fa_set_mailbox,
128         aac_fa_get_mailbox,
129         aac_fa_set_interrupts
130 };
131
132 /* StrongARM interface */
133 static int      aac_sa_get_fwstatus(struct aac_softc *sc);
134 static void     aac_sa_qnotify(struct aac_softc *sc, int qbit);
135 static int      aac_sa_get_istatus(struct aac_softc *sc);
136 static void     aac_sa_clear_istatus(struct aac_softc *sc, int mask);
137 static void     aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
138                                    u_int32_t arg0, u_int32_t arg1,
139                                    u_int32_t arg2, u_int32_t arg3);
140 static int      aac_sa_get_mailbox(struct aac_softc *sc, int mb);
141 static void     aac_sa_set_interrupts(struct aac_softc *sc, int enable);
142
143 struct aac_interface aac_sa_interface = {
144         aac_sa_get_fwstatus,
145         aac_sa_qnotify,
146         aac_sa_get_istatus,
147         aac_sa_clear_istatus,
148         aac_sa_set_mailbox,
149         aac_sa_get_mailbox,
150         aac_sa_set_interrupts
151 };
152
153 /* i960Rx interface */  
154 static int      aac_rx_get_fwstatus(struct aac_softc *sc);
155 static void     aac_rx_qnotify(struct aac_softc *sc, int qbit);
156 static int      aac_rx_get_istatus(struct aac_softc *sc);
157 static void     aac_rx_clear_istatus(struct aac_softc *sc, int mask);
158 static void     aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
159                                    u_int32_t arg0, u_int32_t arg1,
160                                    u_int32_t arg2, u_int32_t arg3);
161 static int      aac_rx_get_mailbox(struct aac_softc *sc, int mb);
162 static void     aac_rx_set_interrupts(struct aac_softc *sc, int enable);
163
164 struct aac_interface aac_rx_interface = {
165         aac_rx_get_fwstatus,
166         aac_rx_qnotify,
167         aac_rx_get_istatus,
168         aac_rx_clear_istatus,
169         aac_rx_set_mailbox,
170         aac_rx_get_mailbox,
171         aac_rx_set_interrupts
172 };
173
174 /* Debugging and Diagnostics */
175 static void     aac_describe_controller(struct aac_softc *sc);
176 static char     *aac_describe_code(struct aac_code_lookup *table,
177                                    u_int32_t code);
178
179 /* Management Interface */
180 static d_open_t         aac_open;
181 static d_close_t        aac_close;
182 static d_ioctl_t        aac_ioctl;
183 static d_poll_t         aac_poll;
184 static int              aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
185 static void             aac_handle_aif(struct aac_softc *sc,
186                                            struct aac_fib *fib);
187 static int              aac_rev_check(struct aac_softc *sc, caddr_t udata);
188 static int              aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
189 static int              aac_return_aif(struct aac_softc *sc, caddr_t uptr);
190 static int              aac_query_disk(struct aac_softc *sc, caddr_t uptr);
191
192 #define AAC_CDEV_MAJOR  150
193
194 static struct cdevsw aac_cdevsw = {
195         "aac",                  /* name */
196         AAC_CDEV_MAJOR,         /* major */
197         0,                      /* flags */
198         NULL,                   /* port */
199         NULL,                   /* clone */
200
201         aac_open,               /* open */
202         aac_close,              /* close */
203         noread,                 /* read */
204         nowrite,                /* write */
205         aac_ioctl,              /* ioctl */
206         aac_poll,               /* poll */
207         nommap,                 /* mmap */
208         nostrategy,             /* strategy */
209         nodump,                 /* dump */
210         nopsize                 /* psize */
211 };
212
213 DECLARE_DUMMY_MODULE(aac);
214
215 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
216
217 /* sysctl node */
218 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
219
220 /*
221  * Device Interface
222  */
223
224 /*
225  * Initialise the controller and softc
226  */
227 int
228 aac_attach(struct aac_softc *sc)
229 {
230         int error, unit;
231
232         debug_called(1);
233         callout_init(&sc->aac_watchdog);
234
235         /*
236          * Initialise per-controller queues.
237          */
238         aac_initq_free(sc);
239         aac_initq_ready(sc);
240         aac_initq_busy(sc);
241         aac_initq_complete(sc);
242         aac_initq_bio(sc);
243
244 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
245         /*
246          * Initialise command-completion task.
247          */
248         TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
249 #endif
250
251         /* disable interrupts before we enable anything */
252         AAC_MASK_INTERRUPTS(sc);
253
254         /* mark controller as suspended until we get ourselves organised */
255         sc->aac_state |= AAC_STATE_SUSPEND;
256
257         /*
258          * Check that the firmware on the card is supported.
259          */
260         if ((error = aac_check_firmware(sc)) != 0)
261                 return(error);
262
263         /* Init the sync fib lock */
264         AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
265
266         /*
267          * Initialise the adapter.
268          */
269         if ((error = aac_init(sc)) != 0)
270                 return(error);
271
272         /* 
273          * Print a little information about the controller.
274          */
275         aac_describe_controller(sc);
276
277         /*
278          * Register to probe our containers later.
279          */
280         TAILQ_INIT(&sc->aac_container_tqh);
281         AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
282
283         /*
284          * Lock for the AIF queue
285          */
286         AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
287
288         sc->aac_ich.ich_func = aac_startup;
289         sc->aac_ich.ich_arg = sc;
290         sc->aac_ich.ich_desc = "aac";
291         if (config_intrhook_establish(&sc->aac_ich) != 0) {
292                 device_printf(sc->aac_dev,
293                               "can't establish configuration hook\n");
294                 return(ENXIO);
295         }
296
297         /*
298          * Make the control device.
299          */
300         unit = device_get_unit(sc->aac_dev);
301         cdevsw_add(&aac_cdevsw, -1, unit);
302         sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_WHEEL, 0644,
303                                  "aac%d", unit);
304 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
305         (void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
306         (void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
307 #endif
308         sc->aac_dev_t->si_drv1 = sc;
309         reference_dev(sc->aac_dev_t);
310
311         /* Create the AIF thread */
312 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
313         if (kthread_create((void(*)(void *))aac_host_command, sc,
314                            &sc->aifthread, 0, "aac%daif", unit))
315 #else
316         if (kthread_create((void(*)(void *))aac_host_command, sc,
317                            &sc->aifthread, "aac%daif", unit))
318 #endif
319                 panic("Could not create AIF thread\n");
320
321         /* Register the shutdown method to only be called post-dump */
322         if ((EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, sc->aac_dev,
323                                    SHUTDOWN_PRI_DEFAULT)) == NULL)
324         device_printf(sc->aac_dev, "shutdown event registration failed\n");
325
326         /* Register with CAM for the non-DASD devices */
327         if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0)
328                 aac_get_bus_info(sc);
329
330         return(0);
331 }
332
333 /*
334  * Probe for containers, create disks.
335  */
336 static void
337 aac_startup(void *arg)
338 {
339         struct aac_softc *sc;
340         struct aac_fib *fib;
341         struct aac_mntinfo *mi;
342         struct aac_mntinforesp *mir = NULL;
343         int count = 0, i = 0;
344         
345         debug_called(1);
346
347         sc = (struct aac_softc *)arg;
348
349         /* disconnect ourselves from the intrhook chain */
350         config_intrhook_disestablish(&sc->aac_ich);
351
352         aac_alloc_sync_fib(sc, &fib, 0);
353         mi = (struct aac_mntinfo *)&fib->data[0];
354
355         /* loop over possible containers */
356         do {
357                 /* request information on this container */
358                 bzero(mi, sizeof(struct aac_mntinfo));
359                 mi->Command = VM_NameServe;
360                 mi->MntType = FT_FILESYS;
361                 mi->MntCount = i;
362                 if (aac_sync_fib(sc, ContainerCommand, 0, fib,
363                                  sizeof(struct aac_mntinfo))) {
364                         device_printf(sc->aac_dev,
365                             "error probing container %d", i);
366
367                         continue;
368                 }
369
370                 mir = (struct aac_mntinforesp *)&fib->data[0];
371                 /* XXX Need to check if count changed */
372                 count = mir->MntRespCount;
373                 aac_add_container(sc, mir, 0);
374                 i++;
375         } while ((i < count) && (i < AAC_MAX_CONTAINERS));
376
377         aac_release_sync_fib(sc);
378
379         /* poke the bus to actually attach the child devices */
380         if (bus_generic_attach(sc->aac_dev))
381                 device_printf(sc->aac_dev, "bus_generic_attach failed\n");
382
383         /* mark the controller up */
384         sc->aac_state &= ~AAC_STATE_SUSPEND;
385
386         /* enable interrupts now */
387         AAC_UNMASK_INTERRUPTS(sc);
388
389         /* enable the timeout watchdog */
390         callout_reset(&sc->aac_watchdog, AAC_PERIODIC_INTERVAL * hz,
391                       aac_timeout, sc);
392 }
393
394 /*
395  * Create a device to respresent a new container
396  */
397 static void
398 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
399 {
400         struct aac_container *co;
401         device_t child;
402
403         /* 
404          * Check container volume type for validity.  Note that many of
405          * the possible types may never show up.
406          */
407         if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
408                 MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF,
409                        M_INTWAIT);
410                 debug(1, "id %x  name '%.16s'  size %u  type %d", 
411                       mir->MntTable[0].ObjectId,
412                       mir->MntTable[0].FileSystemName,
413                       mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
414         
415                 if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
416                         device_printf(sc->aac_dev, "device_add_child failed\n");
417                 else
418                         device_set_ivars(child, co);
419                 device_set_desc(child, aac_describe_code(aac_container_types,
420                                 mir->MntTable[0].VolType));
421                 co->co_disk = child;
422                 co->co_found = f;
423                 bcopy(&mir->MntTable[0], &co->co_mntobj,
424                       sizeof(struct aac_mntobj));
425                 AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
426                 TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
427                 AAC_LOCK_RELEASE(&sc->aac_container_lock);
428         }
429 }
430
431 /*
432  * Free all of the resources associated with (sc)
433  *
434  * Should not be called if the controller is active.
435  */
436 void
437 aac_free(struct aac_softc *sc)
438 {
439         debug_called(1);
440
441         /* remove the control device */
442         if (sc->aac_dev_t != NULL)
443                 destroy_dev(sc->aac_dev_t);
444
445         /* throw away any FIB buffers, discard the FIB DMA tag */
446         if (sc->aac_fibs != NULL)
447                 aac_free_commands(sc);
448         if (sc->aac_fib_dmat)
449                 bus_dma_tag_destroy(sc->aac_fib_dmat);
450
451         /* destroy the common area */
452         if (sc->aac_common) {
453                 bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
454                 bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
455                                 sc->aac_common_dmamap);
456         }
457         if (sc->aac_common_dmat)
458                 bus_dma_tag_destroy(sc->aac_common_dmat);
459
460         /* disconnect the interrupt handler */
461         if (sc->aac_intr)
462                 bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
463         if (sc->aac_irq != NULL)
464                 bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
465                                      sc->aac_irq);
466
467         /* destroy data-transfer DMA tag */
468         if (sc->aac_buffer_dmat)
469                 bus_dma_tag_destroy(sc->aac_buffer_dmat);
470
471         /* destroy the parent DMA tag */
472         if (sc->aac_parent_dmat)
473                 bus_dma_tag_destroy(sc->aac_parent_dmat);
474
475         /* release the register window mapping */
476         if (sc->aac_regs_resource != NULL) {
477                 bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
478                                      sc->aac_regs_rid, sc->aac_regs_resource);
479         }
480         cdevsw_remove(&aac_cdevsw, -1, device_get_unit(sc->aac_dev));
481 }
482
483 /*
484  * Disconnect from the controller completely, in preparation for unload.
485  */
486 int
487 aac_detach(device_t dev)
488 {
489         struct aac_softc *sc;
490 #if AAC_BROKEN
491         int error;
492 #endif
493
494         debug_called(1);
495
496         sc = device_get_softc(dev);
497
498         callout_stop(&sc->aac_watchdog);
499
500         if (sc->aac_state & AAC_STATE_OPEN)
501         return(EBUSY);
502
503 #if AAC_BROKEN
504         if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
505                 sc->aifflags |= AAC_AIFFLAGS_EXIT;
506                 wakeup(sc->aifthread);
507                 tsleep(sc->aac_dev, PCATCH, "aacdch", 30 * hz);
508         }
509
510         if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
511                 panic("Cannot shutdown AIF thread\n");
512
513         if ((error = aac_shutdown(dev)))
514                 return(error);
515
516         aac_free(sc);
517
518         return(0);
519 #else
520         return (EBUSY);
521 #endif
522 }
523
524 /*
525  * Bring the controller down to a dormant state and detach all child devices.
526  *
527  * This function is called before detach or system shutdown.
528  *
529  * Note that we can assume that the bioq on the controller is empty, as we won't
530  * allow shutdown if any device is open.
531  */
532 int
533 aac_shutdown(device_t dev)
534 {
535         struct aac_softc *sc;
536         struct aac_fib *fib;
537         struct aac_close_command *cc;
538
539         debug_called(1);
540
541         sc = device_get_softc(dev);
542
543         crit_enter();
544
545         sc->aac_state |= AAC_STATE_SUSPEND;
546
547         /* 
548          * Send a Container shutdown followed by a HostShutdown FIB to the
549          * controller to convince it that we don't want to talk to it anymore.
550          * We've been closed and all I/O completed already
551          */
552         device_printf(sc->aac_dev, "shutting down controller...");
553
554         aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
555         cc = (struct aac_close_command *)&fib->data[0];
556
557         bzero(cc, sizeof(struct aac_close_command));
558         cc->Command = VM_CloseAll;
559         cc->ContainerId = 0xffffffff;
560         if (aac_sync_fib(sc, ContainerCommand, 0, fib,
561             sizeof(struct aac_close_command)))
562                 printf("FAILED.\n");
563         else {
564                 fib->data[0] = 0;
565                 /*
566                  * XXX Issuing this command to the controller makes it shut down
567                  * but also keeps it from coming back up without a reset of the
568                  * PCI bus.  This is not desirable if you are just unloading the
569                  * driver module with the intent to reload it later.
570                  */
571                 if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
572                     fib, 1)) {
573                         printf("FAILED.\n");
574                 } else {
575                         printf("done.\n");
576                 }
577         }
578
579         AAC_MASK_INTERRUPTS(sc);
580
581         crit_exit();
582         return(0);
583 }
584
585 /*
586  * Bring the controller to a quiescent state, ready for system suspend.
587  */
588 int
589 aac_suspend(device_t dev)
590 {
591         struct aac_softc *sc;
592
593         debug_called(1);
594
595         sc = device_get_softc(dev);
596
597         crit_enter();
598
599         sc->aac_state |= AAC_STATE_SUSPEND;
600         
601         AAC_MASK_INTERRUPTS(sc);
602         crit_exit();
603         return(0);
604 }
605
606 /*
607  * Bring the controller back to a state ready for operation.
608  */
609 int
610 aac_resume(device_t dev)
611 {
612         struct aac_softc *sc;
613
614         debug_called(1);
615
616         sc = device_get_softc(dev);
617
618         sc->aac_state &= ~AAC_STATE_SUSPEND;
619         AAC_UNMASK_INTERRUPTS(sc);
620         return(0);
621 }
622
623 /*
624  * Take an interrupt.
625  */
626 void
627 aac_intr(void *arg)
628 {
629         struct aac_softc *sc;
630         u_int16_t reason;
631         u_int32_t *resp_queue;
632
633         debug_called(2);
634
635         sc = (struct aac_softc *)arg;
636
637         /*
638          * Optimize the common case of adapter response interrupts.
639          * We must read from the card prior to processing the responses
640          * to ensure the clear is flushed prior to accessing the queues.
641          * Reading the queues from local memory might save us a PCI read.
642          */
643         resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE];
644         if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX])
645                 reason = AAC_DB_RESPONSE_READY;
646         else 
647                 reason = AAC_GET_ISTATUS(sc);
648         AAC_CLEAR_ISTATUS(sc, reason);
649         (void)AAC_GET_ISTATUS(sc);
650
651         /* It's not ok to return here because of races with the previous step */
652         if (reason & AAC_DB_RESPONSE_READY)
653                 aac_host_response(sc);
654
655         /* controller wants to talk to the log */
656         if (reason & AAC_DB_PRINTF)
657                 aac_print_printf(sc);
658
659         /* controller has a message for us? */
660         if (reason & AAC_DB_COMMAND_READY) {
661                 /* XXX What happens if the thread is already awake? */
662                 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
663                         sc->aifflags |= AAC_AIFFLAGS_PENDING;
664                         wakeup(sc->aifthread);
665                 }
666         }
667 }
668
669 /*
670  * Command Processing
671  */
672
673 /*
674  * Start as much queued I/O as possible on the controller
675  */
676 void
677 aac_startio(struct aac_softc *sc)
678 {
679         struct aac_command *cm;
680
681         debug_called(2);
682
683         for (;;) {
684                 /*
685                  * Try to get a command that's been put off for lack of 
686                  * resources
687                  */
688                 cm = aac_dequeue_ready(sc);
689
690                 /*
691                  * Try to build a command off the bio queue (ignore error 
692                  * return)
693                  */
694                 if (cm == NULL)
695                         aac_bio_command(sc, &cm);
696
697                 /* nothing to do? */
698                 if (cm == NULL)
699                         break;
700
701                 /* try to give the command to the controller */
702                 if (aac_start(cm) == EBUSY) {
703                         /* put it on the ready queue for later */
704                         aac_requeue_ready(cm);
705                         break;
706                 }
707         }
708 }
709
710 /*
711  * Deliver a command to the controller; allocate controller resources at the
712  * last moment when possible.
713  */
714 static int
715 aac_start(struct aac_command *cm)
716 {
717         struct aac_softc *sc;
718         int error;
719
720         debug_called(2);
721
722         sc = cm->cm_sc;
723
724         /* get the command mapped */
725         aac_map_command(cm);
726
727         /* fix up the address values in the FIB */
728         cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
729         cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
730
731         /* save a pointer to the command for speedy reverse-lookup */
732         cm->cm_fib->Header.SenderData = (u_int32_t)cm;  /* XXX 64-bit physical
733                                                          * address issue */
734         /* put the FIB on the outbound queue */
735         error = aac_enqueue_fib(sc, cm->cm_queue, cm);
736         return(error);
737 }
738
739 /*
740  * Handle notification of one or more FIBs coming from the controller.
741  */
742 static void
743 aac_host_command(struct aac_softc *sc)
744 {
745         struct aac_fib *fib;
746         u_int32_t fib_size;
747         int size;
748
749         debug_called(2);
750
751         sc->aifflags |= AAC_AIFFLAGS_RUNNING;
752
753         while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
754                 if (!(sc->aifflags & AAC_AIFFLAGS_PENDING))
755                         tsleep(sc->aifthread, 0, "aifthd", 15 * hz);
756
757                 sc->aifflags &= ~AAC_AIFFLAGS_PENDING;
758                 for (;;) {
759                         if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
760                                             &fib_size, &fib))
761                                 break;  /* nothing to do */
762         
763                         AAC_PRINT_FIB(sc, fib);
764         
765                         switch (fib->Header.Command) {
766                         case AifRequest:
767                                 aac_handle_aif(sc, fib);
768                                 break;
769                         default:
770                                 device_printf(sc->aac_dev, "unknown command "
771                                               "from controller\n");
772                                 break;
773                         }
774
775                         /* Return the AIF to the controller. */
776                         if ((fib->Header.XferState == 0) ||
777                             (fib->Header.StructType != AAC_FIBTYPE_TFIB))
778                                 break;
779
780                         if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
781                                 fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
782                                 *(AAC_FSAStatus*)fib->data = ST_OK;
783
784                                 /* XXX Compute the Size field? */
785                                 size = fib->Header.Size;
786                                 if (size > sizeof(struct aac_fib)) {
787                                         size = sizeof(struct aac_fib);
788                                         fib->Header.Size = size;
789                                 }
790                                 /*
791                                  * Since we did not generate this command, it
792                                  * cannot go through the normal
793                                  * enqueue->startio chain.
794                                  */
795                                 aac_enqueue_response(sc,
796                                                      AAC_ADAP_NORM_RESP_QUEUE,
797                                                      fib);
798                         }
799                 }
800         }
801         sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
802         wakeup(sc->aac_dev);
803
804 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
805         mtx_lock(&Giant);
806 #endif
807         kthread_exit();
808 }
809
810 /*
811  * Handle notification of one or more FIBs completed by the controller
812  */
813 static void
814 aac_host_response(struct aac_softc *sc)
815 {
816         struct aac_command *cm;
817         struct aac_fib *fib;
818         u_int32_t fib_size;
819
820         debug_called(2);
821
822         for (;;) {
823                 /* look for completed FIBs on our queue */
824                 if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
825                                     &fib))
826                         break;  /* nothing to do */
827         
828                 /* get the command, unmap and queue for later processing */
829                 cm = (struct aac_command *)fib->Header.SenderData;
830                 if (cm == NULL) {
831                         AAC_PRINT_FIB(sc, fib);
832                 } else {
833                         aac_remove_busy(cm);
834                         aac_unmap_command(cm);          /* XXX defer? */
835                         aac_enqueue_complete(cm);
836                 }
837         }
838
839         /* handle completion processing */
840 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
841         taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
842 #else
843         aac_complete(sc, 0);
844 #endif
845 }
846
847 /*
848  * Process completed commands.
849  */
850 static void
851 aac_complete(void *context, int pending)
852 {
853         struct aac_softc *sc;
854         struct aac_command *cm;
855         
856         debug_called(2);
857
858         sc = (struct aac_softc *)context;
859
860         /* pull completed commands off the queue */
861         for (;;) {
862                 cm = aac_dequeue_complete(sc);
863                 if (cm == NULL)
864                         break;
865                 cm->cm_flags |= AAC_CMD_COMPLETED;
866
867                 /* is there a completion handler? */
868                 if (cm->cm_complete != NULL) {
869                         cm->cm_complete(cm);
870                 } else {
871                         /* assume that someone is sleeping on this command */
872                         wakeup(cm);
873                 }
874         }
875
876         /* see if we can start some more I/O */
877         aac_startio(sc);
878 }
879
880 /*
881  * Handle a bio submitted from a disk device.
882  */
883 void
884 aac_submit_bio(struct aac_disk *ad, struct bio *bio)
885 {
886         struct aac_softc *sc;
887
888         debug_called(2);
889
890         bio->bio_driver_info = ad;
891         sc = ad->ad_controller;
892
893         /* queue the BIO and try to get some work done */
894         aac_enqueue_bio(sc, bio);
895         aac_startio(sc);
896 }
897
898 /*
899  * Get a bio and build a command to go with it.
900  */
901 static int
902 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
903 {
904         struct aac_command *cm;
905         struct aac_fib *fib;
906         struct aac_blockread *br;
907         struct aac_blockwrite *bw;
908         struct aac_disk *ad;
909         struct bio *bio;
910         struct buf *bp;
911
912         debug_called(2);
913
914         /* get the resources we will need */
915         cm = NULL;
916         if ((bio = aac_dequeue_bio(sc)) == NULL)
917                 goto fail;
918         if (aac_alloc_command(sc, &cm)) /* get a command */
919                 goto fail;
920
921         /* fill out the command */
922         bp = bio->bio_buf;
923         cm->cm_data = (void *)bp->b_data;
924         cm->cm_datalen = bp->b_bcount;
925         cm->cm_complete = aac_bio_complete;
926         cm->cm_private = bio;
927         cm->cm_timestamp = time_second;
928         cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
929
930         /* build the FIB */
931         fib = cm->cm_fib;
932         fib->Header.XferState =  
933                 AAC_FIBSTATE_HOSTOWNED   | 
934                 AAC_FIBSTATE_INITIALISED | 
935                 AAC_FIBSTATE_EMPTY       | 
936                 AAC_FIBSTATE_FROMHOST    |
937                 AAC_FIBSTATE_REXPECTED   |
938                 AAC_FIBSTATE_NORM        |
939                 AAC_FIBSTATE_ASYNC       |
940                 AAC_FIBSTATE_FAST_RESPONSE;
941         fib->Header.Command = ContainerCommand;
942         fib->Header.Size = sizeof(struct aac_fib_header);
943
944         /* build the read/write request */
945         ad = (struct aac_disk *)bio->bio_driver_info;
946         if (bp->b_cmd == BUF_CMD_READ) {
947                 br = (struct aac_blockread *)&fib->data[0];
948                 br->Command = VM_CtBlockRead;
949                 br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
950                 br->BlockNumber = bio->bio_offset / AAC_BLOCK_SIZE;
951                 br->ByteCount = bp->b_bcount;
952                 fib->Header.Size += sizeof(struct aac_blockread);
953                 cm->cm_sgtable = &br->SgMap;
954                 cm->cm_flags |= AAC_CMD_DATAIN;
955         } else {
956                 bw = (struct aac_blockwrite *)&fib->data[0];
957                 bw->Command = VM_CtBlockWrite;
958                 bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
959                 bw->BlockNumber = bio->bio_offset / AAC_BLOCK_SIZE;
960                 bw->ByteCount = bp->b_bcount;
961                 bw->Stable = CUNSTABLE; /* XXX what's appropriate here? */
962                 fib->Header.Size += sizeof(struct aac_blockwrite);
963                 cm->cm_flags |= AAC_CMD_DATAOUT;
964                 cm->cm_sgtable = &bw->SgMap;
965         }
966
967         *cmp = cm;
968         return(0);
969
970 fail:
971         if (bio != NULL)
972                 aac_enqueue_bio(sc, bio);
973         if (cm != NULL)
974                 aac_release_command(cm);
975         return(ENOMEM);
976 }
977
978 /*
979  * Handle a bio-instigated command that has been completed.
980  */
981 static void
982 aac_bio_complete(struct aac_command *cm)
983 {
984         struct aac_blockread_response *brr;
985         struct aac_blockwrite_response *bwr;
986         struct bio *bio;
987         struct buf *bp;
988         const char *code;
989         AAC_FSAStatus status;
990
991         /* fetch relevant status and then release the command */
992         bio = (struct bio *)cm->cm_private;
993         bp = bio->bio_buf;
994         if (bp->b_cmd == BUF_CMD_READ) {
995                 brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
996                 status = brr->Status;
997         } else {
998                 bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
999                 status = bwr->Status;
1000         }
1001         aac_release_command(cm);
1002
1003         /* fix up the bio based on status */
1004         if (status == ST_OK) {
1005                 bp->b_resid = 0;
1006                 code = 0;
1007         } else {
1008                 bp->b_error = EIO;
1009                 bp->b_flags |= B_ERROR;
1010                 /* pass an error string out to the disk layer */
1011                 code = aac_describe_code(aac_command_status_table, status);
1012         }
1013         aac_biodone(bio, code);
1014 }
1015
1016 /*
1017  * Dump a block of data to the controller.  If the queue is full, tell the
1018  * caller to hold off and wait for the queue to drain.
1019  */
1020 int
1021 aac_dump_enqueue(struct aac_disk *ad, u_int32_t lba, void *data, int dumppages)
1022 {
1023         struct aac_softc *sc;
1024         struct aac_command *cm;
1025         struct aac_fib *fib;
1026         struct aac_blockwrite *bw;
1027
1028         sc = ad->ad_controller;
1029         cm = NULL;
1030
1031         if (aac_alloc_command(sc, &cm))
1032                 return (EBUSY);
1033
1034         /* fill out the command */
1035         cm->cm_data = data;
1036         cm->cm_datalen = dumppages * PAGE_SIZE;
1037         cm->cm_complete = NULL;
1038         cm->cm_private = NULL;
1039         cm->cm_timestamp = time_second;
1040         cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1041
1042         /* build the FIB */
1043         fib = cm->cm_fib;
1044         fib->Header.XferState =  
1045         AAC_FIBSTATE_HOSTOWNED   | 
1046         AAC_FIBSTATE_INITIALISED | 
1047         AAC_FIBSTATE_FROMHOST    |
1048         AAC_FIBSTATE_REXPECTED   |
1049         AAC_FIBSTATE_NORM;
1050         fib->Header.Command = ContainerCommand;
1051         fib->Header.Size = sizeof(struct aac_fib_header);
1052
1053         bw = (struct aac_blockwrite *)&fib->data[0];
1054         bw->Command = VM_CtBlockWrite;
1055         bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1056         bw->BlockNumber = lba;
1057         bw->ByteCount = dumppages * PAGE_SIZE;
1058         bw->Stable = CUNSTABLE;         /* XXX what's appropriate here? */
1059         fib->Header.Size += sizeof(struct aac_blockwrite);
1060         cm->cm_flags |= AAC_CMD_DATAOUT;
1061         cm->cm_sgtable = &bw->SgMap;
1062
1063         return (aac_start(cm));
1064 }
1065
1066 /*
1067  * Wait for the card's queue to drain when dumping.  Also check for monitor
1068  * printf's
1069  */
1070 void
1071 aac_dump_complete(struct aac_softc *sc)
1072 {
1073         struct aac_fib *fib;
1074         struct aac_command *cm;
1075         u_int16_t reason;
1076         u_int32_t pi, ci, fib_size;
1077
1078         do {
1079                 reason = AAC_GET_ISTATUS(sc);
1080                 if (reason & AAC_DB_RESPONSE_READY) {
1081                         AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
1082                         for (;;) {
1083                                 if (aac_dequeue_fib(sc,
1084                                                     AAC_HOST_NORM_RESP_QUEUE,
1085                                                     &fib_size, &fib))
1086                                         break;
1087                                 cm = (struct aac_command *)
1088                                         fib->Header.SenderData;
1089                                 if (cm == NULL)
1090                                         AAC_PRINT_FIB(sc, fib);
1091                                 else {
1092                                         aac_remove_busy(cm);
1093                                         aac_unmap_command(cm);
1094                                         aac_enqueue_complete(cm);
1095                                         aac_release_command(cm);
1096                                 }
1097                         }
1098                 }
1099                 if (reason & AAC_DB_PRINTF) {
1100                         AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
1101                         aac_print_printf(sc);
1102                 }
1103                 pi = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1104                         AAC_PRODUCER_INDEX];
1105                 ci = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][        
1106                         AAC_CONSUMER_INDEX];
1107         } while (ci != pi);
1108
1109         return;
1110 }
1111
1112 /*
1113  * Submit a command to the controller, return when it completes.
1114  * XXX This is very dangerous!  If the card has gone out to lunch, we could
1115  *     be stuck here forever.  At the same time, signals are not caught
1116  *     because there is a risk that a signal could wakeup the tsleep before
1117  *     the card has a chance to complete the command.  The passed in timeout
1118  *     is ignored for the same reason.  Since there is no way to cancel a
1119  *     command in progress, we should probably create a 'dead' queue where
1120  *     commands go that have been interrupted/timed-out/etc, that keeps them
1121  *     out of the free pool.  That way, if the card is just slow, it won't
1122  *     spam the memory of a command that has been recycled.
1123  */
1124 static int
1125 aac_wait_command(struct aac_command *cm, int timeout)
1126 {
1127         int error = 0;
1128
1129         debug_called(2);
1130
1131         /* Put the command on the ready queue and get things going */
1132         cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1133         aac_enqueue_ready(cm);
1134         aac_startio(cm->cm_sc);
1135         crit_enter();
1136         while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1137                 error = tsleep(cm, 0, "aacwait", 0);
1138         }
1139         crit_exit();
1140         return(error);
1141 }
1142
1143 /*
1144  *Command Buffer Management
1145  */
1146
1147 /*
1148  * Allocate a command.
1149  */
1150 int
1151 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1152 {
1153         struct aac_command *cm;
1154
1155         debug_called(3);
1156
1157         if ((cm = aac_dequeue_free(sc)) == NULL)
1158                 return(ENOMEM);
1159
1160         *cmp = cm;
1161         return(0);
1162 }
1163
1164 /*
1165  * Release a command back to the freelist.
1166  */
1167 void
1168 aac_release_command(struct aac_command *cm)
1169 {
1170         debug_called(3);
1171
1172         /* (re)initialise the command/FIB */
1173         cm->cm_sgtable = NULL;
1174         cm->cm_flags = 0;
1175         cm->cm_complete = NULL;
1176         cm->cm_private = NULL;
1177         cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1178         cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1179         cm->cm_fib->Header.Flags = 0;
1180         cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1181
1182         /* 
1183          * These are duplicated in aac_start to cover the case where an
1184          * intermediate stage may have destroyed them.  They're left
1185          * initialised here for debugging purposes only.
1186          */
1187         cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1188         cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1189         cm->cm_fib->Header.SenderData = 0;
1190
1191         aac_enqueue_free(cm);
1192 }
1193
1194 /*
1195  * Map helper for command/FIB allocation.
1196  */
1197 static void
1198 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1199 {
1200         struct aac_softc *sc;
1201
1202         sc = (struct aac_softc *)arg;
1203
1204         debug_called(3);
1205
1206         sc->aac_fibphys = segs[0].ds_addr;
1207 }
1208
1209 /*
1210  * Allocate and initialise commands/FIBs for this adapter.
1211  */
1212 static int
1213 aac_alloc_commands(struct aac_softc *sc)
1214 {
1215         struct aac_command *cm;
1216         int i;
1217  
1218         debug_called(1);
1219
1220         /* allocate the FIBs in DMAable memory and load them */
1221         if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs,
1222                          BUS_DMA_NOWAIT, &sc->aac_fibmap)) {
1223                 return(ENOMEM);
1224         }
1225
1226         bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs, 
1227                         AAC_FIB_COUNT * sizeof(struct aac_fib),
1228                         aac_map_command_helper, sc, 0);
1229
1230         /* initialise constant fields in the command structure */
1231         bzero(sc->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1232         for (i = 0; i < AAC_FIB_COUNT; i++) {
1233                 cm = &sc->aac_command[i];
1234                 cm->cm_sc = sc;
1235                 cm->cm_fib = sc->aac_fibs + i;
1236                 cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib));
1237
1238                 if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap))
1239                         aac_release_command(cm);
1240         }
1241         return(0);
1242 }
1243
1244 /*
1245  * Free FIBs owned by this adapter.
1246  */
1247 static void
1248 aac_free_commands(struct aac_softc *sc)
1249 {
1250         int i;
1251
1252         debug_called(1);
1253
1254         for (i = 0; i < AAC_FIB_COUNT; i++)
1255                 bus_dmamap_destroy(sc->aac_buffer_dmat,
1256                                    sc->aac_command[i].cm_datamap);
1257
1258         bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap);
1259         bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap);
1260 }
1261
1262 /*
1263  * Command-mapping helper function - populate this command's s/g table.
1264  */
1265 static void
1266 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1267 {
1268         struct aac_command *cm;
1269         struct aac_fib *fib;
1270         struct aac_sg_table *sg;
1271         int i;
1272
1273         debug_called(3);
1274
1275         cm = (struct aac_command *)arg;
1276         fib = cm->cm_fib;
1277
1278         /* find the s/g table */
1279         sg = cm->cm_sgtable;
1280
1281         /* copy into the FIB */
1282         if (sg != NULL) {
1283                 sg->SgCount = nseg;
1284                 for (i = 0; i < nseg; i++) {
1285                         sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1286                         sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1287                 }
1288                 /* update the FIB size for the s/g count */
1289                 fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1290         }
1291
1292 }
1293
1294 /*
1295  * Map a command into controller-visible space.
1296  */
1297 static void
1298 aac_map_command(struct aac_command *cm)
1299 {
1300         struct aac_softc *sc;
1301
1302         debug_called(2);
1303
1304         sc = cm->cm_sc;
1305
1306         /* don't map more than once */
1307         if (cm->cm_flags & AAC_CMD_MAPPED)
1308                 return;
1309
1310         if (cm->cm_datalen != 0) {
1311                 bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1312                                 cm->cm_data, cm->cm_datalen,
1313                                 aac_map_command_sg, cm, 0);
1314
1315                 if (cm->cm_flags & AAC_CMD_DATAIN)
1316                         bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1317                                         BUS_DMASYNC_PREREAD);
1318                 if (cm->cm_flags & AAC_CMD_DATAOUT)
1319                         bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1320                                         BUS_DMASYNC_PREWRITE);
1321         }
1322         cm->cm_flags |= AAC_CMD_MAPPED;
1323 }
1324
1325 /*
1326  * Unmap a command from controller-visible space.
1327  */
1328 static void
1329 aac_unmap_command(struct aac_command *cm)
1330 {
1331         struct aac_softc *sc;
1332
1333         debug_called(2);
1334
1335         sc = cm->cm_sc;
1336
1337         if (!(cm->cm_flags & AAC_CMD_MAPPED))
1338                 return;
1339
1340         if (cm->cm_datalen != 0) {
1341                 if (cm->cm_flags & AAC_CMD_DATAIN)
1342                         bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1343                                         BUS_DMASYNC_POSTREAD);
1344                 if (cm->cm_flags & AAC_CMD_DATAOUT)
1345                         bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1346                                         BUS_DMASYNC_POSTWRITE);
1347
1348                 bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1349         }
1350         cm->cm_flags &= ~AAC_CMD_MAPPED;
1351 }
1352
1353 /*
1354  * Hardware Interface
1355  */
1356
1357 /*
1358  * Initialise the adapter.
1359  */
1360 static void
1361 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1362 {
1363         struct aac_softc *sc;
1364
1365         debug_called(1);
1366
1367         sc = (struct aac_softc *)arg;
1368
1369         sc->aac_common_busaddr = segs[0].ds_addr;
1370 }
1371
1372 static int
1373 aac_check_firmware(struct aac_softc *sc)
1374 {
1375         u_int32_t major, minor, options;
1376
1377         debug_called(1);
1378
1379         /*
1380          * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1381          * firmware version 1.x are not compatible with this driver.
1382          */
1383         if (sc->flags & AAC_FLAGS_PERC2QC) {
1384                 if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1385                                      NULL)) {
1386                         device_printf(sc->aac_dev,
1387                                       "Error reading firmware version\n");
1388                         return (EIO);
1389                 }
1390
1391                 /* These numbers are stored as ASCII! */
1392                 major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1393                 minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1394                 if (major == 1) {
1395                         device_printf(sc->aac_dev,
1396                             "Firmware version %d.%d is not supported.\n",
1397                             major, minor);
1398                         return (EINVAL);
1399                 }
1400         }
1401
1402         /*
1403          * Retrieve the capabilities/supported options word so we know what
1404          * work-arounds to enable.
1405          */
1406         if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1407                 device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1408                 return (EIO);
1409         }
1410         options = AAC_GET_MAILBOX(sc, 1);
1411         sc->supported_options = options;
1412
1413         if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1414             (sc->flags & AAC_FLAGS_NO4GB) == 0)
1415                 sc->flags |= AAC_FLAGS_4GB_WINDOW;
1416         if (options & AAC_SUPPORTED_NONDASD)
1417                 sc->flags |= AAC_FLAGS_ENABLE_CAM;
1418
1419         return (0);
1420 }
1421
1422 static int
1423 aac_init(struct aac_softc *sc)
1424 {
1425         struct aac_adapter_init *ip;
1426         time_t then;
1427         u_int32_t code;
1428         u_int8_t *qaddr;
1429         int error;
1430
1431         debug_called(1);
1432
1433         /*
1434          * First wait for the adapter to come ready.
1435          */
1436         then = time_second;
1437         do {
1438                 code = AAC_GET_FWSTATUS(sc);
1439                 if (code & AAC_SELF_TEST_FAILED) {
1440                         device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1441                         return(ENXIO);
1442                 }
1443                 if (code & AAC_KERNEL_PANIC) {
1444                         device_printf(sc->aac_dev,
1445                                       "FATAL: controller kernel panic\n");
1446                         return(ENXIO);
1447                 }
1448                 if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1449                         device_printf(sc->aac_dev,
1450                                       "FATAL: controller not coming ready, "
1451                                            "status %x\n", code);
1452                         return(ENXIO);
1453                 }
1454         } while (!(code & AAC_UP_AND_RUNNING));
1455
1456         error = ENOMEM;
1457         /*
1458          * Create DMA tag for mapping buffers into controller-addressable space.
1459          */
1460         if (bus_dma_tag_create(sc->aac_parent_dmat,     /* parent */
1461                                1, 0,                    /* algnmnt, boundary */
1462                                BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
1463                                BUS_SPACE_MAXADDR,       /* highaddr */
1464                                NULL, NULL,              /* filter, filterarg */
1465                                MAXBSIZE,                /* maxsize */
1466                                AAC_MAXSGENTRIES,        /* nsegments */
1467                                MAXBSIZE,                /* maxsegsize */
1468                                BUS_DMA_ALLOCNOW,        /* flags */
1469                                &sc->aac_buffer_dmat)) {
1470                 device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1471                 goto out;
1472         }
1473  
1474         /*
1475          * Create DMA tag for mapping FIBs into controller-addressable space..
1476          */
1477         if (bus_dma_tag_create(sc->aac_parent_dmat,     /* parent */
1478                                1, 0,                    /* algnmnt, boundary */
1479                                (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1480                                BUS_SPACE_MAXADDR_32BIT :
1481                                0x7fffffff,              /* lowaddr */
1482                                BUS_SPACE_MAXADDR,       /* highaddr */
1483                                NULL, NULL,              /* filter, filterarg */
1484                                AAC_FIB_COUNT *
1485                                sizeof(struct aac_fib),  /* maxsize */
1486                                1,                       /* nsegments */
1487                                AAC_FIB_COUNT *
1488                                sizeof(struct aac_fib),  /* maxsegsize */
1489                                BUS_DMA_ALLOCNOW,        /* flags */
1490                                &sc->aac_fib_dmat)) {
1491                 device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");;
1492                 goto out;
1493         }
1494  
1495         /*
1496          * Create DMA tag for the common structure and allocate it.
1497          */
1498         if (bus_dma_tag_create(sc->aac_parent_dmat,     /* parent */
1499                                1, 0,                    /* algnmnt, boundary */
1500                                (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1501                                BUS_SPACE_MAXADDR_32BIT :
1502                                0x7fffffff,              /* lowaddr */
1503                                BUS_SPACE_MAXADDR,       /* highaddr */
1504                                NULL, NULL,              /* filter, filterarg */
1505                                8192 + sizeof(struct aac_common), /* maxsize */
1506                                1,                       /* nsegments */
1507                                BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
1508                                BUS_DMA_ALLOCNOW,        /* flags */
1509                                &sc->aac_common_dmat)) {
1510                 device_printf(sc->aac_dev,
1511                               "can't allocate common structure DMA tag\n");
1512                 goto out;
1513         }
1514         if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1515                              BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1516                 device_printf(sc->aac_dev, "can't allocate common structure\n");
1517                 goto out;
1518         }
1519         /*
1520          * Work around a bug in the 2120 and 2200 that cannot DMA commands
1521          * below address 8192 in physical memory.
1522          * XXX If the padding is not needed, can it be put to use instead
1523          * of ignored?
1524          */
1525         bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1526                         sc->aac_common, 8192 + sizeof(*sc->aac_common),
1527                         aac_common_map, sc, 0);
1528
1529         if (sc->aac_common_busaddr < 8192) {
1530                 sc->aac_common =
1531                     (struct aac_common *)((uint8_t *)sc->aac_common + 8192);
1532                 sc->aac_common_busaddr += 8192;
1533         }
1534         bzero(sc->aac_common, sizeof(*sc->aac_common));
1535
1536         /* Allocate some FIBs and associated command structs */
1537         if (aac_alloc_commands(sc) != 0)
1538                 goto out;
1539
1540         /*
1541          * Fill in the init structure.  This tells the adapter about the
1542          * physical location of various important shared data structures.
1543          */
1544         ip = &sc->aac_common->ac_init;
1545         ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1546         ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1547
1548         ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1549                                          offsetof(struct aac_common, ac_fibs);
1550         ip->AdapterFibsVirtualAddress = (aac_phys_addr_t)&sc->aac_common->ac_fibs[0];
1551         ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1552         ip->AdapterFibAlign = sizeof(struct aac_fib);
1553
1554         ip->PrintfBufferAddress = sc->aac_common_busaddr +
1555                                   offsetof(struct aac_common, ac_printf);
1556         ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1557
1558         /* The adapter assumes that pages are 4K in size */
1559         ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1560         ip->HostElapsedSeconds = time_second;   /* reset later if invalid */
1561
1562         /*
1563          * Initialise FIB queues.  Note that it appears that the layout of the
1564          * indexes and the segmentation of the entries may be mandated by the
1565          * adapter, which is only told about the base of the queue index fields.
1566          *
1567          * The initial values of the indices are assumed to inform the adapter
1568          * of the sizes of the respective queues, and theoretically it could 
1569          * work out the entire layout of the queue structures from this.  We
1570          * take the easy route and just lay this area out like everyone else
1571          * does.
1572          *
1573          * The Linux driver uses a much more complex scheme whereby several 
1574          * header records are kept for each queue.  We use a couple of generic 
1575          * list manipulation functions which 'know' the size of each list by
1576          * virtue of a table.
1577          */
1578         qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1579         qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1580         sc->aac_queues = (struct aac_queue_table *)qaddr;
1581         ip->CommHeaderAddress = sc->aac_common_busaddr +
1582                                 ((u_int32_t)sc->aac_queues -
1583                                 (u_int32_t)sc->aac_common);
1584         bzero(sc->aac_queues, sizeof(struct aac_queue_table));
1585
1586         sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1587                 AAC_HOST_NORM_CMD_ENTRIES;
1588         sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1589                 AAC_HOST_NORM_CMD_ENTRIES;
1590         sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1591                 AAC_HOST_HIGH_CMD_ENTRIES;
1592         sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1593                 AAC_HOST_HIGH_CMD_ENTRIES;
1594         sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1595                 AAC_ADAP_NORM_CMD_ENTRIES;
1596         sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1597                 AAC_ADAP_NORM_CMD_ENTRIES;
1598         sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1599                 AAC_ADAP_HIGH_CMD_ENTRIES;
1600         sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1601                 AAC_ADAP_HIGH_CMD_ENTRIES;
1602         sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1603                 AAC_HOST_NORM_RESP_ENTRIES;
1604         sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1605                 AAC_HOST_NORM_RESP_ENTRIES;
1606         sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1607                 AAC_HOST_HIGH_RESP_ENTRIES;
1608         sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1609                 AAC_HOST_HIGH_RESP_ENTRIES;
1610         sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1611                 AAC_ADAP_NORM_RESP_ENTRIES;
1612         sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1613                 AAC_ADAP_NORM_RESP_ENTRIES;
1614         sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1615                 AAC_ADAP_HIGH_RESP_ENTRIES;
1616         sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1617                 AAC_ADAP_HIGH_RESP_ENTRIES;
1618         sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1619                 &sc->aac_queues->qt_HostNormCmdQueue[0];
1620         sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1621                 &sc->aac_queues->qt_HostHighCmdQueue[0];
1622         sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1623                 &sc->aac_queues->qt_AdapNormCmdQueue[0];
1624         sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1625                 &sc->aac_queues->qt_AdapHighCmdQueue[0];
1626         sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1627                 &sc->aac_queues->qt_HostNormRespQueue[0];
1628         sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1629                 &sc->aac_queues->qt_HostHighRespQueue[0];
1630         sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1631                 &sc->aac_queues->qt_AdapNormRespQueue[0];
1632         sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1633                 &sc->aac_queues->qt_AdapHighRespQueue[0];
1634
1635         /*
1636          * Do controller-type-specific initialisation
1637          */
1638         switch (sc->aac_hwif) {
1639         case AAC_HWIF_I960RX:
1640                 AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1641                 break;
1642         }
1643
1644         /*
1645          * Give the init structure to the controller.
1646          */
1647         if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT, 
1648                              sc->aac_common_busaddr +
1649                              offsetof(struct aac_common, ac_init), 0, 0, 0,
1650                              NULL)) {
1651                 device_printf(sc->aac_dev,
1652                               "error establishing init structure\n");
1653                 error = EIO;
1654                 goto out;
1655         }
1656
1657         error = 0;
1658 out:
1659         return(error);
1660 }
1661
1662 /*
1663  * Send a synchronous command to the controller and wait for a result.
1664  */
1665 static int
1666 aac_sync_command(struct aac_softc *sc, u_int32_t command,
1667                  u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1668                  u_int32_t *sp)
1669 {
1670         time_t then;
1671         u_int32_t status;
1672
1673         debug_called(3);
1674
1675         /* populate the mailbox */
1676         AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1677
1678         /* ensure the sync command doorbell flag is cleared */
1679         AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1680
1681         /* then set it to signal the adapter */
1682         AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1683
1684         /* spin waiting for the command to complete */
1685         then = time_second;
1686         do {
1687                 if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1688                         debug(1, "timed out");
1689                         return(EIO);
1690                 }
1691         } while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1692
1693         /* clear the completion flag */
1694         AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1695
1696         /* get the command status */
1697         status = AAC_GET_MAILBOX(sc, 0);
1698         if (sp != NULL)
1699                 *sp = status;
1700         return(0);
1701 }
1702
1703 /*
1704  * Grab the sync fib area.
1705  */
1706 int
1707 aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1708 {
1709
1710         /*
1711          * If the force flag is set, the system is shutting down, or in
1712          * trouble.  Ignore the mutex.
1713          */
1714         if (!(flags & AAC_SYNC_LOCK_FORCE))
1715                 AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1716
1717         *fib = &sc->aac_common->ac_sync_fib;
1718
1719         return (1);
1720 }
1721
1722 /*
1723  * Release the sync fib area.
1724  */
1725 void
1726 aac_release_sync_fib(struct aac_softc *sc)
1727 {
1728
1729         AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1730 }
1731
1732 /*
1733  * Send a synchronous FIB to the controller and wait for a result.
1734  */
1735 int
1736 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate, 
1737                  struct aac_fib *fib, u_int16_t datasize)
1738 {
1739         debug_called(3);
1740
1741         if (datasize > AAC_FIB_DATASIZE)
1742                 return(EINVAL);
1743
1744         /*
1745          * Set up the sync FIB
1746          */
1747         fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1748                                 AAC_FIBSTATE_INITIALISED |
1749                                 AAC_FIBSTATE_EMPTY;
1750         fib->Header.XferState |= xferstate;
1751         fib->Header.Command = command;
1752         fib->Header.StructType = AAC_FIBTYPE_TFIB;
1753         fib->Header.Size = sizeof(struct aac_fib) + datasize;
1754         fib->Header.SenderSize = sizeof(struct aac_fib);
1755         fib->Header.SenderFibAddress = (u_int32_t)fib;
1756         fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1757                                          offsetof(struct aac_common,
1758                                                   ac_sync_fib);
1759
1760         /*
1761          * Give the FIB to the controller, wait for a response.
1762          */
1763         if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1764                              fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1765                 debug(2, "IO error");
1766                 return(EIO);
1767         }
1768
1769         return (0);
1770 }
1771
1772 /*
1773  * Adapter-space FIB queue manipulation
1774  *
1775  * Note that the queue implementation here is a little funky; neither the PI or
1776  * CI will ever be zero.  This behaviour is a controller feature.
1777  */
1778 static struct {
1779         int             size;
1780         int             notify;
1781 } aac_qinfo[] = {
1782         {AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1783         {AAC_HOST_HIGH_CMD_ENTRIES, 0},
1784         {AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1785         {AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1786         {AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1787         {AAC_HOST_HIGH_RESP_ENTRIES, 0},
1788         {AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1789         {AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1790 };
1791
1792 /*
1793  * Atomically insert an entry into the nominated queue, returns 0 on success or
1794  * EBUSY if the queue is full.
1795  *
1796  * Note: it would be more efficient to defer notifying the controller in
1797  *       the case where we may be inserting several entries in rapid succession,
1798  *       but implementing this usefully may be difficult (it would involve a
1799  *       separate queue/notify interface).
1800  */
1801 static int
1802 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1803 {
1804         u_int32_t pi, ci;
1805         int error;
1806         u_int32_t fib_size;
1807         u_int32_t fib_addr;
1808
1809         debug_called(3);
1810
1811         fib_size = cm->cm_fib->Header.Size; 
1812         fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1813
1814         crit_enter();
1815
1816         /* get the producer/consumer indices */
1817         pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1818         ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1819
1820         /* wrap the queue? */
1821         if (pi >= aac_qinfo[queue].size)
1822                 pi = 0;
1823
1824         /* check for queue full */
1825         if ((pi + 1) == ci) {
1826                 error = EBUSY;
1827                 goto out;
1828         }
1829         /*
1830          * To avoid a race with its completion interrupt, place this command on
1831          * the busy queue prior to advertising it to the controller.
1832          */
1833         aac_enqueue_busy(cm);
1834
1835
1836
1837         /* populate queue entry */
1838         (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1839         (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1840
1841         /* update producer index */
1842         sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1843
1844         /* notify the adapter if we know how */
1845         if (aac_qinfo[queue].notify != 0)
1846                 AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1847
1848         error = 0;
1849
1850 out:
1851         crit_exit();
1852         return(error);
1853 }
1854
1855 /*
1856  * Atomically remove one entry from the nominated queue, returns 0 on
1857  * success or ENOENT if the queue is empty.
1858  */
1859 static int
1860 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1861                 struct aac_fib **fib_addr)
1862 {
1863         u_int32_t pi, ci;
1864         int error;
1865         int notify;
1866
1867         debug_called(3);
1868
1869         crit_enter();
1870
1871         /* get the producer/consumer indices */
1872         pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1873         ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1874
1875         /* check for queue empty */
1876         if (ci == pi) {
1877                 error = ENOENT;
1878                 goto out;
1879         }
1880
1881         /* wrap the pi so the following test works */
1882         if (pi >= aac_qinfo[queue].size)
1883                 pi = 0;
1884
1885         notify = 0;
1886         if (ci == pi + 1)
1887                 notify++;
1888
1889         /* wrap the queue? */
1890         if (ci >= aac_qinfo[queue].size)
1891                 ci = 0;
1892
1893         /* fetch the entry */
1894         *fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1895         *fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1896                                        ci)->aq_fib_addr;
1897
1898         /*
1899          * Is this a fast response? If it is, update the fib fields in
1900          * local memory so the whole fib doesn't have to be DMA'd back up.
1901          */
1902         if (*(uintptr_t *)fib_addr & 0x01) {
1903                 *(uintptr_t *)fib_addr &= ~0x01;
1904                 (*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1905                 *((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1906         }
1907         /* update consumer index */
1908         sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1909
1910         /* if we have made the queue un-full, notify the adapter */
1911         if (notify && (aac_qinfo[queue].notify != 0))
1912                 AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1913         error = 0;
1914
1915 out:
1916         crit_exit();
1917         return(error);
1918 }
1919
1920 /*
1921  * Put our response to an Adapter Initialed Fib on the response queue
1922  */
1923 static int
1924 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1925 {
1926         u_int32_t pi, ci;
1927         int error;
1928         u_int32_t fib_size;
1929         u_int32_t fib_addr;
1930
1931         debug_called(1);
1932
1933         /* Tell the adapter where the FIB is */
1934         fib_size = fib->Header.Size; 
1935         fib_addr = fib->Header.SenderFibAddress;
1936         fib->Header.ReceiverFibAddress = fib_addr;
1937
1938         crit_enter();
1939
1940         /* get the producer/consumer indices */
1941         pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1942         ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1943
1944         /* wrap the queue? */
1945         if (pi >= aac_qinfo[queue].size)
1946                 pi = 0;
1947
1948         /* check for queue full */
1949         if ((pi + 1) == ci) {
1950                 error = EBUSY;
1951                 goto out;
1952         }
1953
1954         /* populate queue entry */
1955         (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1956         (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1957
1958         /* update producer index */
1959         sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1960
1961         /* notify the adapter if we know how */
1962         if (aac_qinfo[queue].notify != 0)
1963                 AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1964
1965         error = 0;
1966
1967 out:
1968         crit_exit();
1969         return(error);
1970 }
1971
1972 /*
1973  * Check for commands that have been outstanding for a suspiciously long time,
1974  * and complain about them.
1975  */
1976 static void
1977 aac_timeout(void *xsc)
1978 {
1979         struct aac_softc *sc = xsc;
1980         struct aac_command *cm;
1981         time_t deadline;
1982         int timedout, code;
1983 #if 0
1984         /* simulate an interrupt to handle possibly-missed interrupts */
1985         /*
1986          * XXX This was done to work around another bug which has since been
1987          * fixed.  It is dangerous anyways because you don't want multiple
1988          * threads in the interrupt handler at the same time!  If calling
1989          * is deamed neccesary in the future, proper mutexes must be used.
1990          */
1991         crit_enter();
1992         aac_intr(sc);
1993         crit_exit();
1994
1995         /* kick the I/O queue to restart it in the case of deadlock */
1996         aac_startio(sc);
1997 #endif
1998
1999         /*
2000          * traverse the busy command list, bitch about late commands once
2001          * only.
2002          */
2003         timedout = 0;
2004         deadline = time_second - AAC_CMD_TIMEOUT;
2005         crit_enter();
2006         TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
2007                 if ((cm->cm_timestamp  < deadline)
2008                         /* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
2009                         cm->cm_flags |= AAC_CMD_TIMEDOUT;
2010                         device_printf(sc->aac_dev,
2011                                       "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
2012                                       cm, (int)(time_second-cm->cm_timestamp));
2013                         AAC_PRINT_FIB(sc, cm->cm_fib);
2014                         timedout++;
2015                 }
2016         }
2017         if (timedout) {
2018                 code = AAC_GET_FWSTATUS(sc);
2019                 if (code != AAC_UP_AND_RUNNING) {
2020                         device_printf(sc->aac_dev, "WARNING! Controller is no "
2021                                       "longer running! code= 0x%x\n", code);
2022
2023                 }
2024         }
2025         crit_exit();
2026
2027         /* reset the timer for next time */
2028         callout_reset(&sc->aac_watchdog, AAC_PERIODIC_INTERVAL * hz,
2029                       aac_timeout, sc);
2030 }
2031
2032 /*
2033  * Interface Function Vectors
2034  */
2035
2036 /*
2037  * Read the current firmware status word.
2038  */
2039 static int
2040 aac_sa_get_fwstatus(struct aac_softc *sc)
2041 {
2042         debug_called(3);
2043
2044         return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
2045 }
2046
2047 static int
2048 aac_rx_get_fwstatus(struct aac_softc *sc)
2049 {
2050         debug_called(3);
2051
2052         return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2053 }
2054
2055 static int
2056 aac_fa_get_fwstatus(struct aac_softc *sc)
2057 {
2058         int val;
2059
2060         debug_called(3);
2061
2062         val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2063         return (val);
2064 }
2065
2066 /*
2067  * Notify the controller of a change in a given queue
2068  */
2069
2070 static void
2071 aac_sa_qnotify(struct aac_softc *sc, int qbit)
2072 {
2073         debug_called(3);
2074
2075         AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2076 }
2077
2078 static void
2079 aac_rx_qnotify(struct aac_softc *sc, int qbit)
2080 {
2081         debug_called(3);
2082
2083         AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2084 }
2085
2086 static void
2087 aac_fa_qnotify(struct aac_softc *sc, int qbit)
2088 {
2089         debug_called(3);
2090
2091         AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2092         AAC_FA_HACK(sc);
2093 }
2094
2095 /*
2096  * Get the interrupt reason bits
2097  */
2098 static int
2099 aac_sa_get_istatus(struct aac_softc *sc)
2100 {
2101         debug_called(3);
2102
2103         return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2104 }
2105
2106 static int
2107 aac_rx_get_istatus(struct aac_softc *sc)
2108 {
2109         debug_called(3);
2110
2111         return(AAC_GETREG4(sc, AAC_RX_ODBR));
2112 }
2113
2114 static int
2115 aac_fa_get_istatus(struct aac_softc *sc)
2116 {
2117         int val;
2118
2119         debug_called(3);
2120
2121         val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2122         return (val);
2123 }
2124
2125 /*
2126  * Clear some interrupt reason bits
2127  */
2128 static void
2129 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2130 {
2131         debug_called(3);
2132
2133         AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2134 }
2135
2136 static void
2137 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2138 {
2139         debug_called(3);
2140
2141         AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2142 }
2143
2144 static void
2145 aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2146 {
2147         debug_called(3);
2148
2149         AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2150         AAC_FA_HACK(sc);
2151 }
2152
2153 /*
2154  * Populate the mailbox and set the command word
2155  */
2156 static void
2157 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2158                 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2159 {
2160         debug_called(4);
2161
2162         AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2163         AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2164         AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2165         AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2166         AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2167 }
2168
2169 static void
2170 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2171                 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2172 {
2173         debug_called(4);
2174
2175         AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2176         AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2177         AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2178         AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2179         AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2180 }
2181
2182 static void
2183 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2184                 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2185 {
2186         debug_called(4);
2187
2188         AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2189         AAC_FA_HACK(sc);
2190         AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2191         AAC_FA_HACK(sc);
2192         AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2193         AAC_FA_HACK(sc);
2194         AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2195         AAC_FA_HACK(sc);
2196         AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2197         AAC_FA_HACK(sc);
2198 }
2199
2200 /*
2201  * Fetch the immediate command status word
2202  */
2203 static int
2204 aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2205 {
2206         debug_called(4);
2207
2208         return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2209 }
2210
2211 static int
2212 aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2213 {
2214         debug_called(4);
2215
2216         return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2217 }
2218
2219 static int
2220 aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2221 {
2222         int val;
2223
2224         debug_called(4);
2225
2226         val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2227         return (val);
2228 }
2229
2230 /*
2231  * Set/clear interrupt masks
2232  */
2233 static void
2234 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2235 {
2236         debug(2, "%sable interrupts", enable ? "en" : "dis");
2237
2238         if (enable) {
2239                 AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2240         } else {
2241                 AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2242         }
2243 }
2244
2245 static void
2246 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2247 {
2248         debug(2, "%sable interrupts", enable ? "en" : "dis");
2249
2250         if (enable) {
2251                 AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2252         } else {
2253                 AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2254         }
2255 }
2256
2257 static void
2258 aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2259 {
2260         debug(2, "%sable interrupts", enable ? "en" : "dis");
2261
2262         if (enable) {
2263                 AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2264                 AAC_FA_HACK(sc);
2265         } else {
2266                 AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2267                 AAC_FA_HACK(sc);
2268         }
2269 }
2270
2271 /*
2272  * Debugging and Diagnostics
2273  */
2274
2275 /*
2276  * Print some information about the controller.
2277  */
2278 static void
2279 aac_describe_controller(struct aac_softc *sc)
2280 {
2281         struct aac_fib *fib;
2282         struct aac_adapter_info *info;
2283
2284         debug_called(2);
2285
2286         aac_alloc_sync_fib(sc, &fib, 0);
2287
2288         fib->data[0] = 0;
2289         if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2290                 device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2291                 aac_release_sync_fib(sc);
2292                 return;
2293         }
2294         info = (struct aac_adapter_info *)&fib->data[0];   
2295
2296         device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n", 
2297                       aac_describe_code(aac_cpu_variant, info->CpuVariant),
2298                       info->ClockSpeed, info->BufferMem / (1024 * 1024), 
2299                       aac_describe_code(aac_battery_platform,
2300                                         info->batteryPlatform));
2301
2302         /* save the kernel revision structure for later use */
2303         sc->aac_revision = info->KernelRevision;
2304         device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2305                       info->KernelRevision.external.comp.major,
2306                       info->KernelRevision.external.comp.minor,
2307                       info->KernelRevision.external.comp.dash,
2308                       info->KernelRevision.buildNumber,
2309                       (u_int32_t)(info->SerialNumber & 0xffffff));
2310
2311         aac_release_sync_fib(sc);
2312
2313         if (1 || bootverbose) {
2314                 device_printf(sc->aac_dev, "Supported Options=%b\n",
2315                               sc->supported_options,
2316                               "\20"
2317                               "\1SNAPSHOT"
2318                               "\2CLUSTERS"
2319                               "\3WCACHE"
2320                               "\4DATA64"
2321                               "\5HOSTTIME"
2322                               "\6RAID50"
2323                               "\7WINDOW4GB"
2324                               "\10SCSIUPGD"
2325                               "\11SOFTERR"
2326                               "\12NORECOND"
2327                               "\13SGMAP64"
2328                               "\14ALARM"
2329                               "\15NONDASD");
2330         }
2331 }
2332
2333 /*
2334  * Look up a text description of a numeric error code and return a pointer to
2335  * same.
2336  */
2337 static char *
2338 aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2339 {
2340         int i;
2341
2342         for (i = 0; table[i].string != NULL; i++)
2343                 if (table[i].code == code)
2344                         return(table[i].string);
2345         return(table[i + 1].string);
2346 }
2347
2348 /*
2349  * Management Interface
2350  */
2351
2352 static int
2353 aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2354 {
2355         struct aac_softc *sc;
2356
2357         debug_called(2);
2358
2359         sc = dev->si_drv1;
2360
2361         /* Check to make sure the device isn't already open */
2362         if (sc->aac_state & AAC_STATE_OPEN) {
2363                 return EBUSY;
2364         }
2365         sc->aac_state |= AAC_STATE_OPEN;
2366
2367         return 0;
2368 }
2369
2370 static int
2371 aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2372 {
2373         struct aac_softc *sc;
2374
2375         debug_called(2);
2376
2377         sc = dev->si_drv1;
2378
2379         /* Mark this unit as no longer open  */
2380         sc->aac_state &= ~AAC_STATE_OPEN;
2381
2382         return 0;
2383 }
2384
2385 static int
2386 aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2387 {
2388         struct aac_softc *sc = dev->si_drv1;
2389         int error = 0;
2390         int i;
2391
2392         debug_called(2);
2393
2394         if (cmd == AACIO_STATS) {
2395                 union aac_statrequest *as = (union aac_statrequest *)arg;
2396
2397                 switch (as->as_item) {
2398                 case AACQ_FREE:
2399                 case AACQ_BIO:
2400                 case AACQ_READY:
2401                 case AACQ_BUSY:
2402                 case AACQ_COMPLETE:
2403                         bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2404                               sizeof(struct aac_qstat));
2405                         break;
2406                 default:
2407                         error = ENOENT;
2408                         break;
2409                 }
2410                 return(error);
2411         }
2412
2413         arg = *(caddr_t *)arg;
2414
2415         switch (cmd) {
2416         /* AACIO_STATS already handled above */
2417         case FSACTL_SENDFIB:
2418                 debug(1, "FSACTL_SENDFIB");
2419                 error = aac_ioctl_sendfib(sc, arg);
2420                 break;
2421         case FSACTL_AIF_THREAD:
2422                 debug(1, "FSACTL_AIF_THREAD");
2423                 error = EINVAL;
2424                 break;
2425         case FSACTL_OPEN_GET_ADAPTER_FIB:
2426                 debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2427                 /*
2428                  * Pass the caller out an AdapterFibContext.
2429                  *
2430                  * Note that because we only support one opener, we
2431                  * basically ignore this.  Set the caller's context to a magic
2432                  * number just in case.
2433                  *
2434                  * The Linux code hands the driver a pointer into kernel space,
2435                  * and then trusts it when the caller hands it back.  Aiee!
2436                  * Here, we give it the proc pointer of the per-adapter aif 
2437                  * thread. It's only used as a sanity check in other calls.
2438                  */
2439                 i = (int)sc->aifthread;
2440                 error = copyout(&i, arg, sizeof(i));
2441                 break;
2442         case FSACTL_GET_NEXT_ADAPTER_FIB:
2443                 debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2444                 error = aac_getnext_aif(sc, arg);
2445                 break;
2446         case FSACTL_CLOSE_GET_ADAPTER_FIB:
2447                 debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2448                 /* don't do anything here */
2449                 break;
2450         case FSACTL_MINIPORT_REV_CHECK:
2451                 debug(1, "FSACTL_MINIPORT_REV_CHECK");
2452                 error = aac_rev_check(sc, arg);
2453                 break;
2454         case FSACTL_QUERY_DISK:
2455                 debug(1, "FSACTL_QUERY_DISK");
2456                 error = aac_query_disk(sc, arg);
2457                         break;
2458         case FSACTL_DELETE_DISK:
2459                 /*
2460                  * We don't trust the underland to tell us when to delete a
2461                  * container, rather we rely on an AIF coming from the 
2462                  * controller
2463                  */
2464                 error = 0;
2465                 break;
2466         default:
2467                 debug(1, "unsupported cmd 0x%lx\n", cmd);
2468                 error = EINVAL;
2469                 break;
2470         }
2471         return(error);
2472 }
2473
2474 static int
2475 aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2476 {
2477         struct aac_softc *sc;
2478         int revents;
2479
2480         sc = dev->si_drv1;
2481         revents = 0;
2482
2483         AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2484         if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2485                 if (sc->aac_aifq_tail != sc->aac_aifq_head)
2486                         revents |= poll_events & (POLLIN | POLLRDNORM);
2487         }
2488         AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2489
2490         if (revents == 0) {
2491                 if (poll_events & (POLLIN | POLLRDNORM))
2492                         selrecord(td, &sc->rcv_select);
2493         }
2494
2495         return (revents);
2496 }
2497
2498 /*
2499  * Send a FIB supplied from userspace
2500  */
2501 static int
2502 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2503 {
2504         struct aac_command *cm;
2505         int size, error;
2506
2507         debug_called(2);
2508
2509         cm = NULL;
2510
2511         /*
2512          * Get a command
2513          */
2514         if (aac_alloc_command(sc, &cm)) {
2515                 error = EBUSY;
2516                 goto out;
2517         }
2518
2519         /*
2520          * Fetch the FIB header, then re-copy to get data as well.
2521          */
2522         if ((error = copyin(ufib, cm->cm_fib,
2523                             sizeof(struct aac_fib_header))) != 0)
2524                 goto out;
2525         size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2526         if (size > sizeof(struct aac_fib)) {
2527                 device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2528                               size, sizeof(struct aac_fib));
2529                 size = sizeof(struct aac_fib);
2530         }
2531         if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2532                 goto out;
2533         cm->cm_fib->Header.Size = size;
2534         cm->cm_timestamp = time_second;
2535
2536         /*
2537          * Pass the FIB to the controller, wait for it to complete.
2538          */
2539         if ((error = aac_wait_command(cm, 30)) != 0) {  /* XXX user timeout? */
2540                 printf("aac_wait_command return %d\n", error);
2541                 goto out;
2542         }
2543
2544         /*
2545          * Copy the FIB and data back out to the caller.
2546          */
2547         size = cm->cm_fib->Header.Size;
2548         if (size > sizeof(struct aac_fib)) {
2549                 device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2550                               size, sizeof(struct aac_fib));
2551                 size = sizeof(struct aac_fib);
2552         }
2553         error = copyout(cm->cm_fib, ufib, size);
2554
2555 out:
2556         if (cm != NULL) {
2557                 aac_release_command(cm);
2558         }
2559         return(error);
2560 }
2561
2562 /*
2563  * Handle an AIF sent to us by the controller; queue it for later reference.
2564  * If the queue fills up, then drop the older entries.
2565  */
2566 static void
2567 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2568 {
2569         struct aac_aif_command *aif;
2570         struct aac_container *co, *co_next;
2571         struct aac_mntinfo *mi;
2572         struct aac_mntinforesp *mir = NULL;
2573         u_int16_t rsize;
2574         int next, found;
2575         int count = 0, added = 0, i = 0;
2576
2577         debug_called(2);
2578
2579         aif = (struct aac_aif_command*)&fib->data[0];
2580         aac_print_aif(sc, aif);
2581
2582         /* Is it an event that we should care about? */
2583         switch (aif->command) {
2584         case AifCmdEventNotify:
2585                 switch (aif->data.EN.type) {
2586                 case AifEnAddContainer:
2587                 case AifEnDeleteContainer:
2588                         /*
2589                          * A container was added or deleted, but the message 
2590                          * doesn't tell us anything else!  Re-enumerate the
2591                          * containers and sort things out.
2592                          */
2593                         aac_alloc_sync_fib(sc, &fib, 0);
2594                         mi = (struct aac_mntinfo *)&fib->data[0];
2595                         do {
2596                                 /*
2597                                  * Ask the controller for its containers one at
2598                                  * a time.
2599                                  * XXX What if the controller's list changes
2600                                  * midway through this enumaration?
2601                                  * XXX This should be done async.
2602                                  */
2603                                 bzero(mi, sizeof(struct aac_mntinfo));
2604                                 mi->Command = VM_NameServe;
2605                                 mi->MntType = FT_FILESYS;
2606                                 mi->MntCount = i;
2607                                 rsize = sizeof(mir);
2608                                 if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2609                                                  sizeof(struct aac_mntinfo))) {
2610                                         device_printf(sc->aac_dev,
2611                                             "Error probing container %d\n", i);
2612
2613                                         continue;
2614                                 }
2615                                 mir = (struct aac_mntinforesp *)&fib->data[0];
2616                                 /* XXX Need to check if count changed */
2617                                 count = mir->MntRespCount;
2618
2619                                 /*
2620                                  * Check the container against our list.
2621                                  * co->co_found was already set to 0 in a
2622                                  * previous run.
2623                                  */
2624                                 if ((mir->Status == ST_OK) &&
2625                                     (mir->MntTable[0].VolType != CT_NONE)) {
2626                                         found = 0;
2627                                         TAILQ_FOREACH(co,
2628                                                       &sc->aac_container_tqh, 
2629                                                       co_link) {
2630                                                 if (co->co_mntobj.ObjectId ==
2631                                                     mir->MntTable[0].ObjectId) {
2632                                                         co->co_found = 1;
2633                                                         found = 1;
2634                                                         break;
2635                                                 }
2636                                         }
2637                                         /*
2638                                          * If the container matched, continue
2639                                          * in the list.
2640                                          */
2641                                         if (found) {
2642                                                 i++;
2643                                                 continue;
2644                                         }
2645
2646                                         /*
2647                                          * This is a new container.  Do all the
2648                                          * appropriate things to set it up.                                              */
2649                                         aac_add_container(sc, mir, 1);
2650                                         added = 1;
2651                                 }
2652                                 i++;
2653                         } while ((i < count) && (i < AAC_MAX_CONTAINERS));
2654                         aac_release_sync_fib(sc);
2655
2656                         /*
2657                          * Go through our list of containers and see which ones
2658                          * were not marked 'found'.  Since the controller didn't
2659                          * list them they must have been deleted.  Do the
2660                          * appropriate steps to destroy the device.  Also reset
2661                          * the co->co_found field.
2662                          */
2663                         co = TAILQ_FIRST(&sc->aac_container_tqh);
2664                         while (co != NULL) {
2665                                 if (co->co_found == 0) {
2666                                         device_delete_child(sc->aac_dev,
2667                                                             co->co_disk);
2668                                         co_next = TAILQ_NEXT(co, co_link);
2669                                         AAC_LOCK_ACQUIRE(&sc->
2670                                                         aac_container_lock);
2671                                         TAILQ_REMOVE(&sc->aac_container_tqh, co,
2672                                                      co_link);
2673                                         AAC_LOCK_RELEASE(&sc->
2674                                                          aac_container_lock);
2675                                         FREE(co, M_AACBUF);
2676                                         co = co_next;
2677                                 } else {
2678                                         co->co_found = 0;
2679                                         co = TAILQ_NEXT(co, co_link);
2680                                 }
2681                         }
2682
2683                         /* Attach the newly created containers */
2684                         if (added)
2685                                 bus_generic_attach(sc->aac_dev);
2686         
2687                                 break;
2688
2689                 default:
2690                         break;
2691                 }
2692
2693         default:
2694                 break;
2695         }
2696
2697         /* Copy the AIF data to the AIF queue for ioctl retrieval */
2698         AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2699         next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2700         if (next != sc->aac_aifq_tail) {
2701                 bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2702                 sc->aac_aifq_head = next;
2703
2704                 /* On the off chance that someone is sleeping for an aif... */
2705                 if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2706                         wakeup(sc->aac_aifq);
2707                 /* token may have been lost */
2708                 /* Wakeup any poll()ers */
2709                 selwakeup(&sc->rcv_select);
2710                 /* token may have been lost */
2711         }
2712         AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2713
2714         return;
2715 }
2716
2717 /*
2718  * Return the Revision of the driver to userspace and check to see if the
2719  * userspace app is possibly compatible.  This is extremely bogus since
2720  * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2721  * returning what the card reported.
2722  */
2723 static int
2724 aac_rev_check(struct aac_softc *sc, caddr_t udata)
2725 {
2726         struct aac_rev_check rev_check;
2727         struct aac_rev_check_resp rev_check_resp;
2728         int error = 0;
2729
2730         debug_called(2);
2731
2732         /*
2733          * Copyin the revision struct from userspace
2734          */
2735         if ((error = copyin(udata, (caddr_t)&rev_check,
2736                         sizeof(struct aac_rev_check))) != 0) {
2737                 return error;
2738         }
2739
2740         debug(2, "Userland revision= %d\n",
2741               rev_check.callingRevision.buildNumber);
2742
2743         /*
2744          * Doctor up the response struct.
2745          */
2746         rev_check_resp.possiblyCompatible = 1;
2747         rev_check_resp.adapterSWRevision.external.ul =
2748             sc->aac_revision.external.ul;
2749         rev_check_resp.adapterSWRevision.buildNumber =
2750             sc->aac_revision.buildNumber;
2751
2752         return(copyout((caddr_t)&rev_check_resp, udata,
2753                         sizeof(struct aac_rev_check_resp)));
2754 }
2755
2756 /*
2757  * Pass the caller the next AIF in their queue
2758  */
2759 static int
2760 aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2761 {
2762         struct get_adapter_fib_ioctl agf;
2763         int error;
2764
2765         debug_called(2);
2766
2767         if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2768
2769                 /*
2770                  * Check the magic number that we gave the caller.
2771                  */
2772                 if (agf.AdapterFibContext != (int)sc->aifthread) {
2773                         error = EFAULT;
2774                 } else {
2775         
2776                         crit_enter();
2777                         error = aac_return_aif(sc, agf.AifFib);
2778         
2779                         if ((error == EAGAIN) && (agf.Wait)) {
2780                                 sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2781                                 while (error == EAGAIN) {
2782                                         error = tsleep(sc->aac_aifq,
2783                                                        PCATCH, "aacaif", 0);
2784                                         if (error == 0)
2785                                                 error = aac_return_aif(sc,
2786                                                     agf.AifFib);
2787                                 }
2788                                 sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2789                         }
2790                         crit_exit();
2791                 }
2792         }
2793         return(error);
2794 }
2795
2796 /*
2797  * Hand the next AIF off the top of the queue out to userspace.
2798  *
2799  * YYY token could be lost during copyout
2800  */
2801 static int
2802 aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2803 {
2804         int error;
2805
2806         debug_called(2);
2807
2808         AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2809         if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2810                 error = EAGAIN;
2811         } else {
2812                 error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2813                                 sizeof(struct aac_aif_command));
2814                 if (error)
2815                         printf("aac_return_aif: copyout returned %d\n", error);
2816                 if (!error)
2817                         sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2818                                             AAC_AIFQ_LENGTH;
2819         }
2820         AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2821         return(error);
2822 }
2823
2824 /*
2825  * Give the userland some information about the container.  The AAC arch
2826  * expects the driver to be a SCSI passthrough type driver, so it expects
2827  * the containers to have b:t:l numbers.  Fake it.
2828  */
2829 static int
2830 aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2831 {
2832         struct aac_query_disk query_disk;
2833         struct aac_container *co;
2834         struct aac_disk *disk;
2835         int error, id;
2836
2837         debug_called(2);
2838
2839         disk = NULL;
2840
2841         error = copyin(uptr, (caddr_t)&query_disk,
2842                        sizeof(struct aac_query_disk));
2843         if (error)
2844                 return (error);
2845
2846         id = query_disk.ContainerNumber;
2847         if (id == -1)
2848                 return (EINVAL);
2849
2850         AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2851         TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2852                 if (co->co_mntobj.ObjectId == id)
2853                         break;
2854                 }
2855
2856                 if (co == NULL) {
2857                         query_disk.Valid = 0;
2858                         query_disk.Locked = 0;
2859                         query_disk.Deleted = 1;         /* XXX is this right? */
2860                 } else {
2861                         disk = device_get_softc(co->co_disk);
2862                         query_disk.Valid = 1;
2863                         query_disk.Locked =
2864                             (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2865                         query_disk.Deleted = 0;
2866                         query_disk.Bus = device_get_unit(sc->aac_dev);
2867                         query_disk.Target = disk->unit;
2868                         query_disk.Lun = 0;
2869                         query_disk.UnMapped = 0;
2870                         bcopy(disk->ad_dev_t->si_name,
2871                               &query_disk.diskDeviceName[0], 10);
2872                 }
2873         AAC_LOCK_RELEASE(&sc->aac_container_lock);
2874
2875         error = copyout((caddr_t)&query_disk, uptr,
2876                         sizeof(struct aac_query_disk));
2877
2878         return (error);
2879 }
2880
2881 static void
2882 aac_get_bus_info(struct aac_softc *sc)
2883 {
2884         struct aac_fib *fib;
2885         struct aac_ctcfg *c_cmd;
2886         struct aac_ctcfg_resp *c_resp;
2887         struct aac_vmioctl *vmi;
2888         struct aac_vmi_businf_resp *vmi_resp;
2889         struct aac_getbusinf businfo;
2890         struct aac_cam_inf *caminf;
2891         device_t child;
2892         int i, found, error;
2893
2894         aac_alloc_sync_fib(sc, &fib, 0);
2895         c_cmd = (struct aac_ctcfg *)&fib->data[0];
2896         bzero(c_cmd, sizeof(struct aac_ctcfg));
2897
2898         c_cmd->Command = VM_ContainerConfig;
2899         c_cmd->cmd = CT_GET_SCSI_METHOD;
2900         c_cmd->param = 0;
2901
2902         error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2903             sizeof(struct aac_ctcfg));
2904         if (error) {
2905                 device_printf(sc->aac_dev, "Error %d sending "
2906                     "VM_ContainerConfig command\n", error);
2907                 aac_release_sync_fib(sc);
2908                 return;
2909         }
2910
2911         c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2912         if (c_resp->Status != ST_OK) {
2913                 device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2914                     c_resp->Status);
2915                 aac_release_sync_fib(sc);
2916                 return;
2917         }
2918
2919         sc->scsi_method_id = c_resp->param;
2920
2921         vmi = (struct aac_vmioctl *)&fib->data[0];
2922         bzero(vmi, sizeof(struct aac_vmioctl));
2923
2924         vmi->Command = VM_Ioctl;
2925         vmi->ObjType = FT_DRIVE;
2926         vmi->MethId = sc->scsi_method_id;
2927         vmi->ObjId = 0;
2928         vmi->IoctlCmd = GetBusInfo;
2929
2930         error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2931             sizeof(struct aac_vmioctl));
2932         if (error) {
2933                 device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2934                     error);
2935                 aac_release_sync_fib(sc);
2936                 return;
2937         }
2938
2939         vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2940         if (vmi_resp->Status != ST_OK) {
2941                 debug(1, "VM_Ioctl returned %d\n", vmi_resp->Status);
2942                 aac_release_sync_fib(sc);
2943                 return;
2944         }
2945
2946         bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2947         aac_release_sync_fib(sc);
2948
2949         found = 0;
2950         for (i = 0; i < businfo.BusCount; i++) {
2951                 if (businfo.BusValid[i] != AAC_BUS_VALID)
2952                         continue;
2953
2954                 MALLOC(caminf, struct aac_cam_inf *,
2955                     sizeof(struct aac_cam_inf), M_AACBUF, M_INTWAIT | M_ZERO);
2956
2957                 child = device_add_child(sc->aac_dev, "aacp", -1);
2958                 if (child == NULL) {
2959                         device_printf(sc->aac_dev, "device_add_child failed\n");
2960                         continue;
2961                 }
2962
2963                 caminf->TargetsPerBus = businfo.TargetsPerBus;
2964                 caminf->BusNumber = i;
2965                 caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2966                 caminf->aac_sc = sc;
2967
2968                 device_set_ivars(child, caminf);
2969                 device_set_desc(child, "SCSI Passthrough Bus");
2970
2971                 found = 1;
2972         }
2973
2974         if (found)
2975                 bus_generic_attach(sc->aac_dev);
2976
2977         return;
2978 }