1:1 Userland threading stage 2.10/4:
[dragonfly.git] / sys / vm / vm_fault.c
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  *
69  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
70  * $DragonFly: src/sys/vm/vm_fault.c,v 1.34 2007/01/01 22:51:18 corecode Exp $
71  */
72
73 /*
74  *      Page fault handling module.
75  */
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/vnode.h>
82 #include <sys/resourcevar.h>
83 #include <sys/vmmeter.h>
84 #include <sys/vkernel.h>
85 #include <sys/sfbuf.h>
86 #include <sys/lock.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/vm_extern.h>
99
100 #include <sys/thread2.h>
101 #include <vm/vm_page2.h>
102
103 #define VM_FAULT_READ_AHEAD 8
104 #define VM_FAULT_READ_BEHIND 7
105 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
106
107 struct faultstate {
108         vm_page_t m;
109         vm_object_t object;
110         vm_pindex_t pindex;
111         vm_prot_t prot;
112         vm_page_t first_m;
113         vm_object_t first_object;
114         vm_prot_t first_prot;
115         vm_map_t map;
116         vm_map_entry_t entry;
117         int lookup_still_valid;
118         int didlimit;
119         int hardfault;
120         int fault_flags;
121         int map_generation;
122         boolean_t wired;
123         struct vnode *vp;
124 };
125
126 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t);
127 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t);
128 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
129 static int vm_fault_ratelimit(struct vmspace *);
130
131 static __inline void
132 release_page(struct faultstate *fs)
133 {
134         vm_page_wakeup(fs->m);
135         vm_page_deactivate(fs->m);
136         fs->m = NULL;
137 }
138
139 static __inline void
140 unlock_map(struct faultstate *fs)
141 {
142         if (fs->lookup_still_valid) {
143                 vm_map_lookup_done(fs->map, fs->entry, 0);
144                 fs->lookup_still_valid = FALSE;
145         }
146 }
147
148 /*
149  * Clean up after a successful call to vm_fault_object() so another call
150  * to vm_fault_object() can be made.
151  */
152 static void
153 _cleanup_successful_fault(struct faultstate *fs, int relock)
154 {
155         if (fs->object != fs->first_object) {
156                 vm_page_free(fs->first_m);
157                 vm_object_pip_wakeup(fs->object);
158                 fs->first_m = NULL;
159         }
160         fs->object = fs->first_object;
161         if (relock && fs->lookup_still_valid == FALSE) {
162                 vm_map_lock_read(fs->map);
163                 fs->lookup_still_valid = TRUE;
164         }
165 }
166
167 static void
168 _unlock_things(struct faultstate *fs, int dealloc)
169 {
170         vm_object_pip_wakeup(fs->first_object);
171         _cleanup_successful_fault(fs, 0);
172         if (dealloc) {
173                 vm_object_deallocate(fs->first_object);
174         }
175         unlock_map(fs); 
176         if (fs->vp != NULL) { 
177                 vput(fs->vp);
178                 fs->vp = NULL;
179         }
180 }
181
182 #define unlock_things(fs) _unlock_things(fs, 0)
183 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
184 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
185
186 /*
187  * TRYPAGER 
188  *
189  * Determine if the pager for the current object *might* contain the page.
190  *
191  * We only need to try the pager if this is not a default object (default
192  * objects are zero-fill and have no real pager), and if we are not taking
193  * a wiring fault or if the FS entry is wired.
194  */
195 #define TRYPAGER(fs)    \
196                 (fs->object->type != OBJT_DEFAULT && \
197                 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
198
199 /*
200  * vm_fault:
201  *
202  * Handle a page fault occuring at the given address, requiring the given
203  * permissions, in the map specified.  If successful, the page is inserted
204  * into the associated physical map.
205  *
206  * NOTE: The given address should be truncated to the proper page address.
207  *
208  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
209  * a standard error specifying why the fault is fatal is returned.
210  *
211  * The map in question must be referenced, and remains so.
212  * The caller may hold no locks.
213  */
214 int
215 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
216 {
217         int result;
218         vm_pindex_t first_pindex;
219         struct faultstate fs;
220
221         mycpu->gd_cnt.v_vm_faults++;
222
223         fs.didlimit = 0;
224         fs.hardfault = 0;
225         fs.fault_flags = fault_flags;
226
227 RetryFault:
228         /*
229          * Find the vm_map_entry representing the backing store and resolve
230          * the top level object and page index.  This may have the side
231          * effect of executing a copy-on-write on the map entry and/or
232          * creating a shadow object, but will not COW any actual VM pages.
233          *
234          * On success fs.map is left read-locked and various other fields 
235          * are initialized but not otherwise referenced or locked.
236          *
237          * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
238          * if the map entry is a virtual page table and also writable,
239          * so we can set the 'A'accessed bit in the virtual page table entry.
240          */
241         fs.map = map;
242         result = vm_map_lookup(&fs.map, vaddr, fault_type,
243                                &fs.entry, &fs.first_object,
244                                &first_pindex, &fs.first_prot, &fs.wired);
245
246         /*
247          * If the lookup failed or the map protections are incompatible,
248          * the fault generally fails.  However, if the caller is trying
249          * to do a user wiring we have more work to do.
250          */
251         if (result != KERN_SUCCESS) {
252                 if (result != KERN_PROTECTION_FAILURE)
253                         return result;
254                 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
255                         return result;
256
257                 /*
258                  * If we are user-wiring a r/w segment, and it is COW, then
259                  * we need to do the COW operation.  Note that we don't
260                  * currently COW RO sections now, because it is NOT desirable
261                  * to COW .text.  We simply keep .text from ever being COW'ed
262                  * and take the heat that one cannot debug wired .text sections.
263                  */
264                 result = vm_map_lookup(&fs.map, vaddr,
265                                        VM_PROT_READ|VM_PROT_WRITE|
266                                         VM_PROT_OVERRIDE_WRITE,
267                                        &fs.entry, &fs.first_object,
268                                        &first_pindex, &fs.first_prot,
269                                        &fs.wired);
270                 if (result != KERN_SUCCESS)
271                         return result;
272
273                 /*
274                  * If we don't COW now, on a user wire, the user will never
275                  * be able to write to the mapping.  If we don't make this
276                  * restriction, the bookkeeping would be nearly impossible.
277                  */
278                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
279                         fs.entry->max_protection &= ~VM_PROT_WRITE;
280         }
281
282         /*
283          * fs.map is read-locked
284          *
285          * Misc checks.  Save the map generation number to detect races.
286          */
287         fs.map_generation = fs.map->timestamp;
288
289         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
290                 panic("vm_fault: fault on nofault entry, addr: %lx",
291                     (u_long)vaddr);
292         }
293
294         /*
295          * A system map entry may return a NULL object.  No object means
296          * no pager means an unrecoverable kernel fault.
297          */
298         if (fs.first_object == NULL) {
299                 panic("vm_fault: unrecoverable fault at %p in entry %p",
300                         (void *)vaddr, fs.entry);
301         }
302
303         /*
304          * Make a reference to this object to prevent its disposal while we
305          * are messing with it.  Once we have the reference, the map is free
306          * to be diddled.  Since objects reference their shadows (and copies),
307          * they will stay around as well.
308          *
309          * Bump the paging-in-progress count to prevent size changes (e.g.
310          * truncation operations) during I/O.  This must be done after
311          * obtaining the vnode lock in order to avoid possible deadlocks.
312          */
313         vm_object_reference(fs.first_object);
314         fs.vp = vnode_pager_lock(fs.first_object);
315         vm_object_pip_add(fs.first_object, 1);
316
317         fs.lookup_still_valid = TRUE;
318         fs.first_m = NULL;
319         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
320
321         /*
322          * If the entry is wired we cannot change the page protection.
323          */
324         if (fs.wired)
325                 fault_type = fs.first_prot;
326
327         /*
328          * The page we want is at (first_object, first_pindex), but if the
329          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
330          * page table to figure out the actual pindex.
331          *
332          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
333          * ONLY
334          */
335         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
336                 result = vm_fault_vpagetable(&fs, &first_pindex,
337                                              fs.entry->aux.master_pde);
338                 if (result == KERN_TRY_AGAIN)
339                         goto RetryFault;
340                 if (result != KERN_SUCCESS)
341                         return (result);
342         }
343
344         /*
345          * Now we have the actual (object, pindex), fault in the page.  If
346          * vm_fault_object() fails it will unlock and deallocate the FS
347          * data.   If it succeeds everything remains locked and fs->object
348          * will have an additinal PIP count if it is not equal to
349          * fs->first_object
350          */
351         result = vm_fault_object(&fs, first_pindex, fault_type);
352
353         if (result == KERN_TRY_AGAIN)
354                 goto RetryFault;
355         if (result != KERN_SUCCESS)
356                 return (result);
357
358         /*
359          * On success vm_fault_object() does not unlock or deallocate, and fs.m
360          * will contain a busied page.
361          *
362          * Enter the page into the pmap and do pmap-related adjustments.
363          */
364         unlock_things(&fs);
365         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
366
367         if (((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0) && (fs.wired == 0)) {
368                 pmap_prefault(fs.map->pmap, vaddr, fs.entry);
369         }
370
371         vm_page_flag_clear(fs.m, PG_ZERO);
372         vm_page_flag_set(fs.m, PG_MAPPED|PG_REFERENCED);
373         if (fs.fault_flags & VM_FAULT_HOLD)
374                 vm_page_hold(fs.m);
375
376         /*
377          * If the page is not wired down, then put it where the pageout daemon
378          * can find it.
379          */
380         if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
381                 if (fs.wired)
382                         vm_page_wire(fs.m);
383                 else
384                         vm_page_unwire(fs.m, 1);
385         } else {
386                 vm_page_activate(fs.m);
387         }
388
389         if (curthread->td_lwp) {
390                 if (fs.hardfault) {
391                         curthread->td_lwp->lwp_ru.ru_majflt++;
392                 } else {
393                         curthread->td_lwp->lwp_ru.ru_minflt++;
394                 }
395         }
396
397         /*
398          * Unlock everything, and return
399          */
400         vm_page_wakeup(fs.m);
401         vm_object_deallocate(fs.first_object);
402
403         return (KERN_SUCCESS);
404 }
405
406 /*
407  * Translate the virtual page number (first_pindex) that is relative
408  * to the address space into a logical page number that is relative to the
409  * backing object.  Use the virtual page table pointed to by (vpte).
410  *
411  * This implements an N-level page table.  Any level can terminate the
412  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
413  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
414  */
415 static
416 int
417 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex, vpte_t vpte)
418 {
419         struct sf_buf *sf;
420         int vshift = 32 - PAGE_SHIFT;   /* page index bits remaining */
421         int result = KERN_SUCCESS;
422
423         for (;;) {
424                 if ((vpte & VPTE_V) == 0) {
425                         unlock_and_deallocate(fs);
426                         return (KERN_FAILURE);
427                 }
428                 if ((vpte & VPTE_PS) || vshift == 0)
429                         break;
430                 KKASSERT(vshift >= VPTE_PAGE_BITS);
431
432                 /*
433                  * Get the page table page
434                  */
435                 result = vm_fault_object(fs, vpte >> PAGE_SHIFT, VM_PROT_READ);
436                 if (result != KERN_SUCCESS)
437                         return (result);
438
439                 /*
440                  * Process the returned fs.m and look up the page table
441                  * entry in the page table page.
442                  */
443                 vshift -= VPTE_PAGE_BITS;
444                 sf = sf_buf_alloc(fs->m, SFB_CPUPRIVATE);
445                 vpte = *((vpte_t *)sf_buf_kva(sf) +
446                        ((*pindex >> vshift) & VPTE_PAGE_MASK));
447                 sf_buf_free(sf);
448                 vm_page_flag_set(fs->m, PG_REFERENCED);
449                 vm_page_activate(fs->m);
450                 vm_page_wakeup(fs->m);
451                 cleanup_successful_fault(fs);
452         }
453         /*
454          * Combine remaining address bits with the vpte.
455          */
456         *pindex = (vpte >> PAGE_SHIFT) +
457                   (*pindex & ((1 << vshift) - 1));
458         return (KERN_SUCCESS);
459 }
460
461
462 /*
463  * Do all operations required to fault-in (fs.first_object, pindex).  Run
464  * through the shadow chain as necessary and do required COW or virtual
465  * copy operations.  The caller has already fully resolved the vm_map_entry
466  * and, if appropriate, has created a copy-on-write layer.  All we need to
467  * do is iterate the object chain.
468  *
469  * On failure (fs) is unlocked and deallocated and the caller may return or
470  * retry depending on the failure code.  On success (fs) is NOT unlocked or
471  * deallocated, fs.m will contained a resolved, busied page, and fs.object
472  * will have an additional PIP count if it is not equal to fs.first_object.
473  */
474 static
475 int
476 vm_fault_object(struct faultstate *fs,
477                 vm_pindex_t first_pindex, vm_prot_t fault_type)
478 {
479         vm_object_t next_object;
480         vm_page_t marray[VM_FAULT_READ];
481         vm_pindex_t pindex;
482         int faultcount;
483
484         fs->prot = fs->first_prot;
485         fs->object = fs->first_object;
486         pindex = first_pindex;
487
488         for (;;) {
489                 /*
490                  * If the object is dead, we stop here
491                  */
492                 if (fs->object->flags & OBJ_DEAD) {
493                         unlock_and_deallocate(fs);
494                         return (KERN_PROTECTION_FAILURE);
495                 }
496
497                 /*
498                  * See if page is resident.  spl protection is required
499                  * to avoid an interrupt unbusy/free race against our
500                  * lookup.  We must hold the protection through a page
501                  * allocation or busy.
502                  */
503                 crit_enter();
504                 fs->m = vm_page_lookup(fs->object, pindex);
505                 if (fs->m != NULL) {
506                         int queue;
507                         /*
508                          * Wait/Retry if the page is busy.  We have to do this
509                          * if the page is busy via either PG_BUSY or 
510                          * vm_page_t->busy because the vm_pager may be using
511                          * vm_page_t->busy for pageouts ( and even pageins if
512                          * it is the vnode pager ), and we could end up trying
513                          * to pagein and pageout the same page simultaneously.
514                          *
515                          * We can theoretically allow the busy case on a read
516                          * fault if the page is marked valid, but since such
517                          * pages are typically already pmap'd, putting that
518                          * special case in might be more effort then it is 
519                          * worth.  We cannot under any circumstances mess
520                          * around with a vm_page_t->busy page except, perhaps,
521                          * to pmap it.
522                          */
523                         if ((fs->m->flags & PG_BUSY) || fs->m->busy) {
524                                 unlock_things(fs);
525                                 vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
526                                 mycpu->gd_cnt.v_intrans++;
527                                 vm_object_deallocate(fs->first_object);
528                                 crit_exit();
529                                 return (KERN_TRY_AGAIN);
530                         }
531
532                         /*
533                          * If reactivating a page from PQ_CACHE we may have
534                          * to rate-limit.
535                          */
536                         queue = fs->m->queue;
537                         vm_page_unqueue_nowakeup(fs->m);
538
539                         if ((queue - fs->m->pc) == PQ_CACHE && 
540                             vm_page_count_severe()) {
541                                 vm_page_activate(fs->m);
542                                 unlock_and_deallocate(fs);
543                                 vm_waitpfault();
544                                 crit_exit();
545                                 return (KERN_TRY_AGAIN);
546                         }
547
548                         /*
549                          * Mark page busy for other processes, and the 
550                          * pagedaemon.  If it still isn't completely valid
551                          * (readable), jump to readrest, else we found the
552                          * page and can return.
553                          *
554                          * We can release the spl once we have marked the
555                          * page busy.
556                          */
557                         vm_page_busy(fs->m);
558                         crit_exit();
559
560                         if (((fs->m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
561                             fs->m->object != &kernel_object) {
562                                 goto readrest;
563                         }
564                         break; /* break to PAGE HAS BEEN FOUND */
565                 }
566
567                 /*
568                  * Page is not resident, If this is the search termination
569                  * or the pager might contain the page, allocate a new page.
570                  *
571                  * NOTE: We are still in a critical section.
572                  */
573                 if (TRYPAGER(fs) || fs->object == fs->first_object) {
574                         /*
575                          * If the page is beyond the object size we fail
576                          */
577                         if (pindex >= fs->object->size) {
578                                 crit_exit();
579                                 unlock_and_deallocate(fs);
580                                 return (KERN_PROTECTION_FAILURE);
581                         }
582
583                         /*
584                          * Ratelimit.
585                          */
586                         if (fs->didlimit == 0 && curproc != NULL) {
587                                 int limticks;
588
589                                 limticks = vm_fault_ratelimit(curproc->p_vmspace);
590                                 if (limticks) {
591                                         crit_exit();
592                                         unlock_and_deallocate(fs);
593                                         tsleep(curproc, 0, "vmrate", limticks);
594                                         fs->didlimit = 1;
595                                         return (KERN_TRY_AGAIN);
596                                 }
597                         }
598
599                         /*
600                          * Allocate a new page for this object/offset pair.
601                          */
602                         fs->m = NULL;
603                         if (!vm_page_count_severe()) {
604                                 fs->m = vm_page_alloc(fs->object, pindex,
605                                     (fs->vp || fs->object->backing_object) ? VM_ALLOC_NORMAL : VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
606                         }
607                         if (fs->m == NULL) {
608                                 crit_exit();
609                                 unlock_and_deallocate(fs);
610                                 vm_waitpfault();
611                                 return (KERN_TRY_AGAIN);
612                         }
613                 }
614                 crit_exit();
615
616 readrest:
617                 /*
618                  * We have found a valid page or we have allocated a new page.
619                  * The page thus may not be valid or may not be entirely 
620                  * valid.
621                  *
622                  * Attempt to fault-in the page if there is a chance that the
623                  * pager has it, and potentially fault in additional pages
624                  * at the same time.
625                  *
626                  * We are NOT in splvm here and if TRYPAGER is true then
627                  * fs.m will be non-NULL and will be PG_BUSY for us.
628                  */
629
630                 if (TRYPAGER(fs)) {
631                         int rv;
632                         int reqpage;
633                         int ahead, behind;
634                         u_char behavior = vm_map_entry_behavior(fs->entry);
635
636                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
637                                 ahead = 0;
638                                 behind = 0;
639                         } else {
640                                 behind = pindex;
641                                 if (behind > VM_FAULT_READ_BEHIND)
642                                         behind = VM_FAULT_READ_BEHIND;
643
644                                 ahead = fs->object->size - pindex;
645                                 if (ahead < 1)
646                                         ahead = 1;
647                                 if (ahead > VM_FAULT_READ_AHEAD)
648                                         ahead = VM_FAULT_READ_AHEAD;
649                         }
650
651                         if ((fs->first_object->type != OBJT_DEVICE) &&
652                             (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
653                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
654                                 pindex >= fs->entry->lastr &&
655                                 pindex < fs->entry->lastr + VM_FAULT_READ))
656                         ) {
657                                 vm_pindex_t firstpindex, tmppindex;
658
659                                 if (first_pindex < 2 * VM_FAULT_READ)
660                                         firstpindex = 0;
661                                 else
662                                         firstpindex = first_pindex - 2 * VM_FAULT_READ;
663
664                                 /*
665                                  * note: partially valid pages cannot be 
666                                  * included in the lookahead - NFS piecemeal
667                                  * writes will barf on it badly.
668                                  *
669                                  * spl protection is required to avoid races
670                                  * between the lookup and an interrupt
671                                  * unbusy/free sequence occuring prior to
672                                  * our busy check.
673                                  */
674                                 crit_enter();
675                                 for (tmppindex = first_pindex - 1;
676                                     tmppindex >= firstpindex;
677                                     --tmppindex
678                                 ) {
679                                         vm_page_t mt;
680
681                                         mt = vm_page_lookup(fs->first_object, tmppindex);
682                                         if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
683                                                 break;
684                                         if (mt->busy ||
685                                                 (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
686                                                 mt->hold_count ||
687                                                 mt->wire_count) 
688                                                 continue;
689                                         if (mt->dirty == 0)
690                                                 vm_page_test_dirty(mt);
691                                         if (mt->dirty) {
692                                                 vm_page_protect(mt, VM_PROT_NONE);
693                                                 vm_page_deactivate(mt);
694                                         } else {
695                                                 vm_page_cache(mt);
696                                         }
697                                 }
698                                 crit_exit();
699
700                                 ahead += behind;
701                                 behind = 0;
702                         }
703
704                         /*
705                          * now we find out if any other pages should be paged
706                          * in at this time this routine checks to see if the
707                          * pages surrounding this fault reside in the same
708                          * object as the page for this fault.  If they do,
709                          * then they are faulted in also into the object.  The
710                          * array "marray" returned contains an array of
711                          * vm_page_t structs where one of them is the
712                          * vm_page_t passed to the routine.  The reqpage
713                          * return value is the index into the marray for the
714                          * vm_page_t passed to the routine.
715                          *
716                          * fs.m plus the additional pages are PG_BUSY'd.
717                          */
718                         faultcount = vm_fault_additional_pages(
719                             fs->m, behind, ahead, marray, &reqpage);
720
721                         /*
722                          * update lastr imperfectly (we do not know how much
723                          * getpages will actually read), but good enough.
724                          */
725                         fs->entry->lastr = pindex + faultcount - behind;
726
727                         /*
728                          * Call the pager to retrieve the data, if any, after
729                          * releasing the lock on the map.  We hold a ref on
730                          * fs.object and the pages are PG_BUSY'd.
731                          */
732                         unlock_map(fs);
733
734                         if (faultcount) {
735                                 rv = vm_pager_get_pages(fs->object, marray, 
736                                                         faultcount, reqpage);
737                         } else {
738                                 rv = VM_PAGER_FAIL;
739                         }
740
741                         if (rv == VM_PAGER_OK) {
742                                 /*
743                                  * Found the page. Leave it busy while we play
744                                  * with it.
745                                  */
746
747                                 /*
748                                  * Relookup in case pager changed page. Pager
749                                  * is responsible for disposition of old page
750                                  * if moved.
751                                  *
752                                  * XXX other code segments do relookups too.
753                                  * It's a bad abstraction that needs to be
754                                  * fixed/removed.
755                                  */
756                                 fs->m = vm_page_lookup(fs->object, pindex);
757                                 if (fs->m == NULL) {
758                                         unlock_and_deallocate(fs);
759                                         return (KERN_TRY_AGAIN);
760                                 }
761
762                                 ++fs->hardfault;
763                                 break; /* break to PAGE HAS BEEN FOUND */
764                         }
765
766                         /*
767                          * Remove the bogus page (which does not exist at this
768                          * object/offset); before doing so, we must get back
769                          * our object lock to preserve our invariant.
770                          *
771                          * Also wake up any other process that may want to bring
772                          * in this page.
773                          *
774                          * If this is the top-level object, we must leave the
775                          * busy page to prevent another process from rushing
776                          * past us, and inserting the page in that object at
777                          * the same time that we are.
778                          */
779                         if (rv == VM_PAGER_ERROR) {
780                                 if (curproc)
781                                         kprintf("vm_fault: pager read error, pid %d (%s)\n", curproc->p_pid, curproc->p_comm);
782                                 else
783                                         kprintf("vm_fault: pager read error, thread %p (%s)\n", curthread, curproc->p_comm);
784                         }
785                         /*
786                          * Data outside the range of the pager or an I/O error
787                          */
788                         /*
789                          * XXX - the check for kernel_map is a kludge to work
790                          * around having the machine panic on a kernel space
791                          * fault w/ I/O error.
792                          */
793                         if (((fs->map != &kernel_map) && (rv == VM_PAGER_ERROR)) ||
794                                 (rv == VM_PAGER_BAD)) {
795                                 vm_page_free(fs->m);
796                                 fs->m = NULL;
797                                 unlock_and_deallocate(fs);
798                                 if (rv == VM_PAGER_ERROR)
799                                         return (KERN_FAILURE);
800                                 else
801                                         return (KERN_PROTECTION_FAILURE);
802                                 /* NOT REACHED */
803                         }
804                         if (fs->object != fs->first_object) {
805                                 vm_page_free(fs->m);
806                                 fs->m = NULL;
807                                 /*
808                                  * XXX - we cannot just fall out at this
809                                  * point, m has been freed and is invalid!
810                                  */
811                         }
812                 }
813
814                 /*
815                  * We get here if the object has a default pager (or unwiring) 
816                  * or the pager doesn't have the page.
817                  */
818                 if (fs->object == fs->first_object)
819                         fs->first_m = fs->m;
820
821                 /*
822                  * Move on to the next object.  Lock the next object before
823                  * unlocking the current one.
824                  */
825                 pindex += OFF_TO_IDX(fs->object->backing_object_offset);
826                 next_object = fs->object->backing_object;
827                 if (next_object == NULL) {
828                         /*
829                          * If there's no object left, fill the page in the top
830                          * object with zeros.
831                          */
832                         if (fs->object != fs->first_object) {
833                                 vm_object_pip_wakeup(fs->object);
834
835                                 fs->object = fs->first_object;
836                                 pindex = first_pindex;
837                                 fs->m = fs->first_m;
838                         }
839                         fs->first_m = NULL;
840
841                         /*
842                          * Zero the page if necessary and mark it valid.
843                          */
844                         if ((fs->m->flags & PG_ZERO) == 0) {
845                                 vm_page_zero_fill(fs->m);
846                         } else {
847                                 mycpu->gd_cnt.v_ozfod++;
848                         }
849                         mycpu->gd_cnt.v_zfod++;
850                         fs->m->valid = VM_PAGE_BITS_ALL;
851                         break;  /* break to PAGE HAS BEEN FOUND */
852                 } else {
853                         if (fs->object != fs->first_object) {
854                                 vm_object_pip_wakeup(fs->object);
855                         }
856                         KASSERT(fs->object != next_object, ("object loop %p", next_object));
857                         fs->object = next_object;
858                         vm_object_pip_add(fs->object, 1);
859                 }
860         }
861
862         KASSERT((fs->m->flags & PG_BUSY) != 0,
863                 ("vm_fault: not busy after main loop"));
864
865         /*
866          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
867          * is held.]
868          */
869
870         /*
871          * If the page is being written, but isn't already owned by the
872          * top-level object, we have to copy it into a new page owned by the
873          * top-level object.
874          */
875         if (fs->object != fs->first_object) {
876                 /*
877                  * We only really need to copy if we want to write it.
878                  */
879                 if (fault_type & VM_PROT_WRITE) {
880                         /*
881                          * This allows pages to be virtually copied from a 
882                          * backing_object into the first_object, where the 
883                          * backing object has no other refs to it, and cannot
884                          * gain any more refs.  Instead of a bcopy, we just 
885                          * move the page from the backing object to the 
886                          * first object.  Note that we must mark the page 
887                          * dirty in the first object so that it will go out 
888                          * to swap when needed.
889                          */
890                         if (fs->map_generation == fs->map->timestamp &&
891                                 /*
892                                  * Only one shadow object
893                                  */
894                                 (fs->object->shadow_count == 1) &&
895                                 /*
896                                  * No COW refs, except us
897                                  */
898                                 (fs->object->ref_count == 1) &&
899                                 /*
900                                  * No one else can look this object up
901                                  */
902                                 (fs->object->handle == NULL) &&
903                                 /*
904                                  * No other ways to look the object up
905                                  */
906                                 ((fs->object->type == OBJT_DEFAULT) ||
907                                  (fs->object->type == OBJT_SWAP)) &&
908                                 /*
909                                  * We don't chase down the shadow chain
910                                  */
911                                 (fs->object == fs->first_object->backing_object) &&
912
913                                 /*
914                                  * grab the lock if we need to
915                                  */
916                                 (fs->lookup_still_valid ||
917                                  lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
918                             ) {
919                                 
920                                 fs->lookup_still_valid = 1;
921                                 /*
922                                  * get rid of the unnecessary page
923                                  */
924                                 vm_page_protect(fs->first_m, VM_PROT_NONE);
925                                 vm_page_free(fs->first_m);
926                                 fs->first_m = NULL;
927
928                                 /*
929                                  * grab the page and put it into the 
930                                  * process'es object.  The page is 
931                                  * automatically made dirty.
932                                  */
933                                 vm_page_rename(fs->m, fs->first_object, first_pindex);
934                                 fs->first_m = fs->m;
935                                 vm_page_busy(fs->first_m);
936                                 fs->m = NULL;
937                                 mycpu->gd_cnt.v_cow_optim++;
938                         } else {
939                                 /*
940                                  * Oh, well, lets copy it.
941                                  */
942                                 vm_page_copy(fs->m, fs->first_m);
943                         }
944
945                         if (fs->m) {
946                                 /*
947                                  * We no longer need the old page or object.
948                                  */
949                                 release_page(fs);
950                         }
951
952                         /*
953                          * fs->object != fs->first_object due to above 
954                          * conditional
955                          */
956                         vm_object_pip_wakeup(fs->object);
957
958                         /*
959                          * Only use the new page below...
960                          */
961
962                         mycpu->gd_cnt.v_cow_faults++;
963                         fs->m = fs->first_m;
964                         fs->object = fs->first_object;
965                         pindex = first_pindex;
966                 } else {
967                         /*
968                          * If it wasn't a write fault avoid having to copy
969                          * the page by mapping it read-only.
970                          */
971                         fs->prot &= ~VM_PROT_WRITE;
972                 }
973         }
974
975         /*
976          * We may have had to unlock a map to do I/O.  If we did then
977          * lookup_still_valid will be FALSE.  If the map generation count
978          * also changed then all sorts of things could have happened while
979          * we were doing the I/O and we need to retry.
980          */
981
982         if (!fs->lookup_still_valid &&
983             (fs->map->timestamp != fs->map_generation)) {
984                 release_page(fs);
985                 unlock_and_deallocate(fs);
986                 return (KERN_TRY_AGAIN);
987         }
988
989         /*
990          * Put this page into the physical map. We had to do the unlock above
991          * because pmap_enter may cause other faults.   We don't put the page
992          * back on the active queue until later so that the page-out daemon
993          * won't find us (yet).
994          */
995         if (fs->prot & VM_PROT_WRITE) {
996                 vm_page_flag_set(fs->m, PG_WRITEABLE);
997                 vm_object_set_writeable_dirty(fs->m->object);
998
999                 /*
1000                  * If the fault is a write, we know that this page is being
1001                  * written NOW so dirty it explicitly to save on 
1002                  * pmap_is_modified() calls later.
1003                  *
1004                  * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1005                  * if the page is already dirty to prevent data written with
1006                  * the expectation of being synced from not being synced.
1007                  * Likewise if this entry does not request NOSYNC then make
1008                  * sure the page isn't marked NOSYNC.  Applications sharing
1009                  * data should use the same flags to avoid ping ponging.
1010                  *
1011                  * Also tell the backing pager, if any, that it should remove
1012                  * any swap backing since the page is now dirty.
1013                  */
1014                 if (fs->entry->eflags & MAP_ENTRY_NOSYNC) {
1015                         if (fs->m->dirty == 0)
1016                                 vm_page_flag_set(fs->m, PG_NOSYNC);
1017                 } else {
1018                         vm_page_flag_clear(fs->m, PG_NOSYNC);
1019                 }
1020                 if (fs->fault_flags & VM_FAULT_DIRTY) {
1021                         crit_enter();
1022                         vm_page_dirty(fs->m);
1023                         vm_pager_page_unswapped(fs->m);
1024                         crit_exit();
1025                 }
1026         }
1027
1028         /*
1029          * Page had better still be busy.  We are still locked up and 
1030          * fs->object will have another PIP reference if it is not equal
1031          * to fs->first_object.
1032          */
1033         KASSERT(fs->m->flags & PG_BUSY,
1034                 ("vm_fault: page %p not busy!", fs->m));
1035
1036         /*
1037          * Sanity check: page must be completely valid or it is not fit to
1038          * map into user space.  vm_pager_get_pages() ensures this.
1039          */
1040         if (fs->m->valid != VM_PAGE_BITS_ALL) {
1041                 vm_page_zero_invalid(fs->m, TRUE);
1042                 kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1043         }
1044
1045         return (KERN_SUCCESS);
1046 }
1047
1048 /*
1049  * quick version of vm_fault
1050  */
1051 int
1052 vm_fault_quick(caddr_t v, int prot)
1053 {
1054         int r;
1055
1056         if (prot & VM_PROT_WRITE)
1057                 r = subyte(v, fubyte(v));
1058         else
1059                 r = fubyte(v);
1060         return(r);
1061 }
1062
1063 /*
1064  * Wire down a range of virtual addresses in a map.  The entry in question
1065  * should be marked in-transition and the map must be locked.  We must
1066  * release the map temporarily while faulting-in the page to avoid a
1067  * deadlock.  Note that the entry may be clipped while we are blocked but
1068  * will never be freed.
1069  */
1070 int
1071 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1072 {
1073         boolean_t fictitious;
1074         vm_offset_t start;
1075         vm_offset_t end;
1076         vm_offset_t va;
1077         vm_paddr_t pa;
1078         pmap_t pmap;
1079         int rv;
1080
1081         pmap = vm_map_pmap(map);
1082         start = entry->start;
1083         end = entry->end;
1084         fictitious = entry->object.vm_object &&
1085                         (entry->object.vm_object->type == OBJT_DEVICE);
1086
1087         vm_map_unlock(map);
1088         map->timestamp++;
1089
1090         /*
1091          * We simulate a fault to get the page and enter it in the physical
1092          * map.
1093          */
1094         for (va = start; va < end; va += PAGE_SIZE) {
1095                 if (user_wire) {
1096                         rv = vm_fault(map, va, VM_PROT_READ, 
1097                                         VM_FAULT_USER_WIRE);
1098                 } else {
1099                         rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1100                                         VM_FAULT_CHANGE_WIRING);
1101                 }
1102                 if (rv) {
1103                         while (va > start) {
1104                                 va -= PAGE_SIZE;
1105                                 if ((pa = pmap_extract(pmap, va)) == 0)
1106                                         continue;
1107                                 pmap_change_wiring(pmap, va, FALSE);
1108                                 if (!fictitious)
1109                                         vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1110                         }
1111                         vm_map_lock(map);
1112                         return (rv);
1113                 }
1114         }
1115         vm_map_lock(map);
1116         return (KERN_SUCCESS);
1117 }
1118
1119 /*
1120  * Unwire a range of virtual addresses in a map.  The map should be
1121  * locked.
1122  */
1123 void
1124 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1125 {
1126         boolean_t fictitious;
1127         vm_offset_t start;
1128         vm_offset_t end;
1129         vm_offset_t va;
1130         vm_paddr_t pa;
1131         pmap_t pmap;
1132
1133         pmap = vm_map_pmap(map);
1134         start = entry->start;
1135         end = entry->end;
1136         fictitious = entry->object.vm_object &&
1137                         (entry->object.vm_object->type == OBJT_DEVICE);
1138
1139         /*
1140          * Since the pages are wired down, we must be able to get their
1141          * mappings from the physical map system.
1142          */
1143         for (va = start; va < end; va += PAGE_SIZE) {
1144                 pa = pmap_extract(pmap, va);
1145                 if (pa != 0) {
1146                         pmap_change_wiring(pmap, va, FALSE);
1147                         if (!fictitious)
1148                                 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1149                 }
1150         }
1151 }
1152
1153 /*
1154  * Reduce the rate at which memory is allocated to a process based
1155  * on the perceived load on the VM system. As the load increases
1156  * the allocation burst rate goes down and the delay increases. 
1157  *
1158  * Rate limiting does not apply when faulting active or inactive
1159  * pages.  When faulting 'cache' pages, rate limiting only applies
1160  * if the system currently has a severe page deficit.
1161  *
1162  * XXX vm_pagesupply should be increased when a page is freed.
1163  *
1164  * We sleep up to 1/10 of a second.
1165  */
1166 static int
1167 vm_fault_ratelimit(struct vmspace *vmspace)
1168 {
1169         if (vm_load_enable == 0)
1170                 return(0);
1171         if (vmspace->vm_pagesupply > 0) {
1172                 --vmspace->vm_pagesupply;
1173                 return(0);
1174         }
1175 #ifdef INVARIANTS
1176         if (vm_load_debug) {
1177                 kprintf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n",
1178                         vm_load, 
1179                         (1000 - vm_load ) / 10, vm_load * hz / 10000,
1180                         curproc->p_pid, curproc->p_comm);
1181         }
1182 #endif
1183         vmspace->vm_pagesupply = (1000 - vm_load) / 10;
1184         return(vm_load * hz / 10000);
1185 }
1186
1187 /*
1188  *      Routine:
1189  *              vm_fault_copy_entry
1190  *      Function:
1191  *              Copy all of the pages from a wired-down map entry to another.
1192  *
1193  *      In/out conditions:
1194  *              The source and destination maps must be locked for write.
1195  *              The source map entry must be wired down (or be a sharing map
1196  *              entry corresponding to a main map entry that is wired down).
1197  */
1198
1199 void
1200 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1201     vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1202 {
1203         vm_object_t dst_object;
1204         vm_object_t src_object;
1205         vm_ooffset_t dst_offset;
1206         vm_ooffset_t src_offset;
1207         vm_prot_t prot;
1208         vm_offset_t vaddr;
1209         vm_page_t dst_m;
1210         vm_page_t src_m;
1211
1212 #ifdef  lint
1213         src_map++;
1214 #endif  /* lint */
1215
1216         src_object = src_entry->object.vm_object;
1217         src_offset = src_entry->offset;
1218
1219         /*
1220          * Create the top-level object for the destination entry. (Doesn't
1221          * actually shadow anything - we copy the pages directly.)
1222          */
1223         vm_map_entry_allocate_object(dst_entry);
1224         dst_object = dst_entry->object.vm_object;
1225
1226         prot = dst_entry->max_protection;
1227
1228         /*
1229          * Loop through all of the pages in the entry's range, copying each
1230          * one from the source object (it should be there) to the destination
1231          * object.
1232          */
1233         for (vaddr = dst_entry->start, dst_offset = 0;
1234             vaddr < dst_entry->end;
1235             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1236
1237                 /*
1238                  * Allocate a page in the destination object
1239                  */
1240                 do {
1241                         dst_m = vm_page_alloc(dst_object,
1242                                 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1243                         if (dst_m == NULL) {
1244                                 vm_wait();
1245                         }
1246                 } while (dst_m == NULL);
1247
1248                 /*
1249                  * Find the page in the source object, and copy it in.
1250                  * (Because the source is wired down, the page will be in
1251                  * memory.)
1252                  */
1253                 src_m = vm_page_lookup(src_object,
1254                         OFF_TO_IDX(dst_offset + src_offset));
1255                 if (src_m == NULL)
1256                         panic("vm_fault_copy_wired: page missing");
1257
1258                 vm_page_copy(src_m, dst_m);
1259
1260                 /*
1261                  * Enter it in the pmap...
1262                  */
1263
1264                 vm_page_flag_clear(dst_m, PG_ZERO);
1265                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1266                 vm_page_flag_set(dst_m, PG_WRITEABLE|PG_MAPPED);
1267
1268                 /*
1269                  * Mark it no longer busy, and put it on the active list.
1270                  */
1271                 vm_page_activate(dst_m);
1272                 vm_page_wakeup(dst_m);
1273         }
1274 }
1275
1276
1277 /*
1278  * This routine checks around the requested page for other pages that
1279  * might be able to be faulted in.  This routine brackets the viable
1280  * pages for the pages to be paged in.
1281  *
1282  * Inputs:
1283  *      m, rbehind, rahead
1284  *
1285  * Outputs:
1286  *  marray (array of vm_page_t), reqpage (index of requested page)
1287  *
1288  * Return value:
1289  *  number of pages in marray
1290  */
1291 static int
1292 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
1293     vm_page_t *marray, int *reqpage)
1294 {
1295         int i,j;
1296         vm_object_t object;
1297         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1298         vm_page_t rtm;
1299         int cbehind, cahead;
1300
1301         object = m->object;
1302         pindex = m->pindex;
1303
1304         /*
1305          * we don't fault-ahead for device pager
1306          */
1307         if (object->type == OBJT_DEVICE) {
1308                 *reqpage = 0;
1309                 marray[0] = m;
1310                 return 1;
1311         }
1312
1313         /*
1314          * if the requested page is not available, then give up now
1315          */
1316
1317         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1318                 return 0;
1319         }
1320
1321         if ((cbehind == 0) && (cahead == 0)) {
1322                 *reqpage = 0;
1323                 marray[0] = m;
1324                 return 1;
1325         }
1326
1327         if (rahead > cahead) {
1328                 rahead = cahead;
1329         }
1330
1331         if (rbehind > cbehind) {
1332                 rbehind = cbehind;
1333         }
1334
1335         /*
1336          * try to do any readahead that we might have free pages for.
1337          */
1338         if ((rahead + rbehind) >
1339                 ((vmstats.v_free_count + vmstats.v_cache_count) - vmstats.v_free_reserved)) {
1340                 pagedaemon_wakeup();
1341                 marray[0] = m;
1342                 *reqpage = 0;
1343                 return 1;
1344         }
1345
1346         /*
1347          * scan backward for the read behind pages -- in memory 
1348          *
1349          * Assume that if the page is not found an interrupt will not
1350          * create it.  Theoretically interrupts can only remove (busy)
1351          * pages, not create new associations.
1352          */
1353         if (pindex > 0) {
1354                 if (rbehind > pindex) {
1355                         rbehind = pindex;
1356                         startpindex = 0;
1357                 } else {
1358                         startpindex = pindex - rbehind;
1359                 }
1360
1361                 crit_enter();
1362                 for ( tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1363                         if (vm_page_lookup( object, tpindex)) {
1364                                 startpindex = tpindex + 1;
1365                                 break;
1366                         }
1367                         if (tpindex == 0)
1368                                 break;
1369                 }
1370
1371                 for(i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1372
1373                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1374                         if (rtm == NULL) {
1375                                 crit_exit();
1376                                 for (j = 0; j < i; j++) {
1377                                         vm_page_free(marray[j]);
1378                                 }
1379                                 marray[0] = m;
1380                                 *reqpage = 0;
1381                                 return 1;
1382                         }
1383
1384                         marray[i] = rtm;
1385                 }
1386                 crit_exit();
1387         } else {
1388                 startpindex = 0;
1389                 i = 0;
1390         }
1391
1392         marray[i] = m;
1393         /* page offset of the required page */
1394         *reqpage = i;
1395
1396         tpindex = pindex + 1;
1397         i++;
1398
1399         /*
1400          * scan forward for the read ahead pages
1401          */
1402         endpindex = tpindex + rahead;
1403         if (endpindex > object->size)
1404                 endpindex = object->size;
1405
1406         crit_enter();
1407         for( ; tpindex < endpindex; i++, tpindex++) {
1408
1409                 if (vm_page_lookup(object, tpindex)) {
1410                         break;
1411                 }
1412
1413                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1414                 if (rtm == NULL) {
1415                         break;
1416                 }
1417
1418                 marray[i] = rtm;
1419         }
1420         crit_exit();
1421
1422         /* return number of bytes of pages */
1423         return i;
1424 }