Initial import of binutils 2.22 on the new vendor branch
[dragonfly.git] / sys / dev / netif / ig_hal / e1000_80003es2lan.c
1 /******************************************************************************
2
3   Copyright (c) 2001-2009, Intel Corporation 
4   All rights reserved.
5   
6   Redistribution and use in source and binary forms, with or without 
7   modification, are permitted provided that the following conditions are met:
8   
9    1. Redistributions of source code must retain the above copyright notice, 
10       this list of conditions and the following disclaimer.
11   
12    2. Redistributions in binary form must reproduce the above copyright 
13       notice, this list of conditions and the following disclaimer in the 
14       documentation and/or other materials provided with the distribution.
15   
16    3. Neither the name of the Intel Corporation nor the names of its 
17       contributors may be used to endorse or promote products derived from 
18       this software without specific prior written permission.
19   
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31
32 ******************************************************************************/
33 /*$FreeBSD: $*/
34
35 /*
36  * 80003ES2LAN Gigabit Ethernet Controller (Copper)
37  * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
38  */
39
40 #include "e1000_api.h"
41
42 static s32  e1000_init_phy_params_80003es2lan(struct e1000_hw *hw);
43 static s32  e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw);
44 static s32  e1000_init_mac_params_80003es2lan(struct e1000_hw *hw);
45 static s32  e1000_acquire_phy_80003es2lan(struct e1000_hw *hw);
46 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw);
47 static s32  e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw);
48 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw);
49 static s32  e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
50                                                    u32 offset,
51                                                    u16 *data);
52 static s32  e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
53                                                     u32 offset,
54                                                     u16 data);
55 static s32  e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
56                                         u16 words, u16 *data);
57 static s32  e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw);
58 static s32  e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw);
59 static s32  e1000_get_cable_length_80003es2lan(struct e1000_hw *hw);
60 static s32  e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
61                                                u16 *duplex);
62 static s32  e1000_reset_hw_80003es2lan(struct e1000_hw *hw);
63 static s32  e1000_init_hw_80003es2lan(struct e1000_hw *hw);
64 static s32  e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
65 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
66 static s32  e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
67 static s32  e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
68 static s32  e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
69 static s32  e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
70 static s32  e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
71                                             u16 *data);
72 static s32  e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
73                                              u16 data);
74 static s32  e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw);
75 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
76 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
77 static s32  e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw);
78 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
79
80 /*
81  * A table for the GG82563 cable length where the range is defined
82  * with a lower bound at "index" and the upper bound at
83  * "index + 5".
84  */
85 static const u16 e1000_gg82563_cable_length_table[] =
86          { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
87 #define GG82563_CABLE_LENGTH_TABLE_SIZE \
88                 (sizeof(e1000_gg82563_cable_length_table) / \
89                  sizeof(e1000_gg82563_cable_length_table[0]))
90
91 /**
92  *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
93  *  @hw: pointer to the HW structure
94  **/
95 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
96 {
97         struct e1000_phy_info *phy = &hw->phy;
98         s32 ret_val = E1000_SUCCESS;
99
100         DEBUGFUNC("e1000_init_phy_params_80003es2lan");
101
102         if (hw->phy.media_type != e1000_media_type_copper) {
103                 phy->type        = e1000_phy_none;
104                 goto out;
105         } else {
106                 phy->ops.power_up = e1000_power_up_phy_copper;
107                 phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
108         }
109
110         phy->addr                = 1;
111         phy->autoneg_mask        = AUTONEG_ADVERTISE_SPEED_DEFAULT;
112         phy->reset_delay_us      = 100;
113         phy->type                = e1000_phy_gg82563;
114
115         phy->ops.acquire            = e1000_acquire_phy_80003es2lan;
116         phy->ops.check_polarity     = e1000_check_polarity_m88;
117         phy->ops.check_reset_block  = e1000_check_reset_block_generic;
118         phy->ops.commit             = e1000_phy_sw_reset_generic;
119         phy->ops.get_cfg_done       = e1000_get_cfg_done_80003es2lan;
120         phy->ops.get_info           = e1000_get_phy_info_m88;
121         phy->ops.release            = e1000_release_phy_80003es2lan;
122         phy->ops.reset              = e1000_phy_hw_reset_generic;
123         phy->ops.set_d3_lplu_state  = e1000_set_d3_lplu_state_generic;
124
125         phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan;
126         phy->ops.get_cable_length   = e1000_get_cable_length_80003es2lan;
127         phy->ops.read_reg           = e1000_read_phy_reg_gg82563_80003es2lan;
128         phy->ops.write_reg          = e1000_write_phy_reg_gg82563_80003es2lan;
129
130         phy->ops.cfg_on_link_up    = e1000_cfg_on_link_up_80003es2lan;
131
132         /* This can only be done after all function pointers are setup. */
133         ret_val = e1000_get_phy_id(hw);
134
135         /* Verify phy id */
136         if (phy->id != GG82563_E_PHY_ID) {
137                 ret_val = -E1000_ERR_PHY;
138                 goto out;
139         }
140
141 out:
142         return ret_val;
143 }
144
145 /**
146  *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
147  *  @hw: pointer to the HW structure
148  **/
149 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
150 {
151         struct e1000_nvm_info *nvm = &hw->nvm;
152         u32 eecd = E1000_READ_REG(hw, E1000_EECD);
153         u16 size;
154
155         DEBUGFUNC("e1000_init_nvm_params_80003es2lan");
156
157         nvm->opcode_bits        = 8;
158         nvm->delay_usec         = 1;
159         switch (nvm->override) {
160         case e1000_nvm_override_spi_large:
161                 nvm->page_size    = 32;
162                 nvm->address_bits = 16;
163                 break;
164         case e1000_nvm_override_spi_small:
165                 nvm->page_size    = 8;
166                 nvm->address_bits = 8;
167                 break;
168         default:
169                 nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
170                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
171                 break;
172         }
173
174         nvm->type = e1000_nvm_eeprom_spi;
175
176         size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
177                           E1000_EECD_SIZE_EX_SHIFT);
178
179         /*
180          * Added to a constant, "size" becomes the left-shift value
181          * for setting word_size.
182          */
183         size += NVM_WORD_SIZE_BASE_SHIFT;
184
185         /* EEPROM access above 16k is unsupported */
186         if (size > 14)
187                 size = 14;
188         nvm->word_size  = 1 << size;
189
190         /* Function Pointers */
191         nvm->ops.acquire           = e1000_acquire_nvm_80003es2lan;
192         nvm->ops.read              = e1000_read_nvm_eerd;
193         nvm->ops.release           = e1000_release_nvm_80003es2lan;
194         nvm->ops.update            = e1000_update_nvm_checksum_generic;
195         nvm->ops.valid_led_default = e1000_valid_led_default_generic;
196         nvm->ops.validate          = e1000_validate_nvm_checksum_generic;
197         nvm->ops.write             = e1000_write_nvm_80003es2lan;
198
199         return E1000_SUCCESS;
200 }
201
202 /**
203  *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
204  *  @hw: pointer to the HW structure
205  **/
206 static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
207 {
208         struct e1000_mac_info *mac = &hw->mac;
209
210         DEBUGFUNC("e1000_init_mac_params_80003es2lan");
211
212         /* Set media type and media-dependent function pointers */
213         switch (hw->device_id) {
214         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
215                 hw->phy.media_type = e1000_media_type_internal_serdes;
216                 mac->ops.check_for_link = e1000_check_for_serdes_link_generic;
217                 mac->ops.setup_physical_interface =
218                         e1000_setup_fiber_serdes_link_generic;
219                 break;
220         default:
221                 hw->phy.media_type = e1000_media_type_copper;
222                 mac->ops.check_for_link = e1000_check_for_copper_link_generic;
223                 mac->ops.setup_physical_interface =
224                         e1000_setup_copper_link_80003es2lan;
225                 break;
226         }
227
228         /* Set mta register count */
229         mac->mta_reg_count = 128;
230         /* Set rar entry count */
231         mac->rar_entry_count = E1000_RAR_ENTRIES;
232         /* Set if part includes ASF firmware */
233         mac->asf_firmware_present = TRUE;
234         /* FWSM register */
235         mac->has_fwsm = TRUE;
236         /* ARC supported; valid only if manageability features are enabled. */
237         mac->arc_subsystem_valid =
238                 (E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK)
239                         ? TRUE : FALSE;
240         /* Adaptive IFS not supported */
241         mac->adaptive_ifs = FALSE;
242
243         /* Function pointers */
244
245         /* bus type/speed/width */
246         mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
247         /* reset */
248         mac->ops.reset_hw = e1000_reset_hw_80003es2lan;
249         /* hw initialization */
250         mac->ops.init_hw = e1000_init_hw_80003es2lan;
251         /* link setup */
252         mac->ops.setup_link = e1000_setup_link_generic;
253         /* check management mode */
254         mac->ops.check_mng_mode = e1000_check_mng_mode_generic;
255         /* multicast address update */
256         mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
257         /* writing VFTA */
258         mac->ops.write_vfta = e1000_write_vfta_generic;
259         /* clearing VFTA */
260         mac->ops.clear_vfta = e1000_clear_vfta_generic;
261         /* read mac address */
262         mac->ops.read_mac_addr = e1000_read_mac_addr_80003es2lan;
263         /* ID LED init */
264         mac->ops.id_led_init = e1000_id_led_init_generic;
265         /* blink LED */
266         mac->ops.blink_led = e1000_blink_led_generic;
267         /* setup LED */
268         mac->ops.setup_led = e1000_setup_led_generic;
269         /* cleanup LED */
270         mac->ops.cleanup_led = e1000_cleanup_led_generic;
271         /* turn on/off LED */
272         mac->ops.led_on = e1000_led_on_generic;
273         mac->ops.led_off = e1000_led_off_generic;
274         /* clear hardware counters */
275         mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan;
276         /* link info */
277         mac->ops.get_link_up_info = e1000_get_link_up_info_80003es2lan;
278
279         /* set lan id for port to determine which phy lock to use */
280         hw->mac.ops.set_lan_id(hw);
281
282         return E1000_SUCCESS;
283 }
284
285 /**
286  *  e1000_init_function_pointers_80003es2lan - Init ESB2 func ptrs.
287  *  @hw: pointer to the HW structure
288  *
289  *  Called to initialize all function pointers and parameters.
290  **/
291 void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw)
292 {
293         DEBUGFUNC("e1000_init_function_pointers_80003es2lan");
294
295         hw->mac.ops.init_params = e1000_init_mac_params_80003es2lan;
296         hw->nvm.ops.init_params = e1000_init_nvm_params_80003es2lan;
297         hw->phy.ops.init_params = e1000_init_phy_params_80003es2lan;
298 }
299
300 /**
301  *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
302  *  @hw: pointer to the HW structure
303  *
304  *  A wrapper to acquire access rights to the correct PHY.
305  **/
306 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
307 {
308         u16 mask;
309
310         DEBUGFUNC("e1000_acquire_phy_80003es2lan");
311
312         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
313         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
314 }
315
316 /**
317  *  e1000_release_phy_80003es2lan - Release rights to access PHY
318  *  @hw: pointer to the HW structure
319  *
320  *  A wrapper to release access rights to the correct PHY.
321  **/
322 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
323 {
324         u16 mask;
325
326         DEBUGFUNC("e1000_release_phy_80003es2lan");
327
328         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
329         e1000_release_swfw_sync_80003es2lan(hw, mask);
330 }
331
332 /**
333  *  e1000_acquire_mac_csr_80003es2lan - Acquire rights to access Kumeran register
334  *  @hw: pointer to the HW structure
335  *
336  *  Acquire the semaphore to access the Kumeran interface.
337  *
338  **/
339 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
340 {
341         u16 mask;
342
343         DEBUGFUNC("e1000_acquire_mac_csr_80003es2lan");
344
345         mask = E1000_SWFW_CSR_SM;
346
347         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
348 }
349
350 /**
351  *  e1000_release_mac_csr_80003es2lan - Release rights to access Kumeran Register
352  *  @hw: pointer to the HW structure
353  *
354  *  Release the semaphore used to access the Kumeran interface
355  **/
356 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
357 {
358         u16 mask;
359
360         DEBUGFUNC("e1000_release_mac_csr_80003es2lan");
361
362         mask = E1000_SWFW_CSR_SM;
363
364         e1000_release_swfw_sync_80003es2lan(hw, mask);
365 }
366
367 /**
368  *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
369  *  @hw: pointer to the HW structure
370  *
371  *  Acquire the semaphore to access the EEPROM.
372  **/
373 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
374 {
375         s32 ret_val;
376
377         DEBUGFUNC("e1000_acquire_nvm_80003es2lan");
378
379         ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
380         if (ret_val)
381                 goto out;
382
383         ret_val = e1000_acquire_nvm_generic(hw);
384
385         if (ret_val)
386                 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
387
388 out:
389         return ret_val;
390 }
391
392 /**
393  *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
394  *  @hw: pointer to the HW structure
395  *
396  *  Release the semaphore used to access the EEPROM.
397  **/
398 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
399 {
400         DEBUGFUNC("e1000_release_nvm_80003es2lan");
401
402         e1000_release_nvm_generic(hw);
403         e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
404 }
405
406 /**
407  *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
408  *  @hw: pointer to the HW structure
409  *  @mask: specifies which semaphore to acquire
410  *
411  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
412  *  will also specify which port we're acquiring the lock for.
413  **/
414 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
415 {
416         u32 swfw_sync;
417         u32 swmask = mask;
418         u32 fwmask = mask << 16;
419         s32 ret_val = E1000_SUCCESS;
420         s32 i = 0, timeout = 50;
421
422         DEBUGFUNC("e1000_acquire_swfw_sync_80003es2lan");
423
424         while (i < timeout) {
425                 if (e1000_get_hw_semaphore_generic(hw)) {
426                         ret_val = -E1000_ERR_SWFW_SYNC;
427                         goto out;
428                 }
429
430                 swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
431                 if (!(swfw_sync & (fwmask | swmask)))
432                         break;
433
434                 /*
435                  * Firmware currently using resource (fwmask)
436                  * or other software thread using resource (swmask)
437                  */
438                 e1000_put_hw_semaphore_generic(hw);
439                 msec_delay_irq(5);
440                 i++;
441         }
442
443         if (i == timeout) {
444                 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
445                 ret_val = -E1000_ERR_SWFW_SYNC;
446                 goto out;
447         }
448
449         swfw_sync |= swmask;
450         E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
451
452         e1000_put_hw_semaphore_generic(hw);
453
454 out:
455         return ret_val;
456 }
457
458 /**
459  *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
460  *  @hw: pointer to the HW structure
461  *  @mask: specifies which semaphore to acquire
462  *
463  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
464  *  will also specify which port we're releasing the lock for.
465  **/
466 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
467 {
468         u32 swfw_sync;
469
470         DEBUGFUNC("e1000_release_swfw_sync_80003es2lan");
471
472         while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS)
473                 ; /* Empty */
474
475         swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
476         swfw_sync &= ~mask;
477         E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
478
479         e1000_put_hw_semaphore_generic(hw);
480 }
481
482 /**
483  *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
484  *  @hw: pointer to the HW structure
485  *  @offset: offset of the register to read
486  *  @data: pointer to the data returned from the operation
487  *
488  *  Read the GG82563 PHY register.
489  **/
490 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
491                                                   u32 offset, u16 *data)
492 {
493         s32 ret_val;
494         u32 page_select;
495         u16 temp;
496
497         DEBUGFUNC("e1000_read_phy_reg_gg82563_80003es2lan");
498
499         ret_val = e1000_acquire_phy_80003es2lan(hw);
500         if (ret_val)
501                 goto out;
502
503         /* Select Configuration Page */
504         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
505                 page_select = GG82563_PHY_PAGE_SELECT;
506         } else {
507                 /*
508                  * Use Alternative Page Select register to access
509                  * registers 30 and 31
510                  */
511                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
512         }
513
514         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
515         ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp);
516         if (ret_val) {
517                 e1000_release_phy_80003es2lan(hw);
518                 goto out;
519         }
520
521         if (hw->dev_spec._80003es2lan.mdic_wa_enable == TRUE) {
522                 /*
523                  * The "ready" bit in the MDIC register may be incorrectly set
524                  * before the device has completed the "Page Select" MDI
525                  * transaction.  So we wait 200us after each MDI command...
526                  */
527                 usec_delay(200);
528
529                 /* ...and verify the command was successful. */
530                 ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp);
531
532                 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
533                         ret_val = -E1000_ERR_PHY;
534                         e1000_release_phy_80003es2lan(hw);
535                         goto out;
536                 }
537
538                 usec_delay(200);
539
540                 ret_val = e1000_read_phy_reg_mdic(hw,
541                                                   MAX_PHY_REG_ADDRESS & offset,
542                                                   data);
543
544                 usec_delay(200);
545         } else {
546                 ret_val = e1000_read_phy_reg_mdic(hw,
547                                                   MAX_PHY_REG_ADDRESS & offset,
548                                                   data);
549         }
550
551         e1000_release_phy_80003es2lan(hw);
552
553 out:
554         return ret_val;
555 }
556
557 /**
558  *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
559  *  @hw: pointer to the HW structure
560  *  @offset: offset of the register to read
561  *  @data: value to write to the register
562  *
563  *  Write to the GG82563 PHY register.
564  **/
565 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
566                                                    u32 offset, u16 data)
567 {
568         s32 ret_val;
569         u32 page_select;
570         u16 temp;
571
572         DEBUGFUNC("e1000_write_phy_reg_gg82563_80003es2lan");
573
574         ret_val = e1000_acquire_phy_80003es2lan(hw);
575         if (ret_val)
576                 goto out;
577
578         /* Select Configuration Page */
579         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
580                 page_select = GG82563_PHY_PAGE_SELECT;
581         } else {
582                 /*
583                  * Use Alternative Page Select register to access
584                  * registers 30 and 31
585                  */
586                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
587         }
588
589         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
590         ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp);
591         if (ret_val) {
592                 e1000_release_phy_80003es2lan(hw);
593                 goto out;
594         }
595
596         if (hw->dev_spec._80003es2lan.mdic_wa_enable == TRUE) {
597                 /*
598                  * The "ready" bit in the MDIC register may be incorrectly set
599                  * before the device has completed the "Page Select" MDI
600                  * transaction.  So we wait 200us after each MDI command...
601                  */
602                 usec_delay(200);
603
604                 /* ...and verify the command was successful. */
605                 ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp);
606
607                 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
608                         ret_val = -E1000_ERR_PHY;
609                         e1000_release_phy_80003es2lan(hw);
610                         goto out;
611                 }
612
613                 usec_delay(200);
614
615                 ret_val = e1000_write_phy_reg_mdic(hw,
616                                                   MAX_PHY_REG_ADDRESS & offset,
617                                                   data);
618
619                 usec_delay(200);
620         } else {
621                 ret_val = e1000_write_phy_reg_mdic(hw,
622                                                   MAX_PHY_REG_ADDRESS & offset,
623                                                   data);
624         }
625
626         e1000_release_phy_80003es2lan(hw);
627
628 out:
629         return ret_val;
630 }
631
632 /**
633  *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
634  *  @hw: pointer to the HW structure
635  *  @offset: offset of the register to read
636  *  @words: number of words to write
637  *  @data: buffer of data to write to the NVM
638  *
639  *  Write "words" of data to the ESB2 NVM.
640  **/
641 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
642                             u16 words, u16 *data)
643 {
644         DEBUGFUNC("e1000_write_nvm_80003es2lan");
645
646         return e1000_write_nvm_spi(hw, offset, words, data);
647 }
648
649 /**
650  *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
651  *  @hw: pointer to the HW structure
652  *
653  *  Wait a specific amount of time for manageability processes to complete.
654  *  This is a function pointer entry point called by the phy module.
655  **/
656 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
657 {
658         s32 timeout = PHY_CFG_TIMEOUT;
659         s32 ret_val = E1000_SUCCESS;
660         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
661
662         DEBUGFUNC("e1000_get_cfg_done_80003es2lan");
663
664         if (hw->bus.func == 1)
665                 mask = E1000_NVM_CFG_DONE_PORT_1;
666
667         while (timeout) {
668                 if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
669                         break;
670                 msec_delay(1);
671                 timeout--;
672         }
673         if (!timeout) {
674                 DEBUGOUT("MNG configuration cycle has not completed.\n");
675                 ret_val = -E1000_ERR_RESET;
676                 goto out;
677         }
678
679 out:
680         return ret_val;
681 }
682
683 /**
684  *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
685  *  @hw: pointer to the HW structure
686  *
687  *  Force the speed and duplex settings onto the PHY.  This is a
688  *  function pointer entry point called by the phy module.
689  **/
690 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
691 {
692         s32 ret_val = E1000_SUCCESS;
693         u16 phy_data;
694         bool link;
695
696         DEBUGFUNC("e1000_phy_force_speed_duplex_80003es2lan");
697
698         if (!(hw->phy.ops.read_reg))
699                 goto out;
700
701         /*
702          * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
703          * forced whenever speed and duplex are forced.
704          */
705         ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
706         if (ret_val)
707                 goto out;
708
709         phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
710         ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
711         if (ret_val)
712                 goto out;
713
714         DEBUGOUT1("GG82563 PSCR: %X\n", phy_data);
715
716         ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_data);
717         if (ret_val)
718                 goto out;
719
720         e1000_phy_force_speed_duplex_setup(hw, &phy_data);
721
722         /* Reset the phy to commit changes. */
723         phy_data |= MII_CR_RESET;
724
725         ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_data);
726         if (ret_val)
727                 goto out;
728
729         usec_delay(1);
730
731         if (hw->phy.autoneg_wait_to_complete) {
732                 DEBUGOUT("Waiting for forced speed/duplex link "
733                          "on GG82563 phy.\n");
734
735                 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
736                                                      100000, &link);
737                 if (ret_val)
738                         goto out;
739
740                 if (!link) {
741                         /*
742                          * We didn't get link.
743                          * Reset the DSP and cross our fingers.
744                          */
745                         ret_val = e1000_phy_reset_dsp_generic(hw);
746                         if (ret_val)
747                                 goto out;
748                 }
749
750                 /* Try once more */
751                 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
752                                                      100000, &link);
753                 if (ret_val)
754                         goto out;
755         }
756
757         ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
758         if (ret_val)
759                 goto out;
760
761         /*
762          * Resetting the phy means we need to verify the TX_CLK corresponds
763          * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
764          */
765         phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
766         if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
767                 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
768         else
769                 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
770
771         /*
772          * In addition, we must re-enable CRS on Tx for both half and full
773          * duplex.
774          */
775         phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
776         ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
777
778 out:
779         return ret_val;
780 }
781
782 /**
783  *  e1000_get_cable_length_80003es2lan - Set approximate cable length
784  *  @hw: pointer to the HW structure
785  *
786  *  Find the approximate cable length as measured by the GG82563 PHY.
787  *  This is a function pointer entry point called by the phy module.
788  **/
789 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
790 {
791         struct e1000_phy_info *phy = &hw->phy;
792         s32 ret_val = E1000_SUCCESS;
793         u16 phy_data, index;
794
795         DEBUGFUNC("e1000_get_cable_length_80003es2lan");
796
797         if (!(hw->phy.ops.read_reg))
798                 goto out;
799
800         ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
801         if (ret_val)
802                 goto out;
803
804         index = phy_data & GG82563_DSPD_CABLE_LENGTH;
805
806         if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5) {
807                 ret_val = -E1000_ERR_PHY;
808                 goto out;
809         }
810
811         phy->min_cable_length = e1000_gg82563_cable_length_table[index];
812         phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
813
814         phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
815
816 out:
817         return ret_val;
818 }
819
820 /**
821  *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
822  *  @hw: pointer to the HW structure
823  *  @speed: pointer to speed buffer
824  *  @duplex: pointer to duplex buffer
825  *
826  *  Retrieve the current speed and duplex configuration.
827  **/
828 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
829                                               u16 *duplex)
830 {
831         s32 ret_val;
832
833         DEBUGFUNC("e1000_get_link_up_info_80003es2lan");
834
835         if (hw->phy.media_type == e1000_media_type_copper) {
836                 ret_val = e1000_get_speed_and_duplex_copper_generic(hw,
837                                                                     speed,
838                                                                     duplex);
839                 hw->phy.ops.cfg_on_link_up(hw);
840         } else {
841                 ret_val = e1000_get_speed_and_duplex_fiber_serdes_generic(hw,
842                                                                   speed,
843                                                                   duplex);
844         }
845
846         return ret_val;
847 }
848
849 /**
850  *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
851  *  @hw: pointer to the HW structure
852  *
853  *  Perform a global reset to the ESB2 controller.
854  **/
855 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
856 {
857         u32 ctrl, icr;
858         s32 ret_val;
859
860         DEBUGFUNC("e1000_reset_hw_80003es2lan");
861
862         /*
863          * Prevent the PCI-E bus from sticking if there is no TLP connection
864          * on the last TLP read/write transaction when MAC is reset.
865          */
866         ret_val = e1000_disable_pcie_master_generic(hw);
867         if (ret_val)
868                 DEBUGOUT("PCI-E Master disable polling has failed.\n");
869
870         DEBUGOUT("Masking off all interrupts\n");
871         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
872
873         E1000_WRITE_REG(hw, E1000_RCTL, 0);
874         E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
875         E1000_WRITE_FLUSH(hw);
876
877         msec_delay(10);
878
879         ctrl = E1000_READ_REG(hw, E1000_CTRL);
880
881         ret_val = e1000_acquire_phy_80003es2lan(hw);
882         DEBUGOUT("Issuing a global reset to MAC\n");
883         E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
884         e1000_release_phy_80003es2lan(hw);
885
886         ret_val = e1000_get_auto_rd_done_generic(hw);
887         if (ret_val)
888                 /* We don't want to continue accessing MAC registers. */
889                 goto out;
890
891         /* Clear any pending interrupt events. */
892         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
893         icr = E1000_READ_REG(hw, E1000_ICR);
894
895         ret_val = e1000_check_alt_mac_addr_generic(hw);
896
897 out:
898         return ret_val;
899 }
900
901 /**
902  *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
903  *  @hw: pointer to the HW structure
904  *
905  *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
906  **/
907 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
908 {
909         struct e1000_mac_info *mac = &hw->mac;
910         u32 reg_data;
911         s32 ret_val;
912         u16 i;
913
914         DEBUGFUNC("e1000_init_hw_80003es2lan");
915
916         e1000_initialize_hw_bits_80003es2lan(hw);
917
918         /* Initialize identification LED */
919         ret_val = mac->ops.id_led_init(hw);
920         if (ret_val)
921                 DEBUGOUT("Error initializing identification LED\n");
922                 /* This is not fatal and we should not stop init due to this */
923
924         /* Disabling VLAN filtering */
925         DEBUGOUT("Initializing the IEEE VLAN\n");
926         mac->ops.clear_vfta(hw);
927
928         /* Setup the receive address. */
929         e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
930
931         /* Zero out the Multicast HASH table */
932         DEBUGOUT("Zeroing the MTA\n");
933         for (i = 0; i < mac->mta_reg_count; i++)
934                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
935
936         /* Setup link and flow control */
937         ret_val = mac->ops.setup_link(hw);
938
939         /* Set the transmit descriptor write-back policy */
940         reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0));
941         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
942                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
943         E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data);
944
945         /* ...for both queues. */
946         reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1));
947         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
948                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
949         E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data);
950
951         /* Enable retransmit on late collisions */
952         reg_data = E1000_READ_REG(hw, E1000_TCTL);
953         reg_data |= E1000_TCTL_RTLC;
954         E1000_WRITE_REG(hw, E1000_TCTL, reg_data);
955
956         /* Configure Gigabit Carry Extend Padding */
957         reg_data = E1000_READ_REG(hw, E1000_TCTL_EXT);
958         reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
959         reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
960         E1000_WRITE_REG(hw, E1000_TCTL_EXT, reg_data);
961
962         /* Configure Transmit Inter-Packet Gap */
963         reg_data = E1000_READ_REG(hw, E1000_TIPG);
964         reg_data &= ~E1000_TIPG_IPGT_MASK;
965         reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
966         E1000_WRITE_REG(hw, E1000_TIPG, reg_data);
967
968         reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
969         reg_data &= ~0x00100000;
970         E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
971
972         /* default to TRUE to enable the MDIC W/A */
973         hw->dev_spec._80003es2lan.mdic_wa_enable = TRUE;
974
975         ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
976                                       E1000_KMRNCTRLSTA_OFFSET >>
977                                       E1000_KMRNCTRLSTA_OFFSET_SHIFT,
978                                       &i);
979         if (!ret_val) {
980                 if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
981                      E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
982                         hw->dev_spec._80003es2lan.mdic_wa_enable = FALSE;
983         }
984
985         /*
986          * Clear all of the statistics registers (clear on read).  It is
987          * important that we do this after we have tried to establish link
988          * because the symbol error count will increment wildly if there
989          * is no link.
990          */
991         e1000_clear_hw_cntrs_80003es2lan(hw);
992
993         return ret_val;
994 }
995
996 /**
997  *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
998  *  @hw: pointer to the HW structure
999  *
1000  *  Initializes required hardware-dependent bits needed for normal operation.
1001  **/
1002 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
1003 {
1004         u32 reg;
1005
1006         DEBUGFUNC("e1000_initialize_hw_bits_80003es2lan");
1007
1008         /* Transmit Descriptor Control 0 */
1009         reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
1010         reg |= (1 << 22);
1011         E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
1012
1013         /* Transmit Descriptor Control 1 */
1014         reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
1015         reg |= (1 << 22);
1016         E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
1017
1018         /* Transmit Arbitration Control 0 */
1019         reg = E1000_READ_REG(hw, E1000_TARC(0));
1020         reg &= ~(0xF << 27); /* 30:27 */
1021         if (hw->phy.media_type != e1000_media_type_copper)
1022                 reg &= ~(1 << 20);
1023         E1000_WRITE_REG(hw, E1000_TARC(0), reg);
1024
1025         /* Transmit Arbitration Control 1 */
1026         reg = E1000_READ_REG(hw, E1000_TARC(1));
1027         if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
1028                 reg &= ~(1 << 28);
1029         else
1030                 reg |= (1 << 28);
1031         E1000_WRITE_REG(hw, E1000_TARC(1), reg);
1032
1033         return;
1034 }
1035
1036 /**
1037  *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
1038  *  @hw: pointer to the HW structure
1039  *
1040  *  Setup some GG82563 PHY registers for obtaining link
1041  **/
1042 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
1043 {
1044         struct e1000_phy_info *phy = &hw->phy;
1045         s32 ret_val;
1046         u32 ctrl_ext;
1047         u16 data;
1048
1049         DEBUGFUNC("e1000_copper_link_setup_gg82563_80003es2lan");
1050
1051         if (phy->reset_disable)
1052                 goto skip_reset;
1053
1054         ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
1055                                      &data);
1056         if (ret_val)
1057                 goto out;
1058
1059         data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
1060         /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
1061         data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
1062
1063         ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
1064                                       data);
1065         if (ret_val)
1066                 goto out;
1067
1068         /*
1069          * Options:
1070          *   MDI/MDI-X = 0 (default)
1071          *   0 - Auto for all speeds
1072          *   1 - MDI mode
1073          *   2 - MDI-X mode
1074          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1075          */
1076         ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL, &data);
1077         if (ret_val)
1078                 goto out;
1079
1080         data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
1081
1082         switch (phy->mdix) {
1083         case 1:
1084                 data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
1085                 break;
1086         case 2:
1087                 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
1088                 break;
1089         case 0:
1090         default:
1091                 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
1092                 break;
1093         }
1094
1095         /*
1096          * Options:
1097          *   disable_polarity_correction = 0 (default)
1098          *       Automatic Correction for Reversed Cable Polarity
1099          *   0 - Disabled
1100          *   1 - Enabled
1101          */
1102         data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1103         if (phy->disable_polarity_correction)
1104                 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1105
1106         ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, data);
1107         if (ret_val)
1108                 goto out;
1109
1110         /* SW Reset the PHY so all changes take effect */
1111         ret_val = hw->phy.ops.commit(hw);
1112         if (ret_val) {
1113                 DEBUGOUT("Error Resetting the PHY\n");
1114                 goto out;
1115         }
1116
1117 skip_reset:
1118         /* Bypass Rx and Tx FIFO's */
1119         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1120                                         E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
1121                                         E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
1122                                         E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
1123         if (ret_val)
1124                 goto out;
1125
1126         ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
1127                                       E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
1128                                       &data);
1129         if (ret_val)
1130                 goto out;
1131         data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
1132         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1133                                        E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
1134                                        data);
1135         if (ret_val)
1136                 goto out;
1137
1138         ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL_2, &data);
1139         if (ret_val)
1140                 goto out;
1141
1142         data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
1143         ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL_2, data);
1144         if (ret_val)
1145                 goto out;
1146
1147         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1148         ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
1149         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1150
1151         ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
1152         if (ret_val)
1153                 goto out;
1154
1155         /*
1156          * Do not init these registers when the HW is in IAMT mode, since the
1157          * firmware will have already initialized them.  We only initialize
1158          * them if the HW is not in IAMT mode.
1159          */
1160         if (!(hw->mac.ops.check_mng_mode(hw))) {
1161                 /* Enable Electrical Idle on the PHY */
1162                 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1163                 ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
1164                                                 data);
1165                 if (ret_val)
1166                         goto out;
1167
1168                 ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1169                                                &data);
1170                 if (ret_val)
1171                         goto out;
1172
1173                 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1174                 ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1175                                                 data);
1176                 if (ret_val)
1177                         goto out;
1178         }
1179
1180         /*
1181          * Workaround: Disable padding in Kumeran interface in the MAC
1182          * and in the PHY to avoid CRC errors.
1183          */
1184         ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_INBAND_CTRL, &data);
1185         if (ret_val)
1186                 goto out;
1187
1188         data |= GG82563_ICR_DIS_PADDING;
1189         ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_INBAND_CTRL, data);
1190         if (ret_val)
1191                 goto out;
1192
1193 out:
1194         return ret_val;
1195 }
1196
1197 /**
1198  *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1199  *  @hw: pointer to the HW structure
1200  *
1201  *  Essentially a wrapper for setting up all things "copper" related.
1202  *  This is a function pointer entry point called by the mac module.
1203  **/
1204 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1205 {
1206         u32 ctrl;
1207         s32 ret_val;
1208         u16 reg_data;
1209
1210         DEBUGFUNC("e1000_setup_copper_link_80003es2lan");
1211
1212         ctrl = E1000_READ_REG(hw, E1000_CTRL);
1213         ctrl |= E1000_CTRL_SLU;
1214         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1215         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1216
1217         /*
1218          * Set the mac to wait the maximum time between each
1219          * iteration and increase the max iterations when
1220          * polling the phy; this fixes erroneous timeouts at 10Mbps.
1221          */
1222         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1223                                                    0xFFFF);
1224         if (ret_val)
1225                 goto out;
1226         ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1227                                                   &reg_data);
1228         if (ret_val)
1229                 goto out;
1230         reg_data |= 0x3F;
1231         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1232                                                    reg_data);
1233         if (ret_val)
1234                 goto out;
1235         ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
1236                                       E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1237                                       &reg_data);
1238         if (ret_val)
1239                 goto out;
1240         reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1241         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1242                                        E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1243                                        reg_data);
1244         if (ret_val)
1245                 goto out;
1246
1247         ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1248         if (ret_val)
1249                 goto out;
1250
1251         ret_val = e1000_setup_copper_link_generic(hw);
1252
1253 out:
1254         return ret_val;
1255 }
1256
1257 /**
1258  *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1259  *  @hw: pointer to the HW structure
1260  *  @duplex: current duplex setting
1261  *
1262  *  Configure the KMRN interface by applying last minute quirks for
1263  *  10/100 operation.
1264  **/
1265 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1266 {
1267         s32 ret_val = E1000_SUCCESS;
1268         u16 speed;
1269         u16 duplex;
1270
1271         DEBUGFUNC("e1000_configure_on_link_up");
1272
1273         if (hw->phy.media_type == e1000_media_type_copper) {
1274                 ret_val = e1000_get_speed_and_duplex_copper_generic(hw,
1275                                                                     &speed,
1276                                                                     &duplex);
1277                 if (ret_val)
1278                         goto out;
1279
1280                 if (speed == SPEED_1000)
1281                         ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1282                 else
1283                         ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1284         }
1285
1286 out:
1287         return ret_val;
1288 }
1289
1290 /**
1291  *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1292  *  @hw: pointer to the HW structure
1293  *  @duplex: current duplex setting
1294  *
1295  *  Configure the KMRN interface by applying last minute quirks for
1296  *  10/100 operation.
1297  **/
1298 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1299 {
1300         s32 ret_val = E1000_SUCCESS;
1301         u32 tipg;
1302         u32 i = 0;
1303         u16 reg_data, reg_data2;
1304
1305         DEBUGFUNC("e1000_configure_kmrn_for_10_100");
1306
1307         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1308         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1309                                        E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1310                                        reg_data);
1311         if (ret_val)
1312                 goto out;
1313
1314         /* Configure Transmit Inter-Packet Gap */
1315         tipg = E1000_READ_REG(hw, E1000_TIPG);
1316         tipg &= ~E1000_TIPG_IPGT_MASK;
1317         tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1318         E1000_WRITE_REG(hw, E1000_TIPG, tipg);
1319
1320         do {
1321                 ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1322                                                &reg_data);
1323                 if (ret_val)
1324                         goto out;
1325
1326                 ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1327                                                &reg_data2);
1328                 if (ret_val)
1329                         goto out;
1330                 i++;
1331         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1332
1333         if (duplex == HALF_DUPLEX)
1334                 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1335         else
1336                 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1337
1338         ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1339
1340 out:
1341         return ret_val;
1342 }
1343
1344 /**
1345  *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1346  *  @hw: pointer to the HW structure
1347  *
1348  *  Configure the KMRN interface by applying last minute quirks for
1349  *  gigabit operation.
1350  **/
1351 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1352 {
1353         s32 ret_val = E1000_SUCCESS;
1354         u16 reg_data, reg_data2;
1355         u32 tipg;
1356         u32 i = 0;
1357
1358         DEBUGFUNC("e1000_configure_kmrn_for_1000");
1359
1360         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1361         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1362                                        E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1363                                        reg_data);
1364         if (ret_val)
1365                 goto out;
1366
1367         /* Configure Transmit Inter-Packet Gap */
1368         tipg = E1000_READ_REG(hw, E1000_TIPG);
1369         tipg &= ~E1000_TIPG_IPGT_MASK;
1370         tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1371         E1000_WRITE_REG(hw, E1000_TIPG, tipg);
1372
1373         do {
1374                 ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1375                                                &reg_data);
1376                 if (ret_val)
1377                         goto out;
1378
1379                 ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1380                                                &reg_data2);
1381                 if (ret_val)
1382                         goto out;
1383                 i++;
1384         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1385
1386         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1387         ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1388
1389 out:
1390         return ret_val;
1391 }
1392
1393 /**
1394  *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1395  *  @hw: pointer to the HW structure
1396  *  @offset: register offset to be read
1397  *  @data: pointer to the read data
1398  *
1399  *  Acquire semaphore, then read the PHY register at offset
1400  *  using the kumeran interface.  The information retrieved is stored in data.
1401  *  Release the semaphore before exiting.
1402  **/
1403 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1404                                            u16 *data)
1405 {
1406         u32 kmrnctrlsta;
1407         s32 ret_val = E1000_SUCCESS;
1408
1409         DEBUGFUNC("e1000_read_kmrn_reg_80003es2lan");
1410
1411         ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1412         if (ret_val)
1413                 goto out;
1414
1415         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1416                        E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1417         E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
1418
1419         usec_delay(2);
1420
1421         kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA);
1422         *data = (u16)kmrnctrlsta;
1423
1424         e1000_release_mac_csr_80003es2lan(hw);
1425
1426 out:
1427         return ret_val;
1428 }
1429
1430 /**
1431  *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1432  *  @hw: pointer to the HW structure
1433  *  @offset: register offset to write to
1434  *  @data: data to write at register offset
1435  *
1436  *  Acquire semaphore, then write the data to PHY register
1437  *  at the offset using the kumeran interface.  Release semaphore
1438  *  before exiting.
1439  **/
1440 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1441                                             u16 data)
1442 {
1443         u32 kmrnctrlsta;
1444         s32 ret_val = E1000_SUCCESS;
1445
1446         DEBUGFUNC("e1000_write_kmrn_reg_80003es2lan");
1447
1448         ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1449         if (ret_val)
1450                 goto out;
1451
1452         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1453                        E1000_KMRNCTRLSTA_OFFSET) | data;
1454         E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
1455
1456         usec_delay(2);
1457
1458         e1000_release_mac_csr_80003es2lan(hw);
1459
1460 out:
1461         return ret_val;
1462 }
1463
1464 /**
1465  *  e1000_read_mac_addr_80003es2lan - Read device MAC address
1466  *  @hw: pointer to the HW structure
1467  **/
1468 static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1469 {
1470         s32 ret_val = E1000_SUCCESS;
1471
1472         DEBUGFUNC("e1000_read_mac_addr_80003es2lan");
1473
1474         /*
1475          * If there's an alternate MAC address place it in RAR0
1476          * so that it will override the Si installed default perm
1477          * address.
1478          */
1479         ret_val = e1000_check_alt_mac_addr_generic(hw);
1480         if (ret_val)
1481                 goto out;
1482
1483         ret_val = e1000_read_mac_addr_generic(hw);
1484
1485 out:
1486         return ret_val;
1487 }
1488
1489 /**
1490  * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1491  * @hw: pointer to the HW structure
1492  *
1493  * In the case of a PHY power down to save power, or to turn off link during a
1494  * driver unload, or wake on lan is not enabled, remove the link.
1495  **/
1496 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1497 {
1498         /* If the management interface is not enabled, then power down */
1499         if (!(hw->mac.ops.check_mng_mode(hw) ||
1500               hw->phy.ops.check_reset_block(hw)))
1501                 e1000_power_down_phy_copper(hw);
1502
1503         return;
1504 }
1505
1506 /**
1507  *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1508  *  @hw: pointer to the HW structure
1509  *
1510  *  Clears the hardware counters by reading the counter registers.
1511  **/
1512 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1513 {
1514         DEBUGFUNC("e1000_clear_hw_cntrs_80003es2lan");
1515
1516         e1000_clear_hw_cntrs_base_generic(hw);
1517
1518         E1000_READ_REG(hw, E1000_PRC64);
1519         E1000_READ_REG(hw, E1000_PRC127);
1520         E1000_READ_REG(hw, E1000_PRC255);
1521         E1000_READ_REG(hw, E1000_PRC511);
1522         E1000_READ_REG(hw, E1000_PRC1023);
1523         E1000_READ_REG(hw, E1000_PRC1522);
1524         E1000_READ_REG(hw, E1000_PTC64);
1525         E1000_READ_REG(hw, E1000_PTC127);
1526         E1000_READ_REG(hw, E1000_PTC255);
1527         E1000_READ_REG(hw, E1000_PTC511);
1528         E1000_READ_REG(hw, E1000_PTC1023);
1529         E1000_READ_REG(hw, E1000_PTC1522);
1530
1531         E1000_READ_REG(hw, E1000_ALGNERRC);
1532         E1000_READ_REG(hw, E1000_RXERRC);
1533         E1000_READ_REG(hw, E1000_TNCRS);
1534         E1000_READ_REG(hw, E1000_CEXTERR);
1535         E1000_READ_REG(hw, E1000_TSCTC);
1536         E1000_READ_REG(hw, E1000_TSCTFC);
1537
1538         E1000_READ_REG(hw, E1000_MGTPRC);
1539         E1000_READ_REG(hw, E1000_MGTPDC);
1540         E1000_READ_REG(hw, E1000_MGTPTC);
1541
1542         E1000_READ_REG(hw, E1000_IAC);
1543         E1000_READ_REG(hw, E1000_ICRXOC);
1544
1545         E1000_READ_REG(hw, E1000_ICRXPTC);
1546         E1000_READ_REG(hw, E1000_ICRXATC);
1547         E1000_READ_REG(hw, E1000_ICTXPTC);
1548         E1000_READ_REG(hw, E1000_ICTXATC);
1549         E1000_READ_REG(hw, E1000_ICTXQEC);
1550         E1000_READ_REG(hw, E1000_ICTXQMTC);
1551         E1000_READ_REG(hw, E1000_ICRXDMTC);
1552 }