Initial import of binutils 2.22 on the new vendor branch
[dragonfly.git] / sys / kern / kern_intr.c
1 /*
2  * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com> All rights reserved.
3  * Copyright (c) 1997, Stefan Esser <se@freebsd.org> All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_intr.c,v 1.24.2.1 2001/10/14 20:05:50 luigi Exp $
27  *
28  */
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/malloc.h>
33 #include <sys/kernel.h>
34 #include <sys/sysctl.h>
35 #include <sys/thread.h>
36 #include <sys/proc.h>
37 #include <sys/random.h>
38 #include <sys/serialize.h>
39 #include <sys/interrupt.h>
40 #include <sys/bus.h>
41 #include <sys/machintr.h>
42
43 #include <machine/frame.h>
44
45 #include <sys/thread2.h>
46 #include <sys/mplock2.h>
47
48 struct info_info;
49
50 typedef struct intrec {
51     struct intrec *next;
52     struct intr_info *info;
53     inthand2_t  *handler;
54     void        *argument;
55     char        *name;
56     int         intr;
57     int         intr_flags;
58     struct lwkt_serialize *serializer;
59 } *intrec_t;
60
61 struct intr_info {
62         intrec_t        i_reclist;
63         struct thread   i_thread;
64         struct random_softc i_random;
65         int             i_running;
66         long            i_count;        /* interrupts dispatched */
67         int             i_mplock_required;
68         int             i_fast;
69         int             i_slow;
70         int             i_state;
71         int             i_errorticks;
72         unsigned long   i_straycount;
73 } intr_info_ary[MAX_INTS];
74
75 int max_installed_hard_intr;
76 int max_installed_soft_intr;
77
78 #define EMERGENCY_INTR_POLLING_FREQ_MAX 20000
79
80 /*
81  * Assert that callers into interrupt handlers don't return with
82  * dangling tokens, spinlocks, or mp locks.
83  */
84 #ifdef INVARIANTS
85
86 #define TD_INVARIANTS_DECLARE   \
87         int spincount;          \
88         lwkt_tokref_t curstop
89
90 #define TD_INVARIANTS_GET(td)                                   \
91         do {                                                    \
92                 spincount = (td)->td_gd->gd_spinlocks_wr;       \
93                 curstop = (td)->td_toks_stop;                   \
94         } while(0)
95
96 #define TD_INVARIANTS_TEST(td, name)                                    \
97         do {                                                            \
98                 KASSERT(spincount == (td)->td_gd->gd_spinlocks_wr,      \
99                         ("spincount mismatch after interrupt handler %s", \
100                         name));                                         \
101                 KASSERT(curstop == (td)->td_toks_stop,                  \
102                         ("token count mismatch after interrupt handler %s", \
103                         name));                                         \
104         } while(0)
105
106 #else
107
108 /* !INVARIANTS */
109
110 #define TD_INVARIANTS_DECLARE
111 #define TD_INVARIANTS_GET(td)
112 #define TD_INVARIANTS_TEST(td, name)
113
114 #endif /* ndef INVARIANTS */
115
116 static int sysctl_emergency_freq(SYSCTL_HANDLER_ARGS);
117 static int sysctl_emergency_enable(SYSCTL_HANDLER_ARGS);
118 static void emergency_intr_timer_callback(systimer_t, int, struct intrframe *);
119 static void ithread_handler(void *arg);
120 static void ithread_emergency(void *arg);
121 static void report_stray_interrupt(int intr, struct intr_info *info);
122 static void int_moveto_destcpu(int *, int);
123 static void int_moveto_origcpu(int, int);
124
125 int intr_info_size = NELEM(intr_info_ary);
126
127 static struct systimer emergency_intr_timer;
128 static struct thread emergency_intr_thread;
129
130 #define ISTATE_NOTHREAD         0
131 #define ISTATE_NORMAL           1
132 #define ISTATE_LIVELOCKED       2
133
134 static int livelock_limit = 40000;
135 static int livelock_lowater = 20000;
136 static int livelock_debug = -1;
137 SYSCTL_INT(_kern, OID_AUTO, livelock_limit,
138         CTLFLAG_RW, &livelock_limit, 0, "Livelock interrupt rate limit");
139 SYSCTL_INT(_kern, OID_AUTO, livelock_lowater,
140         CTLFLAG_RW, &livelock_lowater, 0, "Livelock low-water mark restore");
141 SYSCTL_INT(_kern, OID_AUTO, livelock_debug,
142         CTLFLAG_RW, &livelock_debug, 0, "Livelock debug intr#");
143
144 static int emergency_intr_enable = 0;   /* emergency interrupt polling */
145 TUNABLE_INT("kern.emergency_intr_enable", &emergency_intr_enable);
146 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_enable, CTLTYPE_INT | CTLFLAG_RW,
147         0, 0, sysctl_emergency_enable, "I", "Emergency Interrupt Poll Enable");
148
149 static int emergency_intr_freq = 10;    /* emergency polling frequency */
150 TUNABLE_INT("kern.emergency_intr_freq", &emergency_intr_freq);
151 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_freq, CTLTYPE_INT | CTLFLAG_RW,
152         0, 0, sysctl_emergency_freq, "I", "Emergency Interrupt Poll Frequency");
153
154 /*
155  * Sysctl support routines
156  */
157 static int
158 sysctl_emergency_enable(SYSCTL_HANDLER_ARGS)
159 {
160         int error, enabled;
161
162         enabled = emergency_intr_enable;
163         error = sysctl_handle_int(oidp, &enabled, 0, req);
164         if (error || req->newptr == NULL)
165                 return error;
166         emergency_intr_enable = enabled;
167         if (emergency_intr_enable) {
168                 systimer_adjust_periodic(&emergency_intr_timer,
169                                          emergency_intr_freq);
170         } else {
171                 systimer_adjust_periodic(&emergency_intr_timer, 1);
172         }
173         return 0;
174 }
175
176 static int
177 sysctl_emergency_freq(SYSCTL_HANDLER_ARGS)
178 {
179         int error, phz;
180
181         phz = emergency_intr_freq;
182         error = sysctl_handle_int(oidp, &phz, 0, req);
183         if (error || req->newptr == NULL)
184                 return error;
185         if (phz <= 0)
186                 return EINVAL;
187         else if (phz > EMERGENCY_INTR_POLLING_FREQ_MAX)
188                 phz = EMERGENCY_INTR_POLLING_FREQ_MAX;
189
190         emergency_intr_freq = phz;
191         if (emergency_intr_enable) {
192                 systimer_adjust_periodic(&emergency_intr_timer,
193                                          emergency_intr_freq);
194         } else {
195                 systimer_adjust_periodic(&emergency_intr_timer, 1);
196         }
197         return 0;
198 }
199
200 /*
201  * Register an SWI or INTerrupt handler.
202  */
203 void *
204 register_swi(int intr, inthand2_t *handler, void *arg, const char *name,
205                 struct lwkt_serialize *serializer, int cpuid)
206 {
207     if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
208         panic("register_swi: bad intr %d", intr);
209
210     if (cpuid < 0)
211         cpuid = intr % ncpus;
212     return(register_int(intr, handler, arg, name, serializer, 0, cpuid));
213 }
214
215 void *
216 register_swi_mp(int intr, inthand2_t *handler, void *arg, const char *name,
217                 struct lwkt_serialize *serializer, int cpuid)
218 {
219     if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
220         panic("register_swi: bad intr %d", intr);
221
222     if (cpuid < 0)
223         cpuid = intr % ncpus;
224     return(register_int(intr, handler, arg, name, serializer,
225         INTR_MPSAFE, cpuid));
226 }
227
228 void *
229 register_int(int intr, inthand2_t *handler, void *arg, const char *name,
230                 struct lwkt_serialize *serializer, int intr_flags, int cpuid)
231 {
232     struct intr_info *info;
233     struct intrec **list;
234     intrec_t rec;
235     int orig_cpuid;
236
237     KKASSERT(cpuid >= 0 && cpuid < ncpus);
238
239     if (intr < 0 || intr >= MAX_INTS)
240         panic("register_int: bad intr %d", intr);
241     if (name == NULL)
242         name = "???";
243     info = &intr_info_ary[intr];
244
245     /*
246      * Construct an interrupt handler record
247      */
248     rec = kmalloc(sizeof(struct intrec), M_DEVBUF, M_INTWAIT);
249     rec->name = kmalloc(strlen(name) + 1, M_DEVBUF, M_INTWAIT);
250     strcpy(rec->name, name);
251
252     rec->info = info;
253     rec->handler = handler;
254     rec->argument = arg;
255     rec->intr = intr;
256     rec->intr_flags = intr_flags;
257     rec->next = NULL;
258     rec->serializer = serializer;
259
260     /*
261      * Create an emergency polling thread and set up a systimer to wake
262      * it up.
263      */
264     if (emergency_intr_thread.td_kstack == NULL) {
265         lwkt_create(ithread_emergency, NULL, NULL, &emergency_intr_thread,
266                     TDF_NOSTART | TDF_INTTHREAD, ncpus - 1, "ithread emerg");
267         systimer_init_periodic_nq(&emergency_intr_timer,
268                     emergency_intr_timer_callback, &emergency_intr_thread, 
269                     (emergency_intr_enable ? emergency_intr_freq : 1));
270     }
271
272     int_moveto_destcpu(&orig_cpuid, cpuid);
273
274     /*
275      * Create an interrupt thread if necessary, leave it in an unscheduled
276      * state.
277      */
278     if (info->i_state == ISTATE_NOTHREAD) {
279         info->i_state = ISTATE_NORMAL;
280         lwkt_create(ithread_handler, (void *)(intptr_t)intr, NULL,
281                     &info->i_thread, TDF_NOSTART | TDF_INTTHREAD, cpuid,
282                     "ithread %d", intr);
283         if (intr >= FIRST_SOFTINT)
284             lwkt_setpri(&info->i_thread, TDPRI_SOFT_NORM);
285         else
286             lwkt_setpri(&info->i_thread, TDPRI_INT_MED);
287         info->i_thread.td_preemptable = lwkt_preempt;
288     }
289
290     list = &info->i_reclist;
291
292     /*
293      * Keep track of how many fast and slow interrupts we have.
294      * Set i_mplock_required if any handler in the chain requires
295      * the MP lock to operate.
296      */
297     if ((intr_flags & INTR_MPSAFE) == 0)
298         info->i_mplock_required = 1;
299     if (intr_flags & INTR_CLOCK)
300         ++info->i_fast;
301     else
302         ++info->i_slow;
303
304     /*
305      * Enable random number generation keying off of this interrupt.
306      */
307     if ((intr_flags & INTR_NOENTROPY) == 0 && info->i_random.sc_enabled == 0) {
308         info->i_random.sc_enabled = 1;
309         info->i_random.sc_intr = intr;
310     }
311
312     /*
313      * Add the record to the interrupt list.
314      */
315     crit_enter();
316     while (*list != NULL)
317         list = &(*list)->next;
318     *list = rec;
319     crit_exit();
320
321     /*
322      * Update max_installed_hard_intr to make the emergency intr poll
323      * a bit more efficient.
324      */
325     if (intr < FIRST_SOFTINT) {
326         if (max_installed_hard_intr <= intr)
327             max_installed_hard_intr = intr + 1;
328     } else {
329         if (max_installed_soft_intr <= intr)
330             max_installed_soft_intr = intr + 1;
331     }
332
333     /*
334      * Setup the machine level interrupt vector
335      */
336     if (intr < FIRST_SOFTINT && info->i_slow + info->i_fast == 1)
337         machintr_intr_setup(intr, intr_flags);
338
339     int_moveto_origcpu(orig_cpuid, cpuid);
340
341     return(rec);
342 }
343
344 void
345 unregister_swi(void *id, int intr, int cpuid)
346 {
347     if (cpuid < 0)
348         cpuid = intr % ncpus;
349
350     unregister_int(id, cpuid);
351 }
352
353 void
354 unregister_int(void *id, int cpuid)
355 {
356     struct intr_info *info;
357     struct intrec **list;
358     intrec_t rec;
359     int intr, orig_cpuid;
360
361     KKASSERT(cpuid >= 0 && cpuid < ncpus);
362
363     intr = ((intrec_t)id)->intr;
364
365     if (intr < 0 || intr >= MAX_INTS)
366         panic("register_int: bad intr %d", intr);
367
368     info = &intr_info_ary[intr];
369
370     int_moveto_destcpu(&orig_cpuid, cpuid);
371
372     /*
373      * Remove the interrupt descriptor, adjust the descriptor count,
374      * and teardown the machine level vector if this was the last interrupt.
375      */
376     crit_enter();
377     list = &info->i_reclist;
378     while ((rec = *list) != NULL) {
379         if (rec == id)
380             break;
381         list = &rec->next;
382     }
383     if (rec) {
384         intrec_t rec0;
385
386         *list = rec->next;
387         if (rec->intr_flags & INTR_CLOCK)
388             --info->i_fast;
389         else
390             --info->i_slow;
391         if (intr < FIRST_SOFTINT && info->i_fast + info->i_slow == 0)
392             machintr_intr_teardown(intr);
393
394         /*
395          * Clear i_mplock_required if no handlers in the chain require the
396          * MP lock.
397          */
398         for (rec0 = info->i_reclist; rec0; rec0 = rec0->next) {
399             if ((rec0->intr_flags & INTR_MPSAFE) == 0)
400                 break;
401         }
402         if (rec0 == NULL)
403             info->i_mplock_required = 0;
404     }
405
406     crit_exit();
407
408     int_moveto_origcpu(orig_cpuid, cpuid);
409
410     /*
411      * Free the record.
412      */
413     if (rec != NULL) {
414         kfree(rec->name, M_DEVBUF);
415         kfree(rec, M_DEVBUF);
416     } else {
417         kprintf("warning: unregister_int: int %d handler for %s not found\n",
418                 intr, ((intrec_t)id)->name);
419     }
420 }
421
422 const char *
423 get_registered_name(int intr)
424 {
425     intrec_t rec;
426
427     if (intr < 0 || intr >= MAX_INTS)
428         panic("register_int: bad intr %d", intr);
429
430     if ((rec = intr_info_ary[intr].i_reclist) == NULL)
431         return(NULL);
432     else if (rec->next)
433         return("mux");
434     else
435         return(rec->name);
436 }
437
438 int
439 count_registered_ints(int intr)
440 {
441     struct intr_info *info;
442
443     if (intr < 0 || intr >= MAX_INTS)
444         panic("register_int: bad intr %d", intr);
445     info = &intr_info_ary[intr];
446     return(info->i_fast + info->i_slow);
447 }
448
449 long
450 get_interrupt_counter(int intr)
451 {
452     struct intr_info *info;
453
454     if (intr < 0 || intr >= MAX_INTS)
455         panic("register_int: bad intr %d", intr);
456     info = &intr_info_ary[intr];
457     return(info->i_count);
458 }
459
460
461 void
462 swi_setpriority(int intr, int pri)
463 {
464     struct intr_info *info;
465
466     if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
467         panic("register_swi: bad intr %d", intr);
468     info = &intr_info_ary[intr];
469     if (info->i_state != ISTATE_NOTHREAD)
470         lwkt_setpri(&info->i_thread, pri);
471 }
472
473 void
474 register_randintr(int intr)
475 {
476     struct intr_info *info;
477
478     if (intr < 0 || intr >= MAX_INTS)
479         panic("register_randintr: bad intr %d", intr);
480     info = &intr_info_ary[intr];
481     info->i_random.sc_intr = intr;
482     info->i_random.sc_enabled = 1;
483 }
484
485 void
486 unregister_randintr(int intr)
487 {
488     struct intr_info *info;
489
490     if (intr < 0 || intr >= MAX_INTS)
491         panic("register_swi: bad intr %d", intr);
492     info = &intr_info_ary[intr];
493     info->i_random.sc_enabled = -1;
494 }
495
496 int
497 next_registered_randintr(int intr)
498 {
499     struct intr_info *info;
500
501     if (intr < 0 || intr >= MAX_INTS)
502         panic("register_swi: bad intr %d", intr);
503     while (intr < MAX_INTS) {
504         info = &intr_info_ary[intr];
505         if (info->i_random.sc_enabled > 0)
506             break;
507         ++intr;
508     }
509     return(intr);
510 }
511
512 /*
513  * Dispatch an interrupt.  If there's nothing to do we have a stray
514  * interrupt and can just return, leaving the interrupt masked.
515  *
516  * We need to schedule the interrupt and set its i_running bit.  If
517  * we are not on the interrupt thread's cpu we have to send a message
518  * to the correct cpu that will issue the desired action (interlocking
519  * with the interrupt thread's critical section).  We do NOT attempt to
520  * reschedule interrupts whos i_running bit is already set because
521  * this would prematurely wakeup a livelock-limited interrupt thread.
522  *
523  * i_running is only tested/set on the same cpu as the interrupt thread.
524  *
525  * We are NOT in a critical section, which will allow the scheduled
526  * interrupt to preempt us.  The MP lock might *NOT* be held here.
527  */
528 #ifdef SMP
529
530 static void
531 sched_ithd_remote(void *arg)
532 {
533     sched_ithd((int)(intptr_t)arg);
534 }
535
536 #endif
537
538 void
539 sched_ithd(int intr)
540 {
541     struct intr_info *info;
542
543     info = &intr_info_ary[intr];
544
545     ++info->i_count;
546     if (info->i_state != ISTATE_NOTHREAD) {
547         if (info->i_reclist == NULL) {
548             report_stray_interrupt(intr, info);
549         } else {
550 #ifdef SMP
551             if (info->i_thread.td_gd == mycpu) {
552                 if (info->i_running == 0) {
553                     info->i_running = 1;
554                     if (info->i_state != ISTATE_LIVELOCKED)
555                         lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */
556                 }
557             } else {
558                 lwkt_send_ipiq(info->i_thread.td_gd, 
559                                 sched_ithd_remote, (void *)(intptr_t)intr);
560             }
561 #else
562             if (info->i_running == 0) {
563                 info->i_running = 1;
564                 if (info->i_state != ISTATE_LIVELOCKED)
565                     lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */
566             }
567 #endif
568         }
569     } else {
570         report_stray_interrupt(intr, info);
571     }
572 }
573
574 static void
575 report_stray_interrupt(int intr, struct intr_info *info)
576 {
577         ++info->i_straycount;
578         if (info->i_straycount < 10) {
579                 if (info->i_errorticks == ticks)
580                         return;
581                 info->i_errorticks = ticks;
582                 kprintf("sched_ithd: stray interrupt %d on cpu %d\n",
583                         intr, mycpuid);
584         } else if (info->i_straycount == 10) {
585                 kprintf("sched_ithd: %ld stray interrupts %d on cpu %d - "
586                         "there will be no further reports\n",
587                         info->i_straycount, intr, mycpuid);
588         }
589 }
590
591 /*
592  * This is run from a periodic SYSTIMER (and thus must be MP safe, the BGL
593  * might not be held).
594  */
595 static void
596 ithread_livelock_wakeup(systimer_t st, int in_ipi __unused,
597     struct intrframe *frame __unused)
598 {
599     struct intr_info *info;
600
601     info = &intr_info_ary[(int)(intptr_t)st->data];
602     if (info->i_state != ISTATE_NOTHREAD)
603         lwkt_schedule(&info->i_thread);
604 }
605
606 /*
607  * Schedule ithread within fast intr handler
608  *
609  * XXX Protect sched_ithd() call with gd_intr_nesting_level?
610  * Interrupts aren't enabled, but still...
611  */
612 static __inline void
613 ithread_fast_sched(int intr, thread_t td)
614 {
615     ++td->td_nest_count;
616
617     /*
618      * We are already in critical section, exit it now to
619      * allow preemption.
620      */
621     crit_exit_quick(td);
622     sched_ithd(intr);
623     crit_enter_quick(td);
624
625     --td->td_nest_count;
626 }
627
628 /*
629  * This function is called directly from the ICU or APIC vector code assembly
630  * to process an interrupt.  The critical section and interrupt deferral
631  * checks have already been done but the function is entered WITHOUT
632  * a critical section held.  The BGL may or may not be held.
633  *
634  * Must return non-zero if we do not want the vector code to re-enable
635  * the interrupt (which we don't if we have to schedule the interrupt)
636  */
637 int ithread_fast_handler(struct intrframe *frame);
638
639 int
640 ithread_fast_handler(struct intrframe *frame)
641 {
642     int intr;
643     struct intr_info *info;
644     struct intrec **list;
645     int must_schedule;
646 #ifdef SMP
647     int got_mplock;
648 #endif
649     TD_INVARIANTS_DECLARE;
650     intrec_t rec, nrec;
651     globaldata_t gd;
652     thread_t td;
653
654     intr = frame->if_vec;
655     gd = mycpu;
656     td = curthread;
657
658     /* We must be in critical section. */
659     KKASSERT(td->td_critcount);
660
661     info = &intr_info_ary[intr];
662
663     /*
664      * If we are not processing any FAST interrupts, just schedule the thing.
665      */
666     if (info->i_fast == 0) {
667         ++gd->gd_cnt.v_intr;
668         ithread_fast_sched(intr, td);
669         return(1);
670     }
671
672     /*
673      * This should not normally occur since interrupts ought to be 
674      * masked if the ithread has been scheduled or is running.
675      */
676     if (info->i_running)
677         return(1);
678
679     /*
680      * Bump the interrupt nesting level to process any FAST interrupts.
681      * Obtain the MP lock as necessary.  If the MP lock cannot be obtained,
682      * schedule the interrupt thread to deal with the issue instead.
683      *
684      * To reduce overhead, just leave the MP lock held once it has been
685      * obtained.
686      */
687     ++gd->gd_intr_nesting_level;
688     ++gd->gd_cnt.v_intr;
689     must_schedule = info->i_slow;
690 #ifdef SMP
691     got_mplock = 0;
692 #endif
693
694     TD_INVARIANTS_GET(td);
695     list = &info->i_reclist;
696
697     for (rec = *list; rec; rec = nrec) {
698         /* rec may be invalid after call */
699         nrec = rec->next;
700
701         if (rec->intr_flags & INTR_CLOCK) {
702 #ifdef SMP
703             if ((rec->intr_flags & INTR_MPSAFE) == 0 && got_mplock == 0) {
704                 if (try_mplock() == 0) {
705                     /* Couldn't get the MP lock; just schedule it. */
706                     must_schedule = 1;
707                     break;
708                 }
709                 got_mplock = 1;
710             }
711 #endif
712             if (rec->serializer) {
713                 must_schedule += lwkt_serialize_handler_try(
714                                         rec->serializer, rec->handler,
715                                         rec->argument, frame);
716             } else {
717                 rec->handler(rec->argument, frame);
718             }
719             TD_INVARIANTS_TEST(td, rec->name);
720         }
721     }
722
723     /*
724      * Cleanup
725      */
726     --gd->gd_intr_nesting_level;
727 #ifdef SMP
728     if (got_mplock)
729         rel_mplock();
730 #endif
731
732     /*
733      * If we had a problem, or mixed fast and slow interrupt handlers are
734      * registered, schedule the ithread to catch the missed records (it
735      * will just re-run all of them).  A return value of 0 indicates that
736      * all handlers have been run and the interrupt can be re-enabled, and
737      * a non-zero return indicates that the interrupt thread controls
738      * re-enablement.
739      */
740     if (must_schedule > 0)
741         ithread_fast_sched(intr, td);
742     else if (must_schedule == 0)
743         ++info->i_count;
744     return(must_schedule);
745 }
746
747 /*
748  * Interrupt threads run this as their main loop.
749  *
750  * The handler begins execution outside a critical section and no MP lock.
751  *
752  * The i_running state starts at 0.  When an interrupt occurs, the hardware
753  * interrupt is disabled and sched_ithd() The HW interrupt remains disabled
754  * until all routines have run.  We then call ithread_done() to reenable 
755  * the HW interrupt and deschedule us until the next interrupt. 
756  *
757  * We are responsible for atomically checking i_running and ithread_done()
758  * is responsible for atomically checking for platform-specific delayed
759  * interrupts.  i_running for our irq is only set in the context of our cpu,
760  * so a critical section is a sufficient interlock.
761  */
762 #define LIVELOCK_TIMEFRAME(freq)        ((freq) >> 2)   /* 1/4 second */
763
764 static void
765 ithread_handler(void *arg)
766 {
767     struct intr_info *info;
768     int use_limit;
769     __uint32_t lseconds;
770     int intr;
771     int mpheld;
772     struct intrec **list;
773     intrec_t rec, nrec;
774     globaldata_t gd;
775     struct systimer ill_timer;  /* enforced freq. timer */
776     u_int ill_count;            /* interrupt livelock counter */
777     TD_INVARIANTS_DECLARE;
778
779     ill_count = 0;
780     intr = (int)(intptr_t)arg;
781     info = &intr_info_ary[intr];
782     list = &info->i_reclist;
783
784     /*
785      * The loop must be entered with one critical section held.  The thread
786      * does not hold the mplock on startup.
787      */
788     gd = mycpu;
789     lseconds = gd->gd_time_seconds;
790     crit_enter_gd(gd);
791     mpheld = 0;
792
793     for (;;) {
794         /*
795          * The chain is only considered MPSAFE if all its interrupt handlers
796          * are MPSAFE.  However, if intr_mpsafe has been turned off we
797          * always operate with the BGL.
798          */
799 #ifdef SMP
800         if (info->i_mplock_required != mpheld) {
801             if (info->i_mplock_required) {
802                 KKASSERT(mpheld == 0);
803                 get_mplock();
804                 mpheld = 1;
805             } else {
806                 KKASSERT(mpheld != 0);
807                 rel_mplock();
808                 mpheld = 0;
809             }
810         }
811 #endif
812
813         TD_INVARIANTS_GET(gd->gd_curthread);
814
815         /*
816          * If an interrupt is pending, clear i_running and execute the
817          * handlers.  Note that certain types of interrupts can re-trigger
818          * and set i_running again.
819          *
820          * Each handler is run in a critical section.  Note that we run both
821          * FAST and SLOW designated service routines.
822          */
823         if (info->i_running) {
824             ++ill_count;
825             info->i_running = 0;
826
827             if (*list == NULL)
828                 report_stray_interrupt(intr, info);
829
830             for (rec = *list; rec; rec = nrec) {
831                 /* rec may be invalid after call */
832                 nrec = rec->next;
833                 if (rec->serializer) {
834                     lwkt_serialize_handler_call(rec->serializer, rec->handler,
835                                                 rec->argument, NULL);
836                 } else {
837                     rec->handler(rec->argument, NULL);
838                 }
839                 TD_INVARIANTS_TEST(gd->gd_curthread, rec->name);
840             }
841         }
842
843         /*
844          * This is our interrupt hook to add rate randomness to the random
845          * number generator.
846          */
847         if (info->i_random.sc_enabled > 0)
848             add_interrupt_randomness(intr);
849
850         /*
851          * Unmask the interrupt to allow it to trigger again.  This only
852          * applies to certain types of interrupts (typ level interrupts).
853          * This can result in the interrupt retriggering, but the retrigger
854          * will not be processed until we cycle our critical section.
855          *
856          * Only unmask interrupts while handlers are installed.  It is
857          * possible to hit a situation where no handlers are installed
858          * due to a device driver livelocking and then tearing down its
859          * interrupt on close (the parallel bus being a good example).
860          */
861         if (intr < FIRST_SOFTINT && *list)
862             machintr_intr_enable(intr);
863
864         /*
865          * Do a quick exit/enter to catch any higher-priority interrupt
866          * sources, such as the statclock, so thread time accounting
867          * will still work.  This may also cause an interrupt to re-trigger.
868          */
869         crit_exit_gd(gd);
870         crit_enter_gd(gd);
871
872         /*
873          * LIVELOCK STATE MACHINE
874          */
875         switch(info->i_state) {
876         case ISTATE_NORMAL:
877             /*
878              * Reset the count each second.
879              */
880             if (lseconds != gd->gd_time_seconds) {
881                 lseconds = gd->gd_time_seconds;
882                 ill_count = 0;
883             }
884
885             /*
886              * If we did not exceed the frequency limit, we are done.  
887              * If the interrupt has not retriggered we deschedule ourselves.
888              */
889             if (ill_count <= livelock_limit) {
890                 if (info->i_running == 0) {
891                     lwkt_deschedule_self(gd->gd_curthread);
892                     lwkt_switch();
893                 }
894                 break;
895             }
896
897             /*
898              * Otherwise we are livelocked.  Set up a periodic systimer
899              * to wake the thread up at the limit frequency.
900              */
901             kprintf("intr %d at %d/%d hz, livelocked limit engaged!\n",
902                    intr, ill_count, livelock_limit);
903             info->i_state = ISTATE_LIVELOCKED;
904             if ((use_limit = livelock_limit) < 100)
905                 use_limit = 100;
906             else if (use_limit > 500000)
907                 use_limit = 500000;
908             systimer_init_periodic_nq(&ill_timer, ithread_livelock_wakeup,
909                                       (void *)(intptr_t)intr, use_limit);
910             /* fall through */
911         case ISTATE_LIVELOCKED:
912             /*
913              * Wait for our periodic timer to go off.  Since the interrupt
914              * has re-armed it can still set i_running, but it will not
915              * reschedule us while we are in a livelocked state.
916              */
917             lwkt_deschedule_self(gd->gd_curthread);
918             lwkt_switch();
919
920             /*
921              * Check once a second to see if the livelock condition no
922              * longer applies.
923              */
924             if (lseconds != gd->gd_time_seconds) {
925                 lseconds = gd->gd_time_seconds;
926                 if (ill_count < livelock_lowater) {
927                     info->i_state = ISTATE_NORMAL;
928                     systimer_del(&ill_timer);
929                     kprintf("intr %d at %d/%d hz, livelock removed\n",
930                            intr, ill_count, livelock_lowater);
931                 } else if (livelock_debug == intr ||
932                            (bootverbose && cold)) {
933                     kprintf("intr %d at %d/%d hz, in livelock\n",
934                            intr, ill_count, livelock_lowater);
935                 }
936                 ill_count = 0;
937             }
938             break;
939         }
940     }
941     /* NOT REACHED */
942 }
943
944 /*
945  * Emergency interrupt polling thread.  The thread begins execution
946  * outside a critical section with the BGL held.
947  *
948  * If emergency interrupt polling is enabled, this thread will 
949  * execute all system interrupts not marked INTR_NOPOLL at the
950  * specified polling frequency.
951  *
952  * WARNING!  This thread runs *ALL* interrupt service routines that
953  * are not marked INTR_NOPOLL, which basically means everything except
954  * the 8254 clock interrupt and the ATA interrupt.  It has very high
955  * overhead and should only be used in situations where the machine
956  * cannot otherwise be made to work.  Due to the severe performance
957  * degredation, it should not be enabled on production machines.
958  */
959 static void
960 ithread_emergency(void *arg __unused)
961 {
962     globaldata_t gd = mycpu;
963     struct intr_info *info;
964     intrec_t rec, nrec;
965     int intr;
966     TD_INVARIANTS_DECLARE;
967
968     get_mplock();
969     crit_enter_gd(gd);
970     TD_INVARIANTS_GET(gd->gd_curthread);
971
972     for (;;) {
973         for (intr = 0; intr < max_installed_hard_intr; ++intr) {
974             info = &intr_info_ary[intr];
975             for (rec = info->i_reclist; rec; rec = nrec) {
976                 /* rec may be invalid after call */
977                 nrec = rec->next;
978                 if ((rec->intr_flags & INTR_NOPOLL) == 0) {
979                     if (rec->serializer) {
980                         lwkt_serialize_handler_try(rec->serializer,
981                                                 rec->handler, rec->argument, NULL);
982                     } else {
983                         rec->handler(rec->argument, NULL);
984                     }
985                     TD_INVARIANTS_TEST(gd->gd_curthread, rec->name);
986                 }
987             }
988         }
989         lwkt_deschedule_self(gd->gd_curthread);
990         lwkt_switch();
991     }
992     /* NOT REACHED */
993 }
994
995 /*
996  * Systimer callback - schedule the emergency interrupt poll thread
997  *                     if emergency polling is enabled.
998  */
999 static
1000 void
1001 emergency_intr_timer_callback(systimer_t info, int in_ipi __unused,
1002     struct intrframe *frame __unused)
1003 {
1004     if (emergency_intr_enable)
1005         lwkt_schedule(info->data);
1006 }
1007
1008 int
1009 ithread_cpuid(int intr)
1010 {
1011         const struct intr_info *info;
1012
1013         KKASSERT(intr >= 0 && intr < MAX_INTS);
1014         info = &intr_info_ary[intr];
1015
1016         if (info->i_state == ISTATE_NOTHREAD)
1017                 return -1;
1018         return info->i_thread.td_gd->gd_cpuid;
1019 }
1020
1021 /* 
1022  * Sysctls used by systat and others: hw.intrnames and hw.intrcnt.
1023  * The data for this machine dependent, and the declarations are in machine
1024  * dependent code.  The layout of intrnames and intrcnt however is machine
1025  * independent.
1026  *
1027  * We do not know the length of intrcnt and intrnames at compile time, so
1028  * calculate things at run time.
1029  */
1030
1031 static int
1032 sysctl_intrnames(SYSCTL_HANDLER_ARGS)
1033 {
1034     struct intr_info *info;
1035     intrec_t rec;
1036     int error = 0;
1037     int len;
1038     int intr;
1039     char buf[64];
1040
1041     for (intr = 0; error == 0 && intr < MAX_INTS; ++intr) {
1042         info = &intr_info_ary[intr];
1043
1044         len = 0;
1045         buf[0] = 0;
1046         for (rec = info->i_reclist; rec; rec = rec->next) {
1047             ksnprintf(buf + len, sizeof(buf) - len, "%s%s", 
1048                 (len ? "/" : ""), rec->name);
1049             len += strlen(buf + len);
1050         }
1051         if (len == 0) {
1052             ksnprintf(buf, sizeof(buf), "irq%d", intr);
1053             len = strlen(buf);
1054         }
1055         error = SYSCTL_OUT(req, buf, len + 1);
1056     }
1057     return (error);
1058 }
1059
1060
1061 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD,
1062         NULL, 0, sysctl_intrnames, "", "Interrupt Names");
1063
1064 static int
1065 sysctl_intrcnt(SYSCTL_HANDLER_ARGS)
1066 {
1067     struct intr_info *info;
1068     int error = 0;
1069     int intr;
1070
1071     for (intr = 0; intr < max_installed_hard_intr; ++intr) {
1072         info = &intr_info_ary[intr];
1073
1074         error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
1075         if (error)
1076                 goto failed;
1077     }
1078     for (intr = FIRST_SOFTINT; intr < max_installed_soft_intr; ++intr) {
1079         info = &intr_info_ary[intr];
1080
1081         error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
1082         if (error)
1083                 goto failed;
1084     }
1085 failed:
1086     return(error);
1087 }
1088
1089 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD,
1090         NULL, 0, sysctl_intrcnt, "", "Interrupt Counts");
1091
1092 static int
1093 sysctl_intrcnt_all(SYSCTL_HANDLER_ARGS)
1094 {
1095     struct intr_info *info;
1096     int error = 0;
1097     int intr;
1098
1099     for (intr = 0; intr < MAX_INTS; ++intr) {
1100         info = &intr_info_ary[intr];
1101
1102         error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
1103         if (error)
1104                 goto failed;
1105     }
1106 failed:
1107     return(error);
1108 }
1109
1110 SYSCTL_PROC(_hw, OID_AUTO, intrcnt_all, CTLTYPE_OPAQUE | CTLFLAG_RD,
1111         NULL, 0, sysctl_intrcnt_all, "", "Interrupt Counts");
1112
1113 static void
1114 int_moveto_destcpu(int *orig_cpuid0, int cpuid)
1115 {
1116     int orig_cpuid = mycpuid;
1117
1118     if (cpuid != orig_cpuid)
1119         lwkt_migratecpu(cpuid);
1120
1121     *orig_cpuid0 = orig_cpuid;
1122 }
1123
1124 static void
1125 int_moveto_origcpu(int orig_cpuid, int cpuid)
1126 {
1127     if (cpuid != orig_cpuid)
1128         lwkt_migratecpu(orig_cpuid);
1129 }