netinet{,6}: Assert in{,6}_inithead() are only used for system routing tables.
[dragonfly.git] / secure / lib / libcrypto / man / bn_internal.3
... / ...
CommitLineData
1.\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.28)
2.\"
3.\" Standard preamble:
4.\" ========================================================================
5.de Sp \" Vertical space (when we can't use .PP)
6.if t .sp .5v
7.if n .sp
8..
9.de Vb \" Begin verbatim text
10.ft CW
11.nf
12.ne \\$1
13..
14.de Ve \" End verbatim text
15.ft R
16.fi
17..
18.\" Set up some character translations and predefined strings. \*(-- will
19.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
20.\" double quote, and \*(R" will give a right double quote. \*(C+ will
21.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
22.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
23.\" nothing in troff, for use with C<>.
24.tr \(*W-
25.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
26.ie n \{\
27. ds -- \(*W-
28. ds PI pi
29. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
30. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
31. ds L" ""
32. ds R" ""
33. ds C` ""
34. ds C' ""
35'br\}
36.el\{\
37. ds -- \|\(em\|
38. ds PI \(*p
39. ds L" ``
40. ds R" ''
41. ds C`
42. ds C'
43'br\}
44.\"
45.\" Escape single quotes in literal strings from groff's Unicode transform.
46.ie \n(.g .ds Aq \(aq
47.el .ds Aq '
48.\"
49.\" If the F register is turned on, we'll generate index entries on stderr for
50.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
51.\" entries marked with X<> in POD. Of course, you'll have to process the
52.\" output yourself in some meaningful fashion.
53.\"
54.\" Avoid warning from groff about undefined register 'F'.
55.de IX
56..
57.nr rF 0
58.if \n(.g .if rF .nr rF 1
59.if (\n(rF:(\n(.g==0)) \{
60. if \nF \{
61. de IX
62. tm Index:\\$1\t\\n%\t"\\$2"
63..
64. if !\nF==2 \{
65. nr % 0
66. nr F 2
67. \}
68. \}
69.\}
70.rr rF
71.\"
72.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
73.\" Fear. Run. Save yourself. No user-serviceable parts.
74. \" fudge factors for nroff and troff
75.if n \{\
76. ds #H 0
77. ds #V .8m
78. ds #F .3m
79. ds #[ \f1
80. ds #] \fP
81.\}
82.if t \{\
83. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
84. ds #V .6m
85. ds #F 0
86. ds #[ \&
87. ds #] \&
88.\}
89. \" simple accents for nroff and troff
90.if n \{\
91. ds ' \&
92. ds ` \&
93. ds ^ \&
94. ds , \&
95. ds ~ ~
96. ds /
97.\}
98.if t \{\
99. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
100. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
101. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
102. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
103. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
104. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
105.\}
106. \" troff and (daisy-wheel) nroff accents
107.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
108.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
109.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
110.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
111.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
112.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
113.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
114.ds ae a\h'-(\w'a'u*4/10)'e
115.ds Ae A\h'-(\w'A'u*4/10)'E
116. \" corrections for vroff
117.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
118.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
119. \" for low resolution devices (crt and lpr)
120.if \n(.H>23 .if \n(.V>19 \
121\{\
122. ds : e
123. ds 8 ss
124. ds o a
125. ds d- d\h'-1'\(ga
126. ds D- D\h'-1'\(hy
127. ds th \o'bp'
128. ds Th \o'LP'
129. ds ae ae
130. ds Ae AE
131.\}
132.rm #[ #] #H #V #F C
133.\" ========================================================================
134.\"
135.IX Title "bn_internal 3"
136.TH bn_internal 3 "2015-07-09" "1.0.1p" "OpenSSL"
137.\" For nroff, turn off justification. Always turn off hyphenation; it makes
138.\" way too many mistakes in technical documents.
139.if n .ad l
140.nh
141.SH "NAME"
142bn_mul_words, bn_mul_add_words, bn_sqr_words, bn_div_words,
143bn_add_words, bn_sub_words, bn_mul_comba4, bn_mul_comba8,
144bn_sqr_comba4, bn_sqr_comba8, bn_cmp_words, bn_mul_normal,
145bn_mul_low_normal, bn_mul_recursive, bn_mul_part_recursive,
146bn_mul_low_recursive, bn_mul_high, bn_sqr_normal, bn_sqr_recursive,
147bn_expand, bn_wexpand, bn_expand2, bn_fix_top, bn_check_top,
148bn_print, bn_dump, bn_set_max, bn_set_high, bn_set_low \- BIGNUM
149library internal functions
150.SH "SYNOPSIS"
151.IX Header "SYNOPSIS"
152.Vb 1
153\& #include <openssl/bn.h>
154\&
155\& BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w);
156\& BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num,
157\& BN_ULONG w);
158\& void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num);
159\& BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);
160\& BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,
161\& int num);
162\& BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,
163\& int num);
164\&
165\& void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
166\& void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
167\& void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a);
168\& void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a);
169\&
170\& int bn_cmp_words(BN_ULONG *a, BN_ULONG *b, int n);
171\&
172\& void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b,
173\& int nb);
174\& void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
175\& void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
176\& int dna,int dnb,BN_ULONG *tmp);
177\& void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
178\& int n, int tna,int tnb, BN_ULONG *tmp);
179\& void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
180\& int n2, BN_ULONG *tmp);
181\& void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l,
182\& int n2, BN_ULONG *tmp);
183\&
184\& void bn_sqr_normal(BN_ULONG *r, BN_ULONG *a, int n, BN_ULONG *tmp);
185\& void bn_sqr_recursive(BN_ULONG *r, BN_ULONG *a, int n2, BN_ULONG *tmp);
186\&
187\& void mul(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c);
188\& void mul_add(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c);
189\& void sqr(BN_ULONG r0, BN_ULONG r1, BN_ULONG a);
190\&
191\& BIGNUM *bn_expand(BIGNUM *a, int bits);
192\& BIGNUM *bn_wexpand(BIGNUM *a, int n);
193\& BIGNUM *bn_expand2(BIGNUM *a, int n);
194\& void bn_fix_top(BIGNUM *a);
195\&
196\& void bn_check_top(BIGNUM *a);
197\& void bn_print(BIGNUM *a);
198\& void bn_dump(BN_ULONG *d, int n);
199\& void bn_set_max(BIGNUM *a);
200\& void bn_set_high(BIGNUM *r, BIGNUM *a, int n);
201\& void bn_set_low(BIGNUM *r, BIGNUM *a, int n);
202.Ve
203.SH "DESCRIPTION"
204.IX Header "DESCRIPTION"
205This page documents the internal functions used by the OpenSSL
206\&\fB\s-1BIGNUM\s0\fR implementation. They are described here to facilitate
207debugging and extending the library. They are \fInot\fR to be used by
208applications.
209.SS "The \s-1BIGNUM\s0 structure"
210.IX Subsection "The BIGNUM structure"
211.Vb 1
212\& typedef struct bignum_st BIGNUM;
213\&
214\& struct bignum_st
215\& {
216\& BN_ULONG *d; /* Pointer to an array of \*(AqBN_BITS2\*(Aq bit chunks. */
217\& int top; /* Index of last used d +1. */
218\& /* The next are internal book keeping for bn_expand. */
219\& int dmax; /* Size of the d array. */
220\& int neg; /* one if the number is negative */
221\& int flags;
222\& };
223.Ve
224.PP
225The integer value is stored in \fBd\fR, a \fImalloc()\fRed array of words (\fB\s-1BN_ULONG\s0\fR),
226least significant word first. A \fB\s-1BN_ULONG\s0\fR can be either 16, 32 or 64 bits
227in size, depending on the 'number of bits' (\fB\s-1BITS2\s0\fR) specified in
228\&\f(CW\*(C`openssl/bn.h\*(C'\fR.
229.PP
230\&\fBdmax\fR is the size of the \fBd\fR array that has been allocated. \fBtop\fR
231is the number of words being used, so for a value of 4, bn.d[0]=4 and
232bn.top=1. \fBneg\fR is 1 if the number is negative. When a \fB\s-1BIGNUM\s0\fR is
233\&\fB0\fR, the \fBd\fR field can be \fB\s-1NULL\s0\fR and \fBtop\fR == \fB0\fR.
234.PP
235\&\fBflags\fR is a bit field of flags which are defined in \f(CW\*(C`openssl/bn.h\*(C'\fR. The
236flags begin with \fB\s-1BN_FLG_\s0\fR. The macros BN_set_flags(b,n) and
237BN_get_flags(b,n) exist to enable or fetch flag(s) \fBn\fR from \fB\s-1BIGNUM\s0\fR
238structure \fBb\fR.
239.PP
240Various routines in this library require the use of temporary
241\&\fB\s-1BIGNUM\s0\fR variables during their execution. Since dynamic memory
242allocation to create \fB\s-1BIGNUM\s0\fRs is rather expensive when used in
243conjunction with repeated subroutine calls, the \fB\s-1BN_CTX\s0\fR structure is
244used. This structure contains \fB\s-1BN_CTX_NUM\s0\fR \fB\s-1BIGNUM\s0\fRs, see
245\&\fIBN_CTX_start\fR\|(3).
246.SS "Low-level arithmetic operations"
247.IX Subsection "Low-level arithmetic operations"
248These functions are implemented in C and for several platforms in
249assembly language:
250.PP
251bn_mul_words(\fBrp\fR, \fBap\fR, \fBnum\fR, \fBw\fR) operates on the \fBnum\fR word
252arrays \fBrp\fR and \fBap\fR. It computes \fBap\fR * \fBw\fR, places the result
253in \fBrp\fR, and returns the high word (carry).
254.PP
255bn_mul_add_words(\fBrp\fR, \fBap\fR, \fBnum\fR, \fBw\fR) operates on the \fBnum\fR
256word arrays \fBrp\fR and \fBap\fR. It computes \fBap\fR * \fBw\fR + \fBrp\fR, places
257the result in \fBrp\fR, and returns the high word (carry).
258.PP
259bn_sqr_words(\fBrp\fR, \fBap\fR, \fBn\fR) operates on the \fBnum\fR word array
260\&\fBap\fR and the 2*\fBnum\fR word array \fBap\fR. It computes \fBap\fR * \fBap\fR
261word-wise, and places the low and high bytes of the result in \fBrp\fR.
262.PP
263bn_div_words(\fBh\fR, \fBl\fR, \fBd\fR) divides the two word number (\fBh\fR,\fBl\fR)
264by \fBd\fR and returns the result.
265.PP
266bn_add_words(\fBrp\fR, \fBap\fR, \fBbp\fR, \fBnum\fR) operates on the \fBnum\fR word
267arrays \fBap\fR, \fBbp\fR and \fBrp\fR. It computes \fBap\fR + \fBbp\fR, places the
268result in \fBrp\fR, and returns the high word (carry).
269.PP
270bn_sub_words(\fBrp\fR, \fBap\fR, \fBbp\fR, \fBnum\fR) operates on the \fBnum\fR word
271arrays \fBap\fR, \fBbp\fR and \fBrp\fR. It computes \fBap\fR \- \fBbp\fR, places the
272result in \fBrp\fR, and returns the carry (1 if \fBbp\fR > \fBap\fR, 0
273otherwise).
274.PP
275bn_mul_comba4(\fBr\fR, \fBa\fR, \fBb\fR) operates on the 4 word arrays \fBa\fR and
276\&\fBb\fR and the 8 word array \fBr\fR. It computes \fBa\fR*\fBb\fR and places the
277result in \fBr\fR.
278.PP
279bn_mul_comba8(\fBr\fR, \fBa\fR, \fBb\fR) operates on the 8 word arrays \fBa\fR and
280\&\fBb\fR and the 16 word array \fBr\fR. It computes \fBa\fR*\fBb\fR and places the
281result in \fBr\fR.
282.PP
283bn_sqr_comba4(\fBr\fR, \fBa\fR, \fBb\fR) operates on the 4 word arrays \fBa\fR and
284\&\fBb\fR and the 8 word array \fBr\fR.
285.PP
286bn_sqr_comba8(\fBr\fR, \fBa\fR, \fBb\fR) operates on the 8 word arrays \fBa\fR and
287\&\fBb\fR and the 16 word array \fBr\fR.
288.PP
289The following functions are implemented in C:
290.PP
291bn_cmp_words(\fBa\fR, \fBb\fR, \fBn\fR) operates on the \fBn\fR word arrays \fBa\fR
292and \fBb\fR. It returns 1, 0 and \-1 if \fBa\fR is greater than, equal and
293less than \fBb\fR.
294.PP
295bn_mul_normal(\fBr\fR, \fBa\fR, \fBna\fR, \fBb\fR, \fBnb\fR) operates on the \fBna\fR
296word array \fBa\fR, the \fBnb\fR word array \fBb\fR and the \fBna\fR+\fBnb\fR word
297array \fBr\fR. It computes \fBa\fR*\fBb\fR and places the result in \fBr\fR.
298.PP
299bn_mul_low_normal(\fBr\fR, \fBa\fR, \fBb\fR, \fBn\fR) operates on the \fBn\fR word
300arrays \fBr\fR, \fBa\fR and \fBb\fR. It computes the \fBn\fR low words of
301\&\fBa\fR*\fBb\fR and places the result in \fBr\fR.
302.PP
303bn_mul_recursive(\fBr\fR, \fBa\fR, \fBb\fR, \fBn2\fR, \fBdna\fR, \fBdnb\fR, \fBt\fR) operates
304on the word arrays \fBa\fR and \fBb\fR of length \fBn2\fR+\fBdna\fR and \fBn2\fR+\fBdnb\fR
305(\fBdna\fR and \fBdnb\fR are currently allowed to be 0 or negative) and the 2*\fBn2\fR
306word arrays \fBr\fR and \fBt\fR. \fBn2\fR must be a power of 2. It computes
307\&\fBa\fR*\fBb\fR and places the result in \fBr\fR.
308.PP
309bn_mul_part_recursive(\fBr\fR, \fBa\fR, \fBb\fR, \fBn\fR, \fBtna\fR, \fBtnb\fR, \fBtmp\fR)
310operates on the word arrays \fBa\fR and \fBb\fR of length \fBn\fR+\fBtna\fR and
311\&\fBn\fR+\fBtnb\fR and the 4*\fBn\fR word arrays \fBr\fR and \fBtmp\fR.
312.PP
313bn_mul_low_recursive(\fBr\fR, \fBa\fR, \fBb\fR, \fBn2\fR, \fBtmp\fR) operates on the
314\&\fBn2\fR word arrays \fBr\fR and \fBtmp\fR and the \fBn2\fR/2 word arrays \fBa\fR
315and \fBb\fR.
316.PP
317bn_mul_high(\fBr\fR, \fBa\fR, \fBb\fR, \fBl\fR, \fBn2\fR, \fBtmp\fR) operates on the
318\&\fBn2\fR word arrays \fBr\fR, \fBa\fR, \fBb\fR and \fBl\fR (?) and the 3*\fBn2\fR word
319array \fBtmp\fR.
320.PP
321\&\fIBN_mul()\fR calls \fIbn_mul_normal()\fR, or an optimized implementation if the
322factors have the same size: \fIbn_mul_comba8()\fR is used if they are 8
323words long, \fIbn_mul_recursive()\fR if they are larger than
324\&\fB\s-1BN_MULL_SIZE_NORMAL\s0\fR and the size is an exact multiple of the word
325size, and \fIbn_mul_part_recursive()\fR for others that are larger than
326\&\fB\s-1BN_MULL_SIZE_NORMAL\s0\fR.
327.PP
328bn_sqr_normal(\fBr\fR, \fBa\fR, \fBn\fR, \fBtmp\fR) operates on the \fBn\fR word array
329\&\fBa\fR and the 2*\fBn\fR word arrays \fBtmp\fR and \fBr\fR.
330.PP
331The implementations use the following macros which, depending on the
332architecture, may use \*(L"long long\*(R" C operations or inline assembler.
333They are defined in \f(CW\*(C`bn_lcl.h\*(C'\fR.
334.PP
335mul(\fBr\fR, \fBa\fR, \fBw\fR, \fBc\fR) computes \fBw\fR*\fBa\fR+\fBc\fR and places the
336low word of the result in \fBr\fR and the high word in \fBc\fR.
337.PP
338mul_add(\fBr\fR, \fBa\fR, \fBw\fR, \fBc\fR) computes \fBw\fR*\fBa\fR+\fBr\fR+\fBc\fR and
339places the low word of the result in \fBr\fR and the high word in \fBc\fR.
340.PP
341sqr(\fBr0\fR, \fBr1\fR, \fBa\fR) computes \fBa\fR*\fBa\fR and places the low word
342of the result in \fBr0\fR and the high word in \fBr1\fR.
343.SS "Size changes"
344.IX Subsection "Size changes"
345\&\fIbn_expand()\fR ensures that \fBb\fR has enough space for a \fBbits\fR bit
346number. \fIbn_wexpand()\fR ensures that \fBb\fR has enough space for an
347\&\fBn\fR word number. If the number has to be expanded, both macros
348call \fIbn_expand2()\fR, which allocates a new \fBd\fR array and copies the
349data. They return \fB\s-1NULL\s0\fR on error, \fBb\fR otherwise.
350.PP
351The \fIbn_fix_top()\fR macro reduces \fBa\->top\fR to point to the most
352significant non-zero word plus one when \fBa\fR has shrunk.
353.SS "Debugging"
354.IX Subsection "Debugging"
355\&\fIbn_check_top()\fR verifies that \f(CW\*(C`((a)\->top >= 0 && (a)\->top
356<= (a)\->dmax)\*(C'\fR. A violation will cause the program to abort.
357.PP
358\&\fIbn_print()\fR prints \fBa\fR to stderr. \fIbn_dump()\fR prints \fBn\fR words at \fBd\fR
359(in reverse order, i.e. most significant word first) to stderr.
360.PP
361\&\fIbn_set_max()\fR makes \fBa\fR a static number with a \fBdmax\fR of its current size.
362This is used by \fIbn_set_low()\fR and \fIbn_set_high()\fR to make \fBr\fR a read-only
363\&\fB\s-1BIGNUM\s0\fR that contains the \fBn\fR low or high words of \fBa\fR.
364.PP
365If \fB\s-1BN_DEBUG\s0\fR is not defined, \fIbn_check_top()\fR, \fIbn_print()\fR, \fIbn_dump()\fR
366and \fIbn_set_max()\fR are defined as empty macros.
367.SH "SEE ALSO"
368.IX Header "SEE ALSO"
369\&\fIbn\fR\|(3)