netinet{,6}: Assert in{,6}_inithead() are only used for system routing tables.
[dragonfly.git] / secure / lib / libcrypto / man / rand.3
... / ...
CommitLineData
1.\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.28)
2.\"
3.\" Standard preamble:
4.\" ========================================================================
5.de Sp \" Vertical space (when we can't use .PP)
6.if t .sp .5v
7.if n .sp
8..
9.de Vb \" Begin verbatim text
10.ft CW
11.nf
12.ne \\$1
13..
14.de Ve \" End verbatim text
15.ft R
16.fi
17..
18.\" Set up some character translations and predefined strings. \*(-- will
19.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
20.\" double quote, and \*(R" will give a right double quote. \*(C+ will
21.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
22.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
23.\" nothing in troff, for use with C<>.
24.tr \(*W-
25.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
26.ie n \{\
27. ds -- \(*W-
28. ds PI pi
29. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
30. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
31. ds L" ""
32. ds R" ""
33. ds C` ""
34. ds C' ""
35'br\}
36.el\{\
37. ds -- \|\(em\|
38. ds PI \(*p
39. ds L" ``
40. ds R" ''
41. ds C`
42. ds C'
43'br\}
44.\"
45.\" Escape single quotes in literal strings from groff's Unicode transform.
46.ie \n(.g .ds Aq \(aq
47.el .ds Aq '
48.\"
49.\" If the F register is turned on, we'll generate index entries on stderr for
50.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
51.\" entries marked with X<> in POD. Of course, you'll have to process the
52.\" output yourself in some meaningful fashion.
53.\"
54.\" Avoid warning from groff about undefined register 'F'.
55.de IX
56..
57.nr rF 0
58.if \n(.g .if rF .nr rF 1
59.if (\n(rF:(\n(.g==0)) \{
60. if \nF \{
61. de IX
62. tm Index:\\$1\t\\n%\t"\\$2"
63..
64. if !\nF==2 \{
65. nr % 0
66. nr F 2
67. \}
68. \}
69.\}
70.rr rF
71.\"
72.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
73.\" Fear. Run. Save yourself. No user-serviceable parts.
74. \" fudge factors for nroff and troff
75.if n \{\
76. ds #H 0
77. ds #V .8m
78. ds #F .3m
79. ds #[ \f1
80. ds #] \fP
81.\}
82.if t \{\
83. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
84. ds #V .6m
85. ds #F 0
86. ds #[ \&
87. ds #] \&
88.\}
89. \" simple accents for nroff and troff
90.if n \{\
91. ds ' \&
92. ds ` \&
93. ds ^ \&
94. ds , \&
95. ds ~ ~
96. ds /
97.\}
98.if t \{\
99. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
100. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
101. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
102. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
103. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
104. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
105.\}
106. \" troff and (daisy-wheel) nroff accents
107.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
108.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
109.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
110.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
111.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
112.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
113.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
114.ds ae a\h'-(\w'a'u*4/10)'e
115.ds Ae A\h'-(\w'A'u*4/10)'E
116. \" corrections for vroff
117.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
118.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
119. \" for low resolution devices (crt and lpr)
120.if \n(.H>23 .if \n(.V>19 \
121\{\
122. ds : e
123. ds 8 ss
124. ds o a
125. ds d- d\h'-1'\(ga
126. ds D- D\h'-1'\(hy
127. ds th \o'bp'
128. ds Th \o'LP'
129. ds ae ae
130. ds Ae AE
131.\}
132.rm #[ #] #H #V #F C
133.\" ========================================================================
134.\"
135.IX Title "rand 3"
136.TH rand 3 "2015-07-09" "1.0.1p" "OpenSSL"
137.\" For nroff, turn off justification. Always turn off hyphenation; it makes
138.\" way too many mistakes in technical documents.
139.if n .ad l
140.nh
141.SH "NAME"
142rand \- pseudo\-random number generator
143.SH "SYNOPSIS"
144.IX Header "SYNOPSIS"
145.Vb 1
146\& #include <openssl/rand.h>
147\&
148\& int RAND_set_rand_engine(ENGINE *engine);
149\&
150\& int RAND_bytes(unsigned char *buf, int num);
151\& int RAND_pseudo_bytes(unsigned char *buf, int num);
152\&
153\& void RAND_seed(const void *buf, int num);
154\& void RAND_add(const void *buf, int num, int entropy);
155\& int RAND_status(void);
156\&
157\& int RAND_load_file(const char *file, long max_bytes);
158\& int RAND_write_file(const char *file);
159\& const char *RAND_file_name(char *file, size_t num);
160\&
161\& int RAND_egd(const char *path);
162\&
163\& void RAND_set_rand_method(const RAND_METHOD *meth);
164\& const RAND_METHOD *RAND_get_rand_method(void);
165\& RAND_METHOD *RAND_SSLeay(void);
166\&
167\& void RAND_cleanup(void);
168\&
169\& /* For Win32 only */
170\& void RAND_screen(void);
171\& int RAND_event(UINT, WPARAM, LPARAM);
172.Ve
173.SH "DESCRIPTION"
174.IX Header "DESCRIPTION"
175Since the introduction of the \s-1ENGINE API,\s0 the recommended way of controlling
176default implementations is by using the \s-1ENGINE API\s0 functions. The default
177\&\fB\s-1RAND_METHOD\s0\fR, as set by \fIRAND_set_rand_method()\fR and returned by
178\&\fIRAND_get_rand_method()\fR, is only used if no \s-1ENGINE\s0 has been set as the default
179\&\*(L"rand\*(R" implementation. Hence, these two functions are no longer the recommened
180way to control defaults.
181.PP
182If an alternative \fB\s-1RAND_METHOD\s0\fR implementation is being used (either set
183directly or as provided by an \s-1ENGINE\s0 module), then it is entirely responsible
184for the generation and management of a cryptographically secure \s-1PRNG\s0 stream. The
185mechanisms described below relate solely to the software \s-1PRNG\s0 implementation
186built in to OpenSSL and used by default.
187.PP
188These functions implement a cryptographically secure pseudo-random
189number generator (\s-1PRNG\s0). It is used by other library functions for
190example to generate random keys, and applications can use it when they
191need randomness.
192.PP
193A cryptographic \s-1PRNG\s0 must be seeded with unpredictable data such as
194mouse movements or keys pressed at random by the user. This is
195described in \fIRAND_add\fR\|(3). Its state can be saved in a seed file
196(see \fIRAND_load_file\fR\|(3)) to avoid having to go through the
197seeding process whenever the application is started.
198.PP
199\&\fIRAND_bytes\fR\|(3) describes how to obtain random data from the
200\&\s-1PRNG. \s0
201.SH "INTERNALS"
202.IX Header "INTERNALS"
203The \fIRAND_SSLeay()\fR method implements a \s-1PRNG\s0 based on a cryptographic
204hash function.
205.PP
206The following description of its design is based on the SSLeay
207documentation:
208.PP
209First up I will state the things I believe I need for a good \s-1RNG.\s0
210.IP "1." 4
211A good hashing algorithm to mix things up and to convert the \s-1RNG \s0'state'
212to random numbers.
213.IP "2." 4
214An initial source of random 'state'.
215.IP "3." 4
216The state should be very large. If the \s-1RNG\s0 is being used to generate
2174096 bit \s-1RSA\s0 keys, 2 2048 bit random strings are required (at a minimum).
218If your \s-1RNG\s0 state only has 128 bits, you are obviously limiting the
219search space to 128 bits, not 2048. I'm probably getting a little
220carried away on this last point but it does indicate that it may not be
221a bad idea to keep quite a lot of \s-1RNG\s0 state. It should be easier to
222break a cipher than guess the \s-1RNG\s0 seed data.
223.IP "4." 4
224Any \s-1RNG\s0 seed data should influence all subsequent random numbers
225generated. This implies that any random seed data entered will have
226an influence on all subsequent random numbers generated.
227.IP "5." 4
228When using data to seed the \s-1RNG\s0 state, the data used should not be
229extractable from the \s-1RNG\s0 state. I believe this should be a
230requirement because one possible source of 'secret' semi random
231data would be a private key or a password. This data must
232not be disclosed by either subsequent random numbers or a
233\&'core' dump left by a program crash.
234.IP "6." 4
235Given the same initial 'state', 2 systems should deviate in their \s-1RNG\s0 state
236(and hence the random numbers generated) over time if at all possible.
237.IP "7." 4
238Given the random number output stream, it should not be possible to determine
239the \s-1RNG\s0 state or the next random number.
240.PP
241The algorithm is as follows.
242.PP
243There is global state made up of a 1023 byte buffer (the 'state'), a
244working hash value ('md'), and a counter ('count').
245.PP
246Whenever seed data is added, it is inserted into the 'state' as
247follows.
248.PP
249The input is chopped up into units of 20 bytes (or less for
250the last block). Each of these blocks is run through the hash
251function as follows: The data passed to the hash function
252is the current 'md', the same number of bytes from the 'state'
253(the location determined by in incremented looping index) as
254the current 'block', the new key data 'block', and 'count'
255(which is incremented after each use).
256The result of this is kept in 'md' and also xored into the
257\&'state' at the same locations that were used as input into the
258hash function. I
259believe this system addresses points 1 (hash function; currently
260\&\s-1SHA\-1\s0), 3 (the 'state'), 4 (via the 'md'), 5 (by the use of a hash
261function and xor).
262.PP
263When bytes are extracted from the \s-1RNG,\s0 the following process is used.
264For each group of 10 bytes (or less), we do the following:
265.PP
266Input into the hash function the local 'md' (which is initialized from
267the global 'md' before any bytes are generated), the bytes that are to
268be overwritten by the random bytes, and bytes from the 'state'
269(incrementing looping index). From this digest output (which is kept
270in 'md'), the top (up to) 10 bytes are returned to the caller and the
271bottom 10 bytes are xored into the 'state'.
272.PP
273Finally, after we have finished 'num' random bytes for the caller,
274\&'count' (which is incremented) and the local and global 'md' are fed
275into the hash function and the results are kept in the global 'md'.
276.PP
277I believe the above addressed points 1 (use of \s-1SHA\-1\s0), 6 (by hashing
278into the 'state' the 'old' data from the caller that is about to be
279overwritten) and 7 (by not using the 10 bytes given to the caller to
280update the 'state', but they are used to update 'md').
281.PP
282So of the points raised, only 2 is not addressed (but see
283\&\fIRAND_add\fR\|(3)).
284.SH "SEE ALSO"
285.IX Header "SEE ALSO"
286\&\fIBN_rand\fR\|(3), \fIRAND_add\fR\|(3),
287\&\fIRAND_load_file\fR\|(3), \fIRAND_egd\fR\|(3),
288\&\fIRAND_bytes\fR\|(3),
289\&\fIRAND_set_rand_method\fR\|(3),
290\&\fIRAND_cleanup\fR\|(3)