kernel - Make VM fault waits in low memory the same as other low memory waits
[dragonfly.git] / sys / vm / vm_object.c
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by the University of
19  *      California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
65  */
66
67 /*
68  *      Virtual memory object module.
69  */
70
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/proc.h>           /* for curproc, pageproc */
74 #include <sys/thread.h>
75 #include <sys/vnode.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 #include <sys/refcount.h>
82
83 #include <vm/vm.h>
84 #include <vm/vm_param.h>
85 #include <vm/pmap.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_pageout.h>
90 #include <vm/vm_pager.h>
91 #include <vm/swap_pager.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_extern.h>
94 #include <vm/vm_zone.h>
95
96 #define EASY_SCAN_FACTOR        8
97
98 static void     vm_object_qcollapse(vm_object_t object,
99                                     vm_object_t backing_object);
100 static void     vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
101                                              int pagerflags);
102 static void     vm_object_lock_init(vm_object_t);
103
104
105 /*
106  *      Virtual memory objects maintain the actual data
107  *      associated with allocated virtual memory.  A given
108  *      page of memory exists within exactly one object.
109  *
110  *      An object is only deallocated when all "references"
111  *      are given up.  Only one "reference" to a given
112  *      region of an object should be writeable.
113  *
114  *      Associated with each object is a list of all resident
115  *      memory pages belonging to that object; this list is
116  *      maintained by the "vm_page" module, and locked by the object's
117  *      lock.
118  *
119  *      Each object also records a "pager" routine which is
120  *      used to retrieve (and store) pages to the proper backing
121  *      storage.  In addition, objects may be backed by other
122  *      objects from which they were virtual-copied.
123  *
124  *      The only items within the object structure which are
125  *      modified after time of creation are:
126  *              reference count         locked by object's lock
127  *              pager routine           locked by object's lock
128  *
129  */
130
131 struct object_q vm_object_list;         /* locked by vmobj_token */
132 struct vm_object kernel_object;
133
134 static long vm_object_count;            /* locked by vmobj_token */
135 extern int vm_pageout_page_count;
136
137 static long object_collapses;
138 static long object_bypasses;
139 static int next_index;
140 static vm_zone_t obj_zone;
141 static struct vm_zone obj_zone_store;
142 #define VM_OBJECTS_INIT 256
143 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
144
145 /*
146  * Misc low level routines
147  */
148 static void
149 vm_object_lock_init(vm_object_t obj)
150 {
151 #if defined(DEBUG_LOCKS)
152         int i;
153
154         obj->debug_hold_bitmap = 0;
155         obj->debug_hold_ovfl = 0;
156         for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
157                 obj->debug_hold_thrs[i] = NULL;
158                 obj->debug_hold_file[i] = NULL;
159                 obj->debug_hold_line[i] = 0;
160         }
161 #endif
162 }
163
164 void
165 vm_object_lock_swap(void)
166 {
167         lwkt_token_swap();
168 }
169
170 void
171 vm_object_lock(vm_object_t obj)
172 {
173         lwkt_gettoken(&obj->token);
174 }
175
176 /*
177  * Returns TRUE on sucesss
178  */
179 static int
180 vm_object_lock_try(vm_object_t obj)
181 {
182         return(lwkt_trytoken(&obj->token));
183 }
184
185 void
186 vm_object_lock_shared(vm_object_t obj)
187 {
188         lwkt_gettoken_shared(&obj->token);
189 }
190
191 void
192 vm_object_unlock(vm_object_t obj)
193 {
194         lwkt_reltoken(&obj->token);
195 }
196
197 static __inline void
198 vm_object_assert_held(vm_object_t obj)
199 {
200         ASSERT_LWKT_TOKEN_HELD(&obj->token);
201 }
202
203 void
204 #ifndef DEBUG_LOCKS
205 vm_object_hold(vm_object_t obj)
206 #else
207 debugvm_object_hold(vm_object_t obj, char *file, int line)
208 #endif
209 {
210         KKASSERT(obj != NULL);
211
212         /*
213          * Object must be held (object allocation is stable due to callers
214          * context, typically already holding the token on a parent object)
215          * prior to potentially blocking on the lock, otherwise the object
216          * can get ripped away from us.
217          */
218         refcount_acquire(&obj->hold_count);
219         vm_object_lock(obj);
220
221 #if defined(DEBUG_LOCKS)
222         int i;
223         u_int mask;
224
225         for (;;) {
226                 mask = ~obj->debug_hold_bitmap;
227                 cpu_ccfence();
228                 if (mask == 0xFFFFFFFFU) {
229                         if (obj->debug_hold_ovfl == 0)
230                                 obj->debug_hold_ovfl = 1;
231                         break;
232                 }
233                 i = ffs(mask) - 1;
234                 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
235                                       ~mask | (1 << i))) {
236                         obj->debug_hold_bitmap |= (1 << i);
237                         obj->debug_hold_thrs[i] = curthread;
238                         obj->debug_hold_file[i] = file;
239                         obj->debug_hold_line[i] = line;
240                         break;
241                 }
242         }
243 #endif
244 }
245
246 int
247 #ifndef DEBUG_LOCKS
248 vm_object_hold_try(vm_object_t obj)
249 #else
250 debugvm_object_hold_try(vm_object_t obj, char *file, int line)
251 #endif
252 {
253         KKASSERT(obj != NULL);
254
255         /*
256          * Object must be held (object allocation is stable due to callers
257          * context, typically already holding the token on a parent object)
258          * prior to potentially blocking on the lock, otherwise the object
259          * can get ripped away from us.
260          */
261         refcount_acquire(&obj->hold_count);
262         if (vm_object_lock_try(obj) == 0) {
263                 if (refcount_release(&obj->hold_count)) {
264                         if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD))
265                                 zfree(obj_zone, obj);
266                 }
267                 return(0);
268         }
269
270 #if defined(DEBUG_LOCKS)
271         int i;
272         u_int mask;
273
274         for (;;) {
275                 mask = ~obj->debug_hold_bitmap;
276                 cpu_ccfence();
277                 if (mask == 0xFFFFFFFFU) {
278                         if (obj->debug_hold_ovfl == 0)
279                                 obj->debug_hold_ovfl = 1;
280                         break;
281                 }
282                 i = ffs(mask) - 1;
283                 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
284                                       ~mask | (1 << i))) {
285                         obj->debug_hold_bitmap |= (1 << i);
286                         obj->debug_hold_thrs[i] = curthread;
287                         obj->debug_hold_file[i] = file;
288                         obj->debug_hold_line[i] = line;
289                         break;
290                 }
291         }
292 #endif
293         return(1);
294 }
295
296 void
297 #ifndef DEBUG_LOCKS
298 vm_object_hold_shared(vm_object_t obj)
299 #else
300 debugvm_object_hold_shared(vm_object_t obj, char *file, int line)
301 #endif
302 {
303         KKASSERT(obj != NULL);
304
305         /*
306          * Object must be held (object allocation is stable due to callers
307          * context, typically already holding the token on a parent object)
308          * prior to potentially blocking on the lock, otherwise the object
309          * can get ripped away from us.
310          */
311         refcount_acquire(&obj->hold_count);
312         vm_object_lock_shared(obj);
313
314 #if defined(DEBUG_LOCKS)
315         int i;
316         u_int mask;
317
318         for (;;) {
319                 mask = ~obj->debug_hold_bitmap;
320                 cpu_ccfence();
321                 if (mask == 0xFFFFFFFFU) {
322                         if (obj->debug_hold_ovfl == 0)
323                                 obj->debug_hold_ovfl = 1;
324                         break;
325                 }
326                 i = ffs(mask) - 1;
327                 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
328                                       ~mask | (1 << i))) {
329                         obj->debug_hold_bitmap |= (1 << i);
330                         obj->debug_hold_thrs[i] = curthread;
331                         obj->debug_hold_file[i] = file;
332                         obj->debug_hold_line[i] = line;
333                         break;
334                 }
335         }
336 #endif
337 }
338
339 /*
340  * Obtain either a shared or exclusive lock on VM object
341  * based on whether this is a terminal vnode object or not.
342  */
343 int
344 #ifndef DEBUG_LOCKS
345 vm_object_hold_maybe_shared(vm_object_t obj)
346 #else
347 debugvm_object_hold_maybe_shared(vm_object_t obj, char *file, int line)
348 #endif
349 {
350         if (vm_shared_fault &&
351             obj->type == OBJT_VNODE &&
352             obj->backing_object == NULL) {
353                 vm_object_hold_shared(obj);
354                 return(1);
355         } else {
356                 vm_object_hold(obj);
357                 return(0);
358         }
359 }
360
361 /*
362  * Drop the token and hold_count on the object.
363  */
364 void
365 vm_object_drop(vm_object_t obj)
366 {
367         if (obj == NULL)
368                 return;
369
370 #if defined(DEBUG_LOCKS)
371         int found = 0;
372         int i;
373
374         for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
375                 if ((obj->debug_hold_bitmap & (1 << i)) &&
376                     (obj->debug_hold_thrs[i] == curthread)) {
377                         obj->debug_hold_bitmap &= ~(1 << i);
378                         obj->debug_hold_thrs[i] = NULL;
379                         obj->debug_hold_file[i] = NULL;
380                         obj->debug_hold_line[i] = 0;
381                         found = 1;
382                         break;
383                 }
384         }
385
386         if (found == 0 && obj->debug_hold_ovfl == 0)
387                 panic("vm_object: attempt to drop hold on non-self-held obj");
388 #endif
389
390         /*
391          * No new holders should be possible once we drop hold_count 1->0 as
392          * there is no longer any way to reference the object.
393          */
394         KKASSERT(obj->hold_count > 0);
395         if (refcount_release(&obj->hold_count)) {
396                 if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) {
397                         vm_object_unlock(obj);
398                         zfree(obj_zone, obj);
399                 } else {
400                         vm_object_unlock(obj);
401                 }
402         } else {
403                 vm_object_unlock(obj);
404         }
405 }
406
407 /*
408  * Initialize a freshly allocated object, returning a held object.
409  *
410  * Used only by vm_object_allocate() and zinitna().
411  *
412  * No requirements.
413  */
414 void
415 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
416 {
417         int incr;
418
419         RB_INIT(&object->rb_memq);
420         LIST_INIT(&object->shadow_head);
421         lwkt_token_init(&object->token, "vmobj");
422
423         object->type = type;
424         object->size = size;
425         object->ref_count = 1;
426         object->hold_count = 0;
427         object->flags = 0;
428         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
429                 vm_object_set_flag(object, OBJ_ONEMAPPING);
430         object->paging_in_progress = 0;
431         object->resident_page_count = 0;
432         object->agg_pv_list_count = 0;
433         object->shadow_count = 0;
434         /* cpu localization twist */
435         object->pg_color = (int)(intptr_t)curthread;
436         if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
437                 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
438         else
439                 incr = size;
440         next_index = (next_index + incr) & PQ_L2_MASK;
441         object->handle = NULL;
442         object->backing_object = NULL;
443         object->backing_object_offset = (vm_ooffset_t)0;
444
445         object->generation++;
446         object->swblock_count = 0;
447         RB_INIT(&object->swblock_root);
448         vm_object_lock_init(object);
449         pmap_object_init(object);
450
451         vm_object_hold(object);
452         lwkt_gettoken(&vmobj_token);
453         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
454         vm_object_count++;
455         lwkt_reltoken(&vmobj_token);
456 }
457
458 /*
459  * Initialize the VM objects module.
460  *
461  * Called from the low level boot code only.
462  */
463 void
464 vm_object_init(void)
465 {
466         TAILQ_INIT(&vm_object_list);
467         
468         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
469                             &kernel_object);
470         vm_object_drop(&kernel_object);
471
472         obj_zone = &obj_zone_store;
473         zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
474                 vm_objects_init, VM_OBJECTS_INIT);
475 }
476
477 void
478 vm_object_init2(void)
479 {
480         zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
481 }
482
483 /*
484  * Allocate and return a new object of the specified type and size.
485  *
486  * No requirements.
487  */
488 vm_object_t
489 vm_object_allocate(objtype_t type, vm_pindex_t size)
490 {
491         vm_object_t result;
492
493         result = (vm_object_t) zalloc(obj_zone);
494
495         _vm_object_allocate(type, size, result);
496         vm_object_drop(result);
497
498         return (result);
499 }
500
501 /*
502  * This version returns a held object, allowing further atomic initialization
503  * of the object.
504  */
505 vm_object_t
506 vm_object_allocate_hold(objtype_t type, vm_pindex_t size)
507 {
508         vm_object_t result;
509
510         result = (vm_object_t) zalloc(obj_zone);
511
512         _vm_object_allocate(type, size, result);
513
514         return (result);
515 }
516
517 /*
518  * Add an additional reference to a vm_object.  The object must already be
519  * held.  The original non-lock version is no longer supported.  The object
520  * must NOT be chain locked by anyone at the time the reference is added.
521  *
522  * Referencing a chain-locked object can blow up the fairly sensitive
523  * ref_count and shadow_count tests in the deallocator.  Most callers
524  * will call vm_object_chain_wait() prior to calling
525  * vm_object_reference_locked() to avoid the case.
526  *
527  * The object must be held, but may be held shared if desired (hence why
528  * we use an atomic op).
529  */
530 void
531 vm_object_reference_locked(vm_object_t object)
532 {
533         KKASSERT(object != NULL);
534         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
535         KKASSERT((object->flags & OBJ_CHAINLOCK) == 0);
536         atomic_add_int(&object->ref_count, 1);
537         if (object->type == OBJT_VNODE) {
538                 vref(object->handle);
539                 /* XXX what if the vnode is being destroyed? */
540         }
541 }
542
543 /*
544  * Object OBJ_CHAINLOCK lock handling.
545  *
546  * The caller can chain-lock backing objects recursively and then
547  * use vm_object_chain_release_all() to undo the whole chain.
548  *
549  * Chain locks are used to prevent collapses and are only applicable
550  * to OBJT_DEFAULT and OBJT_SWAP objects.  Chain locking operations
551  * on other object types are ignored.  This is also important because
552  * it allows e.g. the vnode underlying a memory mapping to take concurrent
553  * faults.
554  *
555  * The object must usually be held on entry, though intermediate
556  * objects need not be held on release.
557  */
558 void
559 vm_object_chain_wait(vm_object_t object)
560 {
561         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
562         while (object->flags & OBJ_CHAINLOCK) {
563                 vm_object_set_flag(object, OBJ_CHAINWANT);
564                 tsleep(object, 0, "objchain", 0);
565         }
566 }
567
568 void
569 vm_object_chain_acquire(vm_object_t object)
570 {
571         if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) {
572                 vm_object_chain_wait(object);
573                 vm_object_set_flag(object, OBJ_CHAINLOCK);
574         }
575 }
576
577 void
578 vm_object_chain_release(vm_object_t object)
579 {
580         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
581         if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) {
582                 KKASSERT(object->flags & OBJ_CHAINLOCK);
583                 if (object->flags & OBJ_CHAINWANT) {
584                         vm_object_clear_flag(object,
585                                              OBJ_CHAINLOCK | OBJ_CHAINWANT);
586                         wakeup(object);
587                 } else {
588                         vm_object_clear_flag(object, OBJ_CHAINLOCK);
589                 }
590         }
591 }
592
593 /*
594  * This releases the entire chain of objects from first_object to and
595  * including stopobj, flowing through object->backing_object.
596  *
597  * We release stopobj first as an optimization as this object is most
598  * likely to be shared across multiple processes.
599  */
600 void
601 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj)
602 {
603         vm_object_t backing_object;
604         vm_object_t object;
605
606         vm_object_chain_release(stopobj);
607         object = first_object;
608
609         while (object != stopobj) {
610                 KKASSERT(object);
611                 if (object != first_object)
612                         vm_object_hold(object);
613                 backing_object = object->backing_object;
614                 vm_object_chain_release(object);
615                 if (object != first_object)
616                         vm_object_drop(object);
617                 object = backing_object;
618         }
619 }
620
621 /*
622  * Dereference an object and its underlying vnode.
623  *
624  * The object must be held exclusively and will remain held on return.
625  * (We don't need an atomic op due to the exclusivity).
626  */
627 static void
628 vm_object_vndeallocate(vm_object_t object)
629 {
630         struct vnode *vp = (struct vnode *) object->handle;
631
632         KASSERT(object->type == OBJT_VNODE,
633             ("vm_object_vndeallocate: not a vnode object"));
634         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
635         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
636 #ifdef INVARIANTS
637         if (object->ref_count == 0) {
638                 vprint("vm_object_vndeallocate", vp);
639                 panic("vm_object_vndeallocate: bad object reference count");
640         }
641 #endif
642         object->ref_count--;
643         if (object->ref_count == 0)
644                 vclrflags(vp, VTEXT);
645         vrele(vp);
646 }
647
648 /*
649  * Release a reference to the specified object, gained either through a
650  * vm_object_allocate or a vm_object_reference call.  When all references
651  * are gone, storage associated with this object may be relinquished.
652  *
653  * The caller does not have to hold the object locked but must have control
654  * over the reference in question in order to guarantee that the object
655  * does not get ripped out from under us.
656  *
657  * XXX Currently all deallocations require an exclusive lock.
658  */
659 void
660 vm_object_deallocate(vm_object_t object)
661 {
662         if (object) {
663                 vm_object_hold(object);
664                 vm_object_deallocate_locked(object);
665                 vm_object_drop(object);
666         }
667 }
668
669 void
670 vm_object_deallocate_locked(vm_object_t object)
671 {
672         struct vm_object_dealloc_list *dlist = NULL;
673         struct vm_object_dealloc_list *dtmp;
674         vm_object_t temp;
675         int must_drop = 0;
676
677         /*
678          * We may chain deallocate object, but additional objects may
679          * collect on the dlist which also have to be deallocated.  We
680          * must avoid a recursion, vm_object chains can get deep.
681          */
682 again:
683         while (object != NULL) {
684                 ASSERT_LWKT_TOKEN_HELD_EXCL(&object->token);
685 #if 0
686                 /*
687                  * Don't rip a ref_count out from under an object undergoing
688                  * collapse, it will confuse the collapse code.
689                  */
690                 vm_object_chain_wait(object);
691 #endif
692                 if (object->type == OBJT_VNODE) {
693                         vm_object_vndeallocate(object);
694                         break;
695                 }
696
697                 if (object->ref_count == 0) {
698                         panic("vm_object_deallocate: object deallocated "
699                               "too many times: %d", object->type);
700                 }
701                 if (object->ref_count > 2) {
702                         object->ref_count--;
703                         break;
704                 }
705
706                 /*
707                  * Here on ref_count of one or two, which are special cases for
708                  * objects.
709                  *
710                  * Nominal ref_count > 1 case if the second ref is not from
711                  * a shadow.
712                  *
713                  * (ONEMAPPING only applies to DEFAULT AND SWAP objects)
714                  */
715                 if (object->ref_count == 2 && object->shadow_count == 0) {
716                         if (object->type == OBJT_DEFAULT ||
717                             object->type == OBJT_SWAP) {
718                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
719                         }
720                         object->ref_count--;
721                         break;
722                 }
723
724                 /*
725                  * If the second ref is from a shadow we chain along it
726                  * upwards if object's handle is exhausted.
727                  *
728                  * We have to decrement object->ref_count before potentially
729                  * collapsing the first shadow object or the collapse code
730                  * will not be able to handle the degenerate case to remove
731                  * object.  However, if we do it too early the object can
732                  * get ripped out from under us.
733                  */
734                 if (object->ref_count == 2 && object->shadow_count == 1 &&
735                     object->handle == NULL && (object->type == OBJT_DEFAULT ||
736                                                object->type == OBJT_SWAP)) {
737                         temp = LIST_FIRST(&object->shadow_head);
738                         KKASSERT(temp != NULL);
739                         vm_object_hold(temp);
740
741                         /*
742                          * Wait for any paging to complete so the collapse
743                          * doesn't (or isn't likely to) qcollapse.  pip
744                          * waiting must occur before we acquire the
745                          * chainlock.
746                          */
747                         while (
748                                 temp->paging_in_progress ||
749                                 object->paging_in_progress
750                         ) {
751                                 vm_object_pip_wait(temp, "objde1");
752                                 vm_object_pip_wait(object, "objde2");
753                         }
754
755                         /*
756                          * If the parent is locked we have to give up, as
757                          * otherwise we would be acquiring locks in the
758                          * wrong order and potentially deadlock.
759                          */
760                         if (temp->flags & OBJ_CHAINLOCK) {
761                                 vm_object_drop(temp);
762                                 goto skip;
763                         }
764                         vm_object_chain_acquire(temp);
765
766                         /*
767                          * Recheck/retry after the hold and the paging
768                          * wait, both of which can block us.
769                          */
770                         if (object->ref_count != 2 ||
771                             object->shadow_count != 1 ||
772                             object->handle ||
773                             LIST_FIRST(&object->shadow_head) != temp ||
774                             (object->type != OBJT_DEFAULT &&
775                              object->type != OBJT_SWAP)) {
776                                 vm_object_chain_release(temp);
777                                 vm_object_drop(temp);
778                                 continue;
779                         }
780
781                         /*
782                          * We can safely drop object's ref_count now.
783                          */
784                         KKASSERT(object->ref_count == 2);
785                         object->ref_count--;
786
787                         /*
788                          * If our single parent is not collapseable just
789                          * decrement ref_count (2->1) and stop.
790                          */
791                         if (temp->handle || (temp->type != OBJT_DEFAULT &&
792                                              temp->type != OBJT_SWAP)) {
793                                 vm_object_chain_release(temp);
794                                 vm_object_drop(temp);
795                                 break;
796                         }
797
798                         /*
799                          * At this point we have already dropped object's
800                          * ref_count so it is possible for a race to
801                          * deallocate obj out from under us.  Any collapse
802                          * will re-check the situation.  We must not block
803                          * until we are able to collapse.
804                          *
805                          * Bump temp's ref_count to avoid an unwanted
806                          * degenerate recursion (can't call
807                          * vm_object_reference_locked() because it asserts
808                          * that CHAINLOCK is not set).
809                          */
810                         temp->ref_count++;
811                         KKASSERT(temp->ref_count > 1);
812
813                         /*
814                          * Collapse temp, then deallocate the extra ref
815                          * formally.
816                          */
817                         vm_object_collapse(temp, &dlist);
818                         vm_object_chain_release(temp);
819                         if (must_drop) {
820                                 vm_object_lock_swap();
821                                 vm_object_drop(object);
822                         }
823                         object = temp;
824                         must_drop = 1;
825                         continue;
826                 }
827
828                 /*
829                  * Drop the ref and handle termination on the 1->0 transition.
830                  * We may have blocked above so we have to recheck.
831                  */
832 skip:
833                 KKASSERT(object->ref_count != 0);
834                 if (object->ref_count >= 2) {
835                         object->ref_count--;
836                         break;
837                 }
838                 KKASSERT(object->ref_count == 1);
839
840                 /*
841                  * 1->0 transition.  Chain through the backing_object.
842                  * Maintain the ref until we've located the backing object,
843                  * then re-check.
844                  */
845                 while ((temp = object->backing_object) != NULL) {
846                         vm_object_hold(temp);
847                         if (temp == object->backing_object)
848                                 break;
849                         vm_object_drop(temp);
850                 }
851
852                 /*
853                  * 1->0 transition verified, retry if ref_count is no longer
854                  * 1.  Otherwise disconnect the backing_object (temp) and
855                  * clean up.
856                  */
857                 if (object->ref_count != 1) {
858                         vm_object_drop(temp);
859                         continue;
860                 }
861
862                 /*
863                  * It shouldn't be possible for the object to be chain locked
864                  * if we're removing the last ref on it.
865                  */
866                 KKASSERT((object->flags & OBJ_CHAINLOCK) == 0);
867
868                 if (temp) {
869                         LIST_REMOVE(object, shadow_list);
870                         temp->shadow_count--;
871                         temp->generation++;
872                         object->backing_object = NULL;
873                 }
874
875                 --object->ref_count;
876                 if ((object->flags & OBJ_DEAD) == 0)
877                         vm_object_terminate(object);
878                 if (must_drop && temp)
879                         vm_object_lock_swap();
880                 if (must_drop)
881                         vm_object_drop(object);
882                 object = temp;
883                 must_drop = 1;
884         }
885         if (must_drop && object)
886                 vm_object_drop(object);
887
888         /*
889          * Additional tail recursion on dlist.  Avoid a recursion.  Objects
890          * on the dlist have a hold count but are not locked.
891          */
892         if ((dtmp = dlist) != NULL) {
893                 dlist = dtmp->next;
894                 object = dtmp->object;
895                 kfree(dtmp, M_TEMP);
896
897                 vm_object_lock(object); /* already held, add lock */
898                 must_drop = 1;          /* and we're responsible for it */
899                 goto again;
900         }
901 }
902
903 /*
904  * Destroy the specified object, freeing up related resources.
905  *
906  * The object must have zero references.
907  *
908  * The object must held.  The caller is responsible for dropping the object
909  * after terminate returns.  Terminate does NOT drop the object.
910  */
911 static int vm_object_terminate_callback(vm_page_t p, void *data);
912
913 void
914 vm_object_terminate(vm_object_t object)
915 {
916         /*
917          * Make sure no one uses us.  Once we set OBJ_DEAD we should be
918          * able to safely block.
919          */
920         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
921         KKASSERT((object->flags & OBJ_DEAD) == 0);
922         vm_object_set_flag(object, OBJ_DEAD);
923
924         /*
925          * Wait for the pageout daemon to be done with the object
926          */
927         vm_object_pip_wait(object, "objtrm1");
928
929         KASSERT(!object->paging_in_progress,
930                 ("vm_object_terminate: pageout in progress"));
931
932         /*
933          * Clean and free the pages, as appropriate. All references to the
934          * object are gone, so we don't need to lock it.
935          */
936         if (object->type == OBJT_VNODE) {
937                 struct vnode *vp;
938
939                 /*
940                  * Clean pages and flush buffers.
941                  *
942                  * NOTE!  TMPFS buffer flushes do not typically flush the
943                  *        actual page to swap as this would be highly
944                  *        inefficient, and normal filesystems usually wrap
945                  *        page flushes with buffer cache buffers.
946                  *
947                  *        To deal with this we have to call vinvalbuf() both
948                  *        before and after the vm_object_page_clean().
949                  */
950                 vp = (struct vnode *) object->handle;
951                 vinvalbuf(vp, V_SAVE, 0, 0);
952                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
953                 vinvalbuf(vp, V_SAVE, 0, 0);
954         }
955
956         /*
957          * Wait for any I/O to complete, after which there had better not
958          * be any references left on the object.
959          */
960         vm_object_pip_wait(object, "objtrm2");
961
962         if (object->ref_count != 0) {
963                 panic("vm_object_terminate: object with references, "
964                       "ref_count=%d", object->ref_count);
965         }
966
967         /*
968          * Cleanup any shared pmaps associated with this object.
969          */
970         pmap_object_free(object);
971
972         /*
973          * Now free any remaining pages. For internal objects, this also
974          * removes them from paging queues. Don't free wired pages, just
975          * remove them from the object. 
976          */
977         vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
978                                 vm_object_terminate_callback, NULL);
979
980         /*
981          * Let the pager know object is dead.
982          */
983         vm_pager_deallocate(object);
984
985         /*
986          * Wait for the object hold count to hit 1, clean out pages as
987          * we go.  vmobj_token interlocks any race conditions that might
988          * pick the object up from the vm_object_list after we have cleared
989          * rb_memq.
990          */
991         for (;;) {
992                 if (RB_ROOT(&object->rb_memq) == NULL)
993                         break;
994                 kprintf("vm_object_terminate: Warning, object %p "
995                         "still has %d pages\n",
996                         object, object->resident_page_count);
997                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
998                                         vm_object_terminate_callback, NULL);
999         }
1000
1001         /*
1002          * There had better not be any pages left
1003          */
1004         KKASSERT(object->resident_page_count == 0);
1005
1006         /*
1007          * Remove the object from the global object list.
1008          */
1009         lwkt_gettoken(&vmobj_token);
1010         TAILQ_REMOVE(&vm_object_list, object, object_list);
1011         vm_object_count--;
1012         lwkt_reltoken(&vmobj_token);
1013         vm_object_dead_wakeup(object);
1014
1015         if (object->ref_count != 0) {
1016                 panic("vm_object_terminate2: object with references, "
1017                       "ref_count=%d", object->ref_count);
1018         }
1019
1020         /*
1021          * NOTE: The object hold_count is at least 1, so we cannot zfree()
1022          *       the object here.  See vm_object_drop().
1023          */
1024 }
1025
1026 /*
1027  * The caller must hold the object.
1028  */
1029 static int
1030 vm_object_terminate_callback(vm_page_t p, void *data __unused)
1031 {
1032         vm_object_t object;
1033
1034         object = p->object;
1035         vm_page_busy_wait(p, TRUE, "vmpgtrm");
1036         if (object != p->object) {
1037                 kprintf("vm_object_terminate: Warning: Encountered "
1038                         "busied page %p on queue %d\n", p, p->queue);
1039                 vm_page_wakeup(p);
1040         } else if (p->wire_count == 0) {
1041                 /*
1042                  * NOTE: p->dirty and PG_NEED_COMMIT are ignored.
1043                  */
1044                 vm_page_free(p);
1045                 mycpu->gd_cnt.v_pfree++;
1046         } else {
1047                 if (p->queue != PQ_NONE)
1048                         kprintf("vm_object_terminate: Warning: Encountered "
1049                                 "wired page %p on queue %d\n", p, p->queue);
1050                 vm_page_remove(p);
1051                 vm_page_wakeup(p);
1052         }
1053         lwkt_yield();
1054         return(0);
1055 }
1056
1057 /*
1058  * The object is dead but still has an object<->pager association.  Sleep
1059  * and return.  The caller typically retests the association in a loop.
1060  *
1061  * The caller must hold the object.
1062  */
1063 void
1064 vm_object_dead_sleep(vm_object_t object, const char *wmesg)
1065 {
1066         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1067         if (object->handle) {
1068                 vm_object_set_flag(object, OBJ_DEADWNT);
1069                 tsleep(object, 0, wmesg, 0);
1070                 /* object may be invalid after this point */
1071         }
1072 }
1073
1074 /*
1075  * Wakeup anyone waiting for the object<->pager disassociation on
1076  * a dead object.
1077  *
1078  * The caller must hold the object.
1079  */
1080 void
1081 vm_object_dead_wakeup(vm_object_t object)
1082 {
1083         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1084         if (object->flags & OBJ_DEADWNT) {
1085                 vm_object_clear_flag(object, OBJ_DEADWNT);
1086                 wakeup(object);
1087         }
1088 }
1089
1090 /*
1091  * Clean all dirty pages in the specified range of object.  Leaves page
1092  * on whatever queue it is currently on.   If NOSYNC is set then do not
1093  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
1094  * leaving the object dirty.
1095  *
1096  * When stuffing pages asynchronously, allow clustering.  XXX we need a
1097  * synchronous clustering mode implementation.
1098  *
1099  * Odd semantics: if start == end, we clean everything.
1100  *
1101  * The object must be locked? XXX
1102  */
1103 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
1104 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
1105
1106 void
1107 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1108                      int flags)
1109 {
1110         struct rb_vm_page_scan_info info;
1111         struct vnode *vp;
1112         int wholescan;
1113         int pagerflags;
1114         int generation;
1115
1116         vm_object_hold(object);
1117         if (object->type != OBJT_VNODE ||
1118             (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
1119                 vm_object_drop(object);
1120                 return;
1121         }
1122
1123         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? 
1124                         VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1125         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
1126
1127         vp = object->handle;
1128
1129         /*
1130          * Interlock other major object operations.  This allows us to 
1131          * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
1132          */
1133         vm_object_set_flag(object, OBJ_CLEANING);
1134
1135         /*
1136          * Handle 'entire object' case
1137          */
1138         info.start_pindex = start;
1139         if (end == 0) {
1140                 info.end_pindex = object->size - 1;
1141         } else {
1142                 info.end_pindex = end - 1;
1143         }
1144         wholescan = (start == 0 && info.end_pindex == object->size - 1);
1145         info.limit = flags;
1146         info.pagerflags = pagerflags;
1147         info.object = object;
1148
1149         /*
1150          * If cleaning the entire object do a pass to mark the pages read-only.
1151          * If everything worked out ok, clear OBJ_WRITEABLE and
1152          * OBJ_MIGHTBEDIRTY.
1153          */
1154         if (wholescan) {
1155                 info.error = 0;
1156                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1157                                         vm_object_page_clean_pass1, &info);
1158                 if (info.error == 0) {
1159                         vm_object_clear_flag(object,
1160                                              OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1161                         if (object->type == OBJT_VNODE &&
1162                             (vp = (struct vnode *)object->handle) != NULL) {
1163                                 if (vp->v_flag & VOBJDIRTY) 
1164                                         vclrflags(vp, VOBJDIRTY);
1165                         }
1166                 }
1167         }
1168
1169         /*
1170          * Do a pass to clean all the dirty pages we find.
1171          */
1172         do {
1173                 info.error = 0;
1174                 generation = object->generation;
1175                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1176                                         vm_object_page_clean_pass2, &info);
1177         } while (info.error || generation != object->generation);
1178
1179         vm_object_clear_flag(object, OBJ_CLEANING);
1180         vm_object_drop(object);
1181 }
1182
1183 /*
1184  * The caller must hold the object.
1185  */
1186 static 
1187 int
1188 vm_object_page_clean_pass1(struct vm_page *p, void *data)
1189 {
1190         struct rb_vm_page_scan_info *info = data;
1191
1192         vm_page_flag_set(p, PG_CLEANCHK);
1193         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1194                 info->error = 1;
1195         } else if (vm_page_busy_try(p, FALSE) == 0) {
1196                 vm_page_protect(p, VM_PROT_READ);       /* must not block */
1197                 vm_page_wakeup(p);
1198         } else {
1199                 info->error = 1;
1200         }
1201         lwkt_yield();
1202         return(0);
1203 }
1204
1205 /*
1206  * The caller must hold the object
1207  */
1208 static 
1209 int
1210 vm_object_page_clean_pass2(struct vm_page *p, void *data)
1211 {
1212         struct rb_vm_page_scan_info *info = data;
1213         int generation;
1214
1215         /*
1216          * Do not mess with pages that were inserted after we started
1217          * the cleaning pass.
1218          */
1219         if ((p->flags & PG_CLEANCHK) == 0)
1220                 goto done;
1221
1222         generation = info->object->generation;
1223         vm_page_busy_wait(p, TRUE, "vpcwai");
1224         if (p->object != info->object ||
1225             info->object->generation != generation) {
1226                 info->error = 1;
1227                 vm_page_wakeup(p);
1228                 goto done;
1229         }
1230
1231         /*
1232          * Before wasting time traversing the pmaps, check for trivial
1233          * cases where the page cannot be dirty.
1234          */
1235         if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
1236                 KKASSERT((p->dirty & p->valid) == 0 &&
1237                          (p->flags & PG_NEED_COMMIT) == 0);
1238                 vm_page_wakeup(p);
1239                 goto done;
1240         }
1241
1242         /*
1243          * Check whether the page is dirty or not.  The page has been set
1244          * to be read-only so the check will not race a user dirtying the
1245          * page.
1246          */
1247         vm_page_test_dirty(p);
1248         if ((p->dirty & p->valid) == 0 && (p->flags & PG_NEED_COMMIT) == 0) {
1249                 vm_page_flag_clear(p, PG_CLEANCHK);
1250                 vm_page_wakeup(p);
1251                 goto done;
1252         }
1253
1254         /*
1255          * If we have been asked to skip nosync pages and this is a
1256          * nosync page, skip it.  Note that the object flags were
1257          * not cleared in this case (because pass1 will have returned an
1258          * error), so we do not have to set them.
1259          */
1260         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1261                 vm_page_flag_clear(p, PG_CLEANCHK);
1262                 vm_page_wakeup(p);
1263                 goto done;
1264         }
1265
1266         /*
1267          * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
1268          * the pages that get successfully flushed.  Set info->error if
1269          * we raced an object modification.
1270          */
1271         vm_object_page_collect_flush(info->object, p, info->pagerflags);
1272         vm_wait_nominal();
1273 done:
1274         lwkt_yield();
1275         return(0);
1276 }
1277
1278 /*
1279  * Collect the specified page and nearby pages and flush them out.
1280  * The number of pages flushed is returned.  The passed page is busied
1281  * by the caller and we are responsible for its disposition.
1282  *
1283  * The caller must hold the object.
1284  */
1285 static void
1286 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
1287 {
1288         int runlen;
1289         int error;
1290         int maxf;
1291         int chkb;
1292         int maxb;
1293         int i;
1294         vm_pindex_t pi;
1295         vm_page_t maf[vm_pageout_page_count];
1296         vm_page_t mab[vm_pageout_page_count];
1297         vm_page_t ma[vm_pageout_page_count];
1298
1299         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1300
1301         pi = p->pindex;
1302
1303         maxf = 0;
1304         for(i = 1; i < vm_pageout_page_count; i++) {
1305                 vm_page_t tp;
1306
1307                 tp = vm_page_lookup_busy_try(object, pi + i, TRUE, &error);
1308                 if (error)
1309                         break;
1310                 if (tp == NULL)
1311                         break;
1312                 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1313                     (tp->flags & PG_CLEANCHK) == 0) {
1314                         vm_page_wakeup(tp);
1315                         break;
1316                 }
1317                 if ((tp->queue - tp->pc) == PQ_CACHE) {
1318                         vm_page_flag_clear(tp, PG_CLEANCHK);
1319                         vm_page_wakeup(tp);
1320                         break;
1321                 }
1322                 vm_page_test_dirty(tp);
1323                 if ((tp->dirty & tp->valid) == 0 &&
1324                     (tp->flags & PG_NEED_COMMIT) == 0) {
1325                         vm_page_flag_clear(tp, PG_CLEANCHK);
1326                         vm_page_wakeup(tp);
1327                         break;
1328                 }
1329                 maf[i - 1] = tp;
1330                 maxf++;
1331         }
1332
1333         maxb = 0;
1334         chkb = vm_pageout_page_count -  maxf;
1335         /*
1336          * NOTE: chkb can be 0
1337          */
1338         for(i = 1; chkb && i < chkb; i++) {
1339                 vm_page_t tp;
1340
1341                 tp = vm_page_lookup_busy_try(object, pi - i, TRUE, &error);
1342                 if (error)
1343                         break;
1344                 if (tp == NULL)
1345                         break;
1346                 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1347                     (tp->flags & PG_CLEANCHK) == 0) {
1348                         vm_page_wakeup(tp);
1349                         break;
1350                 }
1351                 if ((tp->queue - tp->pc) == PQ_CACHE) {
1352                         vm_page_flag_clear(tp, PG_CLEANCHK);
1353                         vm_page_wakeup(tp);
1354                         break;
1355                 }
1356                 vm_page_test_dirty(tp);
1357                 if ((tp->dirty & tp->valid) == 0 &&
1358                     (tp->flags & PG_NEED_COMMIT) == 0) {
1359                         vm_page_flag_clear(tp, PG_CLEANCHK);
1360                         vm_page_wakeup(tp);
1361                         break;
1362                 }
1363                 mab[i - 1] = tp;
1364                 maxb++;
1365         }
1366
1367         /*
1368          * All pages in the maf[] and mab[] array are busied.
1369          */
1370         for (i = 0; i < maxb; i++) {
1371                 int index = (maxb - i) - 1;
1372                 ma[index] = mab[i];
1373                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
1374         }
1375         vm_page_flag_clear(p, PG_CLEANCHK);
1376         ma[maxb] = p;
1377         for(i = 0; i < maxf; i++) {
1378                 int index = (maxb + i) + 1;
1379                 ma[index] = maf[i];
1380                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
1381         }
1382         runlen = maxb + maxf + 1;
1383
1384         for (i = 0; i < runlen; i++)    /* XXX need this any more? */
1385                 vm_page_hold(ma[i]);
1386
1387         vm_pageout_flush(ma, runlen, pagerflags);
1388
1389         for (i = 0; i < runlen; i++)    /* XXX need this any more? */
1390                 vm_page_unhold(ma[i]);
1391 }
1392
1393 /*
1394  * Same as vm_object_pmap_copy, except range checking really
1395  * works, and is meant for small sections of an object.
1396  *
1397  * This code protects resident pages by making them read-only
1398  * and is typically called on a fork or split when a page
1399  * is converted to copy-on-write.  
1400  *
1401  * NOTE: If the page is already at VM_PROT_NONE, calling
1402  * vm_page_protect will have no effect.
1403  */
1404 void
1405 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1406 {
1407         vm_pindex_t idx;
1408         vm_page_t p;
1409
1410         if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
1411                 return;
1412
1413         vm_object_hold(object);
1414         for (idx = start; idx < end; idx++) {
1415                 p = vm_page_lookup(object, idx);
1416                 if (p == NULL)
1417                         continue;
1418                 vm_page_protect(p, VM_PROT_READ);
1419         }
1420         vm_object_drop(object);
1421 }
1422
1423 /*
1424  * Removes all physical pages in the specified object range from all
1425  * physical maps.
1426  *
1427  * The object must *not* be locked.
1428  */
1429
1430 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
1431
1432 void
1433 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1434 {
1435         struct rb_vm_page_scan_info info;
1436
1437         if (object == NULL)
1438                 return;
1439         info.start_pindex = start;
1440         info.end_pindex = end - 1;
1441
1442         vm_object_hold(object);
1443         vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1444                                 vm_object_pmap_remove_callback, &info);
1445         if (start == 0 && end == object->size)
1446                 vm_object_clear_flag(object, OBJ_WRITEABLE);
1447         vm_object_drop(object);
1448 }
1449
1450 /*
1451  * The caller must hold the object
1452  */
1453 static int
1454 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
1455 {
1456         vm_page_protect(p, VM_PROT_NONE);
1457         return(0);
1458 }
1459
1460 /*
1461  * Implements the madvise function at the object/page level.
1462  *
1463  * MADV_WILLNEED        (any object)
1464  *
1465  *      Activate the specified pages if they are resident.
1466  *
1467  * MADV_DONTNEED        (any object)
1468  *
1469  *      Deactivate the specified pages if they are resident.
1470  *
1471  * MADV_FREE    (OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
1472  *
1473  *      Deactivate and clean the specified pages if they are
1474  *      resident.  This permits the process to reuse the pages
1475  *      without faulting or the kernel to reclaim the pages
1476  *      without I/O.
1477  *
1478  * No requirements.
1479  */
1480 void
1481 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1482 {
1483         vm_pindex_t end, tpindex;
1484         vm_object_t tobject;
1485         vm_object_t xobj;
1486         vm_page_t m;
1487         int error;
1488
1489         if (object == NULL)
1490                 return;
1491
1492         end = pindex + count;
1493
1494         vm_object_hold(object);
1495         tobject = object;
1496
1497         /*
1498          * Locate and adjust resident pages
1499          */
1500         for (; pindex < end; pindex += 1) {
1501 relookup:
1502                 if (tobject != object)
1503                         vm_object_drop(tobject);
1504                 tobject = object;
1505                 tpindex = pindex;
1506 shadowlookup:
1507                 /*
1508                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1509                  * and those pages must be OBJ_ONEMAPPING.
1510                  */
1511                 if (advise == MADV_FREE) {
1512                         if ((tobject->type != OBJT_DEFAULT &&
1513                              tobject->type != OBJT_SWAP) ||
1514                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1515                                 continue;
1516                         }
1517                 }
1518
1519                 m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error);
1520
1521                 if (error) {
1522                         vm_page_sleep_busy(m, TRUE, "madvpo");
1523                         goto relookup;
1524                 }
1525                 if (m == NULL) {
1526                         /*
1527                          * There may be swap even if there is no backing page
1528                          */
1529                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1530                                 swap_pager_freespace(tobject, tpindex, 1);
1531
1532                         /*
1533                          * next object
1534                          */
1535                         while ((xobj = tobject->backing_object) != NULL) {
1536                                 KKASSERT(xobj != object);
1537                                 vm_object_hold(xobj);
1538                                 if (xobj == tobject->backing_object)
1539                                         break;
1540                                 vm_object_drop(xobj);
1541                         }
1542                         if (xobj == NULL)
1543                                 continue;
1544                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1545                         if (tobject != object) {
1546                                 vm_object_lock_swap();
1547                                 vm_object_drop(tobject);
1548                         }
1549                         tobject = xobj;
1550                         goto shadowlookup;
1551                 }
1552
1553                 /*
1554                  * If the page is not in a normal active state, we skip it.
1555                  * If the page is not managed there are no page queues to
1556                  * mess with.  Things can break if we mess with pages in
1557                  * any of the below states.
1558                  */
1559                 if (m->wire_count ||
1560                     (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1561                     m->valid != VM_PAGE_BITS_ALL
1562                 ) {
1563                         vm_page_wakeup(m);
1564                         continue;
1565                 }
1566
1567                 /*
1568                  * Theoretically once a page is known not to be busy, an
1569                  * interrupt cannot come along and rip it out from under us.
1570                  */
1571
1572                 if (advise == MADV_WILLNEED) {
1573                         vm_page_activate(m);
1574                 } else if (advise == MADV_DONTNEED) {
1575                         vm_page_dontneed(m);
1576                 } else if (advise == MADV_FREE) {
1577                         /*
1578                          * Mark the page clean.  This will allow the page
1579                          * to be freed up by the system.  However, such pages
1580                          * are often reused quickly by malloc()/free()
1581                          * so we do not do anything that would cause
1582                          * a page fault if we can help it.
1583                          *
1584                          * Specifically, we do not try to actually free
1585                          * the page now nor do we try to put it in the
1586                          * cache (which would cause a page fault on reuse).
1587                          *
1588                          * But we do make the page is freeable as we
1589                          * can without actually taking the step of unmapping
1590                          * it.
1591                          */
1592                         pmap_clear_modify(m);
1593                         m->dirty = 0;
1594                         m->act_count = 0;
1595                         vm_page_dontneed(m);
1596                         if (tobject->type == OBJT_SWAP)
1597                                 swap_pager_freespace(tobject, tpindex, 1);
1598                 }
1599                 vm_page_wakeup(m);
1600         }       
1601         if (tobject != object)
1602                 vm_object_drop(tobject);
1603         vm_object_drop(object);
1604 }
1605
1606 /*
1607  * Create a new object which is backed by the specified existing object
1608  * range.  Replace the pointer and offset that was pointing at the existing
1609  * object with the pointer/offset for the new object.
1610  *
1611  * No other requirements.
1612  */
1613 void
1614 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length,
1615                  int addref)
1616 {
1617         vm_object_t source;
1618         vm_object_t result;
1619
1620         source = *objectp;
1621
1622         /*
1623          * Don't create the new object if the old object isn't shared.
1624          * We have to chain wait before adding the reference to avoid
1625          * racing a collapse or deallocation.
1626          *
1627          * Add the additional ref to source here to avoid racing a later
1628          * collapse or deallocation. Clear the ONEMAPPING flag whether
1629          * addref is TRUE or not in this case because the original object
1630          * will be shadowed.
1631          */
1632         if (source) {
1633                 vm_object_hold(source);
1634                 vm_object_chain_wait(source);
1635                 if (source->ref_count == 1 &&
1636                     source->handle == NULL &&
1637                     (source->type == OBJT_DEFAULT ||
1638                      source->type == OBJT_SWAP)) {
1639                         vm_object_drop(source);
1640                         if (addref) {
1641                                 vm_object_reference_locked(source);
1642                                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1643                         }
1644                         return;
1645                 }
1646                 vm_object_reference_locked(source);
1647                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1648         }
1649
1650         /*
1651          * Allocate a new object with the given length.  The new object
1652          * is returned referenced but we may have to add another one.
1653          * If we are adding a second reference we must clear OBJ_ONEMAPPING.
1654          * (typically because the caller is about to clone a vm_map_entry).
1655          *
1656          * The source object currently has an extra reference to prevent
1657          * collapses into it while we mess with its shadow list, which
1658          * we will remove later in this routine.
1659          */
1660         if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1661                 panic("vm_object_shadow: no object for shadowing");
1662         vm_object_hold(result);
1663         if (addref) {
1664                 vm_object_reference_locked(result);
1665                 vm_object_clear_flag(result, OBJ_ONEMAPPING);
1666         }
1667
1668         /*
1669          * The new object shadows the source object.  Chain wait before
1670          * adjusting shadow_count or the shadow list to avoid races.
1671          *
1672          * Try to optimize the result object's page color when shadowing
1673          * in order to maintain page coloring consistency in the combined 
1674          * shadowed object.
1675          */
1676         KKASSERT(result->backing_object == NULL);
1677         result->backing_object = source;
1678         if (source) {
1679                 vm_object_chain_wait(source);
1680                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1681                 source->shadow_count++;
1682                 source->generation++;
1683                 /* cpu localization twist */
1684                 result->pg_color = (int)(intptr_t)curthread;
1685         }
1686
1687         /*
1688          * Adjust the return storage.  Drop the ref on source before
1689          * returning.
1690          */
1691         result->backing_object_offset = *offset;
1692         vm_object_drop(result);
1693         *offset = 0;
1694         if (source) {
1695                 vm_object_deallocate_locked(source);
1696                 vm_object_drop(source);
1697         }
1698
1699         /*
1700          * Return the new things
1701          */
1702         *objectp = result;
1703 }
1704
1705 #define OBSC_TEST_ALL_SHADOWED  0x0001
1706 #define OBSC_COLLAPSE_NOWAIT    0x0002
1707 #define OBSC_COLLAPSE_WAIT      0x0004
1708
1709 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1710
1711 /*
1712  * The caller must hold the object.
1713  */
1714 static __inline int
1715 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op)
1716 {
1717         struct rb_vm_page_scan_info info;
1718
1719         vm_object_assert_held(object);
1720         vm_object_assert_held(backing_object);
1721
1722         KKASSERT(backing_object == object->backing_object);
1723         info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1724
1725         /*
1726          * Initial conditions
1727          */
1728         if (op & OBSC_TEST_ALL_SHADOWED) {
1729                 /*
1730                  * We do not want to have to test for the existence of
1731                  * swap pages in the backing object.  XXX but with the
1732                  * new swapper this would be pretty easy to do.
1733                  *
1734                  * XXX what about anonymous MAP_SHARED memory that hasn't
1735                  * been ZFOD faulted yet?  If we do not test for this, the
1736                  * shadow test may succeed! XXX
1737                  */
1738                 if (backing_object->type != OBJT_DEFAULT)
1739                         return(0);
1740         }
1741         if (op & OBSC_COLLAPSE_WAIT) {
1742                 KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1743                 vm_object_set_flag(backing_object, OBJ_DEAD);
1744                 lwkt_gettoken(&vmobj_token);
1745                 TAILQ_REMOVE(&vm_object_list, backing_object, object_list);
1746                 vm_object_count--;
1747                 lwkt_reltoken(&vmobj_token);
1748                 vm_object_dead_wakeup(backing_object);
1749         }
1750
1751         /*
1752          * Our scan.   We have to retry if a negative error code is returned,
1753          * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1754          * the scan had to be stopped because the parent does not completely
1755          * shadow the child.
1756          */
1757         info.object = object;
1758         info.backing_object = backing_object;
1759         info.limit = op;
1760         do {
1761                 info.error = 1;
1762                 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1763                                         vm_object_backing_scan_callback,
1764                                         &info);
1765         } while (info.error < 0);
1766
1767         return(info.error);
1768 }
1769
1770 /*
1771  * The caller must hold the object.
1772  */
1773 static int
1774 vm_object_backing_scan_callback(vm_page_t p, void *data)
1775 {
1776         struct rb_vm_page_scan_info *info = data;
1777         vm_object_t backing_object;
1778         vm_object_t object;
1779         vm_pindex_t pindex;
1780         vm_pindex_t new_pindex;
1781         vm_pindex_t backing_offset_index;
1782         int op;
1783
1784         pindex = p->pindex;
1785         new_pindex = pindex - info->backing_offset_index;
1786         op = info->limit;
1787         object = info->object;
1788         backing_object = info->backing_object;
1789         backing_offset_index = info->backing_offset_index;
1790
1791         if (op & OBSC_TEST_ALL_SHADOWED) {
1792                 vm_page_t pp;
1793
1794                 /*
1795                  * Ignore pages outside the parent object's range
1796                  * and outside the parent object's mapping of the 
1797                  * backing object.
1798                  *
1799                  * note that we do not busy the backing object's
1800                  * page.
1801                  */
1802                 if (pindex < backing_offset_index ||
1803                     new_pindex >= object->size
1804                 ) {
1805                         return(0);
1806                 }
1807
1808                 /*
1809                  * See if the parent has the page or if the parent's
1810                  * object pager has the page.  If the parent has the
1811                  * page but the page is not valid, the parent's
1812                  * object pager must have the page.
1813                  *
1814                  * If this fails, the parent does not completely shadow
1815                  * the object and we might as well give up now.
1816                  */
1817                 pp = vm_page_lookup(object, new_pindex);
1818                 if ((pp == NULL || pp->valid == 0) &&
1819                     !vm_pager_has_page(object, new_pindex)
1820                 ) {
1821                         info->error = 0;        /* problemo */
1822                         return(-1);             /* stop the scan */
1823                 }
1824         }
1825
1826         /*
1827          * Check for busy page.  Note that we may have lost (p) when we
1828          * possibly blocked above.
1829          */
1830         if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1831                 vm_page_t pp;
1832
1833                 if (vm_page_busy_try(p, TRUE)) {
1834                         if (op & OBSC_COLLAPSE_NOWAIT) {
1835                                 return(0);
1836                         } else {
1837                                 /*
1838                                  * If we slept, anything could have
1839                                  * happened.   Ask that the scan be restarted.
1840                                  *
1841                                  * Since the object is marked dead, the
1842                                  * backing offset should not have changed.  
1843                                  */
1844                                 vm_page_sleep_busy(p, TRUE, "vmocol");
1845                                 info->error = -1;
1846                                 return(-1);
1847                         }
1848                 }
1849
1850                 /*
1851                  * If (p) is no longer valid restart the scan.
1852                  */
1853                 if (p->object != backing_object || p->pindex != pindex) {
1854                         kprintf("vm_object_backing_scan: Warning: page "
1855                                 "%p ripped out from under us\n", p);
1856                         vm_page_wakeup(p);
1857                         info->error = -1;
1858                         return(-1);
1859                 }
1860
1861                 if (op & OBSC_COLLAPSE_NOWAIT) {
1862                         if (p->valid == 0 ||
1863                             p->wire_count ||
1864                             (p->flags & PG_NEED_COMMIT)) {
1865                                 vm_page_wakeup(p);
1866                                 return(0);
1867                         }
1868                 } else {
1869                         /* XXX what if p->valid == 0 , hold_count, etc? */
1870                 }
1871
1872                 KASSERT(
1873                     p->object == backing_object,
1874                     ("vm_object_qcollapse(): object mismatch")
1875                 );
1876
1877                 /*
1878                  * Destroy any associated swap
1879                  */
1880                 if (backing_object->type == OBJT_SWAP)
1881                         swap_pager_freespace(backing_object, p->pindex, 1);
1882
1883                 if (
1884                     p->pindex < backing_offset_index ||
1885                     new_pindex >= object->size
1886                 ) {
1887                         /*
1888                          * Page is out of the parent object's range, we 
1889                          * can simply destroy it. 
1890                          */
1891                         vm_page_protect(p, VM_PROT_NONE);
1892                         vm_page_free(p);
1893                         return(0);
1894                 }
1895
1896                 pp = vm_page_lookup(object, new_pindex);
1897                 if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
1898                         /*
1899                          * page already exists in parent OR swap exists
1900                          * for this location in the parent.  Destroy 
1901                          * the original page from the backing object.
1902                          *
1903                          * Leave the parent's page alone
1904                          */
1905                         vm_page_protect(p, VM_PROT_NONE);
1906                         vm_page_free(p);
1907                         return(0);
1908                 }
1909
1910                 /*
1911                  * Page does not exist in parent, rename the
1912                  * page from the backing object to the main object. 
1913                  *
1914                  * If the page was mapped to a process, it can remain 
1915                  * mapped through the rename.
1916                  */
1917                 if ((p->queue - p->pc) == PQ_CACHE)
1918                         vm_page_deactivate(p);
1919
1920                 vm_page_rename(p, object, new_pindex);
1921                 vm_page_wakeup(p);
1922                 /* page automatically made dirty by rename */
1923         }
1924         return(0);
1925 }
1926
1927 /*
1928  * This version of collapse allows the operation to occur earlier and
1929  * when paging_in_progress is true for an object...  This is not a complete
1930  * operation, but should plug 99.9% of the rest of the leaks.
1931  *
1932  * The caller must hold the object and backing_object and both must be
1933  * chainlocked.
1934  *
1935  * (only called from vm_object_collapse)
1936  */
1937 static void
1938 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object)
1939 {
1940         if (backing_object->ref_count == 1) {
1941                 backing_object->ref_count += 2;
1942                 vm_object_backing_scan(object, backing_object,
1943                                        OBSC_COLLAPSE_NOWAIT);
1944                 backing_object->ref_count -= 2;
1945         }
1946 }
1947
1948 /*
1949  * Collapse an object with the object backing it.  Pages in the backing
1950  * object are moved into the parent, and the backing object is deallocated.
1951  * Any conflict is resolved in favor of the parent's existing pages.
1952  *
1953  * object must be held and chain-locked on call.
1954  *
1955  * The caller must have an extra ref on object to prevent a race from
1956  * destroying it during the collapse.
1957  */
1958 void
1959 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp)
1960 {
1961         struct vm_object_dealloc_list *dlist = NULL;
1962         vm_object_t backing_object;
1963
1964         /*
1965          * Only one thread is attempting a collapse at any given moment.
1966          * There are few restrictions for (object) that callers of this
1967          * function check so reentrancy is likely.
1968          */
1969         KKASSERT(object != NULL);
1970         vm_object_assert_held(object);
1971         KKASSERT(object->flags & OBJ_CHAINLOCK);
1972
1973         for (;;) {
1974                 vm_object_t bbobj;
1975                 int dodealloc;
1976
1977                 /*
1978                  * We have to hold the backing object, check races.
1979                  */
1980                 while ((backing_object = object->backing_object) != NULL) {
1981                         vm_object_hold(backing_object);
1982                         if (backing_object == object->backing_object)
1983                                 break;
1984                         vm_object_drop(backing_object);
1985                 }
1986
1987                 /*
1988                  * No backing object?  Nothing to collapse then.
1989                  */
1990                 if (backing_object == NULL)
1991                         break;
1992
1993                 /*
1994                  * You can't collapse with a non-default/non-swap object.
1995                  */
1996                 if (backing_object->type != OBJT_DEFAULT &&
1997                     backing_object->type != OBJT_SWAP) {
1998                         vm_object_drop(backing_object);
1999                         backing_object = NULL;
2000                         break;
2001                 }
2002
2003                 /*
2004                  * Chain-lock the backing object too because if we
2005                  * successfully merge its pages into the top object we
2006                  * will collapse backing_object->backing_object as the
2007                  * new backing_object.  Re-check that it is still our
2008                  * backing object.
2009                  */
2010                 vm_object_chain_acquire(backing_object);
2011                 if (backing_object != object->backing_object) {
2012                         vm_object_chain_release(backing_object);
2013                         vm_object_drop(backing_object);
2014                         continue;
2015                 }
2016
2017                 /*
2018                  * we check the backing object first, because it is most likely
2019                  * not collapsable.
2020                  */
2021                 if (backing_object->handle != NULL ||
2022                     (backing_object->type != OBJT_DEFAULT &&
2023                      backing_object->type != OBJT_SWAP) ||
2024                     (backing_object->flags & OBJ_DEAD) ||
2025                     object->handle != NULL ||
2026                     (object->type != OBJT_DEFAULT &&
2027                      object->type != OBJT_SWAP) ||
2028                     (object->flags & OBJ_DEAD)) {
2029                         break;
2030                 }
2031
2032                 /*
2033                  * If paging is in progress we can't do a normal collapse.
2034                  */
2035                 if (
2036                     object->paging_in_progress != 0 ||
2037                     backing_object->paging_in_progress != 0
2038                 ) {
2039                         vm_object_qcollapse(object, backing_object);
2040                         break;
2041                 }
2042
2043                 /*
2044                  * We know that we can either collapse the backing object (if
2045                  * the parent is the only reference to it) or (perhaps) have
2046                  * the parent bypass the object if the parent happens to shadow
2047                  * all the resident pages in the entire backing object.
2048                  *
2049                  * This is ignoring pager-backed pages such as swap pages.
2050                  * vm_object_backing_scan fails the shadowing test in this
2051                  * case.
2052                  */
2053                 if (backing_object->ref_count == 1) {
2054                         /*
2055                          * If there is exactly one reference to the backing
2056                          * object, we can collapse it into the parent.  
2057                          */
2058                         KKASSERT(object->backing_object == backing_object);
2059                         vm_object_backing_scan(object, backing_object,
2060                                                OBSC_COLLAPSE_WAIT);
2061
2062                         /*
2063                          * Move the pager from backing_object to object.
2064                          */
2065                         if (backing_object->type == OBJT_SWAP) {
2066                                 vm_object_pip_add(backing_object, 1);
2067
2068                                 /*
2069                                  * scrap the paging_offset junk and do a 
2070                                  * discrete copy.  This also removes major 
2071                                  * assumptions about how the swap-pager 
2072                                  * works from where it doesn't belong.  The
2073                                  * new swapper is able to optimize the
2074                                  * destroy-source case.
2075                                  */
2076                                 vm_object_pip_add(object, 1);
2077                                 swap_pager_copy(backing_object, object,
2078                                     OFF_TO_IDX(object->backing_object_offset),
2079                                     TRUE);
2080                                 vm_object_pip_wakeup(object);
2081                                 vm_object_pip_wakeup(backing_object);
2082                         }
2083
2084                         /*
2085                          * Object now shadows whatever backing_object did.
2086                          * Remove object from backing_object's shadow_list.
2087                          */
2088                         LIST_REMOVE(object, shadow_list);
2089                         KKASSERT(object->backing_object == backing_object);
2090                         backing_object->shadow_count--;
2091                         backing_object->generation++;
2092
2093                         /*
2094                          * backing_object->backing_object moves from within
2095                          * backing_object to within object.
2096                          */
2097                         while ((bbobj = backing_object->backing_object) != NULL) {
2098                                 vm_object_hold(bbobj);
2099                                 if (bbobj == backing_object->backing_object)
2100                                         break;
2101                                 vm_object_drop(bbobj);
2102                         }
2103                         if (bbobj) {
2104                                 LIST_REMOVE(backing_object, shadow_list);
2105                                 bbobj->shadow_count--;
2106                                 bbobj->generation++;
2107                                 backing_object->backing_object = NULL;
2108                         }
2109                         object->backing_object = bbobj;
2110                         if (bbobj) {
2111                                 LIST_INSERT_HEAD(&bbobj->shadow_head,
2112                                                  object, shadow_list);
2113                                 bbobj->shadow_count++;
2114                                 bbobj->generation++;
2115                         }
2116
2117                         object->backing_object_offset +=
2118                                 backing_object->backing_object_offset;
2119
2120                         vm_object_drop(bbobj);
2121
2122                         /*
2123                          * Discard the old backing_object.  Nothing should be
2124                          * able to ref it, other than a vm_map_split(),
2125                          * and vm_map_split() will stall on our chain lock.
2126                          * And we control the parent so it shouldn't be
2127                          * possible for it to go away either.
2128                          *
2129                          * Since the backing object has no pages, no pager
2130                          * left, and no object references within it, all
2131                          * that is necessary is to dispose of it.
2132                          */
2133                         KASSERT(backing_object->ref_count == 1,
2134                                 ("backing_object %p was somehow "
2135                                  "re-referenced during collapse!",
2136                                  backing_object));
2137                         KASSERT(RB_EMPTY(&backing_object->rb_memq),
2138                                 ("backing_object %p somehow has left "
2139                                  "over pages during collapse!",
2140                                  backing_object));
2141
2142                         /*
2143                          * The object can be destroyed.
2144                          *
2145                          * XXX just fall through and dodealloc instead
2146                          *     of forcing destruction?
2147                          */
2148                         --backing_object->ref_count;
2149                         if ((backing_object->flags & OBJ_DEAD) == 0)
2150                                 vm_object_terminate(backing_object);
2151                         object_collapses++;
2152                         dodealloc = 0;
2153                 } else {
2154                         /*
2155                          * If we do not entirely shadow the backing object,
2156                          * there is nothing we can do so we give up.
2157                          */
2158                         if (vm_object_backing_scan(object, backing_object,
2159                                                 OBSC_TEST_ALL_SHADOWED) == 0) {
2160                                 break;
2161                         }
2162
2163                         /*
2164                          * bbobj is backing_object->backing_object.  Since
2165                          * object completely shadows backing_object we can
2166                          * bypass it and become backed by bbobj instead.
2167                          */
2168                         while ((bbobj = backing_object->backing_object) != NULL) {
2169                                 vm_object_hold(bbobj);
2170                                 if (bbobj == backing_object->backing_object)
2171                                         break;
2172                                 vm_object_drop(bbobj);
2173                         }
2174
2175                         /*
2176                          * Make object shadow bbobj instead of backing_object.
2177                          * Remove object from backing_object's shadow list.
2178                          *
2179                          * Deallocating backing_object will not remove
2180                          * it, since its reference count is at least 2.
2181                          */
2182                         KKASSERT(object->backing_object == backing_object);
2183                         LIST_REMOVE(object, shadow_list);
2184                         backing_object->shadow_count--;
2185                         backing_object->generation++;
2186
2187                         /*
2188                          * Add a ref to bbobj, bbobj now shadows object.
2189                          *
2190                          * NOTE: backing_object->backing_object still points
2191                          *       to bbobj.  That relationship remains intact
2192                          *       because backing_object has > 1 ref, so
2193                          *       someone else is pointing to it (hence why
2194                          *       we can't collapse it into object and can
2195                          *       only handle the all-shadowed bypass case).
2196                          */
2197                         if (bbobj) {
2198                                 vm_object_chain_wait(bbobj);
2199                                 vm_object_reference_locked(bbobj);
2200                                 LIST_INSERT_HEAD(&bbobj->shadow_head,
2201                                                  object, shadow_list);
2202                                 bbobj->shadow_count++;
2203                                 bbobj->generation++;
2204                                 object->backing_object_offset +=
2205                                         backing_object->backing_object_offset;
2206                                 object->backing_object = bbobj;
2207                                 vm_object_drop(bbobj);
2208                         } else {
2209                                 object->backing_object = NULL;
2210                         }
2211
2212                         /*
2213                          * Drop the reference count on backing_object.  To
2214                          * handle ref_count races properly we can't assume
2215                          * that the ref_count is still at least 2 so we
2216                          * have to actually call vm_object_deallocate()
2217                          * (after clearing the chainlock).
2218                          */
2219                         object_bypasses++;
2220                         dodealloc = 1;
2221                 }
2222
2223                 /*
2224                  * Ok, we want to loop on the new object->bbobj association,
2225                  * possibly collapsing it further.  However if dodealloc is
2226                  * non-zero we have to deallocate the backing_object which
2227                  * itself can potentially undergo a collapse, creating a
2228                  * recursion depth issue with the LWKT token subsystem.
2229                  *
2230                  * In the case where we must deallocate the backing_object
2231                  * it is possible now that the backing_object has a single
2232                  * shadow count on some other object (not represented here
2233                  * as yet), since it no longer shadows us.  Thus when we
2234                  * call vm_object_deallocate() it may attempt to collapse
2235                  * itself into its remaining parent.
2236                  */
2237                 if (dodealloc) {
2238                         struct vm_object_dealloc_list *dtmp;
2239
2240                         vm_object_chain_release(backing_object);
2241                         vm_object_unlock(backing_object);
2242                         /* backing_object remains held */
2243
2244                         /*
2245                          * Auto-deallocation list for caller convenience.
2246                          */
2247                         if (dlistp == NULL)
2248                                 dlistp = &dlist;
2249
2250                         dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK);
2251                         dtmp->object = backing_object;
2252                         dtmp->next = *dlistp;
2253                         *dlistp = dtmp;
2254                 } else {
2255                         vm_object_chain_release(backing_object);
2256                         vm_object_drop(backing_object);
2257                 }
2258                 /* backing_object = NULL; not needed */
2259                 /* loop */
2260         }
2261
2262         /*
2263          * Clean up any left over backing_object
2264          */
2265         if (backing_object) {
2266                 vm_object_chain_release(backing_object);
2267                 vm_object_drop(backing_object);
2268         }
2269
2270         /*
2271          * Clean up any auto-deallocation list.  This is a convenience
2272          * for top-level callers so they don't have to pass &dlist.
2273          * Do not clean up any caller-passed dlistp, the caller will
2274          * do that.
2275          */
2276         if (dlist)
2277                 vm_object_deallocate_list(&dlist);
2278
2279 }
2280
2281 /*
2282  * vm_object_collapse() may collect additional objects in need of
2283  * deallocation.  This routine deallocates these objects.  The
2284  * deallocation itself can trigger additional collapses (which the
2285  * deallocate function takes care of).  This procedure is used to
2286  * reduce procedural recursion since these vm_object shadow chains
2287  * can become quite long.
2288  */
2289 void
2290 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp)
2291 {
2292         struct vm_object_dealloc_list *dlist;
2293
2294         while ((dlist = *dlistp) != NULL) {
2295                 *dlistp = dlist->next;
2296                 vm_object_lock(dlist->object);
2297                 vm_object_deallocate_locked(dlist->object);
2298                 vm_object_drop(dlist->object);
2299                 kfree(dlist, M_TEMP);
2300         }
2301 }
2302
2303 /*
2304  * Removes all physical pages in the specified object range from the
2305  * object's list of pages.
2306  *
2307  * No requirements.
2308  */
2309 static int vm_object_page_remove_callback(vm_page_t p, void *data);
2310
2311 void
2312 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2313                       boolean_t clean_only)
2314 {
2315         struct rb_vm_page_scan_info info;
2316         int all;
2317
2318         /*
2319          * Degenerate cases and assertions
2320          */
2321         vm_object_hold(object);
2322         if (object == NULL ||
2323             (object->resident_page_count == 0 && object->swblock_count == 0)) {
2324                 vm_object_drop(object);
2325                 return;
2326         }
2327         KASSERT(object->type != OBJT_PHYS, 
2328                 ("attempt to remove pages from a physical object"));
2329
2330         /*
2331          * Indicate that paging is occuring on the object
2332          */
2333         vm_object_pip_add(object, 1);
2334
2335         /*
2336          * Figure out the actual removal range and whether we are removing
2337          * the entire contents of the object or not.  If removing the entire
2338          * contents, be sure to get all pages, even those that might be 
2339          * beyond the end of the object.
2340          */
2341         info.start_pindex = start;
2342         if (end == 0)
2343                 info.end_pindex = (vm_pindex_t)-1;
2344         else
2345                 info.end_pindex = end - 1;
2346         info.limit = clean_only;
2347         all = (start == 0 && info.end_pindex >= object->size - 1);
2348
2349         /*
2350          * Loop until we are sure we have gotten them all.
2351          */
2352         do {
2353                 info.error = 0;
2354                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2355                                         vm_object_page_remove_callback, &info);
2356         } while (info.error);
2357
2358         /*
2359          * Remove any related swap if throwing away pages, or for
2360          * non-swap objects (the swap is a clean copy in that case).
2361          */
2362         if (object->type != OBJT_SWAP || clean_only == FALSE) {
2363                 if (all)
2364                         swap_pager_freespace_all(object);
2365                 else
2366                         swap_pager_freespace(object, info.start_pindex,
2367                              info.end_pindex - info.start_pindex + 1);
2368         }
2369
2370         /*
2371          * Cleanup
2372          */
2373         vm_object_pip_wakeup(object);
2374         vm_object_drop(object);
2375 }
2376
2377 /*
2378  * The caller must hold the object
2379  */
2380 static int
2381 vm_object_page_remove_callback(vm_page_t p, void *data)
2382 {
2383         struct rb_vm_page_scan_info *info = data;
2384
2385         if (vm_page_busy_try(p, TRUE)) {
2386                 vm_page_sleep_busy(p, TRUE, "vmopar");
2387                 info->error = 1;
2388                 return(0);
2389         }
2390
2391         /*
2392          * Wired pages cannot be destroyed, but they can be invalidated
2393          * and we do so if clean_only (limit) is not set.
2394          *
2395          * WARNING!  The page may be wired due to being part of a buffer
2396          *           cache buffer, and the buffer might be marked B_CACHE.
2397          *           This is fine as part of a truncation but VFSs must be
2398          *           sure to fix the buffer up when re-extending the file.
2399          *
2400          * NOTE!     PG_NEED_COMMIT is ignored.
2401          */
2402         if (p->wire_count != 0) {
2403                 vm_page_protect(p, VM_PROT_NONE);
2404                 if (info->limit == 0)
2405                         p->valid = 0;
2406                 vm_page_wakeup(p);
2407                 return(0);
2408         }
2409
2410         /*
2411          * limit is our clean_only flag.  If set and the page is dirty or
2412          * requires a commit, do not free it.  If set and the page is being
2413          * held by someone, do not free it.
2414          */
2415         if (info->limit && p->valid) {
2416                 vm_page_test_dirty(p);
2417                 if ((p->valid & p->dirty) || (p->flags & PG_NEED_COMMIT)) {
2418                         vm_page_wakeup(p);
2419                         return(0);
2420                 }
2421 #if 0
2422                 if (p->hold_count) {
2423                         vm_page_wakeup(p);
2424                         return(0);
2425                 }
2426 #endif
2427         }
2428
2429         /*
2430          * Destroy the page
2431          */
2432         vm_page_protect(p, VM_PROT_NONE);
2433         vm_page_free(p);
2434         return(0);
2435 }
2436
2437 /*
2438  * Coalesces two objects backing up adjoining regions of memory into a
2439  * single object.
2440  *
2441  * returns TRUE if objects were combined.
2442  *
2443  * NOTE: Only works at the moment if the second object is NULL -
2444  *       if it's not, which object do we lock first?
2445  *
2446  * Parameters:
2447  *      prev_object     First object to coalesce
2448  *      prev_offset     Offset into prev_object
2449  *      next_object     Second object into coalesce
2450  *      next_offset     Offset into next_object
2451  *
2452  *      prev_size       Size of reference to prev_object
2453  *      next_size       Size of reference to next_object
2454  *
2455  * The caller does not need to hold (prev_object) but must have a stable
2456  * pointer to it (typically by holding the vm_map locked).
2457  */
2458 boolean_t
2459 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
2460                    vm_size_t prev_size, vm_size_t next_size)
2461 {
2462         vm_pindex_t next_pindex;
2463
2464         if (prev_object == NULL)
2465                 return (TRUE);
2466
2467         vm_object_hold(prev_object);
2468
2469         if (prev_object->type != OBJT_DEFAULT &&
2470             prev_object->type != OBJT_SWAP) {
2471                 vm_object_drop(prev_object);
2472                 return (FALSE);
2473         }
2474
2475         /*
2476          * Try to collapse the object first
2477          */
2478         vm_object_chain_acquire(prev_object);
2479         vm_object_collapse(prev_object, NULL);
2480
2481         /*
2482          * Can't coalesce if: . more than one reference . paged out . shadows
2483          * another object . has a copy elsewhere (any of which mean that the
2484          * pages not mapped to prev_entry may be in use anyway)
2485          */
2486
2487         if (prev_object->backing_object != NULL) {
2488                 vm_object_chain_release(prev_object);
2489                 vm_object_drop(prev_object);
2490                 return (FALSE);
2491         }
2492
2493         prev_size >>= PAGE_SHIFT;
2494         next_size >>= PAGE_SHIFT;
2495         next_pindex = prev_pindex + prev_size;
2496
2497         if ((prev_object->ref_count > 1) &&
2498             (prev_object->size != next_pindex)) {
2499                 vm_object_chain_release(prev_object);
2500                 vm_object_drop(prev_object);
2501                 return (FALSE);
2502         }
2503
2504         /*
2505          * Remove any pages that may still be in the object from a previous
2506          * deallocation.
2507          */
2508         if (next_pindex < prev_object->size) {
2509                 vm_object_page_remove(prev_object,
2510                                       next_pindex,
2511                                       next_pindex + next_size, FALSE);
2512                 if (prev_object->type == OBJT_SWAP)
2513                         swap_pager_freespace(prev_object,
2514                                              next_pindex, next_size);
2515         }
2516
2517         /*
2518          * Extend the object if necessary.
2519          */
2520         if (next_pindex + next_size > prev_object->size)
2521                 prev_object->size = next_pindex + next_size;
2522
2523         vm_object_chain_release(prev_object);
2524         vm_object_drop(prev_object);
2525         return (TRUE);
2526 }
2527
2528 /*
2529  * Make the object writable and flag is being possibly dirty.
2530  *
2531  * The caller must hold the object. XXX called from vm_page_dirty(),
2532  * There is currently no requirement to hold the object.
2533  */
2534 void
2535 vm_object_set_writeable_dirty(vm_object_t object)
2536 {
2537         struct vnode *vp;
2538
2539         /*vm_object_assert_held(object);*/
2540         /*
2541          * Avoid contention in vm fault path by checking the state before
2542          * issuing an atomic op on it.
2543          */
2544         if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) !=
2545             (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) {
2546                 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
2547         }
2548         if (object->type == OBJT_VNODE &&
2549             (vp = (struct vnode *)object->handle) != NULL) {
2550                 if ((vp->v_flag & VOBJDIRTY) == 0) {
2551                         vsetflags(vp, VOBJDIRTY);
2552                 }
2553         }
2554 }
2555
2556 #include "opt_ddb.h"
2557 #ifdef DDB
2558 #include <sys/kernel.h>
2559
2560 #include <sys/cons.h>
2561
2562 #include <ddb/ddb.h>
2563
2564 static int      _vm_object_in_map (vm_map_t map, vm_object_t object,
2565                                        vm_map_entry_t entry);
2566 static int      vm_object_in_map (vm_object_t object);
2567
2568 /*
2569  * The caller must hold the object.
2570  */
2571 static int
2572 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2573 {
2574         vm_map_t tmpm;
2575         vm_map_entry_t tmpe;
2576         vm_object_t obj, nobj;
2577         int entcount;
2578
2579         if (map == 0)
2580                 return 0;
2581         if (entry == 0) {
2582                 tmpe = map->header.next;
2583                 entcount = map->nentries;
2584                 while (entcount-- && (tmpe != &map->header)) {
2585                         if( _vm_object_in_map(map, object, tmpe)) {
2586                                 return 1;
2587                         }
2588                         tmpe = tmpe->next;
2589                 }
2590                 return (0);
2591         }
2592         switch(entry->maptype) {
2593         case VM_MAPTYPE_SUBMAP:
2594                 tmpm = entry->object.sub_map;
2595                 tmpe = tmpm->header.next;
2596                 entcount = tmpm->nentries;
2597                 while (entcount-- && tmpe != &tmpm->header) {
2598                         if( _vm_object_in_map(tmpm, object, tmpe)) {
2599                                 return 1;
2600                         }
2601                         tmpe = tmpe->next;
2602                 }
2603                 break;
2604         case VM_MAPTYPE_NORMAL:
2605         case VM_MAPTYPE_VPAGETABLE:
2606                 obj = entry->object.vm_object;
2607                 while (obj) {
2608                         if (obj == object) {
2609                                 if (obj != entry->object.vm_object)
2610                                         vm_object_drop(obj);
2611                                 return 1;
2612                         }
2613                         while ((nobj = obj->backing_object) != NULL) {
2614                                 vm_object_hold(nobj);
2615                                 if (nobj == obj->backing_object)
2616                                         break;
2617                                 vm_object_drop(nobj);
2618                         }
2619                         if (obj != entry->object.vm_object) {
2620                                 if (nobj)
2621                                         vm_object_lock_swap();
2622                                 vm_object_drop(obj);
2623                         }
2624                         obj = nobj;
2625                 }
2626                 break;
2627         default:
2628                 break;
2629         }
2630         return 0;
2631 }
2632
2633 static int vm_object_in_map_callback(struct proc *p, void *data);
2634
2635 struct vm_object_in_map_info {
2636         vm_object_t object;
2637         int rv;
2638 };
2639
2640 /*
2641  * Debugging only
2642  */
2643 static int
2644 vm_object_in_map(vm_object_t object)
2645 {
2646         struct vm_object_in_map_info info;
2647
2648         info.rv = 0;
2649         info.object = object;
2650
2651         allproc_scan(vm_object_in_map_callback, &info);
2652         if (info.rv)
2653                 return 1;
2654         if( _vm_object_in_map(&kernel_map, object, 0))
2655                 return 1;
2656         if( _vm_object_in_map(&pager_map, object, 0))
2657                 return 1;
2658         if( _vm_object_in_map(&buffer_map, object, 0))
2659                 return 1;
2660         return 0;
2661 }
2662
2663 /*
2664  * Debugging only
2665  */
2666 static int
2667 vm_object_in_map_callback(struct proc *p, void *data)
2668 {
2669         struct vm_object_in_map_info *info = data;
2670
2671         if (p->p_vmspace) {
2672                 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
2673                         info->rv = 1;
2674                         return -1;
2675                 }
2676         }
2677         return (0);
2678 }
2679
2680 DB_SHOW_COMMAND(vmochk, vm_object_check)
2681 {
2682         vm_object_t object;
2683
2684         /*
2685          * make sure that internal objs are in a map somewhere
2686          * and none have zero ref counts.
2687          */
2688         for (object = TAILQ_FIRST(&vm_object_list);
2689                         object != NULL;
2690                         object = TAILQ_NEXT(object, object_list)) {
2691                 if (object->type == OBJT_MARKER)
2692                         continue;
2693                 if (object->handle == NULL &&
2694                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2695                         if (object->ref_count == 0) {
2696                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2697                                         (long)object->size);
2698                         }
2699                         if (!vm_object_in_map(object)) {
2700                                 db_printf(
2701                         "vmochk: internal obj is not in a map: "
2702                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2703                                     object->ref_count, (u_long)object->size, 
2704                                     (u_long)object->size,
2705                                     (void *)object->backing_object);
2706                         }
2707                 }
2708         }
2709 }
2710
2711 /*
2712  * Debugging only
2713  */
2714 DB_SHOW_COMMAND(object, vm_object_print_static)
2715 {
2716         /* XXX convert args. */
2717         vm_object_t object = (vm_object_t)addr;
2718         boolean_t full = have_addr;
2719
2720         vm_page_t p;
2721
2722         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2723 #define count   was_count
2724
2725         int count;
2726
2727         if (object == NULL)
2728                 return;
2729
2730         db_iprintf(
2731             "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
2732             object, (int)object->type, (u_long)object->size,
2733             object->resident_page_count, object->ref_count, object->flags);
2734         /*
2735          * XXX no %qd in kernel.  Truncate object->backing_object_offset.
2736          */
2737         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
2738             object->shadow_count, 
2739             object->backing_object ? object->backing_object->ref_count : 0,
2740             object->backing_object, (long)object->backing_object_offset);
2741
2742         if (!full)
2743                 return;
2744
2745         db_indent += 2;
2746         count = 0;
2747         RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
2748                 if (count == 0)
2749                         db_iprintf("memory:=");
2750                 else if (count == 6) {
2751                         db_printf("\n");
2752                         db_iprintf(" ...");
2753                         count = 0;
2754                 } else
2755                         db_printf(",");
2756                 count++;
2757
2758                 db_printf("(off=0x%lx,page=0x%lx)",
2759                     (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
2760         }
2761         if (count != 0)
2762                 db_printf("\n");
2763         db_indent -= 2;
2764 }
2765
2766 /* XXX. */
2767 #undef count
2768
2769 /*
2770  * XXX need this non-static entry for calling from vm_map_print.
2771  *
2772  * Debugging only
2773  */
2774 void
2775 vm_object_print(/* db_expr_t */ long addr,
2776                 boolean_t have_addr,
2777                 /* db_expr_t */ long count,
2778                 char *modif)
2779 {
2780         vm_object_print_static(addr, have_addr, count, modif);
2781 }
2782
2783 /*
2784  * Debugging only
2785  */
2786 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2787 {
2788         vm_object_t object;
2789         int nl = 0;
2790         int c;
2791         for (object = TAILQ_FIRST(&vm_object_list);
2792                         object != NULL;
2793                         object = TAILQ_NEXT(object, object_list)) {
2794                 vm_pindex_t idx, fidx;
2795                 vm_pindex_t osize;
2796                 vm_paddr_t pa = -1, padiff;
2797                 int rcount;
2798                 vm_page_t m;
2799
2800                 if (object->type == OBJT_MARKER)
2801                         continue;
2802                 db_printf("new object: %p\n", (void *)object);
2803                 if ( nl > 18) {
2804                         c = cngetc();
2805                         if (c != ' ')
2806                                 return;
2807                         nl = 0;
2808                 }
2809                 nl++;
2810                 rcount = 0;
2811                 fidx = 0;
2812                 osize = object->size;
2813                 if (osize > 128)
2814                         osize = 128;
2815                 for (idx = 0; idx < osize; idx++) {
2816                         m = vm_page_lookup(object, idx);
2817                         if (m == NULL) {
2818                                 if (rcount) {
2819                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2820                                                 (long)fidx, rcount, (long)pa);
2821                                         if ( nl > 18) {
2822                                                 c = cngetc();
2823                                                 if (c != ' ')
2824                                                         return;
2825                                                 nl = 0;
2826                                         }
2827                                         nl++;
2828                                         rcount = 0;
2829                                 }
2830                                 continue;
2831                         }
2832
2833                                 
2834                         if (rcount &&
2835                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2836                                 ++rcount;
2837                                 continue;
2838                         }
2839                         if (rcount) {
2840                                 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2841                                 padiff >>= PAGE_SHIFT;
2842                                 padiff &= PQ_L2_MASK;
2843                                 if (padiff == 0) {
2844                                         pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2845                                         ++rcount;
2846                                         continue;
2847                                 }
2848                                 db_printf(" index(%ld)run(%d)pa(0x%lx)",
2849                                         (long)fidx, rcount, (long)pa);
2850                                 db_printf("pd(%ld)\n", (long)padiff);
2851                                 if ( nl > 18) {
2852                                         c = cngetc();
2853                                         if (c != ' ')
2854                                                 return;
2855                                         nl = 0;
2856                                 }
2857                                 nl++;
2858                         }
2859                         fidx = idx;
2860                         pa = VM_PAGE_TO_PHYS(m);
2861                         rcount = 1;
2862                 }
2863                 if (rcount) {
2864                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2865                                 (long)fidx, rcount, (long)pa);
2866                         if ( nl > 18) {
2867                                 c = cngetc();
2868                                 if (c != ' ')
2869                                         return;
2870                                 nl = 0;
2871                         }
2872                         nl++;
2873                 }
2874         }
2875 }
2876 #endif /* DDB */