Merge branch 'vendor/BZIP'
[dragonfly.git] / sys / vm / vm_map.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *      This product includes software developed by the University of
21  *      California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
67  * $DragonFly: src/sys/vm/vm_map.c,v 1.56 2007/04/29 18:25:41 dillon Exp $
68  */
69
70 /*
71  *      Virtual memory mapping module.
72  */
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/kernel.h>
77 #include <sys/proc.h>
78 #include <sys/lock.h>
79 #include <sys/vmmeter.h>
80 #include <sys/mman.h>
81 #include <sys/vnode.h>
82 #include <sys/resourcevar.h>
83 #include <sys/shm.h>
84 #include <sys/tree.h>
85 #include <sys/malloc.h>
86
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_zone.h>
98
99 #include <sys/thread2.h>
100 #include <sys/sysref2.h>
101
102 /*
103  * Virtual memory maps provide for the mapping, protection, and sharing
104  * of virtual memory objects.  In addition, this module provides for an
105  * efficient virtual copy of memory from one map to another.
106  *
107  * Synchronization is required prior to most operations.
108  *
109  * Maps consist of an ordered doubly-linked list of simple entries.
110  * A hint and a RB tree is used to speed-up lookups.
111  *
112  * Callers looking to modify maps specify start/end addresses which cause
113  * the related map entry to be clipped if necessary, and then later
114  * recombined if the pieces remained compatible.
115  *
116  * Virtual copy operations are performed by copying VM object references
117  * from one map to another, and then marking both regions as copy-on-write.
118  */
119 static void vmspace_terminate(struct vmspace *vm);
120 static void vmspace_lock(struct vmspace *vm);
121 static void vmspace_unlock(struct vmspace *vm);
122 static void vmspace_dtor(void *obj, void *private);
123
124 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
125
126 struct sysref_class vmspace_sysref_class = {
127         .name =         "vmspace",
128         .mtype =        M_VMSPACE,
129         .proto =        SYSREF_PROTO_VMSPACE,
130         .offset =       offsetof(struct vmspace, vm_sysref),
131         .objsize =      sizeof(struct vmspace),
132         .mag_capacity = 32,
133         .flags = SRC_MANAGEDINIT,
134         .dtor = vmspace_dtor,
135         .ops = {
136                 .terminate = (sysref_terminate_func_t)vmspace_terminate,
137                 .lock = (sysref_lock_func_t)vmspace_lock,
138                 .unlock = (sysref_lock_func_t)vmspace_unlock
139         }
140 };
141
142 #define VMEPERCPU       2
143
144 static struct vm_zone mapentzone_store, mapzone_store;
145 static vm_zone_t mapentzone, mapzone;
146 static struct vm_object mapentobj, mapobj;
147
148 static struct vm_map_entry map_entry_init[MAX_MAPENT];
149 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU];
150 static struct vm_map map_init[MAX_KMAP];
151
152 static void vm_map_entry_shadow(vm_map_entry_t entry);
153 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
154 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
155 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
156 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
157 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
158 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
159 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
160                 vm_map_entry_t);
161 static void vm_map_split (vm_map_entry_t);
162 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
163
164 /*
165  * Initialize the vm_map module.  Must be called before any other vm_map
166  * routines.
167  *
168  * Map and entry structures are allocated from the general purpose
169  * memory pool with some exceptions:
170  *
171  *      - The kernel map is allocated statically.
172  *      - Initial kernel map entries are allocated out of a static pool.
173  *
174  *      These restrictions are necessary since malloc() uses the
175  *      maps and requires map entries.
176  *
177  * Called from the low level boot code only.
178  */
179 void
180 vm_map_startup(void)
181 {
182         mapzone = &mapzone_store;
183         zbootinit(mapzone, "MAP", sizeof (struct vm_map),
184                 map_init, MAX_KMAP);
185         mapentzone = &mapentzone_store;
186         zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
187                 map_entry_init, MAX_MAPENT);
188 }
189
190 /*
191  * Called prior to any vmspace allocations.
192  *
193  * Called from the low level boot code only.
194  */
195 void
196 vm_init2(void) 
197 {
198         zinitna(mapentzone, &mapentobj, NULL, 0, 0, 
199                 ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
200         zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
201         pmap_init2();
202         vm_object_init2();
203 }
204
205
206 /*
207  * Red black tree functions
208  *
209  * The caller must hold the related map lock.
210  */
211 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
212 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
213
214 /* a->start is address, and the only field has to be initialized */
215 static int
216 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
217 {
218         if (a->start < b->start)
219                 return(-1);
220         else if (a->start > b->start)
221                 return(1);
222         return(0);
223 }
224
225 /*
226  * Allocate a vmspace structure, including a vm_map and pmap.
227  * Initialize numerous fields.  While the initial allocation is zerod,
228  * subsequence reuse from the objcache leaves elements of the structure
229  * intact (particularly the pmap), so portions must be zerod.
230  *
231  * The structure is not considered activated until we call sysref_activate().
232  *
233  * No requirements.
234  */
235 struct vmspace *
236 vmspace_alloc(vm_offset_t min, vm_offset_t max)
237 {
238         struct vmspace *vm;
239
240         lwkt_gettoken(&vmspace_token);
241         vm = sysref_alloc(&vmspace_sysref_class);
242         bzero(&vm->vm_startcopy,
243               (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
244         vm_map_init(&vm->vm_map, min, max, NULL);
245         pmap_pinit(vmspace_pmap(vm));           /* (some fields reused) */
246         vm->vm_map.pmap = vmspace_pmap(vm);             /* XXX */
247         vm->vm_shm = NULL;
248         vm->vm_exitingcnt = 0;
249         cpu_vmspace_alloc(vm);
250         sysref_activate(&vm->vm_sysref);
251         lwkt_reltoken(&vmspace_token);
252
253         return (vm);
254 }
255
256 /*
257  * dtor function - Some elements of the pmap are retained in the
258  * free-cached vmspaces to improve performance.  We have to clean them up
259  * here before returning the vmspace to the memory pool.
260  *
261  * No requirements.
262  */
263 static void
264 vmspace_dtor(void *obj, void *private)
265 {
266         struct vmspace *vm = obj;
267
268         pmap_puninit(vmspace_pmap(vm));
269 }
270
271 /*
272  * Called in two cases: 
273  *
274  * (1) When the last sysref is dropped, but exitingcnt might still be
275  *     non-zero.
276  *
277  * (2) When there are no sysrefs (i.e. refcnt is negative) left and the
278  *     exitingcnt becomes zero
279  *
280  * sysref will not scrap the object until we call sysref_put() once more
281  * after the last ref has been dropped.
282  *
283  * Interlocked by the sysref API.
284  */
285 static void
286 vmspace_terminate(struct vmspace *vm)
287 {
288         int count;
289
290         /*
291          * If exitingcnt is non-zero we can't get rid of the entire vmspace
292          * yet, but we can scrap user memory.
293          */
294         lwkt_gettoken(&vmspace_token);
295         if (vm->vm_exitingcnt) {
296                 shmexit(vm);
297                 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
298                                   VM_MAX_USER_ADDRESS);
299                 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
300                               VM_MAX_USER_ADDRESS);
301                 lwkt_reltoken(&vmspace_token);
302                 return;
303         }
304         cpu_vmspace_free(vm);
305
306         /*
307          * Make sure any SysV shm is freed, it might not have in
308          * exit1()
309          */
310         shmexit(vm);
311
312         KKASSERT(vm->vm_upcalls == NULL);
313
314         /*
315          * Lock the map, to wait out all other references to it.
316          * Delete all of the mappings and pages they hold, then call
317          * the pmap module to reclaim anything left.
318          */
319         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
320         vm_map_lock(&vm->vm_map);
321         vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
322                 vm->vm_map.max_offset, &count);
323         vm_map_unlock(&vm->vm_map);
324         vm_map_entry_release(count);
325
326         pmap_release(vmspace_pmap(vm));
327         sysref_put(&vm->vm_sysref);
328         lwkt_reltoken(&vmspace_token);
329 }
330
331 /*
332  * vmspaces are not currently locked.
333  */
334 static void
335 vmspace_lock(struct vmspace *vm __unused)
336 {
337 }
338
339 static void
340 vmspace_unlock(struct vmspace *vm __unused)
341 {
342 }
343
344 /*
345  * This is called during exit indicating that the vmspace is no
346  * longer in used by an exiting process, but the process has not yet
347  * been cleaned up.
348  *
349  * No requirements.
350  */
351 void
352 vmspace_exitbump(struct vmspace *vm)
353 {
354         lwkt_gettoken(&vmspace_token);
355         ++vm->vm_exitingcnt;
356         lwkt_reltoken(&vmspace_token);
357 }
358
359 /*
360  * This is called in the wait*() handling code.  The vmspace can be terminated
361  * after the last wait is finished using it.
362  *
363  * No requirements.
364  */
365 void
366 vmspace_exitfree(struct proc *p)
367 {
368         struct vmspace *vm;
369
370         lwkt_gettoken(&vmspace_token);
371         vm = p->p_vmspace;
372         p->p_vmspace = NULL;
373
374         if (--vm->vm_exitingcnt == 0 && sysref_isinactive(&vm->vm_sysref))
375                 vmspace_terminate(vm);
376         lwkt_reltoken(&vmspace_token);
377 }
378
379 /*
380  * Swap useage is determined by taking the proportional swap used by
381  * VM objects backing the VM map.  To make up for fractional losses,
382  * if the VM object has any swap use at all the associated map entries
383  * count for at least 1 swap page.
384  *
385  * No requirements.
386  */
387 int
388 vmspace_swap_count(struct vmspace *vmspace)
389 {
390         vm_map_t map = &vmspace->vm_map;
391         vm_map_entry_t cur;
392         vm_object_t object;
393         int count = 0;
394         int n;
395
396         lwkt_gettoken(&vmspace_token);
397         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
398                 switch(cur->maptype) {
399                 case VM_MAPTYPE_NORMAL:
400                 case VM_MAPTYPE_VPAGETABLE:
401                         if ((object = cur->object.vm_object) == NULL)
402                                 break;
403                         if (object->swblock_count) {
404                                 n = (cur->end - cur->start) / PAGE_SIZE;
405                                 count += object->swblock_count *
406                                     SWAP_META_PAGES * n / object->size + 1;
407                         }
408                         break;
409                 default:
410                         break;
411                 }
412         }
413         lwkt_reltoken(&vmspace_token);
414         return(count);
415 }
416
417 /*
418  * Calculate the approximate number of anonymous pages in use by
419  * this vmspace.  To make up for fractional losses, we count each
420  * VM object as having at least 1 anonymous page.
421  *
422  * No requirements.
423  */
424 int
425 vmspace_anonymous_count(struct vmspace *vmspace)
426 {
427         vm_map_t map = &vmspace->vm_map;
428         vm_map_entry_t cur;
429         vm_object_t object;
430         int count = 0;
431
432         lwkt_gettoken(&vmspace_token);
433         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
434                 switch(cur->maptype) {
435                 case VM_MAPTYPE_NORMAL:
436                 case VM_MAPTYPE_VPAGETABLE:
437                         if ((object = cur->object.vm_object) == NULL)
438                                 break;
439                         if (object->type != OBJT_DEFAULT &&
440                             object->type != OBJT_SWAP) {
441                                 break;
442                         }
443                         count += object->resident_page_count;
444                         break;
445                 default:
446                         break;
447                 }
448         }
449         lwkt_reltoken(&vmspace_token);
450         return(count);
451 }
452
453 /*
454  * Creates and returns a new empty VM map with the given physical map
455  * structure, and having the given lower and upper address bounds.
456  *
457  * No requirements.
458  */
459 vm_map_t
460 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max)
461 {
462         if (result == NULL)
463                 result = zalloc(mapzone);
464         vm_map_init(result, min, max, pmap);
465         return (result);
466 }
467
468 /*
469  * Initialize an existing vm_map structure such as that in the vmspace
470  * structure.  The pmap is initialized elsewhere.
471  *
472  * No requirements.
473  */
474 void
475 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
476 {
477         map->header.next = map->header.prev = &map->header;
478         RB_INIT(&map->rb_root);
479         map->nentries = 0;
480         map->size = 0;
481         map->system_map = 0;
482         map->infork = 0;
483         map->min_offset = min;
484         map->max_offset = max;
485         map->pmap = pmap;
486         map->first_free = &map->header;
487         map->hint = &map->header;
488         map->timestamp = 0;
489         lockinit(&map->lock, "thrd_sleep", 0, 0);
490 }
491
492 /*
493  * Shadow the vm_map_entry's object.  This typically needs to be done when
494  * a write fault is taken on an entry which had previously been cloned by
495  * fork().  The shared object (which might be NULL) must become private so
496  * we add a shadow layer above it.
497  *
498  * Object allocation for anonymous mappings is defered as long as possible.
499  * When creating a shadow, however, the underlying object must be instantiated
500  * so it can be shared.
501  *
502  * If the map segment is governed by a virtual page table then it is
503  * possible to address offsets beyond the mapped area.  Just allocate
504  * a maximally sized object for this case.
505  *
506  * The vm_map must be exclusively locked.
507  * No other requirements.
508  */
509 static
510 void
511 vm_map_entry_shadow(vm_map_entry_t entry)
512 {
513         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
514                 vm_object_shadow(&entry->object.vm_object, &entry->offset,
515                                  0x7FFFFFFF);   /* XXX */
516         } else {
517                 vm_object_shadow(&entry->object.vm_object, &entry->offset,
518                                  atop(entry->end - entry->start));
519         }
520         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
521 }
522
523 /*
524  * Allocate an object for a vm_map_entry.
525  *
526  * Object allocation for anonymous mappings is defered as long as possible.
527  * This function is called when we can defer no longer, generally when a map
528  * entry might be split or forked or takes a page fault.
529  *
530  * If the map segment is governed by a virtual page table then it is
531  * possible to address offsets beyond the mapped area.  Just allocate
532  * a maximally sized object for this case.
533  *
534  * The vm_map must be exclusively locked.
535  * No other requirements.
536  */
537 void 
538 vm_map_entry_allocate_object(vm_map_entry_t entry)
539 {
540         vm_object_t obj;
541
542         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
543                 obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
544         } else {
545                 obj = vm_object_allocate(OBJT_DEFAULT,
546                                          atop(entry->end - entry->start));
547         }
548         entry->object.vm_object = obj;
549         entry->offset = 0;
550 }
551
552 /*
553  * Set an initial negative count so the first attempt to reserve
554  * space preloads a bunch of vm_map_entry's for this cpu.  Also
555  * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
556  * map a new page for vm_map_entry structures.  SMP systems are
557  * particularly sensitive.
558  *
559  * This routine is called in early boot so we cannot just call
560  * vm_map_entry_reserve().
561  *
562  * Called from the low level boot code only (for each cpu)
563  */
564 void
565 vm_map_entry_reserve_cpu_init(globaldata_t gd)
566 {
567         vm_map_entry_t entry;
568         int i;
569
570         gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
571         entry = &cpu_map_entry_init[gd->gd_cpuid][0];
572         for (i = 0; i < VMEPERCPU; ++i, ++entry) {
573                 entry->next = gd->gd_vme_base;
574                 gd->gd_vme_base = entry;
575         }
576 }
577
578 /*
579  * Reserves vm_map_entry structures so code later on can manipulate
580  * map_entry structures within a locked map without blocking trying
581  * to allocate a new vm_map_entry.
582  *
583  * No requirements.
584  */
585 int
586 vm_map_entry_reserve(int count)
587 {
588         struct globaldata *gd = mycpu;
589         vm_map_entry_t entry;
590
591         /*
592          * Make sure we have enough structures in gd_vme_base to handle
593          * the reservation request.
594          */
595         crit_enter();
596         while (gd->gd_vme_avail < count) {
597                 entry = zalloc(mapentzone);
598                 entry->next = gd->gd_vme_base;
599                 gd->gd_vme_base = entry;
600                 ++gd->gd_vme_avail;
601         }
602         gd->gd_vme_avail -= count;
603         crit_exit();
604
605         return(count);
606 }
607
608 /*
609  * Releases previously reserved vm_map_entry structures that were not
610  * used.  If we have too much junk in our per-cpu cache clean some of
611  * it out.
612  *
613  * No requirements.
614  */
615 void
616 vm_map_entry_release(int count)
617 {
618         struct globaldata *gd = mycpu;
619         vm_map_entry_t entry;
620
621         crit_enter();
622         gd->gd_vme_avail += count;
623         while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
624                 entry = gd->gd_vme_base;
625                 KKASSERT(entry != NULL);
626                 gd->gd_vme_base = entry->next;
627                 --gd->gd_vme_avail;
628                 crit_exit();
629                 zfree(mapentzone, entry);
630                 crit_enter();
631         }
632         crit_exit();
633 }
634
635 /*
636  * Reserve map entry structures for use in kernel_map itself.  These
637  * entries have *ALREADY* been reserved on a per-cpu basis when the map
638  * was inited.  This function is used by zalloc() to avoid a recursion
639  * when zalloc() itself needs to allocate additional kernel memory.
640  *
641  * This function works like the normal reserve but does not load the
642  * vm_map_entry cache (because that would result in an infinite
643  * recursion).  Note that gd_vme_avail may go negative.  This is expected.
644  *
645  * Any caller of this function must be sure to renormalize after
646  * potentially eating entries to ensure that the reserve supply
647  * remains intact.
648  *
649  * No requirements.
650  */
651 int
652 vm_map_entry_kreserve(int count)
653 {
654         struct globaldata *gd = mycpu;
655
656         crit_enter();
657         gd->gd_vme_avail -= count;
658         crit_exit();
659         KASSERT(gd->gd_vme_base != NULL,
660                 ("no reserved entries left, gd_vme_avail = %d\n",
661                 gd->gd_vme_avail));
662         return(count);
663 }
664
665 /*
666  * Release previously reserved map entries for kernel_map.  We do not
667  * attempt to clean up like the normal release function as this would
668  * cause an unnecessary (but probably not fatal) deep procedure call.
669  *
670  * No requirements.
671  */
672 void
673 vm_map_entry_krelease(int count)
674 {
675         struct globaldata *gd = mycpu;
676
677         crit_enter();
678         gd->gd_vme_avail += count;
679         crit_exit();
680 }
681
682 /*
683  * Allocates a VM map entry for insertion.  No entry fields are filled in.
684  *
685  * The entries should have previously been reserved.  The reservation count
686  * is tracked in (*countp).
687  *
688  * No requirements.
689  */
690 static vm_map_entry_t
691 vm_map_entry_create(vm_map_t map, int *countp)
692 {
693         struct globaldata *gd = mycpu;
694         vm_map_entry_t entry;
695
696         KKASSERT(*countp > 0);
697         --*countp;
698         crit_enter();
699         entry = gd->gd_vme_base;
700         KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
701         gd->gd_vme_base = entry->next;
702         crit_exit();
703
704         return(entry);
705 }
706
707 /*
708  * Dispose of a vm_map_entry that is no longer being referenced.
709  *
710  * No requirements.
711  */
712 static void
713 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
714 {
715         struct globaldata *gd = mycpu;
716
717         KKASSERT(map->hint != entry);
718         KKASSERT(map->first_free != entry);
719
720         ++*countp;
721         crit_enter();
722         entry->next = gd->gd_vme_base;
723         gd->gd_vme_base = entry;
724         crit_exit();
725 }
726
727
728 /*
729  * Insert/remove entries from maps.
730  *
731  * The related map must be exclusively locked.
732  * No other requirements.
733  *
734  * NOTE! We currently acquire the vmspace_token only to avoid races
735  *       against the pageout daemon's calls to vmspace_*_count(), which
736  *       are unable to safely lock the vm_map without potentially
737  *       deadlocking.
738  */
739 static __inline void
740 vm_map_entry_link(vm_map_t map,
741                   vm_map_entry_t after_where,
742                   vm_map_entry_t entry)
743 {
744         ASSERT_VM_MAP_LOCKED(map);
745
746         lwkt_gettoken(&vmspace_token);
747         map->nentries++;
748         entry->prev = after_where;
749         entry->next = after_where->next;
750         entry->next->prev = entry;
751         after_where->next = entry;
752         if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
753                 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
754         lwkt_reltoken(&vmspace_token);
755 }
756
757 static __inline void
758 vm_map_entry_unlink(vm_map_t map,
759                     vm_map_entry_t entry)
760 {
761         vm_map_entry_t prev;
762         vm_map_entry_t next;
763
764         ASSERT_VM_MAP_LOCKED(map);
765
766         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
767                 panic("vm_map_entry_unlink: attempt to mess with "
768                       "locked entry! %p", entry);
769         }
770         lwkt_gettoken(&vmspace_token);
771         prev = entry->prev;
772         next = entry->next;
773         next->prev = prev;
774         prev->next = next;
775         vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
776         map->nentries--;
777         lwkt_reltoken(&vmspace_token);
778 }
779
780 /*
781  * Finds the map entry containing (or immediately preceding) the specified
782  * address in the given map.  The entry is returned in (*entry).
783  *
784  * The boolean result indicates whether the address is actually contained
785  * in the map.
786  *
787  * The related map must be locked.
788  * No other requirements.
789  */
790 boolean_t
791 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
792 {
793         vm_map_entry_t tmp;
794         vm_map_entry_t last;
795
796         ASSERT_VM_MAP_LOCKED(map);
797 #if 0
798         /*
799          * XXX TEMPORARILY DISABLED.  For some reason our attempt to revive
800          * the hint code with the red-black lookup meets with system crashes
801          * and lockups.  We do not yet know why.
802          *
803          * It is possible that the problem is related to the setting
804          * of the hint during map_entry deletion, in the code specified
805          * at the GGG comment later on in this file.
806          */
807         /*
808          * Quickly check the cached hint, there's a good chance of a match.
809          */
810         if (map->hint != &map->header) {
811                 tmp = map->hint;
812                 if (address >= tmp->start && address < tmp->end) {
813                         *entry = tmp;
814                         return(TRUE);
815                 }
816         }
817 #endif
818
819         /*
820          * Locate the record from the top of the tree.  'last' tracks the
821          * closest prior record and is returned if no match is found, which
822          * in binary tree terms means tracking the most recent right-branch
823          * taken.  If there is no prior record, &map->header is returned.
824          */
825         last = &map->header;
826         tmp = RB_ROOT(&map->rb_root);
827
828         while (tmp) {
829                 if (address >= tmp->start) {
830                         if (address < tmp->end) {
831                                 *entry = tmp;
832                                 map->hint = tmp;
833                                 return(TRUE);
834                         }
835                         last = tmp;
836                         tmp = RB_RIGHT(tmp, rb_entry);
837                 } else {
838                         tmp = RB_LEFT(tmp, rb_entry);
839                 }
840         }
841         *entry = last;
842         return (FALSE);
843 }
844
845 /*
846  * Inserts the given whole VM object into the target map at the specified
847  * address range.  The object's size should match that of the address range.
848  *
849  * The map must be exclusively locked.
850  * The caller must have reserved sufficient vm_map_entry structures.
851  *
852  * If object is non-NULL, ref count must be bumped by caller
853  * prior to making call to account for the new entry.
854  */
855 int
856 vm_map_insert(vm_map_t map, int *countp,
857               vm_object_t object, vm_ooffset_t offset,
858               vm_offset_t start, vm_offset_t end,
859               vm_maptype_t maptype,
860               vm_prot_t prot, vm_prot_t max,
861               int cow)
862 {
863         vm_map_entry_t new_entry;
864         vm_map_entry_t prev_entry;
865         vm_map_entry_t temp_entry;
866         vm_eflags_t protoeflags;
867
868         ASSERT_VM_MAP_LOCKED(map);
869
870         /*
871          * Check that the start and end points are not bogus.
872          */
873         if ((start < map->min_offset) || (end > map->max_offset) ||
874             (start >= end))
875                 return (KERN_INVALID_ADDRESS);
876
877         /*
878          * Find the entry prior to the proposed starting address; if it's part
879          * of an existing entry, this range is bogus.
880          */
881         if (vm_map_lookup_entry(map, start, &temp_entry))
882                 return (KERN_NO_SPACE);
883
884         prev_entry = temp_entry;
885
886         /*
887          * Assert that the next entry doesn't overlap the end point.
888          */
889
890         if ((prev_entry->next != &map->header) &&
891             (prev_entry->next->start < end))
892                 return (KERN_NO_SPACE);
893
894         protoeflags = 0;
895
896         if (cow & MAP_COPY_ON_WRITE)
897                 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
898
899         if (cow & MAP_NOFAULT) {
900                 protoeflags |= MAP_ENTRY_NOFAULT;
901
902                 KASSERT(object == NULL,
903                         ("vm_map_insert: paradoxical MAP_NOFAULT request"));
904         }
905         if (cow & MAP_DISABLE_SYNCER)
906                 protoeflags |= MAP_ENTRY_NOSYNC;
907         if (cow & MAP_DISABLE_COREDUMP)
908                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
909         if (cow & MAP_IS_STACK)
910                 protoeflags |= MAP_ENTRY_STACK;
911
912         lwkt_gettoken(&vm_token);
913         lwkt_gettoken(&vmobj_token);
914
915         if (object) {
916                 /*
917                  * When object is non-NULL, it could be shared with another
918                  * process.  We have to set or clear OBJ_ONEMAPPING 
919                  * appropriately.
920                  */
921                 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
922                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
923                 }
924         }
925         else if ((prev_entry != &map->header) &&
926                  (prev_entry->eflags == protoeflags) &&
927                  (prev_entry->end == start) &&
928                  (prev_entry->wired_count == 0) &&
929                  prev_entry->maptype == maptype &&
930                  ((prev_entry->object.vm_object == NULL) ||
931                   vm_object_coalesce(prev_entry->object.vm_object,
932                                      OFF_TO_IDX(prev_entry->offset),
933                                      (vm_size_t)(prev_entry->end - prev_entry->start),
934                                      (vm_size_t)(end - prev_entry->end)))) {
935                 /*
936                  * We were able to extend the object.  Determine if we
937                  * can extend the previous map entry to include the 
938                  * new range as well.
939                  */
940                 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
941                     (prev_entry->protection == prot) &&
942                     (prev_entry->max_protection == max)) {
943                         lwkt_reltoken(&vmobj_token);
944                         lwkt_reltoken(&vm_token);
945                         map->size += (end - prev_entry->end);
946                         prev_entry->end = end;
947                         vm_map_simplify_entry(map, prev_entry, countp);
948                         return (KERN_SUCCESS);
949                 }
950
951                 /*
952                  * If we can extend the object but cannot extend the
953                  * map entry, we have to create a new map entry.  We
954                  * must bump the ref count on the extended object to
955                  * account for it.  object may be NULL.
956                  */
957                 object = prev_entry->object.vm_object;
958                 offset = prev_entry->offset +
959                         (prev_entry->end - prev_entry->start);
960                 vm_object_reference_locked(object);
961         }
962
963         lwkt_reltoken(&vmobj_token);
964         lwkt_reltoken(&vm_token);
965
966         /*
967          * NOTE: if conditionals fail, object can be NULL here.  This occurs
968          * in things like the buffer map where we manage kva but do not manage
969          * backing objects.
970          */
971
972         /*
973          * Create a new entry
974          */
975
976         new_entry = vm_map_entry_create(map, countp);
977         new_entry->start = start;
978         new_entry->end = end;
979
980         new_entry->maptype = maptype;
981         new_entry->eflags = protoeflags;
982         new_entry->object.vm_object = object;
983         new_entry->offset = offset;
984         new_entry->aux.master_pde = 0;
985
986         new_entry->inheritance = VM_INHERIT_DEFAULT;
987         new_entry->protection = prot;
988         new_entry->max_protection = max;
989         new_entry->wired_count = 0;
990
991         /*
992          * Insert the new entry into the list
993          */
994
995         vm_map_entry_link(map, prev_entry, new_entry);
996         map->size += new_entry->end - new_entry->start;
997
998         /*
999          * Update the free space hint.  Entries cannot overlap.
1000          * An exact comparison is needed to avoid matching
1001          * against the map->header.
1002          */
1003         if ((map->first_free == prev_entry) &&
1004             (prev_entry->end == new_entry->start)) {
1005                 map->first_free = new_entry;
1006         }
1007
1008 #if 0
1009         /*
1010          * Temporarily removed to avoid MAP_STACK panic, due to
1011          * MAP_STACK being a huge hack.  Will be added back in
1012          * when MAP_STACK (and the user stack mapping) is fixed.
1013          */
1014         /*
1015          * It may be possible to simplify the entry
1016          */
1017         vm_map_simplify_entry(map, new_entry, countp);
1018 #endif
1019
1020         /*
1021          * Try to pre-populate the page table.  Mappings governed by virtual
1022          * page tables cannot be prepopulated without a lot of work, so
1023          * don't try.
1024          */
1025         if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
1026             maptype != VM_MAPTYPE_VPAGETABLE) {
1027                 pmap_object_init_pt(map->pmap, start, prot,
1028                                     object, OFF_TO_IDX(offset), end - start,
1029                                     cow & MAP_PREFAULT_PARTIAL);
1030         }
1031
1032         return (KERN_SUCCESS);
1033 }
1034
1035 /*
1036  * Find sufficient space for `length' bytes in the given map, starting at
1037  * `start'.  Returns 0 on success, 1 on no space.
1038  *
1039  * This function will returned an arbitrarily aligned pointer.  If no
1040  * particular alignment is required you should pass align as 1.  Note that
1041  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1042  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1043  * argument.
1044  *
1045  * 'align' should be a power of 2 but is not required to be.
1046  *
1047  * The map must be exclusively locked.
1048  * No other requirements.
1049  */
1050 int
1051 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1052                  vm_size_t align, int flags, vm_offset_t *addr)
1053 {
1054         vm_map_entry_t entry, next;
1055         vm_offset_t end;
1056         vm_offset_t align_mask;
1057
1058         if (start < map->min_offset)
1059                 start = map->min_offset;
1060         if (start > map->max_offset)
1061                 return (1);
1062
1063         /*
1064          * If the alignment is not a power of 2 we will have to use
1065          * a mod/division, set align_mask to a special value.
1066          */
1067         if ((align | (align - 1)) + 1 != (align << 1))
1068                 align_mask = (vm_offset_t)-1;
1069         else
1070                 align_mask = align - 1;
1071
1072 retry:
1073         /*
1074          * Look for the first possible address; if there's already something
1075          * at this address, we have to start after it.
1076          */
1077         if (start == map->min_offset) {
1078                 if ((entry = map->first_free) != &map->header)
1079                         start = entry->end;
1080         } else {
1081                 vm_map_entry_t tmp;
1082
1083                 if (vm_map_lookup_entry(map, start, &tmp))
1084                         start = tmp->end;
1085                 entry = tmp;
1086         }
1087
1088         /*
1089          * Look through the rest of the map, trying to fit a new region in the
1090          * gap between existing regions, or after the very last region.
1091          */
1092         for (;; start = (entry = next)->end) {
1093                 /*
1094                  * Adjust the proposed start by the requested alignment,
1095                  * be sure that we didn't wrap the address.
1096                  */
1097                 if (align_mask == (vm_offset_t)-1)
1098                         end = ((start + align - 1) / align) * align;
1099                 else
1100                         end = (start + align_mask) & ~align_mask;
1101                 if (end < start)
1102                         return (1);
1103                 start = end;
1104                 /*
1105                  * Find the end of the proposed new region.  Be sure we didn't
1106                  * go beyond the end of the map, or wrap around the address.
1107                  * Then check to see if this is the last entry or if the 
1108                  * proposed end fits in the gap between this and the next
1109                  * entry.
1110                  */
1111                 end = start + length;
1112                 if (end > map->max_offset || end < start)
1113                         return (1);
1114                 next = entry->next;
1115
1116                 /*
1117                  * If the next entry's start address is beyond the desired
1118                  * end address we may have found a good entry.
1119                  *
1120                  * If the next entry is a stack mapping we do not map into
1121                  * the stack's reserved space.
1122                  *
1123                  * XXX continue to allow mapping into the stack's reserved
1124                  * space if doing a MAP_STACK mapping inside a MAP_STACK
1125                  * mapping, for backwards compatibility.  But the caller
1126                  * really should use MAP_STACK | MAP_TRYFIXED if they
1127                  * want to do that.
1128                  */
1129                 if (next == &map->header)
1130                         break;
1131                 if (next->start >= end) {
1132                         if ((next->eflags & MAP_ENTRY_STACK) == 0)
1133                                 break;
1134                         if (flags & MAP_STACK)
1135                                 break;
1136                         if (next->start - next->aux.avail_ssize >= end)
1137                                 break;
1138                 }
1139         }
1140         map->hint = entry;
1141         if (map == &kernel_map) {
1142                 vm_offset_t ksize;
1143                 if ((ksize = round_page(start + length)) > kernel_vm_end) {
1144                         pmap_growkernel(ksize);
1145                         goto retry;
1146                 }
1147         }
1148         *addr = start;
1149         return (0);
1150 }
1151
1152 /*
1153  * vm_map_find finds an unallocated region in the target address map with
1154  * the given length.  The search is defined to be first-fit from the
1155  * specified address; the region found is returned in the same parameter.
1156  *
1157  * If object is non-NULL, ref count must be bumped by caller
1158  * prior to making call to account for the new entry.
1159  *
1160  * No requirements.  This function will lock the map temporarily.
1161  */
1162 int
1163 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1164             vm_offset_t *addr,  vm_size_t length, vm_size_t align,
1165             boolean_t fitit,
1166             vm_maptype_t maptype,
1167             vm_prot_t prot, vm_prot_t max,
1168             int cow)
1169 {
1170         vm_offset_t start;
1171         int result;
1172         int count;
1173
1174         start = *addr;
1175
1176         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1177         vm_map_lock(map);
1178         if (fitit) {
1179                 if (vm_map_findspace(map, start, length, align, 0, addr)) {
1180                         vm_map_unlock(map);
1181                         vm_map_entry_release(count);
1182                         return (KERN_NO_SPACE);
1183                 }
1184                 start = *addr;
1185         }
1186         result = vm_map_insert(map, &count, object, offset,
1187                                start, start + length,
1188                                maptype,
1189                                prot, max,
1190                                cow);
1191         vm_map_unlock(map);
1192         vm_map_entry_release(count);
1193
1194         return (result);
1195 }
1196
1197 /*
1198  * Simplify the given map entry by merging with either neighbor.  This
1199  * routine also has the ability to merge with both neighbors.
1200  *
1201  * This routine guarentees that the passed entry remains valid (though
1202  * possibly extended).  When merging, this routine may delete one or
1203  * both neighbors.  No action is taken on entries which have their
1204  * in-transition flag set.
1205  *
1206  * The map must be exclusively locked.
1207  */
1208 void
1209 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1210 {
1211         vm_map_entry_t next, prev;
1212         vm_size_t prevsize, esize;
1213
1214         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1215                 ++mycpu->gd_cnt.v_intrans_coll;
1216                 return;
1217         }
1218
1219         if (entry->maptype == VM_MAPTYPE_SUBMAP)
1220                 return;
1221
1222         prev = entry->prev;
1223         if (prev != &map->header) {
1224                 prevsize = prev->end - prev->start;
1225                 if ( (prev->end == entry->start) &&
1226                      (prev->maptype == entry->maptype) &&
1227                      (prev->object.vm_object == entry->object.vm_object) &&
1228                      (!prev->object.vm_object ||
1229                         (prev->offset + prevsize == entry->offset)) &&
1230                      (prev->eflags == entry->eflags) &&
1231                      (prev->protection == entry->protection) &&
1232                      (prev->max_protection == entry->max_protection) &&
1233                      (prev->inheritance == entry->inheritance) &&
1234                      (prev->wired_count == entry->wired_count)) {
1235                         if (map->first_free == prev)
1236                                 map->first_free = entry;
1237                         if (map->hint == prev)
1238                                 map->hint = entry;
1239                         vm_map_entry_unlink(map, prev);
1240                         entry->start = prev->start;
1241                         entry->offset = prev->offset;
1242                         if (prev->object.vm_object)
1243                                 vm_object_deallocate(prev->object.vm_object);
1244                         vm_map_entry_dispose(map, prev, countp);
1245                 }
1246         }
1247
1248         next = entry->next;
1249         if (next != &map->header) {
1250                 esize = entry->end - entry->start;
1251                 if ((entry->end == next->start) &&
1252                     (next->maptype == entry->maptype) &&
1253                     (next->object.vm_object == entry->object.vm_object) &&
1254                      (!entry->object.vm_object ||
1255                         (entry->offset + esize == next->offset)) &&
1256                     (next->eflags == entry->eflags) &&
1257                     (next->protection == entry->protection) &&
1258                     (next->max_protection == entry->max_protection) &&
1259                     (next->inheritance == entry->inheritance) &&
1260                     (next->wired_count == entry->wired_count)) {
1261                         if (map->first_free == next)
1262                                 map->first_free = entry;
1263                         if (map->hint == next)
1264                                 map->hint = entry;
1265                         vm_map_entry_unlink(map, next);
1266                         entry->end = next->end;
1267                         if (next->object.vm_object)
1268                                 vm_object_deallocate(next->object.vm_object);
1269                         vm_map_entry_dispose(map, next, countp);
1270                 }
1271         }
1272 }
1273
1274 /*
1275  * Asserts that the given entry begins at or after the specified address.
1276  * If necessary, it splits the entry into two.
1277  */
1278 #define vm_map_clip_start(map, entry, startaddr, countp)                \
1279 {                                                                       \
1280         if (startaddr > entry->start)                                   \
1281                 _vm_map_clip_start(map, entry, startaddr, countp);      \
1282 }
1283
1284 /*
1285  * This routine is called only when it is known that the entry must be split.
1286  *
1287  * The map must be exclusively locked.
1288  */
1289 static void
1290 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start,
1291                    int *countp)
1292 {
1293         vm_map_entry_t new_entry;
1294
1295         /*
1296          * Split off the front portion -- note that we must insert the new
1297          * entry BEFORE this one, so that this entry has the specified
1298          * starting address.
1299          */
1300
1301         vm_map_simplify_entry(map, entry, countp);
1302
1303         /*
1304          * If there is no object backing this entry, we might as well create
1305          * one now.  If we defer it, an object can get created after the map
1306          * is clipped, and individual objects will be created for the split-up
1307          * map.  This is a bit of a hack, but is also about the best place to
1308          * put this improvement.
1309          */
1310         if (entry->object.vm_object == NULL && !map->system_map) {
1311                 vm_map_entry_allocate_object(entry);
1312         }
1313
1314         new_entry = vm_map_entry_create(map, countp);
1315         *new_entry = *entry;
1316
1317         new_entry->end = start;
1318         entry->offset += (start - entry->start);
1319         entry->start = start;
1320
1321         vm_map_entry_link(map, entry->prev, new_entry);
1322
1323         switch(entry->maptype) {
1324         case VM_MAPTYPE_NORMAL:
1325         case VM_MAPTYPE_VPAGETABLE:
1326                 vm_object_reference(new_entry->object.vm_object);
1327                 break;
1328         default:
1329                 break;
1330         }
1331 }
1332
1333 /*
1334  * Asserts that the given entry ends at or before the specified address.
1335  * If necessary, it splits the entry into two.
1336  *
1337  * The map must be exclusively locked.
1338  */
1339 #define vm_map_clip_end(map, entry, endaddr, countp)            \
1340 {                                                               \
1341         if (endaddr < entry->end)                               \
1342                 _vm_map_clip_end(map, entry, endaddr, countp);  \
1343 }
1344
1345 /*
1346  * This routine is called only when it is known that the entry must be split.
1347  *
1348  * The map must be exclusively locked.
1349  */
1350 static void
1351 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end,
1352                  int *countp)
1353 {
1354         vm_map_entry_t new_entry;
1355
1356         /*
1357          * If there is no object backing this entry, we might as well create
1358          * one now.  If we defer it, an object can get created after the map
1359          * is clipped, and individual objects will be created for the split-up
1360          * map.  This is a bit of a hack, but is also about the best place to
1361          * put this improvement.
1362          */
1363
1364         if (entry->object.vm_object == NULL && !map->system_map) {
1365                 vm_map_entry_allocate_object(entry);
1366         }
1367
1368         /*
1369          * Create a new entry and insert it AFTER the specified entry
1370          */
1371
1372         new_entry = vm_map_entry_create(map, countp);
1373         *new_entry = *entry;
1374
1375         new_entry->start = entry->end = end;
1376         new_entry->offset += (end - entry->start);
1377
1378         vm_map_entry_link(map, entry, new_entry);
1379
1380         switch(entry->maptype) {
1381         case VM_MAPTYPE_NORMAL:
1382         case VM_MAPTYPE_VPAGETABLE:
1383                 vm_object_reference(new_entry->object.vm_object);
1384                 break;
1385         default:
1386                 break;
1387         }
1388 }
1389
1390 /*
1391  * Asserts that the starting and ending region addresses fall within the
1392  * valid range for the map.
1393  */
1394 #define VM_MAP_RANGE_CHECK(map, start, end)     \
1395 {                                               \
1396         if (start < vm_map_min(map))            \
1397                 start = vm_map_min(map);        \
1398         if (end > vm_map_max(map))              \
1399                 end = vm_map_max(map);          \
1400         if (start > end)                        \
1401                 start = end;                    \
1402 }
1403
1404 /*
1405  * Used to block when an in-transition collison occurs.  The map
1406  * is unlocked for the sleep and relocked before the return.
1407  */
1408 static
1409 void
1410 vm_map_transition_wait(vm_map_t map)
1411 {
1412         vm_map_unlock(map);
1413         tsleep(map, 0, "vment", 0);
1414         vm_map_lock(map);
1415 }
1416
1417 /*
1418  * When we do blocking operations with the map lock held it is
1419  * possible that a clip might have occured on our in-transit entry,
1420  * requiring an adjustment to the entry in our loop.  These macros
1421  * help the pageable and clip_range code deal with the case.  The
1422  * conditional costs virtually nothing if no clipping has occured.
1423  */
1424
1425 #define CLIP_CHECK_BACK(entry, save_start)              \
1426     do {                                                \
1427             while (entry->start != save_start) {        \
1428                     entry = entry->prev;                \
1429                     KASSERT(entry != &map->header, ("bad entry clip")); \
1430             }                                           \
1431     } while(0)
1432
1433 #define CLIP_CHECK_FWD(entry, save_end)                 \
1434     do {                                                \
1435             while (entry->end != save_end) {            \
1436                     entry = entry->next;                \
1437                     KASSERT(entry != &map->header, ("bad entry clip")); \
1438             }                                           \
1439     } while(0)
1440
1441
1442 /*
1443  * Clip the specified range and return the base entry.  The
1444  * range may cover several entries starting at the returned base
1445  * and the first and last entry in the covering sequence will be
1446  * properly clipped to the requested start and end address.
1447  *
1448  * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1449  * flag.
1450  *
1451  * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1452  * covered by the requested range.
1453  *
1454  * The map must be exclusively locked on entry and will remain locked
1455  * on return. If no range exists or the range contains holes and you
1456  * specified that no holes were allowed, NULL will be returned.  This
1457  * routine may temporarily unlock the map in order avoid a deadlock when
1458  * sleeping.
1459  */
1460 static
1461 vm_map_entry_t
1462 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end, 
1463                   int *countp, int flags)
1464 {
1465         vm_map_entry_t start_entry;
1466         vm_map_entry_t entry;
1467
1468         /*
1469          * Locate the entry and effect initial clipping.  The in-transition
1470          * case does not occur very often so do not try to optimize it.
1471          */
1472 again:
1473         if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1474                 return (NULL);
1475         entry = start_entry;
1476         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1477                 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1478                 ++mycpu->gd_cnt.v_intrans_coll;
1479                 ++mycpu->gd_cnt.v_intrans_wait;
1480                 vm_map_transition_wait(map);
1481                 /*
1482                  * entry and/or start_entry may have been clipped while
1483                  * we slept, or may have gone away entirely.  We have
1484                  * to restart from the lookup.
1485                  */
1486                 goto again;
1487         }
1488
1489         /*
1490          * Since we hold an exclusive map lock we do not have to restart
1491          * after clipping, even though clipping may block in zalloc.
1492          */
1493         vm_map_clip_start(map, entry, start, countp);
1494         vm_map_clip_end(map, entry, end, countp);
1495         entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1496
1497         /*
1498          * Scan entries covered by the range.  When working on the next
1499          * entry a restart need only re-loop on the current entry which
1500          * we have already locked, since 'next' may have changed.  Also,
1501          * even though entry is safe, it may have been clipped so we
1502          * have to iterate forwards through the clip after sleeping.
1503          */
1504         while (entry->next != &map->header && entry->next->start < end) {
1505                 vm_map_entry_t next = entry->next;
1506
1507                 if (flags & MAP_CLIP_NO_HOLES) {
1508                         if (next->start > entry->end) {
1509                                 vm_map_unclip_range(map, start_entry,
1510                                         start, entry->end, countp, flags);
1511                                 return(NULL);
1512                         }
1513                 }
1514
1515                 if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1516                         vm_offset_t save_end = entry->end;
1517                         next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1518                         ++mycpu->gd_cnt.v_intrans_coll;
1519                         ++mycpu->gd_cnt.v_intrans_wait;
1520                         vm_map_transition_wait(map);
1521
1522                         /*
1523                          * clips might have occured while we blocked.
1524                          */
1525                         CLIP_CHECK_FWD(entry, save_end);
1526                         CLIP_CHECK_BACK(start_entry, start);
1527                         continue;
1528                 }
1529                 /*
1530                  * No restart necessary even though clip_end may block, we
1531                  * are holding the map lock.
1532                  */
1533                 vm_map_clip_end(map, next, end, countp);
1534                 next->eflags |= MAP_ENTRY_IN_TRANSITION;
1535                 entry = next;
1536         }
1537         if (flags & MAP_CLIP_NO_HOLES) {
1538                 if (entry->end != end) {
1539                         vm_map_unclip_range(map, start_entry,
1540                                 start, entry->end, countp, flags);
1541                         return(NULL);
1542                 }
1543         }
1544         return(start_entry);
1545 }
1546
1547 /*
1548  * Undo the effect of vm_map_clip_range().  You should pass the same
1549  * flags and the same range that you passed to vm_map_clip_range().
1550  * This code will clear the in-transition flag on the entries and
1551  * wake up anyone waiting.  This code will also simplify the sequence
1552  * and attempt to merge it with entries before and after the sequence.
1553  *
1554  * The map must be locked on entry and will remain locked on return.
1555  *
1556  * Note that you should also pass the start_entry returned by
1557  * vm_map_clip_range().  However, if you block between the two calls
1558  * with the map unlocked please be aware that the start_entry may
1559  * have been clipped and you may need to scan it backwards to find
1560  * the entry corresponding with the original start address.  You are
1561  * responsible for this, vm_map_unclip_range() expects the correct
1562  * start_entry to be passed to it and will KASSERT otherwise.
1563  */
1564 static
1565 void
1566 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry,
1567                     vm_offset_t start, vm_offset_t end,
1568                     int *countp, int flags)
1569 {
1570         vm_map_entry_t entry;
1571
1572         entry = start_entry;
1573
1574         KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1575         while (entry != &map->header && entry->start < end) {
1576                 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1577                         ("in-transition flag not set during unclip on: %p",
1578                         entry));
1579                 KASSERT(entry->end <= end,
1580                         ("unclip_range: tail wasn't clipped"));
1581                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1582                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1583                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1584                         wakeup(map);
1585                 }
1586                 entry = entry->next;
1587         }
1588
1589         /*
1590          * Simplification does not block so there is no restart case.
1591          */
1592         entry = start_entry;
1593         while (entry != &map->header && entry->start < end) {
1594                 vm_map_simplify_entry(map, entry, countp);
1595                 entry = entry->next;
1596         }
1597 }
1598
1599 /*
1600  * Mark the given range as handled by a subordinate map.
1601  *
1602  * This range must have been created with vm_map_find(), and no other
1603  * operations may have been performed on this range prior to calling
1604  * vm_map_submap().
1605  *
1606  * Submappings cannot be removed.
1607  *
1608  * No requirements.
1609  */
1610 int
1611 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1612 {
1613         vm_map_entry_t entry;
1614         int result = KERN_INVALID_ARGUMENT;
1615         int count;
1616
1617         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1618         vm_map_lock(map);
1619
1620         VM_MAP_RANGE_CHECK(map, start, end);
1621
1622         if (vm_map_lookup_entry(map, start, &entry)) {
1623                 vm_map_clip_start(map, entry, start, &count);
1624         } else {
1625                 entry = entry->next;
1626         }
1627
1628         vm_map_clip_end(map, entry, end, &count);
1629
1630         if ((entry->start == start) && (entry->end == end) &&
1631             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1632             (entry->object.vm_object == NULL)) {
1633                 entry->object.sub_map = submap;
1634                 entry->maptype = VM_MAPTYPE_SUBMAP;
1635                 result = KERN_SUCCESS;
1636         }
1637         vm_map_unlock(map);
1638         vm_map_entry_release(count);
1639
1640         return (result);
1641 }
1642
1643 /*
1644  * Sets the protection of the specified address region in the target map. 
1645  * If "set_max" is specified, the maximum protection is to be set;
1646  * otherwise, only the current protection is affected.
1647  *
1648  * The protection is not applicable to submaps, but is applicable to normal
1649  * maps and maps governed by virtual page tables.  For example, when operating
1650  * on a virtual page table our protection basically controls how COW occurs
1651  * on the backing object, whereas the virtual page table abstraction itself
1652  * is an abstraction for userland.
1653  *
1654  * No requirements.
1655  */
1656 int
1657 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1658                vm_prot_t new_prot, boolean_t set_max)
1659 {
1660         vm_map_entry_t current;
1661         vm_map_entry_t entry;
1662         int count;
1663
1664         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1665         vm_map_lock(map);
1666
1667         VM_MAP_RANGE_CHECK(map, start, end);
1668
1669         if (vm_map_lookup_entry(map, start, &entry)) {
1670                 vm_map_clip_start(map, entry, start, &count);
1671         } else {
1672                 entry = entry->next;
1673         }
1674
1675         /*
1676          * Make a first pass to check for protection violations.
1677          */
1678         current = entry;
1679         while ((current != &map->header) && (current->start < end)) {
1680                 if (current->maptype == VM_MAPTYPE_SUBMAP) {
1681                         vm_map_unlock(map);
1682                         vm_map_entry_release(count);
1683                         return (KERN_INVALID_ARGUMENT);
1684                 }
1685                 if ((new_prot & current->max_protection) != new_prot) {
1686                         vm_map_unlock(map);
1687                         vm_map_entry_release(count);
1688                         return (KERN_PROTECTION_FAILURE);
1689                 }
1690                 current = current->next;
1691         }
1692
1693         /*
1694          * Go back and fix up protections. [Note that clipping is not
1695          * necessary the second time.]
1696          */
1697         current = entry;
1698
1699         while ((current != &map->header) && (current->start < end)) {
1700                 vm_prot_t old_prot;
1701
1702                 vm_map_clip_end(map, current, end, &count);
1703
1704                 old_prot = current->protection;
1705                 if (set_max) {
1706                         current->protection =
1707                             (current->max_protection = new_prot) &
1708                             old_prot;
1709                 } else {
1710                         current->protection = new_prot;
1711                 }
1712
1713                 /*
1714                  * Update physical map if necessary. Worry about copy-on-write
1715                  * here -- CHECK THIS XXX
1716                  */
1717
1718                 if (current->protection != old_prot) {
1719 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1720                                                         VM_PROT_ALL)
1721
1722                         pmap_protect(map->pmap, current->start,
1723                             current->end,
1724                             current->protection & MASK(current));
1725 #undef  MASK
1726                 }
1727
1728                 vm_map_simplify_entry(map, current, &count);
1729
1730                 current = current->next;
1731         }
1732
1733         vm_map_unlock(map);
1734         vm_map_entry_release(count);
1735         return (KERN_SUCCESS);
1736 }
1737
1738 /*
1739  * This routine traverses a processes map handling the madvise
1740  * system call.  Advisories are classified as either those effecting
1741  * the vm_map_entry structure, or those effecting the underlying
1742  * objects.
1743  *
1744  * The <value> argument is used for extended madvise calls.
1745  *
1746  * No requirements.
1747  */
1748 int
1749 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1750                int behav, off_t value)
1751 {
1752         vm_map_entry_t current, entry;
1753         int modify_map = 0;
1754         int error = 0;
1755         int count;
1756
1757         /*
1758          * Some madvise calls directly modify the vm_map_entry, in which case
1759          * we need to use an exclusive lock on the map and we need to perform 
1760          * various clipping operations.  Otherwise we only need a read-lock
1761          * on the map.
1762          */
1763
1764         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1765
1766         switch(behav) {
1767         case MADV_NORMAL:
1768         case MADV_SEQUENTIAL:
1769         case MADV_RANDOM:
1770         case MADV_NOSYNC:
1771         case MADV_AUTOSYNC:
1772         case MADV_NOCORE:
1773         case MADV_CORE:
1774         case MADV_SETMAP:
1775         case MADV_INVAL:
1776                 modify_map = 1;
1777                 vm_map_lock(map);
1778                 break;
1779         case MADV_WILLNEED:
1780         case MADV_DONTNEED:
1781         case MADV_FREE:
1782                 vm_map_lock_read(map);
1783                 break;
1784         default:
1785                 vm_map_entry_release(count);
1786                 return (EINVAL);
1787         }
1788
1789         /*
1790          * Locate starting entry and clip if necessary.
1791          */
1792
1793         VM_MAP_RANGE_CHECK(map, start, end);
1794
1795         if (vm_map_lookup_entry(map, start, &entry)) {
1796                 if (modify_map)
1797                         vm_map_clip_start(map, entry, start, &count);
1798         } else {
1799                 entry = entry->next;
1800         }
1801
1802         if (modify_map) {
1803                 /*
1804                  * madvise behaviors that are implemented in the vm_map_entry.
1805                  *
1806                  * We clip the vm_map_entry so that behavioral changes are
1807                  * limited to the specified address range.
1808                  */
1809                 for (current = entry;
1810                      (current != &map->header) && (current->start < end);
1811                      current = current->next
1812                 ) {
1813                         if (current->maptype == VM_MAPTYPE_SUBMAP)
1814                                 continue;
1815
1816                         vm_map_clip_end(map, current, end, &count);
1817
1818                         switch (behav) {
1819                         case MADV_NORMAL:
1820                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1821                                 break;
1822                         case MADV_SEQUENTIAL:
1823                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1824                                 break;
1825                         case MADV_RANDOM:
1826                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1827                                 break;
1828                         case MADV_NOSYNC:
1829                                 current->eflags |= MAP_ENTRY_NOSYNC;
1830                                 break;
1831                         case MADV_AUTOSYNC:
1832                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
1833                                 break;
1834                         case MADV_NOCORE:
1835                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
1836                                 break;
1837                         case MADV_CORE:
1838                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1839                                 break;
1840                         case MADV_INVAL:
1841                                 /*
1842                                  * Invalidate the related pmap entries, used
1843                                  * to flush portions of the real kernel's
1844                                  * pmap when the caller has removed or
1845                                  * modified existing mappings in a virtual
1846                                  * page table.
1847                                  */
1848                                 pmap_remove(map->pmap,
1849                                             current->start, current->end);
1850                                 break;
1851                         case MADV_SETMAP:
1852                                 /*
1853                                  * Set the page directory page for a map
1854                                  * governed by a virtual page table.  Mark
1855                                  * the entry as being governed by a virtual
1856                                  * page table if it is not.
1857                                  *
1858                                  * XXX the page directory page is stored
1859                                  * in the avail_ssize field if the map_entry.
1860                                  *
1861                                  * XXX the map simplification code does not
1862                                  * compare this field so weird things may
1863                                  * happen if you do not apply this function
1864                                  * to the entire mapping governed by the
1865                                  * virtual page table.
1866                                  */
1867                                 if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
1868                                         error = EINVAL;
1869                                         break;
1870                                 }
1871                                 current->aux.master_pde = value;
1872                                 pmap_remove(map->pmap,
1873                                             current->start, current->end);
1874                                 break;
1875                         default:
1876                                 error = EINVAL;
1877                                 break;
1878                         }
1879                         vm_map_simplify_entry(map, current, &count);
1880                 }
1881                 vm_map_unlock(map);
1882         } else {
1883                 vm_pindex_t pindex;
1884                 int count;
1885
1886                 /*
1887                  * madvise behaviors that are implemented in the underlying
1888                  * vm_object.
1889                  *
1890                  * Since we don't clip the vm_map_entry, we have to clip
1891                  * the vm_object pindex and count.
1892                  *
1893                  * NOTE!  We currently do not support these functions on
1894                  * virtual page tables.
1895                  */
1896                 for (current = entry;
1897                      (current != &map->header) && (current->start < end);
1898                      current = current->next
1899                 ) {
1900                         vm_offset_t useStart;
1901
1902                         if (current->maptype != VM_MAPTYPE_NORMAL)
1903                                 continue;
1904
1905                         pindex = OFF_TO_IDX(current->offset);
1906                         count = atop(current->end - current->start);
1907                         useStart = current->start;
1908
1909                         if (current->start < start) {
1910                                 pindex += atop(start - current->start);
1911                                 count -= atop(start - current->start);
1912                                 useStart = start;
1913                         }
1914                         if (current->end > end)
1915                                 count -= atop(current->end - end);
1916
1917                         if (count <= 0)
1918                                 continue;
1919
1920                         vm_object_madvise(current->object.vm_object,
1921                                           pindex, count, behav);
1922
1923                         /*
1924                          * Try to populate the page table.  Mappings governed
1925                          * by virtual page tables cannot be pre-populated
1926                          * without a lot of work so don't try.
1927                          */
1928                         if (behav == MADV_WILLNEED &&
1929                             current->maptype != VM_MAPTYPE_VPAGETABLE) {
1930                                 pmap_object_init_pt(
1931                                     map->pmap, 
1932                                     useStart,
1933                                     current->protection,
1934                                     current->object.vm_object,
1935                                     pindex, 
1936                                     (count << PAGE_SHIFT),
1937                                     MAP_PREFAULT_MADVISE
1938                                 );
1939                         }
1940                 }
1941                 vm_map_unlock_read(map);
1942         }
1943         vm_map_entry_release(count);
1944         return(error);
1945 }       
1946
1947
1948 /*
1949  * Sets the inheritance of the specified address range in the target map.
1950  * Inheritance affects how the map will be shared with child maps at the
1951  * time of vm_map_fork.
1952  */
1953 int
1954 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1955                vm_inherit_t new_inheritance)
1956 {
1957         vm_map_entry_t entry;
1958         vm_map_entry_t temp_entry;
1959         int count;
1960
1961         switch (new_inheritance) {
1962         case VM_INHERIT_NONE:
1963         case VM_INHERIT_COPY:
1964         case VM_INHERIT_SHARE:
1965                 break;
1966         default:
1967                 return (KERN_INVALID_ARGUMENT);
1968         }
1969
1970         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1971         vm_map_lock(map);
1972
1973         VM_MAP_RANGE_CHECK(map, start, end);
1974
1975         if (vm_map_lookup_entry(map, start, &temp_entry)) {
1976                 entry = temp_entry;
1977                 vm_map_clip_start(map, entry, start, &count);
1978         } else
1979                 entry = temp_entry->next;
1980
1981         while ((entry != &map->header) && (entry->start < end)) {
1982                 vm_map_clip_end(map, entry, end, &count);
1983
1984                 entry->inheritance = new_inheritance;
1985
1986                 vm_map_simplify_entry(map, entry, &count);
1987
1988                 entry = entry->next;
1989         }
1990         vm_map_unlock(map);
1991         vm_map_entry_release(count);
1992         return (KERN_SUCCESS);
1993 }
1994
1995 /*
1996  * Implement the semantics of mlock
1997  */
1998 int
1999 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
2000               boolean_t new_pageable)
2001 {
2002         vm_map_entry_t entry;
2003         vm_map_entry_t start_entry;
2004         vm_offset_t end;
2005         int rv = KERN_SUCCESS;
2006         int count;
2007
2008         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2009         vm_map_lock(map);
2010         VM_MAP_RANGE_CHECK(map, start, real_end);
2011         end = real_end;
2012
2013         start_entry = vm_map_clip_range(map, start, end, &count,
2014                                         MAP_CLIP_NO_HOLES);
2015         if (start_entry == NULL) {
2016                 vm_map_unlock(map);
2017                 vm_map_entry_release(count);
2018                 return (KERN_INVALID_ADDRESS);
2019         }
2020
2021         if (new_pageable == 0) {
2022                 entry = start_entry;
2023                 while ((entry != &map->header) && (entry->start < end)) {
2024                         vm_offset_t save_start;
2025                         vm_offset_t save_end;
2026
2027                         /*
2028                          * Already user wired or hard wired (trivial cases)
2029                          */
2030                         if (entry->eflags & MAP_ENTRY_USER_WIRED) {
2031                                 entry = entry->next;
2032                                 continue;
2033                         }
2034                         if (entry->wired_count != 0) {
2035                                 entry->wired_count++;
2036                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
2037                                 entry = entry->next;
2038                                 continue;
2039                         }
2040
2041                         /*
2042                          * A new wiring requires instantiation of appropriate
2043                          * management structures and the faulting in of the
2044                          * page.
2045                          */
2046                         if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2047                                 int copyflag = entry->eflags &
2048                                                MAP_ENTRY_NEEDS_COPY;
2049                                 if (copyflag && ((entry->protection &
2050                                                   VM_PROT_WRITE) != 0)) {
2051                                         vm_map_entry_shadow(entry);
2052                                 } else if (entry->object.vm_object == NULL &&
2053                                            !map->system_map) {
2054                                         vm_map_entry_allocate_object(entry);
2055                                 }
2056                         }
2057                         entry->wired_count++;
2058                         entry->eflags |= MAP_ENTRY_USER_WIRED;
2059
2060                         /*
2061                          * Now fault in the area.  Note that vm_fault_wire()
2062                          * may release the map lock temporarily, it will be
2063                          * relocked on return.  The in-transition
2064                          * flag protects the entries. 
2065                          */
2066                         save_start = entry->start;
2067                         save_end = entry->end;
2068                         rv = vm_fault_wire(map, entry, TRUE);
2069                         if (rv) {
2070                                 CLIP_CHECK_BACK(entry, save_start);
2071                                 for (;;) {
2072                                         KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2073                                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2074                                         entry->wired_count = 0;
2075                                         if (entry->end == save_end)
2076                                                 break;
2077                                         entry = entry->next;
2078                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
2079                                 }
2080                                 end = save_start;       /* unwire the rest */
2081                                 break;
2082                         }
2083                         /*
2084                          * note that even though the entry might have been
2085                          * clipped, the USER_WIRED flag we set prevents
2086                          * duplication so we do not have to do a 
2087                          * clip check.
2088                          */
2089                         entry = entry->next;
2090                 }
2091
2092                 /*
2093                  * If we failed fall through to the unwiring section to
2094                  * unwire what we had wired so far.  'end' has already
2095                  * been adjusted.
2096                  */
2097                 if (rv)
2098                         new_pageable = 1;
2099
2100                 /*
2101                  * start_entry might have been clipped if we unlocked the
2102                  * map and blocked.  No matter how clipped it has gotten
2103                  * there should be a fragment that is on our start boundary.
2104                  */
2105                 CLIP_CHECK_BACK(start_entry, start);
2106         }
2107
2108         /*
2109          * Deal with the unwiring case.
2110          */
2111         if (new_pageable) {
2112                 /*
2113                  * This is the unwiring case.  We must first ensure that the
2114                  * range to be unwired is really wired down.  We know there
2115                  * are no holes.
2116                  */
2117                 entry = start_entry;
2118                 while ((entry != &map->header) && (entry->start < end)) {
2119                         if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2120                                 rv = KERN_INVALID_ARGUMENT;
2121                                 goto done;
2122                         }
2123                         KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2124                         entry = entry->next;
2125                 }
2126
2127                 /*
2128                  * Now decrement the wiring count for each region. If a region
2129                  * becomes completely unwired, unwire its physical pages and
2130                  * mappings.
2131                  */
2132                 /*
2133                  * The map entries are processed in a loop, checking to
2134                  * make sure the entry is wired and asserting it has a wired
2135                  * count. However, another loop was inserted more-or-less in
2136                  * the middle of the unwiring path. This loop picks up the
2137                  * "entry" loop variable from the first loop without first
2138                  * setting it to start_entry. Naturally, the secound loop
2139                  * is never entered and the pages backing the entries are
2140                  * never unwired. This can lead to a leak of wired pages.
2141                  */
2142                 entry = start_entry;
2143                 while ((entry != &map->header) && (entry->start < end)) {
2144                         KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2145                                 ("expected USER_WIRED on entry %p", entry));
2146                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2147                         entry->wired_count--;
2148                         if (entry->wired_count == 0)
2149                                 vm_fault_unwire(map, entry);
2150                         entry = entry->next;
2151                 }
2152         }
2153 done:
2154         vm_map_unclip_range(map, start_entry, start, real_end, &count,
2155                 MAP_CLIP_NO_HOLES);
2156         map->timestamp++;
2157         vm_map_unlock(map);
2158         vm_map_entry_release(count);
2159         return (rv);
2160 }
2161
2162 /*
2163  * Sets the pageability of the specified address range in the target map.
2164  * Regions specified as not pageable require locked-down physical
2165  * memory and physical page maps.
2166  *
2167  * The map must not be locked, but a reference must remain to the map
2168  * throughout the call.
2169  *
2170  * This function may be called via the zalloc path and must properly
2171  * reserve map entries for kernel_map.
2172  *
2173  * No requirements.
2174  */
2175 int
2176 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2177 {
2178         vm_map_entry_t entry;
2179         vm_map_entry_t start_entry;
2180         vm_offset_t end;
2181         int rv = KERN_SUCCESS;
2182         int count;
2183
2184         if (kmflags & KM_KRESERVE)
2185                 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2186         else
2187                 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2188         vm_map_lock(map);
2189         VM_MAP_RANGE_CHECK(map, start, real_end);
2190         end = real_end;
2191
2192         start_entry = vm_map_clip_range(map, start, end, &count,
2193                                         MAP_CLIP_NO_HOLES);
2194         if (start_entry == NULL) {
2195                 vm_map_unlock(map);
2196                 rv = KERN_INVALID_ADDRESS;
2197                 goto failure;
2198         }
2199         if ((kmflags & KM_PAGEABLE) == 0) {
2200                 /*
2201                  * Wiring.  
2202                  *
2203                  * 1.  Holding the write lock, we create any shadow or zero-fill
2204                  * objects that need to be created. Then we clip each map
2205                  * entry to the region to be wired and increment its wiring
2206                  * count.  We create objects before clipping the map entries
2207                  * to avoid object proliferation.
2208                  *
2209                  * 2.  We downgrade to a read lock, and call vm_fault_wire to
2210                  * fault in the pages for any newly wired area (wired_count is
2211                  * 1).
2212                  *
2213                  * Downgrading to a read lock for vm_fault_wire avoids a 
2214                  * possible deadlock with another process that may have faulted
2215                  * on one of the pages to be wired (it would mark the page busy,
2216                  * blocking us, then in turn block on the map lock that we
2217                  * hold).  Because of problems in the recursive lock package,
2218                  * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2219                  * any actions that require the write lock must be done
2220                  * beforehand.  Because we keep the read lock on the map, the
2221                  * copy-on-write status of the entries we modify here cannot
2222                  * change.
2223                  */
2224                 entry = start_entry;
2225                 while ((entry != &map->header) && (entry->start < end)) {
2226                         /*
2227                          * Trivial case if the entry is already wired
2228                          */
2229                         if (entry->wired_count) {
2230                                 entry->wired_count++;
2231                                 entry = entry->next;
2232                                 continue;
2233                         }
2234
2235                         /*
2236                          * The entry is being newly wired, we have to setup
2237                          * appropriate management structures.  A shadow 
2238                          * object is required for a copy-on-write region,
2239                          * or a normal object for a zero-fill region.  We
2240                          * do not have to do this for entries that point to sub
2241                          * maps because we won't hold the lock on the sub map.
2242                          */
2243                         if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2244                                 int copyflag = entry->eflags &
2245                                                MAP_ENTRY_NEEDS_COPY;
2246                                 if (copyflag && ((entry->protection &
2247                                                   VM_PROT_WRITE) != 0)) {
2248                                         vm_map_entry_shadow(entry);
2249                                 } else if (entry->object.vm_object == NULL &&
2250                                            !map->system_map) {
2251                                         vm_map_entry_allocate_object(entry);
2252                                 }
2253                         }
2254
2255                         entry->wired_count++;
2256                         entry = entry->next;
2257                 }
2258
2259                 /*
2260                  * Pass 2.
2261                  */
2262
2263                 /*
2264                  * HACK HACK HACK HACK
2265                  *
2266                  * vm_fault_wire() temporarily unlocks the map to avoid
2267                  * deadlocks.  The in-transition flag from vm_map_clip_range
2268                  * call should protect us from changes while the map is
2269                  * unlocked.  T
2270                  *
2271                  * NOTE: Previously this comment stated that clipping might
2272                  *       still occur while the entry is unlocked, but from
2273                  *       what I can tell it actually cannot.
2274                  *
2275                  *       It is unclear whether the CLIP_CHECK_*() calls
2276                  *       are still needed but we keep them in anyway.
2277                  *
2278                  * HACK HACK HACK HACK
2279                  */
2280
2281                 entry = start_entry;
2282                 while (entry != &map->header && entry->start < end) {
2283                         /*
2284                          * If vm_fault_wire fails for any page we need to undo
2285                          * what has been done.  We decrement the wiring count
2286                          * for those pages which have not yet been wired (now)
2287                          * and unwire those that have (later).
2288                          */
2289                         vm_offset_t save_start = entry->start;
2290                         vm_offset_t save_end = entry->end;
2291
2292                         if (entry->wired_count == 1)
2293                                 rv = vm_fault_wire(map, entry, FALSE);
2294                         if (rv) {
2295                                 CLIP_CHECK_BACK(entry, save_start);
2296                                 for (;;) {
2297                                         KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2298                                         entry->wired_count = 0;
2299                                         if (entry->end == save_end)
2300                                                 break;
2301                                         entry = entry->next;
2302                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
2303                                 }
2304                                 end = save_start;
2305                                 break;
2306                         }
2307                         CLIP_CHECK_FWD(entry, save_end);
2308                         entry = entry->next;
2309                 }
2310
2311                 /*
2312                  * If a failure occured undo everything by falling through
2313                  * to the unwiring code.  'end' has already been adjusted
2314                  * appropriately.
2315                  */
2316                 if (rv)
2317                         kmflags |= KM_PAGEABLE;
2318
2319                 /*
2320                  * start_entry is still IN_TRANSITION but may have been 
2321                  * clipped since vm_fault_wire() unlocks and relocks the
2322                  * map.  No matter how clipped it has gotten there should
2323                  * be a fragment that is on our start boundary.
2324                  */
2325                 CLIP_CHECK_BACK(start_entry, start);
2326         }
2327
2328         if (kmflags & KM_PAGEABLE) {
2329                 /*
2330                  * This is the unwiring case.  We must first ensure that the
2331                  * range to be unwired is really wired down.  We know there
2332                  * are no holes.
2333                  */
2334                 entry = start_entry;
2335                 while ((entry != &map->header) && (entry->start < end)) {
2336                         if (entry->wired_count == 0) {
2337                                 rv = KERN_INVALID_ARGUMENT;
2338                                 goto done;
2339                         }
2340                         entry = entry->next;
2341                 }
2342
2343                 /*
2344                  * Now decrement the wiring count for each region. If a region
2345                  * becomes completely unwired, unwire its physical pages and
2346                  * mappings.
2347                  */
2348                 entry = start_entry;
2349                 while ((entry != &map->header) && (entry->start < end)) {
2350                         entry->wired_count--;
2351                         if (entry->wired_count == 0)
2352                                 vm_fault_unwire(map, entry);
2353                         entry = entry->next;
2354                 }
2355         }
2356 done:
2357         vm_map_unclip_range(map, start_entry, start, real_end,
2358                             &count, MAP_CLIP_NO_HOLES);
2359         map->timestamp++;
2360         vm_map_unlock(map);
2361 failure:
2362         if (kmflags & KM_KRESERVE)
2363                 vm_map_entry_krelease(count);
2364         else
2365                 vm_map_entry_release(count);
2366         return (rv);
2367 }
2368
2369 /*
2370  * Mark a newly allocated address range as wired but do not fault in
2371  * the pages.  The caller is expected to load the pages into the object.
2372  *
2373  * The map must be locked on entry and will remain locked on return.
2374  * No other requirements.
2375  */
2376 void
2377 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size,
2378                        int *countp)
2379 {
2380         vm_map_entry_t scan;
2381         vm_map_entry_t entry;
2382
2383         entry = vm_map_clip_range(map, addr, addr + size,
2384                                   countp, MAP_CLIP_NO_HOLES);
2385         for (scan = entry;
2386              scan != &map->header && scan->start < addr + size;
2387              scan = scan->next) {
2388             KKASSERT(entry->wired_count == 0);
2389             entry->wired_count = 1;                                              
2390         }
2391         vm_map_unclip_range(map, entry, addr, addr + size,
2392                             countp, MAP_CLIP_NO_HOLES);
2393 }
2394
2395 /*
2396  * Push any dirty cached pages in the address range to their pager.
2397  * If syncio is TRUE, dirty pages are written synchronously.
2398  * If invalidate is TRUE, any cached pages are freed as well.
2399  *
2400  * This routine is called by sys_msync()
2401  *
2402  * Returns an error if any part of the specified range is not mapped.
2403  *
2404  * No requirements.
2405  */
2406 int
2407 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2408              boolean_t syncio, boolean_t invalidate)
2409 {
2410         vm_map_entry_t current;
2411         vm_map_entry_t entry;
2412         vm_size_t size;
2413         vm_object_t object;
2414         vm_ooffset_t offset;
2415
2416         vm_map_lock_read(map);
2417         VM_MAP_RANGE_CHECK(map, start, end);
2418         if (!vm_map_lookup_entry(map, start, &entry)) {
2419                 vm_map_unlock_read(map);
2420                 return (KERN_INVALID_ADDRESS);
2421         }
2422         /*
2423          * Make a first pass to check for holes.
2424          */
2425         for (current = entry; current->start < end; current = current->next) {
2426                 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2427                         vm_map_unlock_read(map);
2428                         return (KERN_INVALID_ARGUMENT);
2429                 }
2430                 if (end > current->end &&
2431                     (current->next == &map->header ||
2432                         current->end != current->next->start)) {
2433                         vm_map_unlock_read(map);
2434                         return (KERN_INVALID_ADDRESS);
2435                 }
2436         }
2437
2438         if (invalidate)
2439                 pmap_remove(vm_map_pmap(map), start, end);
2440
2441         /*
2442          * Make a second pass, cleaning/uncaching pages from the indicated
2443          * objects as we go.
2444          *
2445          * Hold vm_token to avoid blocking in vm_object_reference()
2446          */
2447         lwkt_gettoken(&vm_token);
2448         lwkt_gettoken(&vmobj_token);
2449
2450         for (current = entry; current->start < end; current = current->next) {
2451                 offset = current->offset + (start - current->start);
2452                 size = (end <= current->end ? end : current->end) - start;
2453                 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2454                         vm_map_t smap;
2455                         vm_map_entry_t tentry;
2456                         vm_size_t tsize;
2457
2458                         smap = current->object.sub_map;
2459                         vm_map_lock_read(smap);
2460                         vm_map_lookup_entry(smap, offset, &tentry);
2461                         tsize = tentry->end - offset;
2462                         if (tsize < size)
2463                                 size = tsize;
2464                         object = tentry->object.vm_object;
2465                         offset = tentry->offset + (offset - tentry->start);
2466                         vm_map_unlock_read(smap);
2467                 } else {
2468                         object = current->object.vm_object;
2469                 }
2470                 /*
2471                  * Note that there is absolutely no sense in writing out
2472                  * anonymous objects, so we track down the vnode object
2473                  * to write out.
2474                  * We invalidate (remove) all pages from the address space
2475                  * anyway, for semantic correctness.
2476                  *
2477                  * note: certain anonymous maps, such as MAP_NOSYNC maps,
2478                  * may start out with a NULL object.
2479                  */
2480                 while (object && object->backing_object) {
2481                         offset += object->backing_object_offset;
2482                         object = object->backing_object;
2483                         if (object->size < OFF_TO_IDX( offset + size))
2484                                 size = IDX_TO_OFF(object->size) - offset;
2485                 }
2486                 if (object && (object->type == OBJT_VNODE) && 
2487                     (current->protection & VM_PROT_WRITE) &&
2488                     (object->flags & OBJ_NOMSYNC) == 0) {
2489                         /*
2490                          * Flush pages if writing is allowed, invalidate them
2491                          * if invalidation requested.  Pages undergoing I/O
2492                          * will be ignored by vm_object_page_remove().
2493                          *
2494                          * We cannot lock the vnode and then wait for paging
2495                          * to complete without deadlocking against vm_fault.
2496                          * Instead we simply call vm_object_page_remove() and
2497                          * allow it to block internally on a page-by-page 
2498                          * basis when it encounters pages undergoing async 
2499                          * I/O.
2500                          */
2501                         int flags;
2502
2503                         vm_object_reference_locked(object);
2504                         vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2505                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2506                         flags |= invalidate ? OBJPC_INVAL : 0;
2507
2508                         /*
2509                          * When operating on a virtual page table just
2510                          * flush the whole object.  XXX we probably ought
2511                          * to 
2512                          */
2513                         switch(current->maptype) {
2514                         case VM_MAPTYPE_NORMAL:
2515                                 vm_object_page_clean(object,
2516                                     OFF_TO_IDX(offset),
2517                                     OFF_TO_IDX(offset + size + PAGE_MASK),
2518                                     flags);
2519                                 break;
2520                         case VM_MAPTYPE_VPAGETABLE:
2521                                 vm_object_page_clean(object, 0, 0, flags);
2522                                 break;
2523                         }
2524                         vn_unlock(((struct vnode *)object->handle));
2525                         vm_object_deallocate_locked(object);
2526                 }
2527                 if (object && invalidate &&
2528                    ((object->type == OBJT_VNODE) ||
2529                     (object->type == OBJT_DEVICE))) {
2530                         int clean_only = 
2531                                 (object->type == OBJT_DEVICE) ? FALSE : TRUE;
2532                         vm_object_reference_locked(object);
2533                         switch(current->maptype) {
2534                         case VM_MAPTYPE_NORMAL:
2535                                 vm_object_page_remove(object,
2536                                     OFF_TO_IDX(offset),
2537                                     OFF_TO_IDX(offset + size + PAGE_MASK),
2538                                     clean_only);
2539                                 break;
2540                         case VM_MAPTYPE_VPAGETABLE:
2541                                 vm_object_page_remove(object, 0, 0, clean_only);
2542                                 break;
2543                         }
2544                         vm_object_deallocate_locked(object);
2545                 }
2546                 start += size;
2547         }
2548
2549         lwkt_reltoken(&vmobj_token);
2550         lwkt_reltoken(&vm_token);
2551         vm_map_unlock_read(map);
2552
2553         return (KERN_SUCCESS);
2554 }
2555
2556 /*
2557  * Make the region specified by this entry pageable.
2558  *
2559  * The vm_map must be exclusively locked.
2560  */
2561 static void 
2562 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2563 {
2564         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2565         entry->wired_count = 0;
2566         vm_fault_unwire(map, entry);
2567 }
2568
2569 /*
2570  * Deallocate the given entry from the target map.
2571  *
2572  * The vm_map must be exclusively locked.
2573  */
2574 static void
2575 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2576 {
2577         vm_map_entry_unlink(map, entry);
2578         map->size -= entry->end - entry->start;
2579
2580         switch(entry->maptype) {
2581         case VM_MAPTYPE_NORMAL:
2582         case VM_MAPTYPE_VPAGETABLE:
2583                 vm_object_deallocate(entry->object.vm_object);
2584                 break;
2585         default:
2586                 break;
2587         }
2588
2589         vm_map_entry_dispose(map, entry, countp);
2590 }
2591
2592 /*
2593  * Deallocates the given address range from the target map.
2594  *
2595  * The vm_map must be exclusively locked.
2596  */
2597 int
2598 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2599 {
2600         vm_object_t object;
2601         vm_map_entry_t entry;
2602         vm_map_entry_t first_entry;
2603
2604         ASSERT_VM_MAP_LOCKED(map);
2605 again:
2606         /*
2607          * Find the start of the region, and clip it.  Set entry to point
2608          * at the first record containing the requested address or, if no
2609          * such record exists, the next record with a greater address.  The
2610          * loop will run from this point until a record beyond the termination
2611          * address is encountered.
2612          *
2613          * map->hint must be adjusted to not point to anything we delete,
2614          * so set it to the entry prior to the one being deleted.
2615          *
2616          * GGG see other GGG comment.
2617          */
2618         if (vm_map_lookup_entry(map, start, &first_entry)) {
2619                 entry = first_entry;
2620                 vm_map_clip_start(map, entry, start, countp);
2621                 map->hint = entry->prev;        /* possible problem XXX */
2622         } else {
2623                 map->hint = first_entry;        /* possible problem XXX */
2624                 entry = first_entry->next;
2625         }
2626
2627         /*
2628          * If a hole opens up prior to the current first_free then
2629          * adjust first_free.  As with map->hint, map->first_free
2630          * cannot be left set to anything we might delete.
2631          */
2632         if (entry == &map->header) {
2633                 map->first_free = &map->header;
2634         } else if (map->first_free->start >= start) {
2635                 map->first_free = entry->prev;
2636         }
2637
2638         /*
2639          * Step through all entries in this region
2640          */
2641         while ((entry != &map->header) && (entry->start < end)) {
2642                 vm_map_entry_t next;
2643                 vm_offset_t s, e;
2644                 vm_pindex_t offidxstart, offidxend, count;
2645
2646                 /*
2647                  * If we hit an in-transition entry we have to sleep and
2648                  * retry.  It's easier (and not really slower) to just retry
2649                  * since this case occurs so rarely and the hint is already
2650                  * pointing at the right place.  We have to reset the
2651                  * start offset so as not to accidently delete an entry
2652                  * another process just created in vacated space.
2653                  */
2654                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2655                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2656                         start = entry->start;
2657                         ++mycpu->gd_cnt.v_intrans_coll;
2658                         ++mycpu->gd_cnt.v_intrans_wait;
2659                         vm_map_transition_wait(map);
2660                         goto again;
2661                 }
2662                 vm_map_clip_end(map, entry, end, countp);
2663
2664                 s = entry->start;
2665                 e = entry->end;
2666                 next = entry->next;
2667
2668                 offidxstart = OFF_TO_IDX(entry->offset);
2669                 count = OFF_TO_IDX(e - s);
2670                 object = entry->object.vm_object;
2671
2672                 /*
2673                  * Unwire before removing addresses from the pmap; otherwise,
2674                  * unwiring will put the entries back in the pmap.
2675                  */
2676                 if (entry->wired_count != 0)
2677                         vm_map_entry_unwire(map, entry);
2678
2679                 offidxend = offidxstart + count;
2680
2681                 /*
2682                  * Hold vm_token when manipulating vm_objects,
2683                  *
2684                  * Hold vmobj_token when potentially adding or removing
2685                  * objects (collapse requires both).
2686                  */
2687                 lwkt_gettoken(&vm_token);
2688                 lwkt_gettoken(&vmobj_token);
2689
2690                 if (object == &kernel_object) {
2691                         vm_object_page_remove(object, offidxstart,
2692                                               offidxend, FALSE);
2693                 } else {
2694                         pmap_remove(map->pmap, s, e);
2695
2696                         if (object != NULL &&
2697                             object->ref_count != 1 &&
2698                             (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) ==
2699                              OBJ_ONEMAPPING &&
2700                             (object->type == OBJT_DEFAULT ||
2701                              object->type == OBJT_SWAP)) {
2702                                 vm_object_collapse(object);
2703                                 vm_object_page_remove(object, offidxstart,
2704                                                       offidxend, FALSE);
2705                                 if (object->type == OBJT_SWAP) {
2706                                         swap_pager_freespace(object,
2707                                                              offidxstart,
2708                                                              count);
2709                                 }
2710                                 if (offidxend >= object->size &&
2711                                     offidxstart < object->size) {
2712                                         object->size = offidxstart;
2713                                 }
2714                         }
2715                 }
2716                 lwkt_reltoken(&vmobj_token);
2717                 lwkt_reltoken(&vm_token);
2718
2719                 /*
2720                  * Delete the entry (which may delete the object) only after
2721                  * removing all pmap entries pointing to its pages.
2722                  * (Otherwise, its page frames may be reallocated, and any
2723                  * modify bits will be set in the wrong object!)
2724                  */
2725                 vm_map_entry_delete(map, entry, countp);
2726                 entry = next;
2727         }
2728         return (KERN_SUCCESS);
2729 }
2730
2731 /*
2732  * Remove the given address range from the target map.
2733  * This is the exported form of vm_map_delete.
2734  *
2735  * No requirements.
2736  */
2737 int
2738 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2739 {
2740         int result;
2741         int count;
2742
2743         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2744         vm_map_lock(map);
2745         VM_MAP_RANGE_CHECK(map, start, end);
2746         result = vm_map_delete(map, start, end, &count);
2747         vm_map_unlock(map);
2748         vm_map_entry_release(count);
2749
2750         return (result);
2751 }
2752
2753 /*
2754  * Assert that the target map allows the specified privilege on the
2755  * entire address region given.  The entire region must be allocated.
2756  *
2757  * The caller must specify whether the vm_map is already locked or not.
2758  */
2759 boolean_t
2760 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2761                         vm_prot_t protection, boolean_t have_lock)
2762 {
2763         vm_map_entry_t entry;
2764         vm_map_entry_t tmp_entry;
2765         boolean_t result;
2766
2767         if (have_lock == FALSE)
2768                 vm_map_lock_read(map);
2769
2770         if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2771                 if (have_lock == FALSE)
2772                         vm_map_unlock_read(map);
2773                 return (FALSE);
2774         }
2775         entry = tmp_entry;
2776
2777         result = TRUE;
2778         while (start < end) {
2779                 if (entry == &map->header) {
2780                         result = FALSE;
2781                         break;
2782                 }
2783                 /*
2784                  * No holes allowed!
2785                  */
2786
2787                 if (start < entry->start) {
2788                         result = FALSE;
2789                         break;
2790                 }
2791                 /*
2792                  * Check protection associated with entry.
2793                  */
2794
2795                 if ((entry->protection & protection) != protection) {
2796                         result = FALSE;
2797                         break;
2798                 }
2799                 /* go to next entry */
2800
2801                 start = entry->end;
2802                 entry = entry->next;
2803         }
2804         if (have_lock == FALSE)
2805                 vm_map_unlock_read(map);
2806         return (result);
2807 }
2808
2809 /*
2810  * Split the pages in a map entry into a new object.  This affords
2811  * easier removal of unused pages, and keeps object inheritance from
2812  * being a negative impact on memory usage.
2813  *
2814  * The vm_map must be exclusively locked.
2815  */
2816 static void
2817 vm_map_split(vm_map_entry_t entry)
2818 {
2819         vm_page_t m;
2820         vm_object_t orig_object, new_object, source;
2821         vm_offset_t s, e;
2822         vm_pindex_t offidxstart, offidxend, idx;
2823         vm_size_t size;
2824         vm_ooffset_t offset;
2825
2826         orig_object = entry->object.vm_object;
2827         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2828                 return;
2829         if (orig_object->ref_count <= 1)
2830                 return;
2831
2832         offset = entry->offset;
2833         s = entry->start;
2834         e = entry->end;
2835
2836         offidxstart = OFF_TO_IDX(offset);
2837         offidxend = offidxstart + OFF_TO_IDX(e - s);
2838         size = offidxend - offidxstart;
2839
2840         switch(orig_object->type) {
2841         case OBJT_DEFAULT:
2842                 new_object = default_pager_alloc(NULL, IDX_TO_OFF(size),
2843                                                  VM_PROT_ALL, 0);
2844                 break;
2845         case OBJT_SWAP:
2846                 new_object = swap_pager_alloc(NULL, IDX_TO_OFF(size),
2847                                               VM_PROT_ALL, 0);
2848                 break;
2849         default:
2850                 /* not reached */
2851                 new_object = NULL;
2852                 KKASSERT(0);
2853         }
2854         if (new_object == NULL)
2855                 return;
2856
2857         /*
2858          * vm_token required when manipulating vm_objects.
2859          */
2860         lwkt_gettoken(&vm_token);
2861         lwkt_gettoken(&vmobj_token);
2862
2863         source = orig_object->backing_object;
2864         if (source != NULL) {
2865                 /* Referenced by new_object */
2866                 vm_object_reference_locked(source);
2867                 LIST_INSERT_HEAD(&source->shadow_head,
2868                                  new_object, shadow_list);
2869                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
2870                 new_object->backing_object_offset = 
2871                         orig_object->backing_object_offset +
2872                         IDX_TO_OFF(offidxstart);
2873                 new_object->backing_object = source;
2874                 source->shadow_count++;
2875                 source->generation++;
2876         }
2877
2878         for (idx = 0; idx < size; idx++) {
2879                 vm_page_t m;
2880
2881         retry:
2882                 m = vm_page_lookup(orig_object, offidxstart + idx);
2883                 if (m == NULL)
2884                         continue;
2885
2886                 /*
2887                  * We must wait for pending I/O to complete before we can
2888                  * rename the page.
2889                  *
2890                  * We do not have to VM_PROT_NONE the page as mappings should
2891                  * not be changed by this operation.
2892                  */
2893                 if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2894                         goto retry;
2895                 vm_page_busy(m);
2896                 vm_page_rename(m, new_object, idx);
2897                 /* page automatically made dirty by rename and cache handled */
2898                 vm_page_busy(m);
2899         }
2900
2901         if (orig_object->type == OBJT_SWAP) {
2902                 vm_object_pip_add(orig_object, 1);
2903                 /*
2904                  * copy orig_object pages into new_object
2905                  * and destroy unneeded pages in
2906                  * shadow object.
2907                  */
2908                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
2909                 vm_object_pip_wakeup(orig_object);
2910         }
2911
2912         /*
2913          * Wakeup the pages we played with.  No spl protection is needed
2914          * for a simple wakeup.
2915          */
2916         for (idx = 0; idx < size; idx++) {
2917                 m = vm_page_lookup(new_object, idx);
2918                 if (m)
2919                         vm_page_wakeup(m);
2920         }
2921
2922         entry->object.vm_object = new_object;
2923         entry->offset = 0LL;
2924         vm_object_deallocate_locked(orig_object);
2925         lwkt_reltoken(&vmobj_token);
2926         lwkt_reltoken(&vm_token);
2927 }
2928
2929 /*
2930  * Copies the contents of the source entry to the destination
2931  * entry.  The entries *must* be aligned properly.
2932  *
2933  * The vm_map must be exclusively locked.
2934  * vm_token must be held
2935  */
2936 static void
2937 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2938         vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2939 {
2940         vm_object_t src_object;
2941
2942         if (dst_entry->maptype == VM_MAPTYPE_SUBMAP)
2943                 return;
2944         if (src_entry->maptype == VM_MAPTYPE_SUBMAP)
2945                 return;
2946
2947         ASSERT_LWKT_TOKEN_HELD(&vm_token);
2948         lwkt_gettoken(&vmobj_token);            /* required for collapse */
2949
2950         if (src_entry->wired_count == 0) {
2951                 /*
2952                  * If the source entry is marked needs_copy, it is already
2953                  * write-protected.
2954                  */
2955                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2956                         pmap_protect(src_map->pmap,
2957                             src_entry->start,
2958                             src_entry->end,
2959                             src_entry->protection & ~VM_PROT_WRITE);
2960                 }
2961
2962                 /*
2963                  * Make a copy of the object.
2964                  */
2965                 if ((src_object = src_entry->object.vm_object) != NULL) {
2966                         if ((src_object->handle == NULL) &&
2967                                 (src_object->type == OBJT_DEFAULT ||
2968                                  src_object->type == OBJT_SWAP)) {
2969                                 vm_object_collapse(src_object);
2970                                 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2971                                         vm_map_split(src_entry);
2972                                         src_object = src_entry->object.vm_object;
2973                                 }
2974                         }
2975
2976                         vm_object_reference_locked(src_object);
2977                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2978                         dst_entry->object.vm_object = src_object;
2979                         src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2980                         dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2981                         dst_entry->offset = src_entry->offset;
2982                 } else {
2983                         dst_entry->object.vm_object = NULL;
2984                         dst_entry->offset = 0;
2985                 }
2986
2987                 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2988                     dst_entry->end - dst_entry->start, src_entry->start);
2989         } else {
2990                 /*
2991                  * Of course, wired down pages can't be set copy-on-write.
2992                  * Cause wired pages to be copied into the new map by
2993                  * simulating faults (the new pages are pageable)
2994                  */
2995                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2996         }
2997         lwkt_reltoken(&vmobj_token);
2998 }
2999
3000 /*
3001  * vmspace_fork:
3002  * Create a new process vmspace structure and vm_map
3003  * based on those of an existing process.  The new map
3004  * is based on the old map, according to the inheritance
3005  * values on the regions in that map.
3006  *
3007  * The source map must not be locked.
3008  * No requirements.
3009  */
3010 struct vmspace *
3011 vmspace_fork(struct vmspace *vm1)
3012 {
3013         struct vmspace *vm2;
3014         vm_map_t old_map = &vm1->vm_map;
3015         vm_map_t new_map;
3016         vm_map_entry_t old_entry;
3017         vm_map_entry_t new_entry;
3018         vm_object_t object;
3019         int count;
3020
3021         lwkt_gettoken(&vm_token);
3022         lwkt_gettoken(&vmspace_token);
3023         lwkt_gettoken(&vmobj_token);
3024         vm_map_lock(old_map);
3025         old_map->infork = 1;
3026
3027         /*
3028          * XXX Note: upcalls are not copied.
3029          */
3030         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3031         bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
3032             (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
3033         new_map = &vm2->vm_map; /* XXX */
3034         new_map->timestamp = 1;
3035
3036         vm_map_lock(new_map);
3037
3038         count = 0;
3039         old_entry = old_map->header.next;
3040         while (old_entry != &old_map->header) {
3041                 ++count;
3042                 old_entry = old_entry->next;
3043         }
3044
3045         count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
3046
3047         old_entry = old_map->header.next;
3048         while (old_entry != &old_map->header) {
3049                 if (old_entry->maptype == VM_MAPTYPE_SUBMAP)
3050                         panic("vm_map_fork: encountered a submap");
3051
3052                 switch (old_entry->inheritance) {
3053                 case VM_INHERIT_NONE:
3054                         break;
3055                 case VM_INHERIT_SHARE:
3056                         /*
3057                          * Clone the entry, creating the shared object if
3058                          * necessary.
3059                          */
3060                         object = old_entry->object.vm_object;
3061                         if (object == NULL) {
3062                                 vm_map_entry_allocate_object(old_entry);
3063                                 object = old_entry->object.vm_object;
3064                         }
3065
3066                         /*
3067                          * Add the reference before calling vm_map_entry_shadow
3068                          * to insure that a shadow object is created.
3069                          */
3070                         vm_object_reference_locked(object);
3071                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3072                                 vm_map_entry_shadow(old_entry);
3073                                 /* Transfer the second reference too. */
3074                                 vm_object_reference_locked(
3075                                     old_entry->object.vm_object);
3076                                 vm_object_deallocate_locked(object);
3077                                 object = old_entry->object.vm_object;
3078                         }
3079                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
3080
3081                         /*
3082                          * Clone the entry, referencing the shared object.
3083                          */
3084                         new_entry = vm_map_entry_create(new_map, &count);
3085                         *new_entry = *old_entry;
3086                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3087                         new_entry->wired_count = 0;
3088
3089                         /*
3090                          * Insert the entry into the new map -- we know we're
3091                          * inserting at the end of the new map.
3092                          */
3093
3094                         vm_map_entry_link(new_map, new_map->header.prev,
3095                                           new_entry);
3096
3097                         /*
3098                          * Update the physical map
3099                          */
3100                         pmap_copy(new_map->pmap, old_map->pmap,
3101                             new_entry->start,
3102                             (old_entry->end - old_entry->start),
3103                             old_entry->start);
3104                         break;
3105                 case VM_INHERIT_COPY:
3106                         /*
3107                          * Clone the entry and link into the map.
3108                          */
3109                         new_entry = vm_map_entry_create(new_map, &count);
3110                         *new_entry = *old_entry;
3111                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3112                         new_entry->wired_count = 0;
3113                         new_entry->object.vm_object = NULL;
3114                         vm_map_entry_link(new_map, new_map->header.prev,
3115                                           new_entry);
3116                         vm_map_copy_entry(old_map, new_map, old_entry,
3117                                           new_entry);
3118                         break;
3119                 }
3120                 old_entry = old_entry->next;
3121         }
3122
3123         new_map->size = old_map->size;
3124         old_map->infork = 0;
3125         vm_map_unlock(old_map);
3126         vm_map_unlock(new_map);
3127         vm_map_entry_release(count);
3128
3129         lwkt_reltoken(&vmobj_token);
3130         lwkt_reltoken(&vmspace_token);
3131         lwkt_reltoken(&vm_token);
3132
3133         return (vm2);
3134 }
3135
3136 /*
3137  * Create an auto-grow stack entry
3138  *
3139  * No requirements.
3140  */
3141 int
3142 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3143               int flags, vm_prot_t prot, vm_prot_t max, int cow)
3144 {
3145         vm_map_entry_t  prev_entry;
3146         vm_map_entry_t  new_stack_entry;
3147         vm_size_t       init_ssize;
3148         int             rv;
3149         int             count;
3150         vm_offset_t     tmpaddr;
3151
3152         cow |= MAP_IS_STACK;
3153
3154         if (max_ssize < sgrowsiz)
3155                 init_ssize = max_ssize;
3156         else
3157                 init_ssize = sgrowsiz;
3158
3159         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3160         vm_map_lock(map);
3161
3162         /*
3163          * Find space for the mapping
3164          */
3165         if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3166                 if (vm_map_findspace(map, addrbos, max_ssize, 1,
3167                                      flags, &tmpaddr)) {
3168                         vm_map_unlock(map);
3169                         vm_map_entry_release(count);
3170                         return (KERN_NO_SPACE);
3171                 }
3172                 addrbos = tmpaddr;
3173         }
3174
3175         /* If addr is already mapped, no go */
3176         if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3177                 vm_map_unlock(map);
3178                 vm_map_entry_release(count);
3179                 return (KERN_NO_SPACE);
3180         }
3181
3182 #if 0
3183         /* XXX already handled by kern_mmap() */
3184         /* If we would blow our VMEM resource limit, no go */
3185         if (map->size + init_ssize >
3186             curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3187                 vm_map_unlock(map);
3188                 vm_map_entry_release(count);
3189                 return (KERN_NO_SPACE);
3190         }
3191 #endif
3192
3193         /*
3194          * If we can't accomodate max_ssize in the current mapping,
3195          * no go.  However, we need to be aware that subsequent user
3196          * mappings might map into the space we have reserved for
3197          * stack, and currently this space is not protected.  
3198          * 
3199          * Hopefully we will at least detect this condition 
3200          * when we try to grow the stack.
3201          */
3202         if ((prev_entry->next != &map->header) &&
3203             (prev_entry->next->start < addrbos + max_ssize)) {
3204                 vm_map_unlock(map);
3205                 vm_map_entry_release(count);
3206                 return (KERN_NO_SPACE);
3207         }
3208
3209         /*
3210          * We initially map a stack of only init_ssize.  We will
3211          * grow as needed later.  Since this is to be a grow 
3212          * down stack, we map at the top of the range.
3213          *
3214          * Note: we would normally expect prot and max to be
3215          * VM_PROT_ALL, and cow to be 0.  Possibly we should
3216          * eliminate these as input parameters, and just
3217          * pass these values here in the insert call.
3218          */
3219         rv = vm_map_insert(map, &count,
3220                            NULL, 0, addrbos + max_ssize - init_ssize,
3221                            addrbos + max_ssize,
3222                            VM_MAPTYPE_NORMAL,
3223                            prot, max,
3224                            cow);
3225
3226         /* Now set the avail_ssize amount */
3227         if (rv == KERN_SUCCESS) {
3228                 if (prev_entry != &map->header)
3229                         vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3230                 new_stack_entry = prev_entry->next;
3231                 if (new_stack_entry->end   != addrbos + max_ssize ||
3232                     new_stack_entry->start != addrbos + max_ssize - init_ssize)
3233                         panic ("Bad entry start/end for new stack entry");
3234                 else 
3235                         new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3236         }
3237
3238         vm_map_unlock(map);
3239         vm_map_entry_release(count);
3240         return (rv);
3241 }
3242
3243 /*
3244  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3245  * desired address is already mapped, or if we successfully grow
3246  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3247  * stack range (this is strange, but preserves compatibility with
3248  * the grow function in vm_machdep.c).
3249  *
3250  * No requirements.
3251  */
3252 int
3253 vm_map_growstack (struct proc *p, vm_offset_t addr)
3254 {
3255         vm_map_entry_t prev_entry;
3256         vm_map_entry_t stack_entry;
3257         vm_map_entry_t new_stack_entry;
3258         struct vmspace *vm = p->p_vmspace;
3259         vm_map_t map = &vm->vm_map;
3260         vm_offset_t    end;
3261         int grow_amount;
3262         int rv = KERN_SUCCESS;
3263         int is_procstack;
3264         int use_read_lock = 1;
3265         int count;
3266
3267         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3268 Retry:
3269         if (use_read_lock)
3270                 vm_map_lock_read(map);
3271         else
3272                 vm_map_lock(map);
3273
3274         /* If addr is already in the entry range, no need to grow.*/
3275         if (vm_map_lookup_entry(map, addr, &prev_entry))
3276                 goto done;
3277
3278         if ((stack_entry = prev_entry->next) == &map->header)
3279                 goto done;
3280         if (prev_entry == &map->header) 
3281                 end = stack_entry->start - stack_entry->aux.avail_ssize;
3282         else
3283                 end = prev_entry->end;
3284
3285         /*
3286          * This next test mimics the old grow function in vm_machdep.c.
3287          * It really doesn't quite make sense, but we do it anyway
3288          * for compatibility.
3289          *
3290          * If not growable stack, return success.  This signals the
3291          * caller to proceed as he would normally with normal vm.
3292          */
3293         if (stack_entry->aux.avail_ssize < 1 ||
3294             addr >= stack_entry->start ||
3295             addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3296                 goto done;
3297         } 
3298         
3299         /* Find the minimum grow amount */
3300         grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3301         if (grow_amount > stack_entry->aux.avail_ssize) {
3302                 rv = KERN_NO_SPACE;
3303                 goto done;
3304         }
3305
3306         /*
3307          * If there is no longer enough space between the entries
3308          * nogo, and adjust the available space.  Note: this 
3309          * should only happen if the user has mapped into the
3310          * stack area after the stack was created, and is
3311          * probably an error.
3312          *
3313          * This also effectively destroys any guard page the user
3314          * might have intended by limiting the stack size.
3315          */
3316         if (grow_amount > stack_entry->start - end) {
3317                 if (use_read_lock && vm_map_lock_upgrade(map)) {
3318                         use_read_lock = 0;
3319                         goto Retry;
3320                 }
3321                 use_read_lock = 0;
3322                 stack_entry->aux.avail_ssize = stack_entry->start - end;
3323                 rv = KERN_NO_SPACE;
3324                 goto done;
3325         }
3326
3327         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3328
3329         /* If this is the main process stack, see if we're over the 
3330          * stack limit.
3331          */
3332         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3333                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3334                 rv = KERN_NO_SPACE;
3335                 goto done;
3336         }
3337
3338         /* Round up the grow amount modulo SGROWSIZ */
3339         grow_amount = roundup (grow_amount, sgrowsiz);
3340         if (grow_amount > stack_entry->aux.avail_ssize) {
3341                 grow_amount = stack_entry->aux.avail_ssize;
3342         }
3343         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3344                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3345                 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3346                               ctob(vm->vm_ssize);
3347         }
3348
3349         /* If we would blow our VMEM resource limit, no go */
3350         if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3351                 rv = KERN_NO_SPACE;
3352                 goto done;
3353         }
3354
3355         if (use_read_lock && vm_map_lock_upgrade(map)) {
3356                 use_read_lock = 0;
3357                 goto Retry;
3358         }
3359         use_read_lock = 0;
3360
3361         /* Get the preliminary new entry start value */
3362         addr = stack_entry->start - grow_amount;
3363
3364         /* If this puts us into the previous entry, cut back our growth
3365          * to the available space.  Also, see the note above.
3366          */
3367         if (addr < end) {
3368                 stack_entry->aux.avail_ssize = stack_entry->start - end;
3369                 addr = end;
3370         }
3371
3372         rv = vm_map_insert(map, &count,
3373                            NULL, 0, addr, stack_entry->start,
3374                            VM_MAPTYPE_NORMAL,
3375                            VM_PROT_ALL, VM_PROT_ALL,
3376                            0);
3377
3378         /* Adjust the available stack space by the amount we grew. */
3379         if (rv == KERN_SUCCESS) {
3380                 if (prev_entry != &map->header)
3381                         vm_map_clip_end(map, prev_entry, addr, &count);
3382                 new_stack_entry = prev_entry->next;
3383                 if (new_stack_entry->end   != stack_entry->start  ||
3384                     new_stack_entry->start != addr)
3385                         panic ("Bad stack grow start/end in new stack entry");
3386                 else {
3387                         new_stack_entry->aux.avail_ssize =
3388                                 stack_entry->aux.avail_ssize -
3389                                 (new_stack_entry->end - new_stack_entry->start);
3390                         if (is_procstack)
3391                                 vm->vm_ssize += btoc(new_stack_entry->end -
3392                                                      new_stack_entry->start);
3393                 }
3394         }
3395
3396 done:
3397         if (use_read_lock)
3398                 vm_map_unlock_read(map);
3399         else
3400                 vm_map_unlock(map);
3401         vm_map_entry_release(count);
3402         return (rv);
3403 }
3404
3405 /*
3406  * Unshare the specified VM space for exec.  If other processes are
3407  * mapped to it, then create a new one.  The new vmspace is null.
3408  *
3409  * No requirements.
3410  */
3411 void
3412 vmspace_exec(struct proc *p, struct vmspace *vmcopy) 
3413 {
3414         struct vmspace *oldvmspace = p->p_vmspace;
3415         struct vmspace *newvmspace;
3416         vm_map_t map = &p->p_vmspace->vm_map;
3417
3418         /*
3419          * If we are execing a resident vmspace we fork it, otherwise
3420          * we create a new vmspace.  Note that exitingcnt and upcalls
3421          * are not copied to the new vmspace.
3422          */
3423         lwkt_gettoken(&vmspace_token);
3424         if (vmcopy)  {
3425                 newvmspace = vmspace_fork(vmcopy);
3426         } else {
3427                 newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3428                 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3429                       (caddr_t)&oldvmspace->vm_endcopy -
3430                        (caddr_t)&oldvmspace->vm_startcopy);
3431         }
3432
3433         /*
3434          * Finish initializing the vmspace before assigning it
3435          * to the process.  The vmspace will become the current vmspace
3436          * if p == curproc.
3437          */
3438         pmap_pinit2(vmspace_pmap(newvmspace));
3439         pmap_replacevm(p, newvmspace, 0);
3440         sysref_put(&oldvmspace->vm_sysref);
3441         lwkt_reltoken(&vmspace_token);
3442 }
3443
3444 /*
3445  * Unshare the specified VM space for forcing COW.  This
3446  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3447  *
3448  * The exitingcnt test is not strictly necessary but has been
3449  * included for code sanity (to make the code a bit more deterministic).
3450  */
3451 void
3452 vmspace_unshare(struct proc *p) 
3453 {
3454         struct vmspace *oldvmspace = p->p_vmspace;
3455         struct vmspace *newvmspace;
3456
3457         lwkt_gettoken(&vmspace_token);
3458         if (oldvmspace->vm_sysref.refcnt == 1 && oldvmspace->vm_exitingcnt == 0)
3459                 return;
3460         newvmspace = vmspace_fork(oldvmspace);
3461         pmap_pinit2(vmspace_pmap(newvmspace));
3462         pmap_replacevm(p, newvmspace, 0);
3463         sysref_put(&oldvmspace->vm_sysref);
3464         lwkt_reltoken(&vmspace_token);
3465 }
3466
3467 /*
3468  * Finds the VM object, offset, and protection for a given virtual address
3469  * in the specified map, assuming a page fault of the type specified.
3470  *
3471  * Leaves the map in question locked for read; return values are guaranteed
3472  * until a vm_map_lookup_done call is performed.  Note that the map argument
3473  * is in/out; the returned map must be used in the call to vm_map_lookup_done.
3474  *
3475  * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
3476  * that fast.
3477  *
3478  * If a lookup is requested with "write protection" specified, the map may
3479  * be changed to perform virtual copying operations, although the data
3480  * referenced will remain the same.
3481  *
3482  * No requirements.
3483  */
3484 int
3485 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
3486               vm_offset_t vaddr,
3487               vm_prot_t fault_typea,
3488               vm_map_entry_t *out_entry,        /* OUT */
3489               vm_object_t *object,              /* OUT */
3490               vm_pindex_t *pindex,              /* OUT */
3491               vm_prot_t *out_prot,              /* OUT */
3492               boolean_t *wired)                 /* OUT */
3493 {
3494         vm_map_entry_t entry;
3495         vm_map_t map = *var_map;
3496         vm_prot_t prot;
3497         vm_prot_t fault_type = fault_typea;
3498         int use_read_lock = 1;
3499         int rv = KERN_SUCCESS;
3500
3501 RetryLookup:
3502         if (use_read_lock)
3503                 vm_map_lock_read(map);
3504         else
3505                 vm_map_lock(map);
3506
3507         /*
3508          * If the map has an interesting hint, try it before calling full
3509          * blown lookup routine.
3510          */
3511         entry = map->hint;
3512         *out_entry = entry;
3513
3514         if ((entry == &map->header) ||
3515             (vaddr < entry->start) || (vaddr >= entry->end)) {
3516                 vm_map_entry_t tmp_entry;
3517
3518                 /*
3519                  * Entry was either not a valid hint, or the vaddr was not
3520                  * contained in the entry, so do a full lookup.
3521                  */
3522                 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3523                         rv = KERN_INVALID_ADDRESS;
3524                         goto done;
3525                 }
3526
3527                 entry = tmp_entry;
3528                 *out_entry = entry;
3529         }
3530         
3531         /*
3532          * Handle submaps.
3533          */
3534         if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3535                 vm_map_t old_map = map;
3536
3537                 *var_map = map = entry->object.sub_map;
3538                 if (use_read_lock)
3539                         vm_map_unlock_read(old_map);
3540                 else
3541                         vm_map_unlock(old_map);
3542                 use_read_lock = 1;
3543                 goto RetryLookup;
3544         }
3545
3546         /*
3547          * Check whether this task is allowed to have this page.
3548          * Note the special case for MAP_ENTRY_COW
3549          * pages with an override.  This is to implement a forced
3550          * COW for debuggers.
3551          */
3552
3553         if (fault_type & VM_PROT_OVERRIDE_WRITE)
3554                 prot = entry->max_protection;
3555         else
3556                 prot = entry->protection;
3557
3558         fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3559         if ((fault_type & prot) != fault_type) {
3560                 rv = KERN_PROTECTION_FAILURE;
3561                 goto done;
3562         }
3563
3564         if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3565             (entry->eflags & MAP_ENTRY_COW) &&
3566             (fault_type & VM_PROT_WRITE) &&
3567             (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3568                 rv = KERN_PROTECTION_FAILURE;
3569                 goto done;
3570         }
3571
3572         /*
3573          * If this page is not pageable, we have to get it for all possible
3574          * accesses.
3575          */
3576         *wired = (entry->wired_count != 0);
3577         if (*wired)
3578                 prot = fault_type = entry->protection;
3579
3580         /*
3581          * Virtual page tables may need to update the accessed (A) bit
3582          * in a page table entry.  Upgrade the fault to a write fault for
3583          * that case if the map will support it.  If the map does not support
3584          * it the page table entry simply will not be updated.
3585          */
3586         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
3587                 if (prot & VM_PROT_WRITE)
3588                         fault_type |= VM_PROT_WRITE;
3589         }
3590
3591         /*
3592          * If the entry was copy-on-write, we either ...
3593          */
3594         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3595                 /*
3596                  * If we want to write the page, we may as well handle that
3597                  * now since we've got the map locked.
3598                  *
3599                  * If we don't need to write the page, we just demote the
3600                  * permissions allowed.
3601                  */
3602
3603                 if (fault_type & VM_PROT_WRITE) {
3604                         /*
3605                          * Make a new object, and place it in the object
3606                          * chain.  Note that no new references have appeared
3607                          * -- one just moved from the map to the new
3608                          * object.
3609                          */
3610
3611                         if (use_read_lock && vm_map_lock_upgrade(map)) {
3612                                 use_read_lock = 0;
3613                                 goto RetryLookup;
3614                         }
3615                         use_read_lock = 0;
3616
3617                         vm_map_entry_shadow(entry);
3618                 } else {
3619                         /*
3620                          * We're attempting to read a copy-on-write page --
3621                          * don't allow writes.
3622                          */
3623
3624                         prot &= ~VM_PROT_WRITE;
3625                 }
3626         }
3627
3628         /*
3629          * Create an object if necessary.
3630          */
3631         if (entry->object.vm_object == NULL &&
3632             !map->system_map) {
3633                 if (use_read_lock && vm_map_lock_upgrade(map))  {
3634                         use_read_lock = 0;
3635                         goto RetryLookup;
3636                 }
3637                 use_read_lock = 0;
3638                 vm_map_entry_allocate_object(entry);
3639         }
3640
3641         /*
3642          * Return the object/offset from this entry.  If the entry was
3643          * copy-on-write or empty, it has been fixed up.
3644          */
3645
3646         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3647         *object = entry->object.vm_object;
3648
3649         /*
3650          * Return whether this is the only map sharing this data.  On
3651          * success we return with a read lock held on the map.  On failure
3652          * we return with the map unlocked.
3653          */
3654         *out_prot = prot;
3655 done:
3656         if (rv == KERN_SUCCESS) {
3657                 if (use_read_lock == 0)
3658                         vm_map_lock_downgrade(map);
3659         } else if (use_read_lock) {
3660                 vm_map_unlock_read(map);
3661         } else {
3662                 vm_map_unlock(map);
3663         }
3664         return (rv);
3665 }
3666
3667 /*
3668  * Releases locks acquired by a vm_map_lookup()
3669  * (according to the handle returned by that lookup).
3670  *
3671  * No other requirements.
3672  */
3673 void
3674 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3675 {
3676         /*
3677          * Unlock the main-level map
3678          */
3679         vm_map_unlock_read(map);
3680         if (count)
3681                 vm_map_entry_release(count);
3682 }
3683
3684 #include "opt_ddb.h"
3685 #ifdef DDB
3686 #include <sys/kernel.h>
3687
3688 #include <ddb/ddb.h>
3689
3690 /*
3691  * Debugging only
3692  */
3693 DB_SHOW_COMMAND(map, vm_map_print)
3694 {
3695         static int nlines;
3696         /* XXX convert args. */
3697         vm_map_t map = (vm_map_t)addr;
3698         boolean_t full = have_addr;
3699
3700         vm_map_entry_t entry;
3701
3702         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3703             (void *)map,
3704             (void *)map->pmap, map->nentries, map->timestamp);
3705         nlines++;
3706
3707         if (!full && db_indent)
3708                 return;
3709
3710         db_indent += 2;
3711         for (entry = map->header.next; entry != &map->header;
3712             entry = entry->next) {
3713                 db_iprintf("map entry %p: start=%p, end=%p\n",
3714                     (void *)entry, (void *)entry->start, (void *)entry->end);
3715                 nlines++;
3716                 {
3717                         static char *inheritance_name[4] =
3718                         {"share", "copy", "none", "donate_copy"};
3719
3720                         db_iprintf(" prot=%x/%x/%s",
3721                             entry->protection,
3722                             entry->max_protection,
3723                             inheritance_name[(int)(unsigned char)entry->inheritance]);
3724                         if (entry->wired_count != 0)
3725                                 db_printf(", wired");
3726                 }
3727                 if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3728                         /* XXX no %qd in kernel.  Truncate entry->offset. */
3729                         db_printf(", share=%p, offset=0x%lx\n",
3730                             (void *)entry->object.sub_map,
3731                             (long)entry->offset);
3732                         nlines++;
3733                         if ((entry->prev == &map->header) ||
3734                             (entry->prev->object.sub_map !=
3735                                 entry->object.sub_map)) {
3736                                 db_indent += 2;
3737                                 vm_map_print((db_expr_t)(intptr_t)
3738                                              entry->object.sub_map,
3739                                              full, 0, NULL);
3740                                 db_indent -= 2;
3741                         }
3742                 } else {
3743                         /* XXX no %qd in kernel.  Truncate entry->offset. */
3744                         db_printf(", object=%p, offset=0x%lx",
3745                             (void *)entry->object.vm_object,
3746                             (long)entry->offset);
3747                         if (entry->eflags & MAP_ENTRY_COW)
3748                                 db_printf(", copy (%s)",
3749                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3750                         db_printf("\n");
3751                         nlines++;
3752
3753                         if ((entry->prev == &map->header) ||
3754                             (entry->prev->object.vm_object !=
3755                                 entry->object.vm_object)) {
3756                                 db_indent += 2;
3757                                 vm_object_print((db_expr_t)(intptr_t)
3758                                                 entry->object.vm_object,
3759                                                 full, 0, NULL);
3760                                 nlines += 4;
3761                                 db_indent -= 2;
3762                         }
3763                 }
3764         }
3765         db_indent -= 2;
3766         if (db_indent == 0)
3767                 nlines = 0;
3768 }
3769
3770 /*
3771  * Debugging only
3772  */
3773 DB_SHOW_COMMAND(procvm, procvm)
3774 {
3775         struct proc *p;
3776
3777         if (have_addr) {
3778                 p = (struct proc *) addr;
3779         } else {
3780                 p = curproc;
3781         }
3782
3783         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3784             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3785             (void *)vmspace_pmap(p->p_vmspace));
3786
3787         vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3788 }
3789
3790 #endif /* DDB */