swapcache - Allow cleaning to proceed if disabled
[dragonfly.git] / sys / vm / vm_swapcache.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 2010 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36
37 /*
38  * Implement the swapcache daemon.  When enabled swap is assumed to be
39  * configured on a fast storage device such as a SSD.  Swap is assigned
40  * to clean vnode-backed pages in the inactive queue, clustered by object
41  * if possible, and written out.  The swap assignment sticks around even
42  * after the underlying pages have been recycled.
43  *
44  * The daemon manages write bandwidth based on sysctl settings to control
45  * wear on the SSD.
46  *
47  * The vnode strategy code will check for the swap assignments and divert
48  * reads to the swap device when the data is present in the swapcache.
49  *
50  * This operates on both regular files and the block device vnodes used by
51  * filesystems to manage meta-data.
52  */
53
54 #include "opt_vm.h"
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/kernel.h>
58 #include <sys/proc.h>
59 #include <sys/kthread.h>
60 #include <sys/resourcevar.h>
61 #include <sys/signalvar.h>
62 #include <sys/vnode.h>
63 #include <sys/vmmeter.h>
64 #include <sys/sysctl.h>
65 #include <sys/eventhandler.h>
66
67 #include <vm/vm.h>
68 #include <vm/vm_param.h>
69 #include <sys/lock.h>
70 #include <vm/vm_object.h>
71 #include <vm/vm_page.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_pageout.h>
74 #include <vm/vm_pager.h>
75 #include <vm/swap_pager.h>
76 #include <vm/vm_extern.h>
77
78 #include <sys/thread2.h>
79 #include <sys/spinlock2.h>
80 #include <vm/vm_page2.h>
81
82 /* the kernel process "vm_pageout"*/
83 static int vm_swapcached_flush (vm_page_t m, int isblkdev);
84 static int vm_swapcache_test(vm_page_t m);
85 static int vm_swapcache_writing_heuristic(void);
86 static int vm_swapcache_writing(vm_page_t marker, int count, int scount);
87 static void vm_swapcache_cleaning(vm_object_t marker, int *swindexp);
88 static void vm_swapcache_movemarker(vm_object_t marker, int swindex,
89                                 vm_object_t object);
90 struct thread *swapcached_thread;
91
92 SYSCTL_NODE(_vm, OID_AUTO, swapcache, CTLFLAG_RW, NULL, NULL);
93
94 int vm_swapcache_read_enable;
95 int vm_swapcache_inactive_heuristic;
96 static int vm_swapcache_sleep;
97 static int vm_swapcache_maxscan = PQ_L2_SIZE * 8;
98 static int vm_swapcache_maxlaunder = PQ_L2_SIZE * 4;
99 static int vm_swapcache_data_enable = 0;
100 static int vm_swapcache_meta_enable = 0;
101 static int vm_swapcache_maxswappct = 75;
102 static int vm_swapcache_hysteresis;
103 static int vm_swapcache_min_hysteresis;
104 int vm_swapcache_use_chflags = 1;       /* require chflags cache */
105 static int64_t vm_swapcache_minburst = 10000000LL;      /* 10MB */
106 static int64_t vm_swapcache_curburst = 4000000000LL;    /* 4G after boot */
107 static int64_t vm_swapcache_maxburst = 2000000000LL;    /* 2G nominal max */
108 static int64_t vm_swapcache_accrate = 100000LL;         /* 100K/s */
109 static int64_t vm_swapcache_write_count;
110 static int64_t vm_swapcache_maxfilesize;
111 static int64_t vm_swapcache_cleanperobj = 16*1024*1024;
112
113 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxlaunder,
114         CTLFLAG_RW, &vm_swapcache_maxlaunder, 0, "");
115 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxscan,
116         CTLFLAG_RW, &vm_swapcache_maxscan, 0, "");
117
118 SYSCTL_INT(_vm_swapcache, OID_AUTO, data_enable,
119         CTLFLAG_RW, &vm_swapcache_data_enable, 0, "");
120 SYSCTL_INT(_vm_swapcache, OID_AUTO, meta_enable,
121         CTLFLAG_RW, &vm_swapcache_meta_enable, 0, "");
122 SYSCTL_INT(_vm_swapcache, OID_AUTO, read_enable,
123         CTLFLAG_RW, &vm_swapcache_read_enable, 0, "");
124 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxswappct,
125         CTLFLAG_RW, &vm_swapcache_maxswappct, 0, "");
126 SYSCTL_INT(_vm_swapcache, OID_AUTO, hysteresis,
127         CTLFLAG_RD, &vm_swapcache_hysteresis, 0, "");
128 SYSCTL_INT(_vm_swapcache, OID_AUTO, min_hysteresis,
129         CTLFLAG_RW, &vm_swapcache_min_hysteresis, 0, "");
130 SYSCTL_INT(_vm_swapcache, OID_AUTO, use_chflags,
131         CTLFLAG_RW, &vm_swapcache_use_chflags, 0, "");
132
133 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, minburst,
134         CTLFLAG_RW, &vm_swapcache_minburst, 0, "");
135 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, curburst,
136         CTLFLAG_RW, &vm_swapcache_curburst, 0, "");
137 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxburst,
138         CTLFLAG_RW, &vm_swapcache_maxburst, 0, "");
139 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxfilesize,
140         CTLFLAG_RW, &vm_swapcache_maxfilesize, 0, "");
141 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, accrate,
142         CTLFLAG_RW, &vm_swapcache_accrate, 0, "");
143 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, write_count,
144         CTLFLAG_RW, &vm_swapcache_write_count, 0, "");
145 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, cleanperobj,
146         CTLFLAG_RW, &vm_swapcache_cleanperobj, 0, "");
147
148 #define SWAPMAX(adj)    \
149         ((int64_t)vm_swap_max * (vm_swapcache_maxswappct + (adj)) / 100)
150
151 /*
152  * When shutting down the machine we want to stop swapcache operation
153  * immediately so swap is not accessed after devices have been shuttered.
154  */
155 static void
156 shutdown_swapcache(void *arg __unused)
157 {
158         vm_swapcache_read_enable = 0;
159         vm_swapcache_data_enable = 0;
160         vm_swapcache_meta_enable = 0;
161         wakeup(&vm_swapcache_sleep);    /* shortcut 5-second wait */
162 }
163
164 /*
165  * vm_swapcached is the high level pageout daemon.
166  *
167  * No requirements.
168  */
169 static void
170 vm_swapcached_thread(void)
171 {
172         enum { SWAPC_WRITING, SWAPC_CLEANING } state = SWAPC_WRITING;
173         enum { SWAPB_BURSTING, SWAPB_RECOVERING } burst = SWAPB_BURSTING;
174         static struct vm_page page_marker[PQ_L2_SIZE];
175         static struct vm_object swmarker;
176         static int swindex;
177         int q;
178
179         /*
180          * Thread setup
181          */
182         curthread->td_flags |= TDF_SYSTHREAD;
183         EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
184                               swapcached_thread, SHUTDOWN_PRI_FIRST);
185         EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_swapcache,
186                               NULL, SHUTDOWN_PRI_SECOND);
187
188         /*
189          * Initialize our marker for the inactive scan (SWAPC_WRITING)
190          */
191         bzero(&page_marker, sizeof(page_marker));
192         for (q = 0; q < PQ_L2_SIZE; ++q) {
193                 page_marker[q].flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
194                 page_marker[q].queue = PQ_INACTIVE + q;
195                 page_marker[q].pc = q;
196                 page_marker[q].wire_count = 1;
197                 vm_page_queues_spin_lock(PQ_INACTIVE + q);
198                 TAILQ_INSERT_HEAD(
199                         &vm_page_queues[PQ_INACTIVE + q].pl,
200                         &page_marker[q], pageq);
201                 vm_page_queues_spin_unlock(PQ_INACTIVE + q);
202         }
203
204         vm_swapcache_min_hysteresis = 1024;
205         vm_swapcache_hysteresis = vm_swapcache_min_hysteresis;
206         vm_swapcache_inactive_heuristic = -vm_swapcache_hysteresis;
207
208         /*
209          * Initialize our marker for the vm_object scan (SWAPC_CLEANING)
210          */
211         bzero(&swmarker, sizeof(swmarker));
212         swmarker.type = OBJT_MARKER;
213         swindex = 0;
214         lwkt_gettoken(&vmobj_tokens[swindex]);
215         TAILQ_INSERT_HEAD(&vm_object_lists[swindex],
216                           &swmarker, object_list);
217         lwkt_reltoken(&vmobj_tokens[swindex]);
218
219         for (;;) {
220                 int reached_end;
221                 int scount;
222                 int count;
223
224                 /*
225                  * Handle shutdown
226                  */
227                 kproc_suspend_loop();
228
229                 /*
230                  * Check every 5 seconds when not enabled or if no swap
231                  * is present.
232                  */
233                 if ((vm_swapcache_data_enable == 0 &&
234                      vm_swapcache_meta_enable == 0 &&
235                      vm_swap_cache_use <= SWAPMAX(0)) ||
236                     vm_swap_max == 0) {
237                         tsleep(&vm_swapcache_sleep, 0, "csleep", hz * 5);
238                         continue;
239                 }
240
241                 /*
242                  * Polling rate when enabled is approximately 10 hz.
243                  */
244                 tsleep(&vm_swapcache_sleep, 0, "csleep", hz / 10);
245
246                 /*
247                  * State hysteresis.  Generate write activity up to 75% of
248                  * swap, then clean out swap assignments down to 70%, then
249                  * repeat.
250                  */
251                 if (state == SWAPC_WRITING) {
252                         if (vm_swap_cache_use > SWAPMAX(0))
253                                 state = SWAPC_CLEANING;
254                 } else {
255                         if (vm_swap_cache_use < SWAPMAX(-10))
256                                 state = SWAPC_WRITING;
257                 }
258
259                 /*
260                  * We are allowed to continue accumulating burst value
261                  * in either state.  Allow the user to set curburst > maxburst
262                  * for the initial load-in.
263                  */
264                 if (vm_swapcache_curburst < vm_swapcache_maxburst) {
265                         vm_swapcache_curburst += vm_swapcache_accrate / 10;
266                         if (vm_swapcache_curburst > vm_swapcache_maxburst)
267                                 vm_swapcache_curburst = vm_swapcache_maxburst;
268                 }
269
270                 /*
271                  * We don't want to nickle-and-dime the scan as that will
272                  * create unnecessary fragmentation.  The minimum burst
273                  * is one-seconds worth of accumulation.
274                  */
275                 if (state != SWAPC_WRITING) {
276                         vm_swapcache_cleaning(&swmarker, &swindex);
277                         continue;
278                 }
279                 if (vm_swapcache_curburst < vm_swapcache_accrate)
280                         continue;
281
282                 reached_end = 0;
283                 count = vm_swapcache_maxlaunder / PQ_L2_SIZE + 2;
284                 scount = vm_swapcache_maxscan / PQ_L2_SIZE + 2;
285
286                 if (burst == SWAPB_BURSTING) {
287                         if (vm_swapcache_writing_heuristic()) {
288                                 for (q = 0; q < PQ_L2_SIZE; ++q) {
289                                         reached_end +=
290                                                 vm_swapcache_writing(
291                                                         &page_marker[q],
292                                                         count,
293                                                         scount);
294                                 }
295                         }
296                         if (vm_swapcache_curburst <= 0)
297                                 burst = SWAPB_RECOVERING;
298                 } else if (vm_swapcache_curburst > vm_swapcache_minburst) {
299                         if (vm_swapcache_writing_heuristic()) {
300                                 for (q = 0; q < PQ_L2_SIZE; ++q) {
301                                         reached_end +=
302                                                 vm_swapcache_writing(
303                                                         &page_marker[q],
304                                                         count,
305                                                         scount);
306                                 }
307                         }
308                         burst = SWAPB_BURSTING;
309                 }
310                 if (reached_end == PQ_L2_SIZE) {
311                         vm_swapcache_inactive_heuristic =
312                                 -vm_swapcache_hysteresis;
313                 }
314         }
315
316         /*
317          * Cleanup (NOT REACHED)
318          */
319         for (q = 0; q < PQ_L2_SIZE; ++q) {
320                 vm_page_queues_spin_lock(PQ_INACTIVE + q);
321                 TAILQ_REMOVE(
322                         &vm_page_queues[PQ_INACTIVE + q].pl,
323                         &page_marker[q], pageq);
324                 vm_page_queues_spin_unlock(PQ_INACTIVE + q);
325         }
326
327         lwkt_gettoken(&vmobj_tokens[swindex]);
328         TAILQ_REMOVE(&vm_object_lists[swindex], &swmarker, object_list);
329         lwkt_reltoken(&vmobj_tokens[swindex]);
330 }
331
332 static struct kproc_desc swpc_kp = {
333         "swapcached",
334         vm_swapcached_thread,
335         &swapcached_thread
336 };
337 SYSINIT(swapcached, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, &swpc_kp)
338
339 /*
340  * Deal with an overflow of the heuristic counter or if the user
341  * manually changes the hysteresis.
342  *
343  * Try to avoid small incremental pageouts by waiting for enough
344  * pages to buildup in the inactive queue to hopefully get a good
345  * burst in.  This heuristic is bumped by the VM system and reset
346  * when our scan hits the end of the queue.
347  *
348  * Return TRUE if we need to take a writing pass.
349  */
350 static int
351 vm_swapcache_writing_heuristic(void)
352 {
353         int hyst;
354
355         hyst = vmstats.v_inactive_count / 4;
356         if (hyst < vm_swapcache_min_hysteresis)
357                 hyst = vm_swapcache_min_hysteresis;
358         cpu_ccfence();
359         vm_swapcache_hysteresis = hyst;
360
361         if (vm_swapcache_inactive_heuristic < -hyst)
362                 vm_swapcache_inactive_heuristic = -hyst;
363
364         return (vm_swapcache_inactive_heuristic >= 0);
365 }
366
367 /*
368  * Take a writing pass on one of the inactive queues, return non-zero if
369  * we hit the end of the queue.
370  */
371 static int
372 vm_swapcache_writing(vm_page_t marker, int count, int scount)
373 {
374         vm_object_t object;
375         struct vnode *vp;
376         vm_page_t m;
377         int isblkdev;
378
379         /*
380          * Scan the inactive queue from our marker to locate
381          * suitable pages to push to the swap cache.
382          *
383          * We are looking for clean vnode-backed pages.
384          */
385         vm_page_queues_spin_lock(marker->queue);
386         while ((m = TAILQ_NEXT(marker, pageq)) != NULL &&
387                count > 0 && scount-- > 0) {
388                 KKASSERT(m->queue == marker->queue);
389
390                 if (vm_swapcache_curburst < 0)
391                         break;
392                 TAILQ_REMOVE(
393                         &vm_page_queues[marker->queue].pl, marker, pageq);
394                 TAILQ_INSERT_AFTER(
395                         &vm_page_queues[marker->queue].pl, m, marker, pageq);
396
397                 /*
398                  * Ignore markers and ignore pages that already have a swap
399                  * assignment.
400                  */
401                 if (m->flags & (PG_MARKER | PG_SWAPPED))
402                         continue;
403                 if (vm_page_busy_try(m, TRUE))
404                         continue;
405                 vm_page_queues_spin_unlock(marker->queue);
406
407                 if ((object = m->object) == NULL) {
408                         vm_page_wakeup(m);
409                         vm_page_queues_spin_lock(marker->queue);
410                         continue;
411                 }
412                 vm_object_hold(object);
413                 if (m->object != object) {
414                         vm_object_drop(object);
415                         vm_page_wakeup(m);
416                         vm_page_queues_spin_lock(marker->queue);
417                         continue;
418                 }
419                 if (vm_swapcache_test(m)) {
420                         vm_object_drop(object);
421                         vm_page_wakeup(m);
422                         vm_page_queues_spin_lock(marker->queue);
423                         continue;
424                 }
425
426                 vp = object->handle;
427                 if (vp == NULL) {
428                         vm_object_drop(object);
429                         vm_page_wakeup(m);
430                         vm_page_queues_spin_lock(marker->queue);
431                         continue;
432                 }
433
434                 switch(vp->v_type) {
435                 case VREG:
436                         /*
437                          * PG_NOTMETA generically means 'don't swapcache this',
438                          * and HAMMER will set this for regular data buffers
439                          * (and leave it unset for meta-data buffers) as
440                          * appropriate when double buffering is enabled.
441                          */
442                         if (m->flags & PG_NOTMETA) {
443                                 vm_object_drop(object);
444                                 vm_page_wakeup(m);
445                                 vm_page_queues_spin_lock(marker->queue);
446                                 continue;
447                         }
448
449                         /*
450                          * If data_enable is 0 do not try to swapcache data.
451                          * If use_chflags is set then only swapcache data for
452                          * VSWAPCACHE marked vnodes, otherwise any vnode.
453                          */
454                         if (vm_swapcache_data_enable == 0 ||
455                             ((vp->v_flag & VSWAPCACHE) == 0 &&
456                              vm_swapcache_use_chflags)) {
457                                 vm_object_drop(object);
458                                 vm_page_wakeup(m);
459                                 vm_page_queues_spin_lock(marker->queue);
460                                 continue;
461                         }
462                         if (vm_swapcache_maxfilesize &&
463                             object->size >
464                             (vm_swapcache_maxfilesize >> PAGE_SHIFT)) {
465                                 vm_object_drop(object);
466                                 vm_page_wakeup(m);
467                                 vm_page_queues_spin_lock(marker->queue);
468                                 continue;
469                         }
470                         isblkdev = 0;
471                         break;
472                 case VCHR:
473                         /*
474                          * PG_NOTMETA generically means 'don't swapcache this',
475                          * and HAMMER will set this for regular data buffers
476                          * (and leave it unset for meta-data buffers) as
477                          * appropriate when double buffering is enabled.
478                          */
479                         if (m->flags & PG_NOTMETA) {
480                                 vm_object_drop(object);
481                                 vm_page_wakeup(m);
482                                 vm_page_queues_spin_lock(marker->queue);
483                                 continue;
484                         }
485                         if (vm_swapcache_meta_enable == 0) {
486                                 vm_object_drop(object);
487                                 vm_page_wakeup(m);
488                                 vm_page_queues_spin_lock(marker->queue);
489                                 continue;
490                         }
491                         isblkdev = 1;
492                         break;
493                 default:
494                         vm_object_drop(object);
495                         vm_page_wakeup(m);
496                         vm_page_queues_spin_lock(marker->queue);
497                         continue;
498                 }
499
500
501                 /*
502                  * Assign swap and initiate I/O.
503                  *
504                  * (adjust for the --count which also occurs in the loop)
505                  */
506                 count -= vm_swapcached_flush(m, isblkdev);
507
508                 /*
509                  * Setup for next loop using marker.
510                  */
511                 vm_object_drop(object);
512                 vm_page_queues_spin_lock(marker->queue);
513         }
514
515         /*
516          * The marker could wind up at the end, which is ok.  If we hit the
517          * end of the list adjust the heuristic.
518          *
519          * Earlier inactive pages that were dirty and become clean
520          * are typically moved to the end of PQ_INACTIVE by virtue
521          * of vfs_vmio_release() when they become unwired from the
522          * buffer cache.
523          */
524         vm_page_queues_spin_unlock(marker->queue);
525
526         /*
527          * m invalid but can be used to test for NULL
528          */
529         return (m == NULL);
530 }
531
532 /*
533  * Flush the specified page using the swap_pager.  The page
534  * must be busied by the caller and its disposition will become
535  * the responsibility of this function.
536  *
537  * Try to collect surrounding pages, including pages which may
538  * have already been assigned swap.  Try to cluster within a
539  * contiguous aligned SMAP_META_PAGES (typ 16 x PAGE_SIZE) block
540  * to match what swap_pager_putpages() can do.
541  *
542  * We also want to try to match against the buffer cache blocksize
543  * but we don't really know what it is here.  Since the buffer cache
544  * wires and unwires pages in groups the fact that we skip wired pages
545  * should be sufficient.
546  *
547  * Returns a count of pages we might have flushed (minimum 1)
548  */
549 static
550 int
551 vm_swapcached_flush(vm_page_t m, int isblkdev)
552 {
553         vm_object_t object;
554         vm_page_t marray[SWAP_META_PAGES];
555         vm_pindex_t basei;
556         int rtvals[SWAP_META_PAGES];
557         int x;
558         int i;
559         int j;
560         int count;
561         int error;
562
563         vm_page_io_start(m);
564         vm_page_protect(m, VM_PROT_READ);
565         object = m->object;
566         vm_object_hold(object);
567
568         /*
569          * Try to cluster around (m), keeping in mind that the swap pager
570          * can only do SMAP_META_PAGES worth of continguous write.
571          */
572         x = (int)m->pindex & SWAP_META_MASK;
573         marray[x] = m;
574         basei = m->pindex;
575         vm_page_wakeup(m);
576
577         for (i = x - 1; i >= 0; --i) {
578                 m = vm_page_lookup_busy_try(object, basei - x + i,
579                                             TRUE, &error);
580                 if (error || m == NULL)
581                         break;
582                 if (vm_swapcache_test(m)) {
583                         vm_page_wakeup(m);
584                         break;
585                 }
586                 if (isblkdev && (m->flags & PG_NOTMETA)) {
587                         vm_page_wakeup(m);
588                         break;
589                 }
590                 vm_page_io_start(m);
591                 vm_page_protect(m, VM_PROT_READ);
592                 if (m->queue - m->pc == PQ_CACHE) {
593                         vm_page_unqueue_nowakeup(m);
594                         vm_page_deactivate(m);
595                 }
596                 marray[i] = m;
597                 vm_page_wakeup(m);
598         }
599         ++i;
600
601         for (j = x + 1; j < SWAP_META_PAGES; ++j) {
602                 m = vm_page_lookup_busy_try(object, basei - x + j,
603                                             TRUE, &error);
604                 if (error || m == NULL)
605                         break;
606                 if (vm_swapcache_test(m)) {
607                         vm_page_wakeup(m);
608                         break;
609                 }
610                 if (isblkdev && (m->flags & PG_NOTMETA)) {
611                         vm_page_wakeup(m);
612                         break;
613                 }
614                 vm_page_io_start(m);
615                 vm_page_protect(m, VM_PROT_READ);
616                 if (m->queue - m->pc == PQ_CACHE) {
617                         vm_page_unqueue_nowakeup(m);
618                         vm_page_deactivate(m);
619                 }
620                 marray[j] = m;
621                 vm_page_wakeup(m);
622         }
623
624         count = j - i;
625         vm_object_pip_add(object, count);
626         swap_pager_putpages(object, marray + i, count, FALSE, rtvals + i);
627         vm_swapcache_write_count += count * PAGE_SIZE;
628         vm_swapcache_curburst -= count * PAGE_SIZE;
629
630         while (i < j) {
631                 if (rtvals[i] != VM_PAGER_PEND) {
632                         vm_page_busy_wait(marray[i], FALSE, "swppgfd");
633                         vm_page_io_finish(marray[i]);
634                         vm_page_wakeup(marray[i]);
635                         vm_object_pip_wakeup(object);
636                 }
637                 ++i;
638         }
639         vm_object_drop(object);
640         return(count);
641 }
642
643 /*
644  * Test whether a VM page is suitable for writing to the swapcache.
645  * Does not test m->queue, PG_MARKER, or PG_SWAPPED.
646  *
647  * Returns 0 on success, 1 on failure
648  */
649 static int
650 vm_swapcache_test(vm_page_t m)
651 {
652         vm_object_t object;
653
654         if (m->flags & PG_UNMANAGED)
655                 return(1);
656         if (m->hold_count || m->wire_count)
657                 return(1);
658         if (m->valid != VM_PAGE_BITS_ALL)
659                 return(1);
660         if (m->dirty & m->valid)
661                 return(1);
662         if ((object = m->object) == NULL)
663                 return(1);
664         if (object->type != OBJT_VNODE ||
665             (object->flags & OBJ_DEAD)) {
666                 return(1);
667         }
668         vm_page_test_dirty(m);
669         if (m->dirty & m->valid)
670                 return(1);
671         return(0);
672 }
673
674 /*
675  * Cleaning pass.
676  *
677  * We clean whole objects up to 16MB
678  */
679 static
680 void
681 vm_swapcache_cleaning(vm_object_t marker, int *swindexp)
682 {
683         vm_object_t object;
684         struct vnode *vp;
685         int count;
686         int scount;
687         int n;
688
689         count = vm_swapcache_maxlaunder;
690         scount = vm_swapcache_maxscan;
691
692         /*
693          * Look for vnode objects
694          */
695         lwkt_gettoken(&vmobj_tokens[*swindexp]);
696
697 outerloop:
698         while ((object = TAILQ_NEXT(marker, object_list)) != NULL) {
699                 /*
700                  * We have to skip markers.  We cannot hold/drop marker
701                  * objects!
702                  */
703                 if (object->type == OBJT_MARKER) {
704                         vm_swapcache_movemarker(marker, *swindexp, object);
705                         continue;
706                 }
707
708                 /*
709                  * Safety, or in case there are millions of VM objects
710                  * without swapcache backing.
711                  */
712                 if (--scount <= 0)
713                         goto breakout;
714
715                 /*
716                  * We must hold the object before potentially yielding.
717                  */
718                 vm_object_hold(object);
719                 lwkt_yield();
720
721                 /* 
722                  * Only operate on live VNODE objects that are either
723                  * VREG or VCHR (VCHR for meta-data).
724                  */
725                 if ((object->type != OBJT_VNODE) ||
726                     ((object->flags & OBJ_DEAD) ||
727                      object->swblock_count == 0) ||
728                     ((vp = object->handle) == NULL) ||
729                     (vp->v_type != VREG && vp->v_type != VCHR)) {
730                         vm_object_drop(object);
731                         /* object may be invalid now */
732                         vm_swapcache_movemarker(marker, *swindexp, object);
733                         continue;
734                 }
735
736                 /*
737                  * Reset the object pindex stored in the marker if the
738                  * working object has changed.
739                  */
740                 if (marker->backing_object != object) {
741                         marker->size = 0;
742                         marker->backing_object_offset = 0;
743                         marker->backing_object = object;
744                 }
745
746                 /*
747                  * Look for swblocks starting at our iterator.
748                  *
749                  * The swap_pager_condfree() function attempts to free
750                  * swap space starting at the specified index.  The index
751                  * will be updated on return.  The function will return
752                  * a scan factor (NOT the number of blocks freed).
753                  *
754                  * If it must cut its scan of the object short due to an
755                  * excessive number of swblocks, or is able to free the
756                  * requested number of blocks, it will return n >= count
757                  * and we break and pick it back up on a future attempt.
758                  *
759                  * Scan the object linearly and try to batch large sets of
760                  * blocks that are likely to clean out entire swap radix
761                  * tree leafs.
762                  */
763                 lwkt_token_swap();
764                 lwkt_reltoken(&vmobj_tokens[*swindexp]);
765
766                 n = swap_pager_condfree(object, &marker->size,
767                                     (count + SWAP_META_MASK) & ~SWAP_META_MASK);
768
769                 vm_object_drop(object);         /* object may be invalid now */
770                 lwkt_gettoken(&vmobj_tokens[*swindexp]);
771
772                 /*
773                  * If we have exhausted the object or deleted our per-pass
774                  * page limit then move us to the next object.  Note that
775                  * the current object may no longer be on the vm_object_list.
776                  */
777                 if (n <= 0 ||
778                     marker->backing_object_offset > vm_swapcache_cleanperobj) {
779                         vm_swapcache_movemarker(marker, *swindexp, object);
780                 }
781
782                 /*
783                  * If we have exhausted our max-launder stop for now.
784                  */
785                 count -= n;
786                 marker->backing_object_offset += n * PAGE_SIZE;
787                 if (count < 0)
788                         goto breakout;
789         }
790
791         /*
792          * Iterate vm_object_lists[] hash table
793          */
794         TAILQ_REMOVE(&vm_object_lists[*swindexp], marker, object_list);
795         lwkt_reltoken(&vmobj_tokens[*swindexp]);
796         if (++*swindexp >= VMOBJ_HSIZE)
797                 *swindexp = 0;
798         lwkt_gettoken(&vmobj_tokens[*swindexp]);
799         TAILQ_INSERT_HEAD(&vm_object_lists[*swindexp], marker, object_list);
800
801         if (*swindexp != 0)
802                 goto outerloop;
803
804 breakout:
805         lwkt_reltoken(&vmobj_tokens[*swindexp]);
806 }
807
808 /*
809  * Move the marker past the current object.  Object can be stale, but we
810  * still need it to determine if the marker has to be moved.  If the object
811  * is still the 'current object' (object after the marker), we hop-scotch
812  * the marker past it.
813  */
814 static void
815 vm_swapcache_movemarker(vm_object_t marker, int swindex, vm_object_t object)
816 {
817         if (TAILQ_NEXT(marker, object_list) == object) {
818                 TAILQ_REMOVE(&vm_object_lists[swindex], marker, object_list);
819                 TAILQ_INSERT_AFTER(&vm_object_lists[swindex], object,
820                                    marker, object_list);
821         }
822 }