Fix a buffer cache deadlock which can occur when simulated disk devices
[dragonfly.git] / sys / vfs / hammer / hammer_ondisk.c
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  * 
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  * 
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  * 
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  * 
34  * $DragonFly: src/sys/vfs/hammer/hammer_ondisk.c,v 1.76 2008/08/29 20:19:08 dillon Exp $
35  */
36 /*
37  * Manage HAMMER's on-disk structures.  These routines are primarily
38  * responsible for interfacing with the kernel's I/O subsystem and for
39  * managing in-memory structures.
40  */
41
42 #include "hammer.h"
43 #include <sys/fcntl.h>
44 #include <sys/nlookup.h>
45 #include <sys/buf.h>
46 #include <sys/buf2.h>
47
48 static void hammer_free_volume(hammer_volume_t volume);
49 static int hammer_load_volume(hammer_volume_t volume);
50 static int hammer_load_buffer(hammer_buffer_t buffer, int isnew);
51 static int hammer_load_node(hammer_node_t node, int isnew);
52
53 static int
54 hammer_vol_rb_compare(hammer_volume_t vol1, hammer_volume_t vol2)
55 {
56         if (vol1->vol_no < vol2->vol_no)
57                 return(-1);
58         if (vol1->vol_no > vol2->vol_no)
59                 return(1);
60         return(0);
61 }
62
63 static int
64 hammer_buf_rb_compare(hammer_buffer_t buf1, hammer_buffer_t buf2)
65 {
66         if (buf1->zoneX_offset < buf2->zoneX_offset)
67                 return(-1);
68         if (buf1->zoneX_offset > buf2->zoneX_offset)
69                 return(1);
70         return(0);
71 }
72
73 static int
74 hammer_nod_rb_compare(hammer_node_t node1, hammer_node_t node2)
75 {
76         if (node1->node_offset < node2->node_offset)
77                 return(-1);
78         if (node1->node_offset > node2->node_offset)
79                 return(1);
80         return(0);
81 }
82
83 RB_GENERATE2(hammer_vol_rb_tree, hammer_volume, rb_node,
84              hammer_vol_rb_compare, int32_t, vol_no);
85 RB_GENERATE2(hammer_buf_rb_tree, hammer_buffer, rb_node,
86              hammer_buf_rb_compare, hammer_off_t, zoneX_offset);
87 RB_GENERATE2(hammer_nod_rb_tree, hammer_node, rb_node,
88              hammer_nod_rb_compare, hammer_off_t, node_offset);
89
90 /************************************************************************
91  *                              VOLUMES                                 *
92  ************************************************************************
93  *
94  * Load a HAMMER volume by name.  Returns 0 on success or a positive error
95  * code on failure.  Volumes must be loaded at mount time, get_volume() will
96  * not load a new volume.
97  *
98  * Calls made to hammer_load_volume() or single-threaded
99  */
100 int
101 hammer_install_volume(struct hammer_mount *hmp, const char *volname,
102                       struct vnode *devvp)
103 {
104         struct mount *mp;
105         hammer_volume_t volume;
106         struct hammer_volume_ondisk *ondisk;
107         struct nlookupdata nd;
108         struct buf *bp = NULL;
109         int error;
110         int ronly;
111         int setmp = 0;
112
113         mp = hmp->mp;
114         ronly = ((mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
115
116         /*
117          * Allocate a volume structure
118          */
119         ++hammer_count_volumes;
120         volume = kmalloc(sizeof(*volume), M_HAMMER, M_WAITOK|M_ZERO);
121         volume->vol_name = kstrdup(volname, M_HAMMER);
122         volume->io.hmp = hmp;   /* bootstrap */
123         hammer_io_init(&volume->io, volume, HAMMER_STRUCTURE_VOLUME);
124         volume->io.offset = 0LL;
125         volume->io.bytes = HAMMER_BUFSIZE;
126
127         /*
128          * Get the device vnode
129          */
130         if (devvp == NULL) {
131                 error = nlookup_init(&nd, volume->vol_name, UIO_SYSSPACE, NLC_FOLLOW);
132                 if (error == 0)
133                         error = nlookup(&nd);
134                 if (error == 0)
135                         error = cache_vref(&nd.nl_nch, nd.nl_cred, &volume->devvp);
136                 nlookup_done(&nd);
137         } else {
138                 error = 0;
139                 volume->devvp = devvp;
140         }
141
142         if (error == 0) {
143                 if (vn_isdisk(volume->devvp, &error)) {
144                         error = vfs_mountedon(volume->devvp);
145                 }
146         }
147         if (error == 0 &&
148             count_udev(volume->devvp->v_umajor, volume->devvp->v_uminor) > 0) {
149                 error = EBUSY;
150         }
151         if (error == 0) {
152                 vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
153                 error = vinvalbuf(volume->devvp, V_SAVE, 0, 0);
154                 if (error == 0) {
155                         error = VOP_OPEN(volume->devvp, 
156                                          (ronly ? FREAD : FREAD|FWRITE),
157                                          FSCRED, NULL);
158                 }
159                 vn_unlock(volume->devvp);
160         }
161         if (error) {
162                 hammer_free_volume(volume);
163                 return(error);
164         }
165         volume->devvp->v_rdev->si_mountpoint = mp;
166         setmp = 1;
167
168         /*
169          * Extract the volume number from the volume header and do various
170          * sanity checks.
171          */
172         error = bread(volume->devvp, 0LL, HAMMER_BUFSIZE, &bp);
173         if (error)
174                 goto late_failure;
175         ondisk = (void *)bp->b_data;
176         if (ondisk->vol_signature != HAMMER_FSBUF_VOLUME) {
177                 kprintf("hammer_mount: volume %s has an invalid header\n",
178                         volume->vol_name);
179                 error = EFTYPE;
180                 goto late_failure;
181         }
182         volume->vol_no = ondisk->vol_no;
183         volume->buffer_base = ondisk->vol_buf_beg;
184         volume->vol_flags = ondisk->vol_flags;
185         volume->nblocks = ondisk->vol_nblocks; 
186         volume->maxbuf_off = HAMMER_ENCODE_RAW_BUFFER(volume->vol_no,
187                                     ondisk->vol_buf_end - ondisk->vol_buf_beg);
188         volume->maxraw_off = ondisk->vol_buf_end;
189
190         if (RB_EMPTY(&hmp->rb_vols_root)) {
191                 hmp->fsid = ondisk->vol_fsid;
192         } else if (bcmp(&hmp->fsid, &ondisk->vol_fsid, sizeof(uuid_t))) {
193                 kprintf("hammer_mount: volume %s's fsid does not match "
194                         "other volumes\n", volume->vol_name);
195                 error = EFTYPE;
196                 goto late_failure;
197         }
198
199         /*
200          * Insert the volume structure into the red-black tree.
201          */
202         if (RB_INSERT(hammer_vol_rb_tree, &hmp->rb_vols_root, volume)) {
203                 kprintf("hammer_mount: volume %s has a duplicate vol_no %d\n",
204                         volume->vol_name, volume->vol_no);
205                 error = EEXIST;
206         }
207
208         /*
209          * Set the root volume .  HAMMER special cases rootvol the structure.
210          * We do not hold a ref because this would prevent related I/O
211          * from being flushed.
212          */
213         if (error == 0 && ondisk->vol_rootvol == ondisk->vol_no) {
214                 hmp->rootvol = volume;
215                 hmp->nvolumes = ondisk->vol_count;
216                 if (bp) {
217                         brelse(bp);
218                         bp = NULL;
219                 }
220                 hmp->mp->mnt_stat.f_blocks += ondisk->vol0_stat_bigblocks *
221                         (HAMMER_LARGEBLOCK_SIZE / HAMMER_BUFSIZE);
222                 hmp->mp->mnt_vstat.f_blocks += ondisk->vol0_stat_bigblocks *
223                         (HAMMER_LARGEBLOCK_SIZE / HAMMER_BUFSIZE);
224         }
225 late_failure:
226         if (bp)
227                 brelse(bp);
228         if (error) {
229                 /*vinvalbuf(volume->devvp, V_SAVE, 0, 0);*/
230                 if (setmp)
231                         volume->devvp->v_rdev->si_mountpoint = NULL;
232                 VOP_CLOSE(volume->devvp, ronly ? FREAD : FREAD|FWRITE);
233                 hammer_free_volume(volume);
234         }
235         return (error);
236 }
237
238 /*
239  * This is called for each volume when updating the mount point from
240  * read-write to read-only or vise-versa.
241  */
242 int
243 hammer_adjust_volume_mode(hammer_volume_t volume, void *data __unused)
244 {
245         if (volume->devvp) {
246                 vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
247                 if (volume->io.hmp->ronly) {
248                         /* do not call vinvalbuf */
249                         VOP_OPEN(volume->devvp, FREAD, FSCRED, NULL);
250                         VOP_CLOSE(volume->devvp, FREAD|FWRITE);
251                 } else {
252                         /* do not call vinvalbuf */
253                         VOP_OPEN(volume->devvp, FREAD|FWRITE, FSCRED, NULL);
254                         VOP_CLOSE(volume->devvp, FREAD);
255                 }
256                 vn_unlock(volume->devvp);
257         }
258         return(0);
259 }
260
261 /*
262  * Unload and free a HAMMER volume.  Must return >= 0 to continue scan
263  * so returns -1 on failure.
264  */
265 int
266 hammer_unload_volume(hammer_volume_t volume, void *data __unused)
267 {
268         struct hammer_mount *hmp = volume->io.hmp;
269         int ronly = ((hmp->mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
270         struct buf *bp;
271
272         /*
273          * Clean up the root volume pointer, which is held unlocked in hmp.
274          */
275         if (hmp->rootvol == volume)
276                 hmp->rootvol = NULL;
277
278         /*
279          * We must not flush a dirty buffer to disk on umount.  It should
280          * have already been dealt with by the flusher, or we may be in
281          * catastrophic failure.
282          */
283         hammer_io_clear_modify(&volume->io, 1);
284         volume->io.waitdep = 1;
285         bp = hammer_io_release(&volume->io, 1);
286
287         /*
288          * Clean up the persistent ref ioerror might have on the volume
289          */
290         if (volume->io.ioerror) {
291                 volume->io.ioerror = 0;
292                 hammer_unref(&volume->io.lock);
293         }
294
295         /*
296          * There should be no references on the volume, no clusters, and
297          * no super-clusters.
298          */
299         KKASSERT(volume->io.lock.refs == 0);
300         if (bp)
301                 brelse(bp);
302
303         volume->ondisk = NULL;
304         if (volume->devvp) {
305                 if (volume->devvp->v_rdev &&
306                     volume->devvp->v_rdev->si_mountpoint == hmp->mp
307                 ) {
308                         volume->devvp->v_rdev->si_mountpoint = NULL;
309                 }
310                 if (ronly) {
311                         /*
312                          * Make sure we don't sync anything to disk if we
313                          * are in read-only mode (1) or critically-errored
314                          * (2).  Note that there may be dirty buffers in
315                          * normal read-only mode from crash recovery.
316                          */
317                         vinvalbuf(volume->devvp, 0, 0, 0);
318                         VOP_CLOSE(volume->devvp, FREAD);
319                 } else {
320                         /*
321                          * Normal termination, save any dirty buffers
322                          * (XXX there really shouldn't be any).
323                          */
324                         vinvalbuf(volume->devvp, V_SAVE, 0, 0);
325                         VOP_CLOSE(volume->devvp, FREAD|FWRITE);
326                 }
327         }
328
329         /*
330          * Destroy the structure
331          */
332         RB_REMOVE(hammer_vol_rb_tree, &hmp->rb_vols_root, volume);
333         hammer_free_volume(volume);
334         return(0);
335 }
336
337 static
338 void
339 hammer_free_volume(hammer_volume_t volume)
340 {
341         if (volume->vol_name) {
342                 kfree(volume->vol_name, M_HAMMER);
343                 volume->vol_name = NULL;
344         }
345         if (volume->devvp) {
346                 vrele(volume->devvp);
347                 volume->devvp = NULL;
348         }
349         --hammer_count_volumes;
350         kfree(volume, M_HAMMER);
351 }
352
353 /*
354  * Get a HAMMER volume.  The volume must already exist.
355  */
356 hammer_volume_t
357 hammer_get_volume(struct hammer_mount *hmp, int32_t vol_no, int *errorp)
358 {
359         struct hammer_volume *volume;
360
361         /*
362          * Locate the volume structure
363          */
364         volume = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, vol_no);
365         if (volume == NULL) {
366                 *errorp = ENOENT;
367                 return(NULL);
368         }
369         hammer_ref(&volume->io.lock);
370
371         /*
372          * Deal with on-disk info
373          */
374         if (volume->ondisk == NULL || volume->io.loading) {
375                 *errorp = hammer_load_volume(volume);
376                 if (*errorp) {
377                         hammer_rel_volume(volume, 1);
378                         volume = NULL;
379                 }
380         } else {
381                 *errorp = 0;
382         }
383         return(volume);
384 }
385
386 int
387 hammer_ref_volume(hammer_volume_t volume)
388 {
389         int error;
390
391         hammer_ref(&volume->io.lock);
392
393         /*
394          * Deal with on-disk info
395          */
396         if (volume->ondisk == NULL || volume->io.loading) {
397                 error = hammer_load_volume(volume);
398                 if (error)
399                         hammer_rel_volume(volume, 1);
400         } else {
401                 error = 0;
402         }
403         return (error);
404 }
405
406 hammer_volume_t
407 hammer_get_root_volume(struct hammer_mount *hmp, int *errorp)
408 {
409         hammer_volume_t volume;
410
411         volume = hmp->rootvol;
412         KKASSERT(volume != NULL);
413         hammer_ref(&volume->io.lock);
414
415         /*
416          * Deal with on-disk info
417          */
418         if (volume->ondisk == NULL || volume->io.loading) {
419                 *errorp = hammer_load_volume(volume);
420                 if (*errorp) {
421                         hammer_rel_volume(volume, 1);
422                         volume = NULL;
423                 }
424         } else {
425                 *errorp = 0;
426         }
427         return (volume);
428 }
429
430 /*
431  * Load a volume's on-disk information.  The volume must be referenced and
432  * not locked.  We temporarily acquire an exclusive lock to interlock
433  * against releases or multiple get's.
434  */
435 static int
436 hammer_load_volume(hammer_volume_t volume)
437 {
438         int error;
439
440         ++volume->io.loading;
441         hammer_lock_ex(&volume->io.lock);
442
443         if (volume->ondisk == NULL) {
444                 error = hammer_io_read(volume->devvp, &volume->io,
445                                        volume->maxraw_off);
446                 if (error == 0)
447                         volume->ondisk = (void *)volume->io.bp->b_data;
448         } else {
449                 error = 0;
450         }
451         --volume->io.loading;
452         hammer_unlock(&volume->io.lock);
453         return(error);
454 }
455
456 /*
457  * Release a volume.  Call hammer_io_release on the last reference.  We have
458  * to acquire an exclusive lock to interlock against volume->ondisk tests
459  * in hammer_load_volume(), and hammer_io_release() also expects an exclusive
460  * lock to be held.
461  *
462  * Volumes are not unloaded from memory during normal operation.
463  */
464 void
465 hammer_rel_volume(hammer_volume_t volume, int flush)
466 {
467         struct buf *bp = NULL;
468
469         crit_enter();
470         if (volume->io.lock.refs == 1) {
471                 ++volume->io.loading;
472                 hammer_lock_ex(&volume->io.lock);
473                 if (volume->io.lock.refs == 1) {
474                         volume->ondisk = NULL;
475                         bp = hammer_io_release(&volume->io, flush);
476                 }
477                 --volume->io.loading;
478                 hammer_unlock(&volume->io.lock);
479         }
480         hammer_unref(&volume->io.lock);
481         if (bp)
482                 brelse(bp);
483         crit_exit();
484 }
485
486 int
487 hammer_mountcheck_volumes(struct hammer_mount *hmp)
488 {
489         hammer_volume_t vol;
490         int i;
491
492         for (i = 0; i < hmp->nvolumes; ++i) {
493                 vol = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, i);
494                 if (vol == NULL)
495                         return(EINVAL);
496         }
497         return(0);
498 }
499
500 /************************************************************************
501  *                              BUFFERS                                 *
502  ************************************************************************
503  *
504  * Manage buffers.  Currently all blockmap-backed zones are translated
505  * to zone-2 buffer offsets.
506  */
507 hammer_buffer_t
508 hammer_get_buffer(hammer_mount_t hmp, hammer_off_t buf_offset,
509                   int bytes, int isnew, int *errorp)
510 {
511         hammer_buffer_t buffer;
512         hammer_volume_t volume;
513         hammer_off_t    zone2_offset;
514         hammer_io_type_t iotype;
515         int vol_no;
516         int zone;
517
518         buf_offset &= ~HAMMER_BUFMASK64;
519 again:
520         /*
521          * Shortcut if the buffer is already cached
522          */
523         buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root, buf_offset);
524         if (buffer) {
525                 if (buffer->io.lock.refs == 0)
526                         ++hammer_count_refedbufs;
527                 hammer_ref(&buffer->io.lock);
528
529                 /*
530                  * Once refed the ondisk field will not be cleared by
531                  * any other action.
532                  */
533                 if (buffer->ondisk && buffer->io.loading == 0) {
534                         *errorp = 0;
535                         return(buffer);
536                 }
537
538                 /*
539                  * The buffer is no longer loose if it has a ref, and
540                  * cannot become loose once it gains a ref.  Loose
541                  * buffers will never be in a modified state.  This should
542                  * only occur on the 0->1 transition of refs.
543                  *
544                  * lose_list can be modified via a biodone() interrupt.
545                  */
546                 if (buffer->io.mod_list == &hmp->lose_list) {
547                         crit_enter();   /* biodone race against list */
548                         TAILQ_REMOVE(buffer->io.mod_list, &buffer->io,
549                                      mod_entry);
550                         crit_exit();
551                         buffer->io.mod_list = NULL;
552                         KKASSERT(buffer->io.modified == 0);
553                 }
554                 goto found;
555         }
556
557         /*
558          * What is the buffer class?
559          */
560         zone = HAMMER_ZONE_DECODE(buf_offset);
561
562         switch(zone) {
563         case HAMMER_ZONE_LARGE_DATA_INDEX:
564         case HAMMER_ZONE_SMALL_DATA_INDEX:
565                 iotype = HAMMER_STRUCTURE_DATA_BUFFER;
566                 break;
567         case HAMMER_ZONE_UNDO_INDEX:
568                 iotype = HAMMER_STRUCTURE_UNDO_BUFFER;
569                 break;
570         case HAMMER_ZONE_META_INDEX:
571         default:
572                 /*
573                  * NOTE: inode data and directory entries are placed in this
574                  * zone.  inode atime/mtime is updated in-place and thus
575                  * buffers containing inodes must be synchronized as
576                  * meta-buffers, same as buffers containing B-Tree info.
577                  */
578                 iotype = HAMMER_STRUCTURE_META_BUFFER;
579                 break;
580         }
581
582         /*
583          * Handle blockmap offset translations
584          */
585         if (zone >= HAMMER_ZONE_BTREE_INDEX) {
586                 zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, errorp);
587         } else if (zone == HAMMER_ZONE_UNDO_INDEX) {
588                 zone2_offset = hammer_undo_lookup(hmp, buf_offset, errorp);
589         } else {
590                 KKASSERT(zone == HAMMER_ZONE_RAW_BUFFER_INDEX);
591                 zone2_offset = buf_offset;
592                 *errorp = 0;
593         }
594         if (*errorp)
595                 return(NULL);
596
597         /*
598          * NOTE: zone2_offset and maxbuf_off are both full zone-2 offset
599          * specifications.
600          */
601         KKASSERT((zone2_offset & HAMMER_OFF_ZONE_MASK) ==
602                  HAMMER_ZONE_RAW_BUFFER);
603         vol_no = HAMMER_VOL_DECODE(zone2_offset);
604         volume = hammer_get_volume(hmp, vol_no, errorp);
605         if (volume == NULL)
606                 return(NULL);
607
608         KKASSERT(zone2_offset < volume->maxbuf_off);
609
610         /*
611          * Allocate a new buffer structure.  We will check for races later.
612          */
613         ++hammer_count_buffers;
614         buffer = kmalloc(sizeof(*buffer), M_HAMMER,
615                          M_WAITOK|M_ZERO|M_USE_RESERVE);
616         buffer->zone2_offset = zone2_offset;
617         buffer->zoneX_offset = buf_offset;
618
619         hammer_io_init(&buffer->io, volume, iotype);
620         buffer->io.offset = volume->ondisk->vol_buf_beg +
621                             (zone2_offset & HAMMER_OFF_SHORT_MASK);
622         buffer->io.bytes = bytes;
623         TAILQ_INIT(&buffer->clist);
624         hammer_ref(&buffer->io.lock);
625
626         /*
627          * Insert the buffer into the RB tree and handle late collisions.
628          */
629         if (RB_INSERT(hammer_buf_rb_tree, &hmp->rb_bufs_root, buffer)) {
630                 hammer_unref(&buffer->io.lock);
631                 --hammer_count_buffers;
632                 kfree(buffer, M_HAMMER);
633                 goto again;
634         }
635         ++hammer_count_refedbufs;
636 found:
637
638         /*
639          * Deal with on-disk info and loading races.
640          */
641         if (buffer->ondisk == NULL || buffer->io.loading) {
642                 *errorp = hammer_load_buffer(buffer, isnew);
643                 if (*errorp) {
644                         hammer_rel_buffer(buffer, 1);
645                         buffer = NULL;
646                 }
647         } else {
648                 *errorp = 0;
649         }
650         return(buffer);
651 }
652
653 /*
654  * This is used by the direct-read code to deal with large-data buffers
655  * created by the reblocker and mirror-write code.  The direct-read code
656  * bypasses the HAMMER buffer subsystem and so any aliased dirty or write-
657  * running hammer buffers must be fully synced to disk before we can issue
658  * the direct-read.
659  *
660  * This code path is not considered critical as only the rebocker and
661  * mirror-write code will create large-data buffers via the HAMMER buffer
662  * subsystem.  They do that because they operate at the B-Tree level and
663  * do not access the vnode/inode structures.
664  */
665 void
666 hammer_sync_buffers(hammer_mount_t hmp, hammer_off_t base_offset, int bytes)
667 {
668         hammer_buffer_t buffer;
669         int error;
670
671         KKASSERT((base_offset & HAMMER_OFF_ZONE_MASK) ==
672                  HAMMER_ZONE_LARGE_DATA);
673
674         while (bytes > 0) {
675                 buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
676                                    base_offset);
677                 if (buffer && (buffer->io.modified || buffer->io.running)) {
678                         error = hammer_ref_buffer(buffer);
679                         if (error == 0) {
680                                 hammer_io_wait(&buffer->io);
681                                 if (buffer->io.modified) {
682                                         hammer_io_write_interlock(&buffer->io);
683                                         hammer_io_flush(&buffer->io);
684                                         hammer_io_done_interlock(&buffer->io);
685                                         hammer_io_wait(&buffer->io);
686                                 }
687                                 hammer_rel_buffer(buffer, 0);
688                         }
689                 }
690                 base_offset += HAMMER_BUFSIZE;
691                 bytes -= HAMMER_BUFSIZE;
692         }
693 }
694
695 /*
696  * Destroy all buffers covering the specified zoneX offset range.  This
697  * is called when the related blockmap layer2 entry is freed or when
698  * a direct write bypasses our buffer/buffer-cache subsystem.
699  *
700  * The buffers may be referenced by the caller itself.  Setting reclaim
701  * will cause the buffer to be destroyed when it's ref count reaches zero.
702  */
703 void
704 hammer_del_buffers(hammer_mount_t hmp, hammer_off_t base_offset,
705                    hammer_off_t zone2_offset, int bytes)
706 {
707         hammer_buffer_t buffer;
708         hammer_volume_t volume;
709         int vol_no;
710         int error;
711
712         vol_no = HAMMER_VOL_DECODE(zone2_offset);
713         volume = hammer_get_volume(hmp, vol_no, &error);
714         KKASSERT(error == 0);
715
716         while (bytes > 0) {
717                 buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
718                                    base_offset);
719                 if (buffer) {
720                         error = hammer_ref_buffer(buffer);
721                         if (error == 0) {
722                                 KKASSERT(buffer->zone2_offset == zone2_offset);
723                                 hammer_io_clear_modify(&buffer->io, 1);
724                                 buffer->io.reclaim = 1;
725                                 buffer->io.waitdep = 1;
726                                 KKASSERT(buffer->io.volume == volume);
727                                 hammer_rel_buffer(buffer, 0);
728                         }
729                 } else {
730                         hammer_io_inval(volume, zone2_offset);
731                 }
732                 base_offset += HAMMER_BUFSIZE;
733                 zone2_offset += HAMMER_BUFSIZE;
734                 bytes -= HAMMER_BUFSIZE;
735         }
736         hammer_rel_volume(volume, 0);
737 }
738
739 static int
740 hammer_load_buffer(hammer_buffer_t buffer, int isnew)
741 {
742         hammer_volume_t volume;
743         int error;
744
745         /*
746          * Load the buffer's on-disk info
747          */
748         volume = buffer->io.volume;
749         ++buffer->io.loading;
750         hammer_lock_ex(&buffer->io.lock);
751
752         if (hammer_debug_io & 0x0001) {
753                 kprintf("load_buffer %016llx %016llx isnew=%d od=%p\n",
754                         buffer->zoneX_offset, buffer->zone2_offset, isnew,
755                         buffer->ondisk);
756         }
757
758         if (buffer->ondisk == NULL) {
759                 if (isnew) {
760                         error = hammer_io_new(volume->devvp, &buffer->io);
761                 } else {
762                         error = hammer_io_read(volume->devvp, &buffer->io,
763                                                volume->maxraw_off);
764                 }
765                 if (error == 0)
766                         buffer->ondisk = (void *)buffer->io.bp->b_data;
767         } else if (isnew) {
768                 error = hammer_io_new(volume->devvp, &buffer->io);
769         } else {
770                 error = 0;
771         }
772         --buffer->io.loading;
773         hammer_unlock(&buffer->io.lock);
774         return (error);
775 }
776
777 /*
778  * NOTE: Called from RB_SCAN, must return >= 0 for scan to continue.
779  * This routine is only called during unmount.
780  */
781 int
782 hammer_unload_buffer(hammer_buffer_t buffer, void *data __unused)
783 {
784         /*
785          * Clean up the persistent ref ioerror might have on the buffer
786          * and acquire a ref (steal ioerror's if we can).
787          */
788         if (buffer->io.ioerror) {
789                 buffer->io.ioerror = 0;
790         } else {
791                 if (buffer->io.lock.refs == 0)
792                         ++hammer_count_refedbufs;
793                 hammer_ref(&buffer->io.lock);
794         }
795
796         /*
797          * We must not flush a dirty buffer to disk on umount.  It should
798          * have already been dealt with by the flusher, or we may be in
799          * catastrophic failure.
800          */
801         hammer_io_clear_modify(&buffer->io, 1);
802         hammer_flush_buffer_nodes(buffer);
803         KKASSERT(buffer->io.lock.refs == 1);
804         hammer_rel_buffer(buffer, 2);
805         return(0);
806 }
807
808 /*
809  * Reference a buffer that is either already referenced or via a specially
810  * handled pointer (aka cursor->buffer).
811  */
812 int
813 hammer_ref_buffer(hammer_buffer_t buffer)
814 {
815         int error;
816
817         if (buffer->io.lock.refs == 0)
818                 ++hammer_count_refedbufs;
819         hammer_ref(&buffer->io.lock);
820
821         /*
822          * At this point a biodone() will not touch the buffer other then
823          * incidental bits.  However, lose_list can be modified via
824          * a biodone() interrupt.
825          *
826          * No longer loose
827          */
828         if (buffer->io.mod_list == &buffer->io.hmp->lose_list) {
829                 crit_enter();
830                 TAILQ_REMOVE(buffer->io.mod_list, &buffer->io, mod_entry);
831                 buffer->io.mod_list = NULL;
832                 crit_exit();
833         }
834
835         if (buffer->ondisk == NULL || buffer->io.loading) {
836                 error = hammer_load_buffer(buffer, 0);
837                 if (error) {
838                         hammer_rel_buffer(buffer, 1);
839                         /*
840                          * NOTE: buffer pointer can become stale after
841                          * the above release.
842                          */
843                 }
844         } else {
845                 error = 0;
846         }
847         return(error);
848 }
849
850 /*
851  * Release a buffer.  We have to deal with several places where
852  * another thread can ref the buffer.
853  *
854  * Only destroy the structure itself if the related buffer cache buffer
855  * was disassociated from it.  This ties the management of the structure
856  * to the buffer cache subsystem.  buffer->ondisk determines whether the
857  * embedded io is referenced or not.
858  */
859 void
860 hammer_rel_buffer(hammer_buffer_t buffer, int flush)
861 {
862         hammer_volume_t volume;
863         struct buf *bp = NULL;
864         int freeme = 0;
865
866         crit_enter();
867         if (buffer->io.lock.refs == 1) {
868                 ++buffer->io.loading;   /* force interlock check */
869                 hammer_lock_ex(&buffer->io.lock);
870                 if (buffer->io.lock.refs == 1) {
871                         bp = hammer_io_release(&buffer->io, flush);
872
873                         if (buffer->io.lock.refs == 1)
874                                 --hammer_count_refedbufs;
875
876                         if (buffer->io.bp == NULL &&
877                             buffer->io.lock.refs == 1) {
878                                 /*
879                                  * Final cleanup
880                                  *
881                                  * NOTE: It is impossible for any associated
882                                  * B-Tree nodes to have refs if the buffer
883                                  * has no additional refs.
884                                  */
885                                 RB_REMOVE(hammer_buf_rb_tree,
886                                           &buffer->io.hmp->rb_bufs_root,
887                                           buffer);
888                                 volume = buffer->io.volume;
889                                 buffer->io.volume = NULL; /* sanity */
890                                 hammer_rel_volume(volume, 0);
891                                 hammer_io_clear_modlist(&buffer->io);
892                                 hammer_flush_buffer_nodes(buffer);
893                                 KKASSERT(TAILQ_EMPTY(&buffer->clist));
894                                 freeme = 1;
895                         }
896                 }
897                 --buffer->io.loading;
898                 hammer_unlock(&buffer->io.lock);
899         }
900         hammer_unref(&buffer->io.lock);
901         crit_exit();
902         if (bp)
903                 brelse(bp);
904         if (freeme) {
905                 --hammer_count_buffers;
906                 kfree(buffer, M_HAMMER);
907         }
908 }
909
910 /*
911  * Access the filesystem buffer containing the specified hammer offset.
912  * buf_offset is a conglomeration of the volume number and vol_buf_beg
913  * relative buffer offset.  It must also have bit 55 set to be valid.
914  * (see hammer_off_t in hammer_disk.h).
915  *
916  * Any prior buffer in *bufferp will be released and replaced by the
917  * requested buffer.
918  */
919 static __inline
920 void *
921 _hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
922              int *errorp, struct hammer_buffer **bufferp)
923 {
924         hammer_buffer_t buffer;
925         int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
926
927         buf_offset &= ~HAMMER_BUFMASK64;
928         KKASSERT((buf_offset & HAMMER_OFF_ZONE_MASK) != 0);
929
930         buffer = *bufferp;
931         if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
932                                buffer->zoneX_offset != buf_offset)) {
933                 if (buffer)
934                         hammer_rel_buffer(buffer, 0);
935                 buffer = hammer_get_buffer(hmp, buf_offset, bytes, 0, errorp);
936                 *bufferp = buffer;
937         } else {
938                 *errorp = 0;
939         }
940
941         /*
942          * Return a pointer to the buffer data.
943          */
944         if (buffer == NULL)
945                 return(NULL);
946         else
947                 return((char *)buffer->ondisk + xoff);
948 }
949
950 void *
951 hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset,
952              int *errorp, struct hammer_buffer **bufferp)
953 {
954         return(_hammer_bread(hmp, buf_offset, HAMMER_BUFSIZE, errorp, bufferp));
955 }
956
957 void *
958 hammer_bread_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
959                  int *errorp, struct hammer_buffer **bufferp)
960 {
961         bytes = (bytes + HAMMER_BUFMASK) & ~HAMMER_BUFMASK;
962         return(_hammer_bread(hmp, buf_offset, bytes, errorp, bufferp));
963 }
964
965 /*
966  * Access the filesystem buffer containing the specified hammer offset.
967  * No disk read operation occurs.  The result buffer may contain garbage.
968  *
969  * Any prior buffer in *bufferp will be released and replaced by the
970  * requested buffer.
971  *
972  * This function marks the buffer dirty but does not increment its
973  * modify_refs count.
974  */
975 static __inline
976 void *
977 _hammer_bnew(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
978              int *errorp, struct hammer_buffer **bufferp)
979 {
980         hammer_buffer_t buffer;
981         int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
982
983         buf_offset &= ~HAMMER_BUFMASK64;
984
985         buffer = *bufferp;
986         if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
987                                buffer->zoneX_offset != buf_offset)) {
988                 if (buffer)
989                         hammer_rel_buffer(buffer, 0);
990                 buffer = hammer_get_buffer(hmp, buf_offset, bytes, 1, errorp);
991                 *bufferp = buffer;
992         } else {
993                 *errorp = 0;
994         }
995
996         /*
997          * Return a pointer to the buffer data.
998          */
999         if (buffer == NULL)
1000                 return(NULL);
1001         else
1002                 return((char *)buffer->ondisk + xoff);
1003 }
1004
1005 void *
1006 hammer_bnew(hammer_mount_t hmp, hammer_off_t buf_offset,
1007              int *errorp, struct hammer_buffer **bufferp)
1008 {
1009         return(_hammer_bnew(hmp, buf_offset, HAMMER_BUFSIZE, errorp, bufferp));
1010 }
1011
1012 void *
1013 hammer_bnew_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1014                 int *errorp, struct hammer_buffer **bufferp)
1015 {
1016         bytes = (bytes + HAMMER_BUFMASK) & ~HAMMER_BUFMASK;
1017         return(_hammer_bnew(hmp, buf_offset, bytes, errorp, bufferp));
1018 }
1019
1020 /************************************************************************
1021  *                              NODES                                   *
1022  ************************************************************************
1023  *
1024  * Manage B-Tree nodes.  B-Tree nodes represent the primary indexing
1025  * method used by the HAMMER filesystem.
1026  *
1027  * Unlike other HAMMER structures, a hammer_node can be PASSIVELY
1028  * associated with its buffer, and will only referenced the buffer while
1029  * the node itself is referenced.
1030  *
1031  * A hammer_node can also be passively associated with other HAMMER
1032  * structures, such as inodes, while retaining 0 references.  These
1033  * associations can be cleared backwards using a pointer-to-pointer in
1034  * the hammer_node.
1035  *
1036  * This allows the HAMMER implementation to cache hammer_nodes long-term
1037  * and short-cut a great deal of the infrastructure's complexity.  In
1038  * most cases a cached node can be reacquired without having to dip into
1039  * either the buffer or cluster management code.
1040  *
1041  * The caller must pass a referenced cluster on call and will retain
1042  * ownership of the reference on return.  The node will acquire its own
1043  * additional references, if necessary.
1044  */
1045 hammer_node_t
1046 hammer_get_node(hammer_mount_t hmp, hammer_off_t node_offset,
1047                 int isnew, int *errorp)
1048 {
1049         hammer_node_t node;
1050
1051         KKASSERT((node_offset & HAMMER_OFF_ZONE_MASK) == HAMMER_ZONE_BTREE);
1052
1053         /*
1054          * Locate the structure, allocating one if necessary.
1055          */
1056 again:
1057         node = RB_LOOKUP(hammer_nod_rb_tree, &hmp->rb_nods_root, node_offset);
1058         if (node == NULL) {
1059                 ++hammer_count_nodes;
1060                 node = kmalloc(sizeof(*node), M_HAMMER, M_WAITOK|M_ZERO|M_USE_RESERVE);
1061                 node->node_offset = node_offset;
1062                 node->hmp = hmp;
1063                 TAILQ_INIT(&node->cursor_list);
1064                 TAILQ_INIT(&node->cache_list);
1065                 if (RB_INSERT(hammer_nod_rb_tree, &hmp->rb_nods_root, node)) {
1066                         --hammer_count_nodes;
1067                         kfree(node, M_HAMMER);
1068                         goto again;
1069                 }
1070         }
1071         hammer_ref(&node->lock);
1072         if (node->ondisk)
1073                 *errorp = 0;
1074         else
1075                 *errorp = hammer_load_node(node, isnew);
1076         if (*errorp) {
1077                 hammer_rel_node(node);
1078                 node = NULL;
1079         }
1080         return(node);
1081 }
1082
1083 /*
1084  * Reference an already-referenced node.
1085  */
1086 void
1087 hammer_ref_node(hammer_node_t node)
1088 {
1089         KKASSERT(node->lock.refs > 0 && node->ondisk != NULL);
1090         hammer_ref(&node->lock);
1091 }
1092
1093 /*
1094  * Load a node's on-disk data reference.
1095  */
1096 static int
1097 hammer_load_node(hammer_node_t node, int isnew)
1098 {
1099         hammer_buffer_t buffer;
1100         hammer_off_t buf_offset;
1101         int error;
1102
1103         error = 0;
1104         ++node->loading;
1105         hammer_lock_ex(&node->lock);
1106         if (node->ondisk == NULL) {
1107                 /*
1108                  * This is a little confusing but the jist is that
1109                  * node->buffer determines whether the node is on
1110                  * the buffer's clist and node->ondisk determines
1111                  * whether the buffer is referenced.
1112                  *
1113                  * We could be racing a buffer release, in which case
1114                  * node->buffer may become NULL while we are blocked
1115                  * referencing the buffer.
1116                  */
1117                 if ((buffer = node->buffer) != NULL) {
1118                         error = hammer_ref_buffer(buffer);
1119                         if (error == 0 && node->buffer == NULL) {
1120                                 TAILQ_INSERT_TAIL(&buffer->clist,
1121                                                   node, entry);
1122                                 node->buffer = buffer;
1123                         }
1124                 } else {
1125                         buf_offset = node->node_offset & ~HAMMER_BUFMASK64;
1126                         buffer = hammer_get_buffer(node->hmp, buf_offset,
1127                                                    HAMMER_BUFSIZE, 0, &error);
1128                         if (buffer) {
1129                                 KKASSERT(error == 0);
1130                                 TAILQ_INSERT_TAIL(&buffer->clist,
1131                                                   node, entry);
1132                                 node->buffer = buffer;
1133                         }
1134                 }
1135                 if (error)
1136                         goto failed;
1137                 node->ondisk = (void *)((char *)buffer->ondisk +
1138                                         (node->node_offset & HAMMER_BUFMASK));
1139                 if (isnew == 0 && 
1140                     (node->flags & HAMMER_NODE_CRCGOOD) == 0) {
1141                         if (hammer_crc_test_btree(node->ondisk) == 0)
1142                                 Debugger("CRC FAILED: B-TREE NODE");
1143                         node->flags |= HAMMER_NODE_CRCGOOD;
1144                 }
1145         }
1146 failed:
1147         --node->loading;
1148         hammer_unlock(&node->lock);
1149         return (error);
1150 }
1151
1152 /*
1153  * Safely reference a node, interlock against flushes via the IO subsystem.
1154  */
1155 hammer_node_t
1156 hammer_ref_node_safe(struct hammer_mount *hmp, hammer_node_cache_t cache,
1157                      int *errorp)
1158 {
1159         hammer_node_t node;
1160
1161         node = cache->node;
1162         if (node != NULL) {
1163                 hammer_ref(&node->lock);
1164                 if (node->ondisk)
1165                         *errorp = 0;
1166                 else
1167                         *errorp = hammer_load_node(node, 0);
1168                 if (*errorp) {
1169                         hammer_rel_node(node);
1170                         node = NULL;
1171                 }
1172         } else {
1173                 *errorp = ENOENT;
1174         }
1175         return(node);
1176 }
1177
1178 /*
1179  * Release a hammer_node.  On the last release the node dereferences
1180  * its underlying buffer and may or may not be destroyed.
1181  */
1182 void
1183 hammer_rel_node(hammer_node_t node)
1184 {
1185         hammer_buffer_t buffer;
1186
1187         /*
1188          * If this isn't the last ref just decrement the ref count and
1189          * return.
1190          */
1191         if (node->lock.refs > 1) {
1192                 hammer_unref(&node->lock);
1193                 return;
1194         }
1195
1196         /*
1197          * If there is no ondisk info or no buffer the node failed to load,
1198          * remove the last reference and destroy the node.
1199          */
1200         if (node->ondisk == NULL) {
1201                 hammer_unref(&node->lock);
1202                 hammer_flush_node(node);
1203                 /* node is stale now */
1204                 return;
1205         }
1206
1207         /*
1208          * Do not disassociate the node from the buffer if it represents
1209          * a modified B-Tree node that still needs its crc to be generated.
1210          */
1211         if (node->flags & HAMMER_NODE_NEEDSCRC)
1212                 return;
1213
1214         /*
1215          * Do final cleanups and then either destroy the node and leave it
1216          * passively cached.  The buffer reference is removed regardless.
1217          */
1218         buffer = node->buffer;
1219         node->ondisk = NULL;
1220
1221         if ((node->flags & HAMMER_NODE_FLUSH) == 0) {
1222                 hammer_unref(&node->lock);
1223                 hammer_rel_buffer(buffer, 0);
1224                 return;
1225         }
1226
1227         /*
1228          * Destroy the node.
1229          */
1230         hammer_unref(&node->lock);
1231         hammer_flush_node(node);
1232         /* node is stale */
1233         hammer_rel_buffer(buffer, 0);
1234 }
1235
1236 /*
1237  * Free space on-media associated with a B-Tree node.
1238  */
1239 void
1240 hammer_delete_node(hammer_transaction_t trans, hammer_node_t node)
1241 {
1242         KKASSERT((node->flags & HAMMER_NODE_DELETED) == 0);
1243         node->flags |= HAMMER_NODE_DELETED;
1244         hammer_blockmap_free(trans, node->node_offset, sizeof(*node->ondisk));
1245 }
1246
1247 /*
1248  * Passively cache a referenced hammer_node.  The caller may release
1249  * the node on return.
1250  */
1251 void
1252 hammer_cache_node(hammer_node_cache_t cache, hammer_node_t node)
1253 {
1254         /*
1255          * If the node doesn't exist, or is being deleted, don't cache it!
1256          *
1257          * The node can only ever be NULL in the I/O failure path.
1258          */
1259         if (node == NULL || (node->flags & HAMMER_NODE_DELETED))
1260                 return;
1261         if (cache->node == node)
1262                 return;
1263         while (cache->node)
1264                 hammer_uncache_node(cache);
1265         if (node->flags & HAMMER_NODE_DELETED)
1266                 return;
1267         cache->node = node;
1268         TAILQ_INSERT_TAIL(&node->cache_list, cache, entry);
1269 }
1270
1271 void
1272 hammer_uncache_node(hammer_node_cache_t cache)
1273 {
1274         hammer_node_t node;
1275
1276         if ((node = cache->node) != NULL) {
1277                 TAILQ_REMOVE(&node->cache_list, cache, entry);
1278                 cache->node = NULL;
1279                 if (TAILQ_EMPTY(&node->cache_list))
1280                         hammer_flush_node(node);
1281         }
1282 }
1283
1284 /*
1285  * Remove a node's cache references and destroy the node if it has no
1286  * other references or backing store.
1287  */
1288 void
1289 hammer_flush_node(hammer_node_t node)
1290 {
1291         hammer_node_cache_t cache;
1292         hammer_buffer_t buffer;
1293
1294         while ((cache = TAILQ_FIRST(&node->cache_list)) != NULL) {
1295                 TAILQ_REMOVE(&node->cache_list, cache, entry);
1296                 cache->node = NULL;
1297         }
1298         if (node->lock.refs == 0 && node->ondisk == NULL) {
1299                 KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1300                 RB_REMOVE(hammer_nod_rb_tree, &node->hmp->rb_nods_root, node);
1301                 if ((buffer = node->buffer) != NULL) {
1302                         node->buffer = NULL;
1303                         TAILQ_REMOVE(&buffer->clist, node, entry);
1304                         /* buffer is unreferenced because ondisk is NULL */
1305                 }
1306                 --hammer_count_nodes;
1307                 kfree(node, M_HAMMER);
1308         }
1309 }
1310
1311 /*
1312  * Flush passively cached B-Tree nodes associated with this buffer.
1313  * This is only called when the buffer is about to be destroyed, so
1314  * none of the nodes should have any references.  The buffer is locked.
1315  *
1316  * We may be interlocked with the buffer.
1317  */
1318 void
1319 hammer_flush_buffer_nodes(hammer_buffer_t buffer)
1320 {
1321         hammer_node_t node;
1322
1323         while ((node = TAILQ_FIRST(&buffer->clist)) != NULL) {
1324                 KKASSERT(node->ondisk == NULL);
1325                 KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1326
1327                 if (node->lock.refs == 0) {
1328                         hammer_ref(&node->lock);
1329                         node->flags |= HAMMER_NODE_FLUSH;
1330                         hammer_rel_node(node);
1331                 } else {
1332                         KKASSERT(node->loading != 0);
1333                         KKASSERT(node->buffer != NULL);
1334                         buffer = node->buffer;
1335                         node->buffer = NULL;
1336                         TAILQ_REMOVE(&buffer->clist, node, entry);
1337                         /* buffer is unreferenced because ondisk is NULL */
1338                 }
1339         }
1340 }
1341
1342
1343 /************************************************************************
1344  *                              ALLOCATORS                              *
1345  ************************************************************************/
1346
1347 /*
1348  * Allocate a B-Tree node.
1349  */
1350 hammer_node_t
1351 hammer_alloc_btree(hammer_transaction_t trans, int *errorp)
1352 {
1353         hammer_buffer_t buffer = NULL;
1354         hammer_node_t node = NULL;
1355         hammer_off_t node_offset;
1356
1357         node_offset = hammer_blockmap_alloc(trans, HAMMER_ZONE_BTREE_INDEX,
1358                                             sizeof(struct hammer_node_ondisk),
1359                                             errorp);
1360         if (*errorp == 0) {
1361                 node = hammer_get_node(trans->hmp, node_offset, 1, errorp);
1362                 hammer_modify_node_noundo(trans, node);
1363                 bzero(node->ondisk, sizeof(*node->ondisk));
1364                 hammer_modify_node_done(node);
1365         }
1366         if (buffer)
1367                 hammer_rel_buffer(buffer, 0);
1368         return(node);
1369 }
1370
1371 /*
1372  * Allocate data.  If the address of a data buffer is supplied then
1373  * any prior non-NULL *data_bufferp will be released and *data_bufferp
1374  * will be set to the related buffer.  The caller must release it when
1375  * finally done.  The initial *data_bufferp should be set to NULL by
1376  * the caller.
1377  *
1378  * The caller is responsible for making hammer_modify*() calls on the
1379  * *data_bufferp.
1380  */
1381 void *
1382 hammer_alloc_data(hammer_transaction_t trans, int32_t data_len, 
1383                   u_int16_t rec_type, hammer_off_t *data_offsetp,
1384                   struct hammer_buffer **data_bufferp, int *errorp)
1385 {
1386         void *data;
1387         int zone;
1388
1389         /*
1390          * Allocate data
1391          */
1392         if (data_len) {
1393                 switch(rec_type) {
1394                 case HAMMER_RECTYPE_INODE:
1395                 case HAMMER_RECTYPE_DIRENTRY:
1396                 case HAMMER_RECTYPE_EXT:
1397                 case HAMMER_RECTYPE_FIX:
1398                 case HAMMER_RECTYPE_PFS:
1399                         zone = HAMMER_ZONE_META_INDEX;
1400                         break;
1401                 case HAMMER_RECTYPE_DATA:
1402                 case HAMMER_RECTYPE_DB:
1403                         if (data_len <= HAMMER_BUFSIZE / 2) {
1404                                 zone = HAMMER_ZONE_SMALL_DATA_INDEX;
1405                         } else {
1406                                 data_len = (data_len + HAMMER_BUFMASK) &
1407                                            ~HAMMER_BUFMASK;
1408                                 zone = HAMMER_ZONE_LARGE_DATA_INDEX;
1409                         }
1410                         break;
1411                 default:
1412                         panic("hammer_alloc_data: rec_type %04x unknown",
1413                               rec_type);
1414                         zone = 0;       /* NOT REACHED */
1415                         break;
1416                 }
1417                 *data_offsetp = hammer_blockmap_alloc(trans, zone,
1418                                                       data_len, errorp);
1419         } else {
1420                 *data_offsetp = 0;
1421         }
1422         if (*errorp == 0 && data_bufferp) {
1423                 if (data_len) {
1424                         data = hammer_bread_ext(trans->hmp, *data_offsetp,
1425                                                 data_len, errorp, data_bufferp);
1426                 } else {
1427                         data = NULL;
1428                 }
1429         } else {
1430                 data = NULL;
1431         }
1432         return(data);
1433 }
1434
1435 /*
1436  * Sync dirty buffers to the media and clean-up any loose ends.
1437  *
1438  * These functions do not start the flusher going, they simply
1439  * queue everything up to the flusher.
1440  */
1441 static int hammer_sync_scan1(struct mount *mp, struct vnode *vp, void *data);
1442 static int hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data);
1443
1444 int
1445 hammer_queue_inodes_flusher(hammer_mount_t hmp, int waitfor)
1446 {
1447         struct hammer_sync_info info;
1448
1449         info.error = 0;
1450         info.waitfor = waitfor;
1451         if (waitfor == MNT_WAIT) {
1452                 vmntvnodescan(hmp->mp, VMSC_GETVP|VMSC_ONEPASS,
1453                               hammer_sync_scan1, hammer_sync_scan2, &info);
1454         } else {
1455                 vmntvnodescan(hmp->mp, VMSC_GETVP|VMSC_ONEPASS|VMSC_NOWAIT,
1456                               hammer_sync_scan1, hammer_sync_scan2, &info);
1457         }
1458         return(info.error);
1459 }
1460
1461 /*
1462  * Filesystem sync.  If doing a synchronous sync make a second pass on
1463  * the vnodes in case any were already flushing during the first pass,
1464  * and activate the flusher twice (the second time brings the UNDO FIFO's
1465  * start position up to the end position after the first call).
1466  */
1467 int
1468 hammer_sync_hmp(hammer_mount_t hmp, int waitfor)
1469 {
1470         struct hammer_sync_info info;
1471
1472         info.error = 0;
1473         info.waitfor = MNT_NOWAIT;
1474         vmntvnodescan(hmp->mp, VMSC_GETVP|VMSC_NOWAIT,
1475                       hammer_sync_scan1, hammer_sync_scan2, &info);
1476         if (info.error == 0 && waitfor == MNT_WAIT) {
1477                 info.waitfor = waitfor;
1478                 vmntvnodescan(hmp->mp, VMSC_GETVP,
1479                               hammer_sync_scan1, hammer_sync_scan2, &info);
1480         }
1481         if (waitfor == MNT_WAIT) {
1482                 hammer_flusher_sync(hmp);
1483                 hammer_flusher_sync(hmp);
1484         } else {
1485                 hammer_flusher_async(hmp, NULL);
1486                 hammer_flusher_async(hmp, NULL);
1487         }
1488         return(info.error);
1489 }
1490
1491 static int
1492 hammer_sync_scan1(struct mount *mp, struct vnode *vp, void *data)
1493 {
1494         struct hammer_inode *ip;
1495
1496         ip = VTOI(vp);
1497         if (vp->v_type == VNON || ip == NULL ||
1498             ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1499              RB_EMPTY(&vp->v_rbdirty_tree))) {
1500                 return(-1);
1501         }
1502         return(0);
1503 }
1504
1505 static int
1506 hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data)
1507 {
1508         struct hammer_sync_info *info = data;
1509         struct hammer_inode *ip;
1510         int error;
1511
1512         ip = VTOI(vp);
1513         if (vp->v_type == VNON || vp->v_type == VBAD ||
1514             ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1515              RB_EMPTY(&vp->v_rbdirty_tree))) {
1516                 return(0);
1517         }
1518         error = VOP_FSYNC(vp, MNT_NOWAIT);
1519         if (error)
1520                 info->error = error;
1521         return(0);
1522 }
1523