kernel - Fine-grain getnewbuf() and related vfs/bio data structures
[dragonfly.git] / sys / kern / lwkt_thread.c
1 /*
2  * Copyright (c) 2003-2011 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34
35 /*
36  * Each cpu in a system has its own self-contained light weight kernel
37  * thread scheduler, which means that generally speaking we only need
38  * to use a critical section to avoid problems.  Foreign thread 
39  * scheduling is queued via (async) IPIs.
40  */
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/kinfo.h>
48 #include <sys/queue.h>
49 #include <sys/sysctl.h>
50 #include <sys/kthread.h>
51 #include <machine/cpu.h>
52 #include <sys/lock.h>
53 #include <sys/spinlock.h>
54 #include <sys/ktr.h>
55
56 #include <sys/thread2.h>
57 #include <sys/spinlock2.h>
58 #include <sys/mplock2.h>
59
60 #include <sys/dsched.h>
61
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_object.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_map.h>
68 #include <vm/vm_pager.h>
69 #include <vm/vm_extern.h>
70
71 #include <machine/stdarg.h>
72 #include <machine/smp.h>
73
74 #ifdef _KERNEL_VIRTUAL
75 #include <pthread.h>
76 #endif
77
78 #if !defined(KTR_CTXSW)
79 #define KTR_CTXSW KTR_ALL
80 #endif
81 KTR_INFO_MASTER(ctxsw);
82 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p", int cpu, struct thread *td);
83 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p", int cpu, struct thread *td);
84 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s", struct thread *td, char *comm);
85 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", struct thread *td);
86
87 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
88
89 #ifdef  INVARIANTS
90 static int panic_on_cscount = 0;
91 #endif
92 static __int64_t switch_count = 0;
93 static __int64_t preempt_hit = 0;
94 static __int64_t preempt_miss = 0;
95 static __int64_t preempt_weird = 0;
96 static int lwkt_use_spin_port;
97 static struct objcache *thread_cache;
98 int cpu_mwait_spin = 0;
99
100 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
101 static void lwkt_setcpu_remote(void *arg);
102
103 extern void cpu_heavy_restore(void);
104 extern void cpu_lwkt_restore(void);
105 extern void cpu_kthread_restore(void);
106 extern void cpu_idle_restore(void);
107
108 /*
109  * We can make all thread ports use the spin backend instead of the thread
110  * backend.  This should only be set to debug the spin backend.
111  */
112 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
113
114 #ifdef  INVARIANTS
115 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0,
116     "Panic if attempting to switch lwkt's while mastering cpusync");
117 #endif
118 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_spin, CTLFLAG_RW, &cpu_mwait_spin, 0,
119     "monitor/mwait target state");
120 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0,
121     "Number of switched threads");
122 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, 
123     "Successful preemption events");
124 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, 
125     "Failed preemption events");
126 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0,
127     "Number of preempted threads.");
128 static int fairq_enable = 0;
129 SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW,
130         &fairq_enable, 0, "Turn on fairq priority accumulators");
131 static int fairq_bypass = -1;
132 SYSCTL_INT(_lwkt, OID_AUTO, fairq_bypass, CTLFLAG_RW,
133         &fairq_bypass, 0, "Allow fairq to bypass td on token failure");
134 extern int lwkt_sched_debug;
135 int lwkt_sched_debug = 0;
136 SYSCTL_INT(_lwkt, OID_AUTO, sched_debug, CTLFLAG_RW,
137         &lwkt_sched_debug, 0, "Scheduler debug");
138 static int lwkt_spin_loops = 10;
139 SYSCTL_INT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW,
140         &lwkt_spin_loops, 0, "Scheduler spin loops until sorted decon");
141 static int lwkt_spin_reseq = 0;
142 SYSCTL_INT(_lwkt, OID_AUTO, spin_reseq, CTLFLAG_RW,
143         &lwkt_spin_reseq, 0, "Scheduler resequencer enable");
144 static int lwkt_spin_monitor = 0;
145 SYSCTL_INT(_lwkt, OID_AUTO, spin_monitor, CTLFLAG_RW,
146         &lwkt_spin_monitor, 0, "Scheduler uses monitor/mwait");
147 static int lwkt_spin_fatal = 0; /* disabled */
148 SYSCTL_INT(_lwkt, OID_AUTO, spin_fatal, CTLFLAG_RW,
149         &lwkt_spin_fatal, 0, "LWKT scheduler spin loops till fatal panic");
150 static int preempt_enable = 1;
151 SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW,
152         &preempt_enable, 0, "Enable preemption");
153 static int lwkt_cache_threads = 0;
154 SYSCTL_INT(_lwkt, OID_AUTO, cache_threads, CTLFLAG_RD,
155         &lwkt_cache_threads, 0, "thread+kstack cache");
156
157 #ifndef _KERNEL_VIRTUAL
158 static __cachealign int lwkt_cseq_rindex;
159 static __cachealign int lwkt_cseq_windex;
160 #endif
161
162 /*
163  * These helper procedures handle the runq, they can only be called from
164  * within a critical section.
165  *
166  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
167  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
168  * instead of 'mycpu' when referencing the globaldata structure.   Once
169  * SMP live enqueuing and dequeueing only occurs on the current cpu.
170  */
171 static __inline
172 void
173 _lwkt_dequeue(thread_t td)
174 {
175     if (td->td_flags & TDF_RUNQ) {
176         struct globaldata *gd = td->td_gd;
177
178         td->td_flags &= ~TDF_RUNQ;
179         TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
180         --gd->gd_tdrunqcount;
181         if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
182                 atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING);
183     }
184 }
185
186 /*
187  * Priority enqueue.
188  *
189  * There are a limited number of lwkt threads runnable since user
190  * processes only schedule one at a time per cpu.  However, there can
191  * be many user processes in kernel mode exiting from a tsleep() which
192  * become runnable.
193  *
194  * NOTE: lwkt_schedulerclock() will force a round-robin based on td_pri and
195  *       will ignore user priority.  This is to ensure that user threads in
196  *       kernel mode get cpu at some point regardless of what the user
197  *       scheduler thinks.
198  */
199 static __inline
200 void
201 _lwkt_enqueue(thread_t td)
202 {
203     thread_t xtd;
204
205     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
206         struct globaldata *gd = td->td_gd;
207
208         td->td_flags |= TDF_RUNQ;
209         xtd = TAILQ_FIRST(&gd->gd_tdrunq);
210         if (xtd == NULL) {
211             TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
212             atomic_set_int(&gd->gd_reqflags, RQF_RUNNING);
213         } else {
214             /*
215              * NOTE: td_upri - higher numbers more desireable, same sense
216              *       as td_pri (typically reversed from lwp_upri).
217              *
218              *       In the equal priority case we want the best selection
219              *       at the beginning so the less desireable selections know
220              *       that they have to setrunqueue/go-to-another-cpu, even
221              *       though it means switching back to the 'best' selection.
222              *       This also avoids degenerate situations when many threads
223              *       are runnable or waking up at the same time.
224              *
225              *       If upri matches exactly place at end/round-robin.
226              */
227             while (xtd &&
228                    (xtd->td_pri >= td->td_pri ||
229                     (xtd->td_pri == td->td_pri &&
230                      xtd->td_upri >= td->td_upri))) {
231                 xtd = TAILQ_NEXT(xtd, td_threadq);
232             }
233             if (xtd)
234                 TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
235             else
236                 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
237         }
238         ++gd->gd_tdrunqcount;
239
240         /*
241          * Request a LWKT reschedule if we are now at the head of the queue.
242          */
243         if (TAILQ_FIRST(&gd->gd_tdrunq) == td)
244             need_lwkt_resched();
245     }
246 }
247
248 static __boolean_t
249 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
250 {
251         struct thread *td = (struct thread *)obj;
252
253         td->td_kstack = NULL;
254         td->td_kstack_size = 0;
255         td->td_flags = TDF_ALLOCATED_THREAD;
256         td->td_mpflags = 0;
257         return (1);
258 }
259
260 static void
261 _lwkt_thread_dtor(void *obj, void *privdata)
262 {
263         struct thread *td = (struct thread *)obj;
264
265         KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
266             ("_lwkt_thread_dtor: not allocated from objcache"));
267         KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
268                 td->td_kstack_size > 0,
269             ("_lwkt_thread_dtor: corrupted stack"));
270         kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
271         td->td_kstack = NULL;
272         td->td_flags = 0;
273 }
274
275 /*
276  * Initialize the lwkt s/system.
277  *
278  * Nominally cache up to 32 thread + kstack structures.  Cache more on
279  * systems with a lot of cpu cores.
280  */
281 void
282 lwkt_init(void)
283 {
284     TUNABLE_INT("lwkt.cache_threads", &lwkt_cache_threads);
285     if (lwkt_cache_threads == 0) {
286         lwkt_cache_threads = ncpus * 4;
287         if (lwkt_cache_threads < 32)
288             lwkt_cache_threads = 32;
289     }
290     thread_cache = objcache_create_mbacked(
291                                 M_THREAD, sizeof(struct thread),
292                                 0, lwkt_cache_threads,
293                                 _lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
294 }
295
296 /*
297  * Schedule a thread to run.  As the current thread we can always safely
298  * schedule ourselves, and a shortcut procedure is provided for that
299  * function.
300  *
301  * (non-blocking, self contained on a per cpu basis)
302  */
303 void
304 lwkt_schedule_self(thread_t td)
305 {
306     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
307     crit_enter_quick(td);
308     KASSERT(td != &td->td_gd->gd_idlethread,
309             ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
310     KKASSERT(td->td_lwp == NULL ||
311              (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
312     _lwkt_enqueue(td);
313     crit_exit_quick(td);
314 }
315
316 /*
317  * Deschedule a thread.
318  *
319  * (non-blocking, self contained on a per cpu basis)
320  */
321 void
322 lwkt_deschedule_self(thread_t td)
323 {
324     crit_enter_quick(td);
325     _lwkt_dequeue(td);
326     crit_exit_quick(td);
327 }
328
329 /*
330  * LWKTs operate on a per-cpu basis
331  *
332  * WARNING!  Called from early boot, 'mycpu' may not work yet.
333  */
334 void
335 lwkt_gdinit(struct globaldata *gd)
336 {
337     TAILQ_INIT(&gd->gd_tdrunq);
338     TAILQ_INIT(&gd->gd_tdallq);
339 }
340
341 /*
342  * Create a new thread.  The thread must be associated with a process context
343  * or LWKT start address before it can be scheduled.  If the target cpu is
344  * -1 the thread will be created on the current cpu.
345  *
346  * If you intend to create a thread without a process context this function
347  * does everything except load the startup and switcher function.
348  */
349 thread_t
350 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
351 {
352     static int cpu_rotator;
353     globaldata_t gd = mycpu;
354     void *stack;
355
356     /*
357      * If static thread storage is not supplied allocate a thread.  Reuse
358      * a cached free thread if possible.  gd_freetd is used to keep an exiting
359      * thread intact through the exit.
360      */
361     if (td == NULL) {
362         crit_enter_gd(gd);
363         if ((td = gd->gd_freetd) != NULL) {
364             KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
365                                       TDF_RUNQ)) == 0);
366             gd->gd_freetd = NULL;
367         } else {
368             td = objcache_get(thread_cache, M_WAITOK);
369             KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
370                                       TDF_RUNQ)) == 0);
371         }
372         crit_exit_gd(gd);
373         KASSERT((td->td_flags &
374                  (TDF_ALLOCATED_THREAD|TDF_RUNNING|TDF_PREEMPT_LOCK)) ==
375                  TDF_ALLOCATED_THREAD,
376                 ("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
377         flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
378     }
379
380     /*
381      * Try to reuse cached stack.
382      */
383     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
384         if (flags & TDF_ALLOCATED_STACK) {
385             kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
386             stack = NULL;
387         }
388     }
389     if (stack == NULL) {
390         stack = (void *)kmem_alloc_stack(&kernel_map, stksize);
391         flags |= TDF_ALLOCATED_STACK;
392     }
393     if (cpu < 0) {
394         cpu = ++cpu_rotator;
395         cpu_ccfence();
396         cpu %= ncpus;
397     }
398     lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
399     return(td);
400 }
401
402 /*
403  * Initialize a preexisting thread structure.  This function is used by
404  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
405  *
406  * All threads start out in a critical section at a priority of
407  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
408  * appropriate.  This function may send an IPI message when the 
409  * requested cpu is not the current cpu and consequently gd_tdallq may
410  * not be initialized synchronously from the point of view of the originating
411  * cpu.
412  *
413  * NOTE! we have to be careful in regards to creating threads for other cpus
414  * if SMP has not yet been activated.
415  */
416 static void
417 lwkt_init_thread_remote(void *arg)
418 {
419     thread_t td = arg;
420
421     /*
422      * Protected by critical section held by IPI dispatch
423      */
424     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
425 }
426
427 /*
428  * lwkt core thread structural initialization.
429  *
430  * NOTE: All threads are initialized as mpsafe threads.
431  */
432 void
433 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
434                 struct globaldata *gd)
435 {
436     globaldata_t mygd = mycpu;
437
438     bzero(td, sizeof(struct thread));
439     td->td_kstack = stack;
440     td->td_kstack_size = stksize;
441     td->td_flags = flags;
442     td->td_mpflags = 0;
443     td->td_type = TD_TYPE_GENERIC;
444     td->td_gd = gd;
445     td->td_pri = TDPRI_KERN_DAEMON;
446     td->td_critcount = 1;
447     td->td_toks_have = NULL;
448     td->td_toks_stop = &td->td_toks_base;
449     if (lwkt_use_spin_port || (flags & TDF_FORCE_SPINPORT)) {
450         lwkt_initport_spin(&td->td_msgport, td,
451             (flags & TDF_FIXEDCPU) ? TRUE : FALSE);
452     } else {
453         lwkt_initport_thread(&td->td_msgport, td);
454     }
455     pmap_init_thread(td);
456     /*
457      * Normally initializing a thread for a remote cpu requires sending an
458      * IPI.  However, the idlethread is setup before the other cpus are
459      * activated so we have to treat it as a special case.  XXX manipulation
460      * of gd_tdallq requires the BGL.
461      */
462     if (gd == mygd || td == &gd->gd_idlethread) {
463         crit_enter_gd(mygd);
464         TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
465         crit_exit_gd(mygd);
466     } else {
467         lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
468     }
469     dsched_new_thread(td);
470 }
471
472 void
473 lwkt_set_comm(thread_t td, const char *ctl, ...)
474 {
475     __va_list va;
476
477     __va_start(va, ctl);
478     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
479     __va_end(va);
480     KTR_LOG(ctxsw_newtd, td, td->td_comm);
481 }
482
483 /*
484  * Prevent the thread from getting destroyed.  Note that unlike PHOLD/PRELE
485  * this does not prevent the thread from migrating to another cpu so the
486  * gd_tdallq state is not protected by this.
487  */
488 void
489 lwkt_hold(thread_t td)
490 {
491     atomic_add_int(&td->td_refs, 1);
492 }
493
494 void
495 lwkt_rele(thread_t td)
496 {
497     KKASSERT(td->td_refs > 0);
498     atomic_add_int(&td->td_refs, -1);
499 }
500
501 void
502 lwkt_free_thread(thread_t td)
503 {
504     KKASSERT(td->td_refs == 0);
505     KKASSERT((td->td_flags & (TDF_RUNNING | TDF_PREEMPT_LOCK |
506                               TDF_RUNQ | TDF_TSLEEPQ)) == 0);
507     if (td->td_flags & TDF_ALLOCATED_THREAD) {
508         objcache_put(thread_cache, td);
509     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
510         /* client-allocated struct with internally allocated stack */
511         KASSERT(td->td_kstack && td->td_kstack_size > 0,
512             ("lwkt_free_thread: corrupted stack"));
513         kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
514         td->td_kstack = NULL;
515         td->td_kstack_size = 0;
516     }
517
518     KTR_LOG(ctxsw_deadtd, td);
519 }
520
521
522 /*
523  * Switch to the next runnable lwkt.  If no LWKTs are runnable then 
524  * switch to the idlethread.  Switching must occur within a critical
525  * section to avoid races with the scheduling queue.
526  *
527  * We always have full control over our cpu's run queue.  Other cpus
528  * that wish to manipulate our queue must use the cpu_*msg() calls to
529  * talk to our cpu, so a critical section is all that is needed and
530  * the result is very, very fast thread switching.
531  *
532  * The LWKT scheduler uses a fixed priority model and round-robins at
533  * each priority level.  User process scheduling is a totally
534  * different beast and LWKT priorities should not be confused with
535  * user process priorities.
536  *
537  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
538  * is not called by the current thread in the preemption case, only when
539  * the preempting thread blocks (in order to return to the original thread).
540  *
541  * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread
542  * migration and tsleep deschedule the current lwkt thread and call
543  * lwkt_switch().  In particular, the target cpu of the migration fully
544  * expects the thread to become non-runnable and can deadlock against
545  * cpusync operations if we run any IPIs prior to switching the thread out.
546  *
547  * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF
548  * THE CURRENT THREAD HAS BEEN DESCHEDULED!
549  */
550 void
551 lwkt_switch(void)
552 {
553     globaldata_t gd = mycpu;
554     thread_t td = gd->gd_curthread;
555     thread_t ntd;
556     int spinning = 0;
557
558     KKASSERT(gd->gd_processing_ipiq == 0);
559     KKASSERT(td->td_flags & TDF_RUNNING);
560
561     /*
562      * Switching from within a 'fast' (non thread switched) interrupt or IPI
563      * is illegal.  However, we may have to do it anyway if we hit a fatal
564      * kernel trap or we have paniced.
565      *
566      * If this case occurs save and restore the interrupt nesting level.
567      */
568     if (gd->gd_intr_nesting_level) {
569         int savegdnest;
570         int savegdtrap;
571
572         if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
573             panic("lwkt_switch: Attempt to switch from a "
574                   "fast interrupt, ipi, or hard code section, "
575                   "td %p\n",
576                   td);
577         } else {
578             savegdnest = gd->gd_intr_nesting_level;
579             savegdtrap = gd->gd_trap_nesting_level;
580             gd->gd_intr_nesting_level = 0;
581             gd->gd_trap_nesting_level = 0;
582             if ((td->td_flags & TDF_PANICWARN) == 0) {
583                 td->td_flags |= TDF_PANICWARN;
584                 kprintf("Warning: thread switch from interrupt, IPI, "
585                         "or hard code section.\n"
586                         "thread %p (%s)\n", td, td->td_comm);
587                 print_backtrace(-1);
588             }
589             lwkt_switch();
590             gd->gd_intr_nesting_level = savegdnest;
591             gd->gd_trap_nesting_level = savegdtrap;
592             return;
593         }
594     }
595
596     /*
597      * Release our current user process designation if we are blocking
598      * or if a user reschedule was requested.
599      *
600      * NOTE: This function is NOT called if we are switching into or
601      *       returning from a preemption.
602      *
603      * NOTE: Releasing our current user process designation may cause
604      *       it to be assigned to another thread, which in turn will
605      *       cause us to block in the usched acquire code when we attempt
606      *       to return to userland.
607      *
608      * NOTE: On SMP systems this can be very nasty when heavy token
609      *       contention is present so we want to be careful not to
610      *       release the designation gratuitously.
611      */
612     if (td->td_release &&
613         (user_resched_wanted() || (td->td_flags & TDF_RUNQ) == 0)) {
614             td->td_release(td);
615     }
616
617     /*
618      * Release all tokens
619      */
620     crit_enter_gd(gd);
621     if (TD_TOKS_HELD(td))
622             lwkt_relalltokens(td);
623
624     /*
625      * We had better not be holding any spin locks, but don't get into an
626      * endless panic loop.
627      */
628     KASSERT(gd->gd_spinlocks == 0 || panicstr != NULL,
629             ("lwkt_switch: still holding %d exclusive spinlocks!",
630              gd->gd_spinlocks));
631
632
633 #ifdef  INVARIANTS
634     if (td->td_cscount) {
635         kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
636                 td);
637         if (panic_on_cscount)
638             panic("switching while mastering cpusync");
639     }
640 #endif
641
642     /*
643      * If we had preempted another thread on this cpu, resume the preempted
644      * thread.  This occurs transparently, whether the preempted thread
645      * was scheduled or not (it may have been preempted after descheduling
646      * itself).
647      *
648      * We have to setup the MP lock for the original thread after backing
649      * out the adjustment that was made to curthread when the original
650      * was preempted.
651      */
652     if ((ntd = td->td_preempted) != NULL) {
653         KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
654         ntd->td_flags |= TDF_PREEMPT_DONE;
655
656         /*
657          * The interrupt may have woken a thread up, we need to properly
658          * set the reschedule flag if the originally interrupted thread is
659          * at a lower priority.
660          *
661          * The interrupt may not have descheduled.
662          */
663         if (TAILQ_FIRST(&gd->gd_tdrunq) != ntd)
664             need_lwkt_resched();
665         goto havethread_preempted;
666     }
667
668     /*
669      * If we cannot obtain ownership of the tokens we cannot immediately
670      * schedule the target thread.
671      *
672      * Reminder: Again, we cannot afford to run any IPIs in this path if
673      * the current thread has been descheduled.
674      */
675     for (;;) {
676         clear_lwkt_resched();
677
678         /*
679          * Hotpath - pull the head of the run queue and attempt to schedule
680          * it.
681          */
682         ntd = TAILQ_FIRST(&gd->gd_tdrunq);
683
684         if (ntd == NULL) {
685             /*
686              * Runq is empty, switch to idle to allow it to halt.
687              */
688             ntd = &gd->gd_idlethread;
689             if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
690                 ASSERT_NO_TOKENS_HELD(ntd);
691             cpu_time.cp_msg[0] = 0;
692             cpu_time.cp_stallpc = 0;
693             goto haveidle;
694         }
695
696         /*
697          * Hotpath - schedule ntd.
698          *
699          * NOTE: For UP there is no mplock and lwkt_getalltokens()
700          *           always succeeds.
701          */
702         if (TD_TOKS_NOT_HELD(ntd) ||
703             lwkt_getalltokens(ntd, (spinning >= lwkt_spin_loops)))
704         {
705             goto havethread;
706         }
707
708         /*
709          * Coldpath (SMP only since tokens always succeed on UP)
710          *
711          * We had some contention on the thread we wanted to schedule.
712          * What we do now is try to find a thread that we can schedule
713          * in its stead.
714          *
715          * The coldpath scan does NOT rearrange threads in the run list.
716          * The lwkt_schedulerclock() will assert need_lwkt_resched() on
717          * the next tick whenever the current head is not the current thread.
718          */
719 #ifdef  INVARIANTS
720         ++ntd->td_contended;
721 #endif
722         ++gd->gd_cnt.v_lock_colls;
723
724         if (fairq_bypass > 0)
725                 goto skip;
726
727         while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) {
728 #ifndef NO_LWKT_SPLIT_USERPRI
729                 /*
730                  * Never schedule threads returning to userland or the
731                  * user thread scheduler helper thread when higher priority
732                  * threads are present.  The runq is sorted by priority
733                  * so we can give up traversing it when we find the first
734                  * low priority thread.
735                  */
736                 if (ntd->td_pri < TDPRI_KERN_LPSCHED) {
737                         ntd = NULL;
738                         break;
739                 }
740 #endif
741
742                 /*
743                  * Try this one.
744                  */
745                 if (TD_TOKS_NOT_HELD(ntd) ||
746                     lwkt_getalltokens(ntd, (spinning >= lwkt_spin_loops))) {
747                         goto havethread;
748                 }
749 #ifdef  INVARIANTS
750                 ++ntd->td_contended;
751 #endif
752                 ++gd->gd_cnt.v_lock_colls;
753         }
754
755 skip:
756         /*
757          * We exhausted the run list, meaning that all runnable threads
758          * are contested.
759          */
760         cpu_pause();
761 #ifdef _KERNEL_VIRTUAL
762         pthread_yield();
763 #endif
764         ntd = &gd->gd_idlethread;
765         if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
766             ASSERT_NO_TOKENS_HELD(ntd);
767         /* contention case, do not clear contention mask */
768
769         /*
770          * We are going to have to retry but if the current thread is not
771          * on the runq we instead switch through the idle thread to get away
772          * from the current thread.  We have to flag for lwkt reschedule
773          * to prevent the idle thread from halting.
774          *
775          * NOTE: A non-zero spinning is passed to lwkt_getalltokens() to
776          *       instruct it to deal with the potential for deadlocks by
777          *       ordering the tokens by address.
778          */
779         if ((td->td_flags & TDF_RUNQ) == 0) {
780             need_lwkt_resched();        /* prevent hlt */
781             goto haveidle;
782         }
783 #if defined(INVARIANTS) && defined(__x86_64__)
784         if ((read_rflags() & PSL_I) == 0) {
785                 cpu_enable_intr();
786                 panic("lwkt_switch() called with interrupts disabled");
787         }
788 #endif
789
790         /*
791          * Number iterations so far.  After a certain point we switch to
792          * a sorted-address/monitor/mwait version of lwkt_getalltokens()
793          */
794         if (spinning < 0x7FFFFFFF)
795             ++spinning;
796
797 #ifndef _KERNEL_VIRTUAL
798         /*
799          * lwkt_getalltokens() failed in sorted token mode, we can use
800          * monitor/mwait in this case.
801          */
802         if (spinning >= lwkt_spin_loops &&
803             (cpu_mi_feature & CPU_MI_MONITOR) &&
804             lwkt_spin_monitor)
805         {
806             cpu_mmw_pause_int(&gd->gd_reqflags,
807                               (gd->gd_reqflags | RQF_SPINNING) &
808                               ~RQF_IDLECHECK_WK_MASK,
809                               cpu_mwait_spin);
810         }
811 #endif
812
813         /*
814          * We already checked that td is still scheduled so this should be
815          * safe.
816          */
817         splz_check();
818
819 #ifndef _KERNEL_VIRTUAL
820         /*
821          * This experimental resequencer is used as a fall-back to reduce
822          * hw cache line contention by placing each core's scheduler into a
823          * time-domain-multplexed slot.
824          *
825          * The resequencer is disabled by default.  It's functionality has
826          * largely been superceeded by the token algorithm which limits races
827          * to a subset of cores.
828          *
829          * The resequencer algorithm tends to break down when more than
830          * 20 cores are contending.  What appears to happen is that new
831          * tokens can be obtained out of address-sorted order by new cores
832          * while existing cores languish in long delays between retries and
833          * wind up being starved-out of the token acquisition.
834          */
835         if (lwkt_spin_reseq && spinning >= lwkt_spin_reseq) {
836             int cseq = atomic_fetchadd_int(&lwkt_cseq_windex, 1);
837             int oseq;
838
839             while ((oseq = lwkt_cseq_rindex) != cseq) {
840                 cpu_ccfence();
841 #if 1
842                 if (cpu_mi_feature & CPU_MI_MONITOR) {
843                     cpu_mmw_pause_int(&lwkt_cseq_rindex, oseq, cpu_mwait_spin);
844                 } else {
845 #endif
846                     cpu_pause();
847                     cpu_lfence();
848 #if 1
849                 }
850 #endif
851             }
852             DELAY(1);
853             atomic_add_int(&lwkt_cseq_rindex, 1);
854         }
855 #endif
856         /* highest level for(;;) loop */
857     }
858
859 havethread:
860     /*
861      * Clear gd_idle_repeat when doing a normal switch to a non-idle
862      * thread.
863      */
864     ntd->td_wmesg = NULL;
865     ++gd->gd_cnt.v_swtch;
866     gd->gd_idle_repeat = 0;
867
868 havethread_preempted:
869     /*
870      * If the new target does not need the MP lock and we are holding it,
871      * release the MP lock.  If the new target requires the MP lock we have
872      * already acquired it for the target.
873      */
874     ;
875 haveidle:
876     KASSERT(ntd->td_critcount,
877             ("priority problem in lwkt_switch %d %d",
878             td->td_critcount, ntd->td_critcount));
879
880     if (td != ntd) {
881         /*
882          * Execute the actual thread switch operation.  This function
883          * returns to the current thread and returns the previous thread
884          * (which may be different from the thread we switched to).
885          *
886          * We are responsible for marking ntd as TDF_RUNNING.
887          */
888         KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
889         ++switch_count;
890         KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
891         ntd->td_flags |= TDF_RUNNING;
892         lwkt_switch_return(td->td_switch(ntd));
893         /* ntd invalid, td_switch() can return a different thread_t */
894     }
895
896     /*
897      * catch-all.  XXX is this strictly needed?
898      */
899     splz_check();
900
901     /* NOTE: current cpu may have changed after switch */
902     crit_exit_quick(td);
903 }
904
905 /*
906  * Called by assembly in the td_switch (thread restore path) for thread
907  * bootstrap cases which do not 'return' to lwkt_switch().
908  */
909 void
910 lwkt_switch_return(thread_t otd)
911 {
912         globaldata_t rgd;
913
914         /*
915          * Check if otd was migrating.  Now that we are on ntd we can finish
916          * up the migration.  This is a bit messy but it is the only place
917          * where td is known to be fully descheduled.
918          *
919          * We can only activate the migration if otd was migrating but not
920          * held on the cpu due to a preemption chain.  We still have to
921          * clear TDF_RUNNING on the old thread either way.
922          *
923          * We are responsible for clearing the previously running thread's
924          * TDF_RUNNING.
925          */
926         if ((rgd = otd->td_migrate_gd) != NULL &&
927             (otd->td_flags & TDF_PREEMPT_LOCK) == 0) {
928                 KKASSERT((otd->td_flags & (TDF_MIGRATING | TDF_RUNNING)) ==
929                          (TDF_MIGRATING | TDF_RUNNING));
930                 otd->td_migrate_gd = NULL;
931                 otd->td_flags &= ~TDF_RUNNING;
932                 lwkt_send_ipiq(rgd, lwkt_setcpu_remote, otd);
933         } else {
934                 otd->td_flags &= ~TDF_RUNNING;
935         }
936
937         /*
938          * Final exit validations (see lwp_wait()).  Note that otd becomes
939          * invalid the *instant* we set TDF_MP_EXITSIG.
940          */
941         while (otd->td_flags & TDF_EXITING) {
942                 u_int mpflags;
943
944                 mpflags = otd->td_mpflags;
945                 cpu_ccfence();
946
947                 if (mpflags & TDF_MP_EXITWAIT) {
948                         if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
949                                               mpflags | TDF_MP_EXITSIG)) {
950                                 wakeup(otd);
951                                 break;
952                         }
953                 } else {
954                         if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
955                                               mpflags | TDF_MP_EXITSIG)) {
956                                 wakeup(otd);
957                                 break;
958                         }
959                 }
960         }
961 }
962
963 /*
964  * Request that the target thread preempt the current thread.  Preemption
965  * can only occur if our only critical section is the one that we were called
966  * with, the relative priority of the target thread is higher, and the target
967  * thread holds no tokens.  This also only works if we are not holding any
968  * spinlocks (obviously).
969  *
970  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
971  * this is called via lwkt_schedule() through the td_preemptable callback.
972  * critcount is the managed critical priority that we should ignore in order
973  * to determine whether preemption is possible (aka usually just the crit
974  * priority of lwkt_schedule() itself).
975  *
976  * Preemption is typically limited to interrupt threads.
977  *
978  * Operation works in a fairly straight-forward manner.  The normal
979  * scheduling code is bypassed and we switch directly to the target
980  * thread.  When the target thread attempts to block or switch away
981  * code at the base of lwkt_switch() will switch directly back to our
982  * thread.  Our thread is able to retain whatever tokens it holds and
983  * if the target needs one of them the target will switch back to us
984  * and reschedule itself normally.
985  */
986 void
987 lwkt_preempt(thread_t ntd, int critcount)
988 {
989     struct globaldata *gd = mycpu;
990     thread_t xtd;
991     thread_t td;
992     int save_gd_intr_nesting_level;
993
994     /*
995      * The caller has put us in a critical section.  We can only preempt
996      * if the caller of the caller was not in a critical section (basically
997      * a local interrupt), as determined by the 'critcount' parameter.  We
998      * also can't preempt if the caller is holding any spinlocks (even if
999      * he isn't in a critical section).  This also handles the tokens test.
1000      *
1001      * YYY The target thread must be in a critical section (else it must
1002      * inherit our critical section?  I dunno yet).
1003      */
1004     KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
1005
1006     td = gd->gd_curthread;
1007     if (preempt_enable == 0) {
1008         ++preempt_miss;
1009         return;
1010     }
1011     if (ntd->td_pri <= td->td_pri) {
1012         ++preempt_miss;
1013         return;
1014     }
1015     if (td->td_critcount > critcount) {
1016         ++preempt_miss;
1017         return;
1018     }
1019     if (td->td_cscount) {
1020         ++preempt_miss;
1021         return;
1022     }
1023     if (ntd->td_gd != gd) {
1024         ++preempt_miss;
1025         return;
1026     }
1027     /*
1028      * We don't have to check spinlocks here as they will also bump
1029      * td_critcount.
1030      *
1031      * Do not try to preempt if the target thread is holding any tokens.
1032      * We could try to acquire the tokens but this case is so rare there
1033      * is no need to support it.
1034      */
1035     KKASSERT(gd->gd_spinlocks == 0);
1036
1037     if (TD_TOKS_HELD(ntd)) {
1038         ++preempt_miss;
1039         return;
1040     }
1041     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
1042         ++preempt_weird;
1043         return;
1044     }
1045     if (ntd->td_preempted) {
1046         ++preempt_hit;
1047         return;
1048     }
1049     KKASSERT(gd->gd_processing_ipiq == 0);
1050
1051     /*
1052      * Since we are able to preempt the current thread, there is no need to
1053      * call need_lwkt_resched().
1054      *
1055      * We must temporarily clear gd_intr_nesting_level around the switch
1056      * since switchouts from the target thread are allowed (they will just
1057      * return to our thread), and since the target thread has its own stack.
1058      *
1059      * A preemption must switch back to the original thread, assert the
1060      * case.
1061      */
1062     ++preempt_hit;
1063     ntd->td_preempted = td;
1064     td->td_flags |= TDF_PREEMPT_LOCK;
1065     KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
1066     save_gd_intr_nesting_level = gd->gd_intr_nesting_level;
1067     gd->gd_intr_nesting_level = 0;
1068
1069     KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
1070     ntd->td_flags |= TDF_RUNNING;
1071     xtd = td->td_switch(ntd);
1072     KKASSERT(xtd == ntd);
1073     lwkt_switch_return(xtd);
1074     gd->gd_intr_nesting_level = save_gd_intr_nesting_level;
1075
1076     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
1077     ntd->td_preempted = NULL;
1078     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
1079 }
1080
1081 /*
1082  * Conditionally call splz() if gd_reqflags indicates work is pending.
1083  * This will work inside a critical section but not inside a hard code
1084  * section.
1085  *
1086  * (self contained on a per cpu basis)
1087  */
1088 void
1089 splz_check(void)
1090 {
1091     globaldata_t gd = mycpu;
1092     thread_t td = gd->gd_curthread;
1093
1094     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
1095         gd->gd_intr_nesting_level == 0 &&
1096         td->td_nest_count < 2)
1097     {
1098         splz();
1099     }
1100 }
1101
1102 /*
1103  * This version is integrated into crit_exit, reqflags has already
1104  * been tested but td_critcount has not.
1105  *
1106  * We only want to execute the splz() on the 1->0 transition of
1107  * critcount and not in a hard code section or if too deeply nested.
1108  *
1109  * NOTE: gd->gd_spinlocks is implied to be 0 when td_critcount is 0.
1110  */
1111 void
1112 lwkt_maybe_splz(thread_t td)
1113 {
1114     globaldata_t gd = td->td_gd;
1115
1116     if (td->td_critcount == 0 &&
1117         gd->gd_intr_nesting_level == 0 &&
1118         td->td_nest_count < 2)
1119     {
1120         splz();
1121     }
1122 }
1123
1124 /*
1125  * Drivers which set up processing co-threads can call this function to
1126  * run the co-thread at a higher priority and to allow it to preempt
1127  * normal threads.
1128  */
1129 void
1130 lwkt_set_interrupt_support_thread(void)
1131 {
1132         thread_t td = curthread;
1133
1134         lwkt_setpri_self(TDPRI_INT_SUPPORT);
1135         td->td_flags |= TDF_INTTHREAD;
1136         td->td_preemptable = lwkt_preempt;
1137 }
1138
1139
1140 /*
1141  * This function is used to negotiate a passive release of the current
1142  * process/lwp designation with the user scheduler, allowing the user
1143  * scheduler to schedule another user thread.  The related kernel thread
1144  * (curthread) continues running in the released state.
1145  */
1146 void
1147 lwkt_passive_release(struct thread *td)
1148 {
1149     struct lwp *lp = td->td_lwp;
1150
1151 #ifndef NO_LWKT_SPLIT_USERPRI
1152     td->td_release = NULL;
1153     lwkt_setpri_self(TDPRI_KERN_USER);
1154 #endif
1155
1156     lp->lwp_proc->p_usched->release_curproc(lp);
1157 }
1158
1159
1160 /*
1161  * This implements a LWKT yield, allowing a kernel thread to yield to other
1162  * kernel threads at the same or higher priority.  This function can be
1163  * called in a tight loop and will typically only yield once per tick.
1164  *
1165  * Most kernel threads run at the same priority in order to allow equal
1166  * sharing.
1167  *
1168  * (self contained on a per cpu basis)
1169  */
1170 void
1171 lwkt_yield(void)
1172 {
1173     globaldata_t gd = mycpu;
1174     thread_t td = gd->gd_curthread;
1175
1176     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1177         splz();
1178     if (lwkt_resched_wanted()) {
1179         lwkt_schedule_self(curthread);
1180         lwkt_switch();
1181     }
1182 }
1183
1184 /*
1185  * The quick version processes pending interrupts and higher-priority
1186  * LWKT threads but will not round-robin same-priority LWKT threads.
1187  *
1188  * When called while attempting to return to userland the only same-pri
1189  * threads are the ones which have already tried to become the current
1190  * user process.
1191  */
1192 void
1193 lwkt_yield_quick(void)
1194 {
1195     globaldata_t gd = mycpu;
1196     thread_t td = gd->gd_curthread;
1197
1198     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1199         splz();
1200     if (lwkt_resched_wanted()) {
1201         crit_enter();
1202         if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1203             clear_lwkt_resched();
1204         } else {
1205             lwkt_schedule_self(curthread);
1206             lwkt_switch();
1207         }
1208         crit_exit();
1209     }
1210 }
1211
1212 /*
1213  * This yield is designed for kernel threads with a user context.
1214  *
1215  * The kernel acting on behalf of the user is potentially cpu-bound,
1216  * this function will efficiently allow other threads to run and also
1217  * switch to other processes by releasing.
1218  *
1219  * The lwkt_user_yield() function is designed to have very low overhead
1220  * if no yield is determined to be needed.
1221  */
1222 void
1223 lwkt_user_yield(void)
1224 {
1225     globaldata_t gd = mycpu;
1226     thread_t td = gd->gd_curthread;
1227
1228     /*
1229      * Always run any pending interrupts in case we are in a critical
1230      * section.
1231      */
1232     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1233         splz();
1234
1235     /*
1236      * Switch (which forces a release) if another kernel thread needs
1237      * the cpu, if userland wants us to resched, or if our kernel
1238      * quantum has run out.
1239      */
1240     if (lwkt_resched_wanted() ||
1241         user_resched_wanted())
1242     {
1243         lwkt_switch();
1244     }
1245
1246 #if 0
1247     /*
1248      * Reacquire the current process if we are released.
1249      *
1250      * XXX not implemented atm.  The kernel may be holding locks and such,
1251      *     so we want the thread to continue to receive cpu.
1252      */
1253     if (td->td_release == NULL && lp) {
1254         lp->lwp_proc->p_usched->acquire_curproc(lp);
1255         td->td_release = lwkt_passive_release;
1256         lwkt_setpri_self(TDPRI_USER_NORM);
1257     }
1258 #endif
1259 }
1260
1261 /*
1262  * Generic schedule.  Possibly schedule threads belonging to other cpus and
1263  * deal with threads that might be blocked on a wait queue.
1264  *
1265  * We have a little helper inline function which does additional work after
1266  * the thread has been enqueued, including dealing with preemption and
1267  * setting need_lwkt_resched() (which prevents the kernel from returning
1268  * to userland until it has processed higher priority threads).
1269  *
1270  * It is possible for this routine to be called after a failed _enqueue
1271  * (due to the target thread migrating, sleeping, or otherwise blocked).
1272  * We have to check that the thread is actually on the run queue!
1273  */
1274 static __inline
1275 void
1276 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount)
1277 {
1278     if (ntd->td_flags & TDF_RUNQ) {
1279         if (ntd->td_preemptable) {
1280             ntd->td_preemptable(ntd, ccount);   /* YYY +token */
1281         }
1282     }
1283 }
1284
1285 static __inline
1286 void
1287 _lwkt_schedule(thread_t td)
1288 {
1289     globaldata_t mygd = mycpu;
1290
1291     KASSERT(td != &td->td_gd->gd_idlethread,
1292             ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1293     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
1294     crit_enter_gd(mygd);
1295     KKASSERT(td->td_lwp == NULL ||
1296              (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1297
1298     if (td == mygd->gd_curthread) {
1299         _lwkt_enqueue(td);
1300     } else {
1301         /*
1302          * If we own the thread, there is no race (since we are in a
1303          * critical section).  If we do not own the thread there might
1304          * be a race but the target cpu will deal with it.
1305          */
1306         if (td->td_gd == mygd) {
1307             _lwkt_enqueue(td);
1308             _lwkt_schedule_post(mygd, td, 1);
1309         } else {
1310             lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1311         }
1312     }
1313     crit_exit_gd(mygd);
1314 }
1315
1316 void
1317 lwkt_schedule(thread_t td)
1318 {
1319     _lwkt_schedule(td);
1320 }
1321
1322 void
1323 lwkt_schedule_noresched(thread_t td)    /* XXX not impl */
1324 {
1325     _lwkt_schedule(td);
1326 }
1327
1328 /*
1329  * When scheduled remotely if frame != NULL the IPIQ is being
1330  * run via doreti or an interrupt then preemption can be allowed.
1331  *
1332  * To allow preemption we have to drop the critical section so only
1333  * one is present in _lwkt_schedule_post.
1334  */
1335 static void
1336 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1337 {
1338     thread_t td = curthread;
1339     thread_t ntd = arg;
1340
1341     if (frame && ntd->td_preemptable) {
1342         crit_exit_noyield(td);
1343         _lwkt_schedule(ntd);
1344         crit_enter_quick(td);
1345     } else {
1346         _lwkt_schedule(ntd);
1347     }
1348 }
1349
1350 /*
1351  * Thread migration using a 'Pull' method.  The thread may or may not be
1352  * the current thread.  It MUST be descheduled and in a stable state.
1353  * lwkt_giveaway() must be called on the cpu owning the thread.
1354  *
1355  * At any point after lwkt_giveaway() is called, the target cpu may
1356  * 'pull' the thread by calling lwkt_acquire().
1357  *
1358  * We have to make sure the thread is not sitting on a per-cpu tsleep
1359  * queue or it will blow up when it moves to another cpu.
1360  *
1361  * MPSAFE - must be called under very specific conditions.
1362  */
1363 void
1364 lwkt_giveaway(thread_t td)
1365 {
1366     globaldata_t gd = mycpu;
1367
1368     crit_enter_gd(gd);
1369     if (td->td_flags & TDF_TSLEEPQ)
1370         tsleep_remove(td);
1371     KKASSERT(td->td_gd == gd);
1372     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1373     td->td_flags |= TDF_MIGRATING;
1374     crit_exit_gd(gd);
1375 }
1376
1377 void
1378 lwkt_acquire(thread_t td)
1379 {
1380     globaldata_t gd;
1381     globaldata_t mygd;
1382     int retry = 10000000;
1383
1384     KKASSERT(td->td_flags & TDF_MIGRATING);
1385     gd = td->td_gd;
1386     mygd = mycpu;
1387     if (gd != mycpu) {
1388         cpu_lfence();
1389         KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1390         crit_enter_gd(mygd);
1391         DEBUG_PUSH_INFO("lwkt_acquire");
1392         while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1393             lwkt_process_ipiq();
1394             cpu_lfence();
1395             if (--retry == 0) {
1396                 kprintf("lwkt_acquire: stuck: td %p td->td_flags %08x\n",
1397                         td, td->td_flags);
1398                 retry = 10000000;
1399             }
1400 #ifdef _KERNEL_VIRTUAL
1401             pthread_yield();
1402 #endif
1403         }
1404         DEBUG_POP_INFO();
1405         cpu_mfence();
1406         td->td_gd = mygd;
1407         TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1408         td->td_flags &= ~TDF_MIGRATING;
1409         crit_exit_gd(mygd);
1410     } else {
1411         crit_enter_gd(mygd);
1412         TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1413         td->td_flags &= ~TDF_MIGRATING;
1414         crit_exit_gd(mygd);
1415     }
1416 }
1417
1418 /*
1419  * Generic deschedule.  Descheduling threads other then your own should be
1420  * done only in carefully controlled circumstances.  Descheduling is 
1421  * asynchronous.  
1422  *
1423  * This function may block if the cpu has run out of messages.
1424  */
1425 void
1426 lwkt_deschedule(thread_t td)
1427 {
1428     crit_enter();
1429     if (td == curthread) {
1430         _lwkt_dequeue(td);
1431     } else {
1432         if (td->td_gd == mycpu) {
1433             _lwkt_dequeue(td);
1434         } else {
1435             lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1436         }
1437     }
1438     crit_exit();
1439 }
1440
1441 /*
1442  * Set the target thread's priority.  This routine does not automatically
1443  * switch to a higher priority thread, LWKT threads are not designed for
1444  * continuous priority changes.  Yield if you want to switch.
1445  */
1446 void
1447 lwkt_setpri(thread_t td, int pri)
1448 {
1449     if (td->td_pri != pri) {
1450         KKASSERT(pri >= 0);
1451         crit_enter();
1452         if (td->td_flags & TDF_RUNQ) {
1453             KKASSERT(td->td_gd == mycpu);
1454             _lwkt_dequeue(td);
1455             td->td_pri = pri;
1456             _lwkt_enqueue(td);
1457         } else {
1458             td->td_pri = pri;
1459         }
1460         crit_exit();
1461     }
1462 }
1463
1464 /*
1465  * Set the initial priority for a thread prior to it being scheduled for
1466  * the first time.  The thread MUST NOT be scheduled before or during
1467  * this call.  The thread may be assigned to a cpu other then the current
1468  * cpu.
1469  *
1470  * Typically used after a thread has been created with TDF_STOPPREQ,
1471  * and before the thread is initially scheduled.
1472  */
1473 void
1474 lwkt_setpri_initial(thread_t td, int pri)
1475 {
1476     KKASSERT(pri >= 0);
1477     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1478     td->td_pri = pri;
1479 }
1480
1481 void
1482 lwkt_setpri_self(int pri)
1483 {
1484     thread_t td = curthread;
1485
1486     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1487     crit_enter();
1488     if (td->td_flags & TDF_RUNQ) {
1489         _lwkt_dequeue(td);
1490         td->td_pri = pri;
1491         _lwkt_enqueue(td);
1492     } else {
1493         td->td_pri = pri;
1494     }
1495     crit_exit();
1496 }
1497
1498 /*
1499  * hz tick scheduler clock for LWKT threads
1500  */
1501 void
1502 lwkt_schedulerclock(thread_t td)
1503 {
1504     globaldata_t gd = td->td_gd;
1505     thread_t xtd;
1506
1507     if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1508         /*
1509          * If the current thread is at the head of the runq shift it to the
1510          * end of any equal-priority threads and request a LWKT reschedule
1511          * if it moved.
1512          *
1513          * Ignore upri in this situation.  There will only be one user thread
1514          * in user mode, all others will be user threads running in kernel
1515          * mode and we have to make sure they get some cpu.
1516          */
1517         xtd = TAILQ_NEXT(td, td_threadq);
1518         if (xtd && xtd->td_pri == td->td_pri) {
1519             TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
1520             while (xtd && xtd->td_pri == td->td_pri)
1521                 xtd = TAILQ_NEXT(xtd, td_threadq);
1522             if (xtd)
1523                 TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
1524             else
1525                 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
1526             need_lwkt_resched();
1527         }
1528     } else {
1529         /*
1530          * If we scheduled a thread other than the one at the head of the
1531          * queue always request a reschedule every tick.
1532          */
1533         need_lwkt_resched();
1534     }
1535 }
1536
1537 /*
1538  * Migrate the current thread to the specified cpu. 
1539  *
1540  * This is accomplished by descheduling ourselves from the current cpu
1541  * and setting td_migrate_gd.  The lwkt_switch() code will detect that the
1542  * 'old' thread wants to migrate after it has been completely switched out
1543  * and will complete the migration.
1544  *
1545  * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1546  *
1547  * We must be sure to release our current process designation (if a user
1548  * process) before clearing out any tsleepq we are on because the release
1549  * code may re-add us.
1550  *
1551  * We must be sure to remove ourselves from the current cpu's tsleepq
1552  * before potentially moving to another queue.  The thread can be on
1553  * a tsleepq due to a left-over tsleep_interlock().
1554  */
1555
1556 void
1557 lwkt_setcpu_self(globaldata_t rgd)
1558 {
1559     thread_t td = curthread;
1560
1561     if (td->td_gd != rgd) {
1562         crit_enter_quick(td);
1563
1564         if (td->td_release)
1565             td->td_release(td);
1566         if (td->td_flags & TDF_TSLEEPQ)
1567             tsleep_remove(td);
1568
1569         /*
1570          * Set TDF_MIGRATING to prevent a spurious reschedule while we are
1571          * trying to deschedule ourselves and switch away, then deschedule
1572          * ourself, remove us from tdallq, and set td_migrate_gd.  Finally,
1573          * call lwkt_switch() to complete the operation.
1574          */
1575         td->td_flags |= TDF_MIGRATING;
1576         lwkt_deschedule_self(td);
1577         TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1578         td->td_migrate_gd = rgd;
1579         lwkt_switch();
1580
1581         /*
1582          * We are now on the target cpu
1583          */
1584         KKASSERT(rgd == mycpu);
1585         TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1586         crit_exit_quick(td);
1587     }
1588 }
1589
1590 void
1591 lwkt_migratecpu(int cpuid)
1592 {
1593         globaldata_t rgd;
1594
1595         rgd = globaldata_find(cpuid);
1596         lwkt_setcpu_self(rgd);
1597 }
1598
1599 /*
1600  * Remote IPI for cpu migration (called while in a critical section so we
1601  * do not have to enter another one).
1602  *
1603  * The thread (td) has already been completely descheduled from the
1604  * originating cpu and we can simply assert the case.  The thread is
1605  * assigned to the new cpu and enqueued.
1606  *
1607  * The thread will re-add itself to tdallq when it resumes execution.
1608  */
1609 static void
1610 lwkt_setcpu_remote(void *arg)
1611 {
1612     thread_t td = arg;
1613     globaldata_t gd = mycpu;
1614
1615     KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1616     td->td_gd = gd;
1617     cpu_mfence();
1618     td->td_flags &= ~TDF_MIGRATING;
1619     KKASSERT(td->td_migrate_gd == NULL);
1620     KKASSERT(td->td_lwp == NULL ||
1621             (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1622     _lwkt_enqueue(td);
1623 }
1624
1625 struct lwp *
1626 lwkt_preempted_proc(void)
1627 {
1628     thread_t td = curthread;
1629     while (td->td_preempted)
1630         td = td->td_preempted;
1631     return(td->td_lwp);
1632 }
1633
1634 /*
1635  * Create a kernel process/thread/whatever.  It shares it's address space
1636  * with proc0 - ie: kernel only.
1637  *
1638  * If the cpu is not specified one will be selected.  In the future
1639  * specifying a cpu of -1 will enable kernel thread migration between
1640  * cpus.
1641  */
1642 int
1643 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1644             thread_t template, int tdflags, int cpu, const char *fmt, ...)
1645 {
1646     thread_t td;
1647     __va_list ap;
1648
1649     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1650                            tdflags);
1651     if (tdp)
1652         *tdp = td;
1653     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1654
1655     /*
1656      * Set up arg0 for 'ps' etc
1657      */
1658     __va_start(ap, fmt);
1659     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1660     __va_end(ap);
1661
1662     /*
1663      * Schedule the thread to run
1664      */
1665     if (td->td_flags & TDF_NOSTART)
1666         td->td_flags &= ~TDF_NOSTART;
1667     else
1668         lwkt_schedule(td);
1669     return 0;
1670 }
1671
1672 /*
1673  * Destroy an LWKT thread.   Warning!  This function is not called when
1674  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1675  * uses a different reaping mechanism.
1676  */
1677 void
1678 lwkt_exit(void)
1679 {
1680     thread_t td = curthread;
1681     thread_t std;
1682     globaldata_t gd;
1683
1684     /*
1685      * Do any cleanup that might block here
1686      */
1687     if (td->td_flags & TDF_VERBOSE)
1688         kprintf("kthread %p %s has exited\n", td, td->td_comm);
1689     biosched_done(td);
1690     dsched_exit_thread(td);
1691
1692     /*
1693      * Get us into a critical section to interlock gd_freetd and loop
1694      * until we can get it freed.
1695      *
1696      * We have to cache the current td in gd_freetd because objcache_put()ing
1697      * it would rip it out from under us while our thread is still active.
1698      *
1699      * We are the current thread so of course our own TDF_RUNNING bit will
1700      * be set, so unlike the lwp reap code we don't wait for it to clear.
1701      */
1702     gd = mycpu;
1703     crit_enter_quick(td);
1704     for (;;) {
1705         if (td->td_refs) {
1706             tsleep(td, 0, "tdreap", 1);
1707             continue;
1708         }
1709         if ((std = gd->gd_freetd) != NULL) {
1710             KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1711             gd->gd_freetd = NULL;
1712             objcache_put(thread_cache, std);
1713             continue;
1714         }
1715         break;
1716     }
1717
1718     /*
1719      * Remove thread resources from kernel lists and deschedule us for
1720      * the last time.  We cannot block after this point or we may end
1721      * up with a stale td on the tsleepq.
1722      *
1723      * None of this may block, the critical section is the only thing
1724      * protecting tdallq and the only thing preventing new lwkt_hold()
1725      * thread refs now.
1726      */
1727     if (td->td_flags & TDF_TSLEEPQ)
1728         tsleep_remove(td);
1729     lwkt_deschedule_self(td);
1730     lwkt_remove_tdallq(td);
1731     KKASSERT(td->td_refs == 0);
1732
1733     /*
1734      * Final cleanup
1735      */
1736     KKASSERT(gd->gd_freetd == NULL);
1737     if (td->td_flags & TDF_ALLOCATED_THREAD)
1738         gd->gd_freetd = td;
1739     cpu_thread_exit();
1740 }
1741
1742 void
1743 lwkt_remove_tdallq(thread_t td)
1744 {
1745     KKASSERT(td->td_gd == mycpu);
1746     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1747 }
1748
1749 /*
1750  * Code reduction and branch prediction improvements.  Call/return
1751  * overhead on modern cpus often degenerates into 0 cycles due to
1752  * the cpu's branch prediction hardware and return pc cache.  We
1753  * can take advantage of this by not inlining medium-complexity
1754  * functions and we can also reduce the branch prediction impact
1755  * by collapsing perfectly predictable branches into a single
1756  * procedure instead of duplicating it.
1757  *
1758  * Is any of this noticeable?  Probably not, so I'll take the
1759  * smaller code size.
1760  */
1761 void
1762 crit_exit_wrapper(__DEBUG_CRIT_ARG__)
1763 {
1764     _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
1765 }
1766
1767 void
1768 crit_panic(void)
1769 {
1770     thread_t td = curthread;
1771     int lcrit = td->td_critcount;
1772
1773     td->td_critcount = 0;
1774     panic("td_critcount is/would-go negative! %p %d", td, lcrit);
1775     /* NOT REACHED */
1776 }
1777
1778 /*
1779  * Called from debugger/panic on cpus which have been stopped.  We must still
1780  * process the IPIQ while stopped, even if we were stopped while in a critical
1781  * section (XXX).
1782  *
1783  * If we are dumping also try to process any pending interrupts.  This may
1784  * or may not work depending on the state of the cpu at the point it was
1785  * stopped.
1786  */
1787 void
1788 lwkt_smp_stopped(void)
1789 {
1790     globaldata_t gd = mycpu;
1791
1792     crit_enter_gd(gd);
1793     if (dumping) {
1794         lwkt_process_ipiq();
1795         splz();
1796     } else {
1797         lwkt_process_ipiq();
1798     }
1799     crit_exit_gd(gd);
1800 }