Import gcc-4.7.2 to new vendor branch
[dragonfly.git] / contrib / gcc-4.7 / gcc / doc / gimple.texi
1 @c Copyright (c) 2008, 2009, 2010 Free Software Foundation, Inc.
2 @c Free Software Foundation, Inc.
3 @c This is part of the GCC manual.
4 @c For copying conditions, see the file gcc.texi.
5
6 @node GIMPLE
7 @chapter GIMPLE
8 @cindex GIMPLE
9
10 GIMPLE is a three-address representation derived from GENERIC by
11 breaking down GENERIC expressions into tuples of no more than 3
12 operands (with some exceptions like function calls).  GIMPLE was
13 heavily influenced by the SIMPLE IL used by the McCAT compiler
14 project at McGill University, though we have made some different
15 choices.  For one thing, SIMPLE doesn't support @code{goto}.
16
17 Temporaries are introduced to hold intermediate values needed to
18 compute complex expressions. Additionally, all the control
19 structures used in GENERIC are lowered into conditional jumps,
20 lexical scopes are removed and exception regions are converted
21 into an on the side exception region tree.
22
23 The compiler pass which converts GENERIC into GIMPLE is referred to as
24 the @samp{gimplifier}.  The gimplifier works recursively, generating
25 GIMPLE tuples out of the original GENERIC expressions.
26
27 One of the early implementation strategies used for the GIMPLE
28 representation was to use the same internal data structures used
29 by front ends to represent parse trees. This simplified
30 implementation because we could leverage existing functionality
31 and interfaces. However, GIMPLE is a much more restrictive
32 representation than abstract syntax trees (AST), therefore it
33 does not require the full structural complexity provided by the
34 main tree data structure.
35
36 The GENERIC representation of a function is stored in the
37 @code{DECL_SAVED_TREE} field of the associated @code{FUNCTION_DECL}
38 tree node.  It is converted to GIMPLE by a call to
39 @code{gimplify_function_tree}.
40
41 If a front end wants to include language-specific tree codes in the tree
42 representation which it provides to the back end, it must provide a
43 definition of @code{LANG_HOOKS_GIMPLIFY_EXPR} which knows how to
44 convert the front end trees to GIMPLE@.  Usually such a hook will involve
45 much of the same code for expanding front end trees to RTL@.  This function
46 can return fully lowered GIMPLE, or it can return GENERIC trees and let the
47 main gimplifier lower them the rest of the way; this is often simpler.
48 GIMPLE that is not fully lowered is known as ``High GIMPLE'' and
49 consists of the IL before the pass @code{pass_lower_cf}.  High GIMPLE
50 contains some container statements like lexical scopes
51 (represented by @code{GIMPLE_BIND}) and nested expressions (e.g.,
52 @code{GIMPLE_TRY}), while ``Low GIMPLE'' exposes all of the
53 implicit jumps for control and exception expressions directly in
54 the IL and EH region trees.
55
56 The C and C++ front ends currently convert directly from front end
57 trees to GIMPLE, and hand that off to the back end rather than first
58 converting to GENERIC@.  Their gimplifier hooks know about all the
59 @code{_STMT} nodes and how to convert them to GENERIC forms.  There
60 was some work done on a genericization pass which would run first, but
61 the existence of @code{STMT_EXPR} meant that in order to convert all
62 of the C statements into GENERIC equivalents would involve walking the
63 entire tree anyway, so it was simpler to lower all the way.  This
64 might change in the future if someone writes an optimization pass
65 which would work better with higher-level trees, but currently the
66 optimizers all expect GIMPLE@.
67
68 You can request to dump a C-like representation of the GIMPLE form
69 with the flag @option{-fdump-tree-gimple}.
70
71 @menu
72 * Tuple representation::
73 * GIMPLE instruction set::
74 * GIMPLE Exception Handling::
75 * Temporaries::
76 * Operands::
77 * Manipulating GIMPLE statements::
78 * Tuple specific accessors::
79 * GIMPLE sequences::
80 * Sequence iterators::
81 * Adding a new GIMPLE statement code::
82 * Statement and operand traversals::
83 @end menu
84
85 @node Tuple representation
86 @section Tuple representation
87 @cindex tuples
88
89 GIMPLE instructions are tuples of variable size divided in two
90 groups: a header describing the instruction and its locations,
91 and a variable length body with all the operands. Tuples are
92 organized into a hierarchy with 3 main classes of tuples.
93
94 @subsection @code{gimple_statement_base} (gsbase)
95 @cindex gimple_statement_base
96
97 This is the root of the hierarchy, it holds basic information
98 needed by most GIMPLE statements. There are some fields that
99 may not be relevant to every GIMPLE statement, but those were
100 moved into the base structure to take advantage of holes left by
101 other fields (thus making the structure more compact).  The
102 structure takes 4 words (32 bytes) on 64 bit hosts:
103
104 @multitable {@code{references_memory_p}} {Size (bits)}
105 @item Field                             @tab Size (bits)
106 @item @code{code}                       @tab 8
107 @item @code{subcode}                    @tab 16
108 @item @code{no_warning}                 @tab 1
109 @item @code{visited}                    @tab 1
110 @item @code{nontemporal_move}           @tab 1
111 @item @code{plf}                        @tab 2
112 @item @code{modified}                   @tab 1
113 @item @code{has_volatile_ops}           @tab 1
114 @item @code{references_memory_p}        @tab 1
115 @item @code{uid}                        @tab 32
116 @item @code{location}                   @tab 32
117 @item @code{num_ops}                    @tab 32
118 @item @code{bb}                         @tab 64
119 @item @code{block}                      @tab 63
120 @item Total size                        @tab 32 bytes   
121 @end multitable
122
123 @itemize @bullet
124 @item @code{code}
125 Main identifier for a GIMPLE instruction.
126
127 @item @code{subcode}
128 Used to distinguish different variants of the same basic
129 instruction or provide flags applicable to a given code. The
130 @code{subcode} flags field has different uses depending on the code of
131 the instruction, but mostly it distinguishes instructions of the
132 same family. The most prominent use of this field is in
133 assignments, where subcode indicates the operation done on the
134 RHS of the assignment. For example, a = b + c is encoded as
135 @code{GIMPLE_ASSIGN <PLUS_EXPR, a, b, c>}.
136
137 @item @code{no_warning}
138 Bitflag to indicate whether a warning has already been issued on
139 this statement.
140
141 @item @code{visited}
142 General purpose ``visited'' marker. Set and cleared by each pass
143 when needed.
144
145 @item @code{nontemporal_move}
146 Bitflag used in assignments that represent non-temporal moves.
147 Although this bitflag is only used in assignments, it was moved
148 into the base to take advantage of the bit holes left by the
149 previous fields.
150
151 @item @code{plf}
152 Pass Local Flags. This 2-bit mask can be used as general purpose
153 markers by any pass. Passes are responsible for clearing and
154 setting these two flags accordingly.
155
156 @item @code{modified}
157 Bitflag to indicate whether the statement has been modified.
158 Used mainly by the operand scanner to determine when to re-scan a
159 statement for operands.
160
161 @item @code{has_volatile_ops}
162 Bitflag to indicate whether this statement contains operands that
163 have been marked volatile.
164
165 @item @code{references_memory_p}
166 Bitflag to indicate whether this statement contains memory
167 references (i.e., its operands are either global variables, or
168 pointer dereferences or anything that must reside in memory).
169
170 @item @code{uid}
171 This is an unsigned integer used by passes that want to assign
172 IDs to every statement. These IDs must be assigned and used by
173 each pass.
174
175 @item @code{location}
176 This is a @code{location_t} identifier to specify source code
177 location for this statement. It is inherited from the front
178 end.
179
180 @item @code{num_ops}
181 Number of operands that this statement has. This specifies the
182 size of the operand vector embedded in the tuple. Only used in
183 some tuples, but it is declared in the base tuple to take
184 advantage of the 32-bit hole left by the previous fields.
185
186 @item @code{bb}
187 Basic block holding the instruction.
188
189 @item @code{block}
190 Lexical block holding this statement.  Also used for debug
191 information generation.
192 @end itemize
193
194 @subsection @code{gimple_statement_with_ops}
195 @cindex gimple_statement_with_ops
196
197 This tuple is actually split in two:
198 @code{gimple_statement_with_ops_base} and
199 @code{gimple_statement_with_ops}. This is needed to accommodate the
200 way the operand vector is allocated. The operand vector is
201 defined to be an array of 1 element. So, to allocate a dynamic
202 number of operands, the memory allocator (@code{gimple_alloc}) simply
203 allocates enough memory to hold the structure itself plus @code{N
204 - 1} operands which run ``off the end'' of the structure. For
205 example, to allocate space for a tuple with 3 operands,
206 @code{gimple_alloc} reserves @code{sizeof (struct
207 gimple_statement_with_ops) + 2 * sizeof (tree)} bytes.
208
209 On the other hand, several fields in this tuple need to be shared
210 with the @code{gimple_statement_with_memory_ops} tuple. So, these
211 common fields are placed in @code{gimple_statement_with_ops_base} which
212 is then inherited from the other two tuples.
213
214
215 @multitable {@code{def_ops}}    {48 + 8 * @code{num_ops} bytes}
216 @item   @code{gsbase}           @tab 256        
217 @item   @code{def_ops}          @tab 64 
218 @item   @code{use_ops}          @tab 64 
219 @item   @code{op}               @tab @code{num_ops} * 64        
220 @item   Total size              @tab 48 + 8 * @code{num_ops} bytes
221 @end multitable
222
223 @itemize @bullet
224 @item @code{gsbase}
225 Inherited from @code{struct gimple_statement_base}.
226
227 @item @code{def_ops}
228 Array of pointers into the operand array indicating all the slots that
229 contain a variable written-to by the statement. This array is
230 also used for immediate use chaining. Note that it would be
231 possible to not rely on this array, but the changes required to
232 implement this are pretty invasive.
233
234 @item @code{use_ops}
235 Similar to @code{def_ops} but for variables read by the statement.
236
237 @item @code{op}
238 Array of trees with @code{num_ops} slots.
239 @end itemize
240
241 @subsection @code{gimple_statement_with_memory_ops}
242
243 This tuple is essentially identical to @code{gimple_statement_with_ops},
244 except that it contains 4 additional fields to hold vectors
245 related memory stores and loads.  Similar to the previous case,
246 the structure is split in two to accommodate for the operand
247 vector (@code{gimple_statement_with_memory_ops_base} and
248 @code{gimple_statement_with_memory_ops}).
249
250
251 @multitable {@code{vdef_ops}}   {80 + 8 * @code{num_ops} bytes}
252 @item Field                     @tab Size (bits)
253 @item @code{gsbase}             @tab 256
254 @item @code{def_ops}            @tab 64
255 @item @code{use_ops}            @tab 64
256 @item @code{vdef_ops}           @tab 64
257 @item @code{vuse_ops}           @tab 64
258 @item @code{stores}             @tab 64 
259 @item @code{loads}              @tab 64 
260 @item @code{op}                 @tab @code{num_ops} * 64        
261 @item Total size                @tab 80 + 8 * @code{num_ops} bytes
262 @end multitable
263
264 @itemize @bullet
265 @item @code{vdef_ops}
266 Similar to @code{def_ops} but for @code{VDEF} operators. There is
267 one entry per memory symbol written by this statement. This is
268 used to maintain the memory SSA use-def and def-def chains.
269
270 @item @code{vuse_ops}
271 Similar to @code{use_ops} but for @code{VUSE} operators. There is
272 one entry per memory symbol loaded by this statement. This is
273 used to maintain the memory SSA use-def chains.
274
275 @item @code{stores}
276 Bitset with all the UIDs for the symbols written-to by the
277 statement.  This is different than @code{vdef_ops} in that all the
278 affected symbols are mentioned in this set.  If memory
279 partitioning is enabled, the @code{vdef_ops} vector will refer to memory
280 partitions. Furthermore, no SSA information is stored in this
281 set.
282
283 @item @code{loads}
284 Similar to @code{stores}, but for memory loads. (Note that there
285 is some amount of redundancy here, it should be possible to
286 reduce memory utilization further by removing these sets).
287 @end itemize
288
289 All the other tuples are defined in terms of these three basic
290 ones. Each tuple will add some fields. The main gimple type
291 is defined to be the union of all these structures (@code{GTY} markers
292 elided for clarity):
293
294 @smallexample
295 union gimple_statement_d
296 @{
297   struct gimple_statement_base gsbase;
298   struct gimple_statement_with_ops gsops;
299   struct gimple_statement_with_memory_ops gsmem;
300   struct gimple_statement_omp omp;
301   struct gimple_statement_bind gimple_bind;
302   struct gimple_statement_catch gimple_catch;
303   struct gimple_statement_eh_filter gimple_eh_filter;
304   struct gimple_statement_phi gimple_phi;
305   struct gimple_statement_resx gimple_resx;
306   struct gimple_statement_try gimple_try;
307   struct gimple_statement_wce gimple_wce;
308   struct gimple_statement_asm gimple_asm;
309   struct gimple_statement_omp_critical gimple_omp_critical;
310   struct gimple_statement_omp_for gimple_omp_for;
311   struct gimple_statement_omp_parallel gimple_omp_parallel;
312   struct gimple_statement_omp_task gimple_omp_task;
313   struct gimple_statement_omp_sections gimple_omp_sections;
314   struct gimple_statement_omp_single gimple_omp_single;
315   struct gimple_statement_omp_continue gimple_omp_continue;
316   struct gimple_statement_omp_atomic_load gimple_omp_atomic_load;
317   struct gimple_statement_omp_atomic_store gimple_omp_atomic_store;
318 @};
319 @end smallexample
320
321
322 @node GIMPLE instruction set
323 @section GIMPLE instruction set
324 @cindex GIMPLE instruction set
325
326 The following table briefly describes the GIMPLE instruction set.
327
328 @multitable {@code{GIMPLE_OMP_SECTIONS_SWITCH}} {High GIMPLE} {Low GIMPLE}
329 @item Instruction                       @tab High GIMPLE        @tab Low GIMPLE
330 @item @code{GIMPLE_ASM}                 @tab x                  @tab x
331 @item @code{GIMPLE_ASSIGN}              @tab x                  @tab x
332 @item @code{GIMPLE_BIND}                @tab x                  @tab
333 @item @code{GIMPLE_CALL}                @tab x                  @tab x
334 @item @code{GIMPLE_CATCH}               @tab x                  @tab
335 @item @code{GIMPLE_COND}                @tab x                  @tab x
336 @item @code{GIMPLE_DEBUG}               @tab x                  @tab x
337 @item @code{GIMPLE_EH_FILTER}           @tab x                  @tab
338 @item @code{GIMPLE_GOTO}                @tab x                  @tab x
339 @item @code{GIMPLE_LABEL}               @tab x                  @tab x
340 @item @code{GIMPLE_NOP}                 @tab x                  @tab x
341 @item @code{GIMPLE_OMP_ATOMIC_LOAD}     @tab x                  @tab x
342 @item @code{GIMPLE_OMP_ATOMIC_STORE}    @tab x                  @tab x
343 @item @code{GIMPLE_OMP_CONTINUE}        @tab x                  @tab x
344 @item @code{GIMPLE_OMP_CRITICAL}        @tab x                  @tab x
345 @item @code{GIMPLE_OMP_FOR}             @tab x                  @tab x
346 @item @code{GIMPLE_OMP_MASTER}          @tab x                  @tab x
347 @item @code{GIMPLE_OMP_ORDERED}         @tab x                  @tab x
348 @item @code{GIMPLE_OMP_PARALLEL}        @tab x                  @tab x
349 @item @code{GIMPLE_OMP_RETURN}          @tab x                  @tab x
350 @item @code{GIMPLE_OMP_SECTION}         @tab x                  @tab x
351 @item @code{GIMPLE_OMP_SECTIONS}        @tab x                  @tab x
352 @item @code{GIMPLE_OMP_SECTIONS_SWITCH} @tab x                  @tab x
353 @item @code{GIMPLE_OMP_SINGLE}          @tab x                  @tab x
354 @item @code{GIMPLE_PHI}                 @tab                    @tab x
355 @item @code{GIMPLE_RESX}                @tab                    @tab x
356 @item @code{GIMPLE_RETURN}              @tab x                  @tab x
357 @item @code{GIMPLE_SWITCH}              @tab x                  @tab x
358 @item @code{GIMPLE_TRY}                 @tab x                  @tab
359 @end multitable
360
361 @node GIMPLE Exception Handling
362 @section Exception Handling
363 @cindex GIMPLE Exception Handling
364
365 Other exception handling constructs are represented using
366 @code{GIMPLE_TRY_CATCH}.  @code{GIMPLE_TRY_CATCH} has two operands.  The
367 first operand is a sequence of statements to execute.  If executing
368 these statements does not throw an exception, then the second operand
369 is ignored.  Otherwise, if an exception is thrown, then the second
370 operand of the @code{GIMPLE_TRY_CATCH} is checked.  The second
371 operand may have the following forms:
372
373 @enumerate
374
375 @item A sequence of statements to execute.  When an exception occurs,
376 these statements are executed, and then the exception is rethrown.
377
378 @item A sequence of @code{GIMPLE_CATCH} statements.  Each
379 @code{GIMPLE_CATCH} has a list of applicable exception types and
380 handler code.  If the thrown exception matches one of the caught
381 types, the associated handler code is executed.  If the handler
382 code falls off the bottom, execution continues after the original
383 @code{GIMPLE_TRY_CATCH}.
384
385 @item A @code{GIMPLE_EH_FILTER} statement.  This has a list of
386 permitted exception types, and code to handle a match failure.  If the
387 thrown exception does not match one of the allowed types, the
388 associated match failure code is executed.  If the thrown exception
389 does match, it continues unwinding the stack looking for the next
390 handler.
391
392 @end enumerate
393
394 Currently throwing an exception is not directly represented in
395 GIMPLE, since it is implemented by calling a function.  At some
396 point in the future we will want to add some way to express that
397 the call will throw an exception of a known type.
398
399 Just before running the optimizers, the compiler lowers the
400 high-level EH constructs above into a set of @samp{goto}s, magic
401 labels, and EH regions.  Continuing to unwind at the end of a
402 cleanup is represented with a @code{GIMPLE_RESX}.
403
404
405 @node Temporaries
406 @section Temporaries
407 @cindex Temporaries
408
409 When gimplification encounters a subexpression that is too
410 complex, it creates a new temporary variable to hold the value of
411 the subexpression, and adds a new statement to initialize it
412 before the current statement. These special temporaries are known
413 as @samp{expression temporaries}, and are allocated using
414 @code{get_formal_tmp_var}.  The compiler tries to always evaluate
415 identical expressions into the same temporary, to simplify
416 elimination of redundant calculations.
417
418 We can only use expression temporaries when we know that it will
419 not be reevaluated before its value is used, and that it will not
420 be otherwise modified@footnote{These restrictions are derived
421 from those in Morgan 4.8.}. Other temporaries can be allocated
422 using @code{get_initialized_tmp_var} or @code{create_tmp_var}.
423
424 Currently, an expression like @code{a = b + 5} is not reduced any
425 further.  We tried converting it to something like
426 @smallexample
427 T1 = b + 5;
428 a = T1;
429 @end smallexample
430 but this bloated the representation for minimal benefit.  However, a
431 variable which must live in memory cannot appear in an expression; its
432 value is explicitly loaded into a temporary first.  Similarly, storing
433 the value of an expression to a memory variable goes through a
434 temporary.
435
436 @node Operands
437 @section Operands
438 @cindex Operands
439
440 In general, expressions in GIMPLE consist of an operation and the
441 appropriate number of simple operands; these operands must either be a
442 GIMPLE rvalue (@code{is_gimple_val}), i.e.@: a constant or a register
443 variable.  More complex operands are factored out into temporaries, so
444 that
445 @smallexample
446 a = b + c + d
447 @end smallexample
448 becomes
449 @smallexample
450 T1 = b + c;
451 a = T1 + d;
452 @end smallexample
453
454 The same rule holds for arguments to a @code{GIMPLE_CALL}.
455
456 The target of an assignment is usually a variable, but can also be a
457 @code{MEM_REF} or a compound lvalue as described below.
458
459 @menu
460 * Compound Expressions::
461 * Compound Lvalues::
462 * Conditional Expressions::
463 * Logical Operators::
464 @end menu
465
466 @node Compound Expressions
467 @subsection Compound Expressions
468 @cindex Compound Expressions
469
470 The left-hand side of a C comma expression is simply moved into a separate
471 statement.
472
473 @node Compound Lvalues
474 @subsection Compound Lvalues
475 @cindex Compound Lvalues
476
477 Currently compound lvalues involving array and structure field references
478 are not broken down; an expression like @code{a.b[2] = 42} is not reduced
479 any further (though complex array subscripts are).  This restriction is a
480 workaround for limitations in later optimizers; if we were to convert this
481 to
482
483 @smallexample
484 T1 = &a.b;
485 T1[2] = 42;
486 @end smallexample
487
488 alias analysis would not remember that the reference to @code{T1[2]} came
489 by way of @code{a.b}, so it would think that the assignment could alias
490 another member of @code{a}; this broke @code{struct-alias-1.c}.  Future
491 optimizer improvements may make this limitation unnecessary.
492
493 @node Conditional Expressions
494 @subsection Conditional Expressions
495 @cindex Conditional Expressions
496
497 A C @code{?:} expression is converted into an @code{if} statement with
498 each branch assigning to the same temporary.  So,
499
500 @smallexample
501 a = b ? c : d;
502 @end smallexample
503 becomes
504 @smallexample
505 if (b == 1)
506   T1 = c;
507 else
508   T1 = d;
509 a = T1;
510 @end smallexample
511
512 The GIMPLE level if-conversion pass re-introduces @code{?:}
513 expression, if appropriate. It is used to vectorize loops with
514 conditions using vector conditional operations.
515
516 Note that in GIMPLE, @code{if} statements are represented using
517 @code{GIMPLE_COND}, as described below.
518
519 @node Logical Operators
520 @subsection Logical Operators
521 @cindex Logical Operators
522
523 Except when they appear in the condition operand of a
524 @code{GIMPLE_COND}, logical `and' and `or' operators are simplified
525 as follows: @code{a = b && c} becomes
526
527 @smallexample
528 T1 = (bool)b;
529 if (T1 == true)
530   T1 = (bool)c;
531 a = T1;
532 @end smallexample
533
534 Note that @code{T1} in this example cannot be an expression temporary,
535 because it has two different assignments.
536
537 @subsection Manipulating operands
538
539 All gimple operands are of type @code{tree}.  But only certain
540 types of trees are allowed to be used as operand tuples.  Basic
541 validation is controlled by the function
542 @code{get_gimple_rhs_class}, which given a tree code, returns an
543 @code{enum} with the following values of type @code{enum
544 gimple_rhs_class}
545
546 @itemize @bullet
547 @item @code{GIMPLE_INVALID_RHS}
548 The tree cannot be used as a GIMPLE operand.
549
550 @item @code{GIMPLE_TERNARY_RHS}
551 The tree is a valid GIMPLE ternary operation.
552
553 @item @code{GIMPLE_BINARY_RHS}
554 The tree is a valid GIMPLE binary operation.
555
556 @item @code{GIMPLE_UNARY_RHS}
557 The tree is a valid GIMPLE unary operation.
558
559 @item @code{GIMPLE_SINGLE_RHS}
560 The tree is a single object, that cannot be split into simpler
561 operands (for instance, @code{SSA_NAME}, @code{VAR_DECL}, @code{COMPONENT_REF}, etc).
562
563 This operand class also acts as an escape hatch for tree nodes
564 that may be flattened out into the operand vector, but would need
565 more than two slots on the RHS.  For instance, a @code{COND_EXPR}
566 expression of the form @code{(a op b) ? x : y} could be flattened
567 out on the operand vector using 4 slots, but it would also
568 require additional processing to distinguish @code{c = a op b}
569 from @code{c = a op b ? x : y}.  Something similar occurs with
570 @code{ASSERT_EXPR}.   In time, these special case tree
571 expressions should be flattened into the operand vector.
572 @end itemize
573
574 For tree nodes in the categories @code{GIMPLE_TERNARY_RHS},
575 @code{GIMPLE_BINARY_RHS} and @code{GIMPLE_UNARY_RHS}, they cannot be
576 stored inside tuples directly.  They first need to be flattened and
577 separated into individual components.  For instance, given the GENERIC
578 expression
579
580 @smallexample
581 a = b + c
582 @end smallexample
583
584 its tree representation is:
585
586 @smallexample
587 MODIFY_EXPR <VAR_DECL  <a>, PLUS_EXPR <VAR_DECL <b>, VAR_DECL <c>>>
588 @end smallexample
589
590 In this case, the GIMPLE form for this statement is logically
591 identical to its GENERIC form but in GIMPLE, the @code{PLUS_EXPR}
592 on the RHS of the assignment is not represented as a tree,
593 instead the two operands are taken out of the @code{PLUS_EXPR} sub-tree
594 and flattened into the GIMPLE tuple as follows:
595
596 @smallexample
597 GIMPLE_ASSIGN <PLUS_EXPR, VAR_DECL <a>, VAR_DECL <b>, VAR_DECL <c>>
598 @end smallexample
599
600 @subsection Operand vector allocation
601
602 The operand vector is stored at the bottom of the three tuple
603 structures that accept operands. This means, that depending on
604 the code of a given statement, its operand vector will be at
605 different offsets from the base of the structure.  To access
606 tuple operands use the following accessors
607
608 @deftypefn {GIMPLE function} unsigned gimple_num_ops (gimple g)
609 Returns the number of operands in statement G.
610 @end deftypefn
611
612 @deftypefn {GIMPLE function} tree gimple_op (gimple g, unsigned i)
613 Returns operand @code{I} from statement @code{G}.
614 @end deftypefn
615
616 @deftypefn {GIMPLE function} {tree *} gimple_ops (gimple g)
617 Returns a pointer into the operand vector for statement @code{G}.  This
618 is computed using an internal table called @code{gimple_ops_offset_}[].
619 This table is indexed by the gimple code of @code{G}.
620
621 When the compiler is built, this table is filled-in using the
622 sizes of the structures used by each statement code defined in
623 gimple.def.  Since the operand vector is at the bottom of the
624 structure, for a gimple code @code{C} the offset is computed as sizeof
625 (struct-of @code{C}) - sizeof (tree).
626
627 This mechanism adds one memory indirection to every access when
628 using @code{gimple_op}(), if this becomes a bottleneck, a pass can
629 choose to memoize the result from @code{gimple_ops}() and use that to
630 access the operands.
631 @end deftypefn
632
633 @subsection Operand validation
634
635 When adding a new operand to a gimple statement, the operand will
636 be validated according to what each tuple accepts in its operand
637 vector.  These predicates are called by the
638 @code{gimple_@var{name}_set_...()}.  Each tuple will use one of the
639 following predicates (Note, this list is not exhaustive):
640
641 @deftypefn {GIMPLE function} bool is_gimple_val (tree t)
642 Returns true if t is a "GIMPLE value", which are all the
643 non-addressable stack variables (variables for which
644 @code{is_gimple_reg} returns true) and constants (expressions for which
645 @code{is_gimple_min_invariant} returns true).
646 @end deftypefn
647
648 @deftypefn {GIMPLE function} bool is_gimple_addressable (tree t)
649 Returns true if t is a symbol or memory reference whose address
650 can be taken.
651 @end deftypefn
652
653 @deftypefn {GIMPLE function} bool is_gimple_asm_val (tree t)
654 Similar to @code{is_gimple_val} but it also accepts hard registers.
655 @end deftypefn
656
657 @deftypefn {GIMPLE function} bool is_gimple_call_addr (tree t)
658 Return true if t is a valid expression to use as the function
659 called by a @code{GIMPLE_CALL}.
660 @end deftypefn
661
662 @deftypefn {GIMPLE function} bool is_gimple_mem_ref_addr (tree t)
663 Return true if t is a valid expression to use as first operand
664 of a @code{MEM_REF} expression.
665 @end deftypefn
666
667 @deftypefn {GIMPLE function} bool is_gimple_constant (tree t)
668 Return true if t is a valid gimple constant.
669 @end deftypefn
670
671 @deftypefn {GIMPLE function} bool is_gimple_min_invariant (tree t)
672 Return true if t is a valid minimal invariant.  This is different
673 from constants, in that the specific value of t may not be known
674 at compile time, but it is known that it doesn't change (e.g.,
675 the address of a function local variable).
676 @end deftypefn
677
678 @deftypefn {GIMPLE function} bool is_gimple_ip_invariant (tree t)
679 Return true if t is an interprocedural invariant.  This means that t
680 is a valid invariant in all functions (e.g. it can be an address of a
681 global variable but not of a local one).
682 @end deftypefn
683
684 @deftypefn {GIMPLE function} bool is_gimple_ip_invariant_address (tree t)
685 Return true if t is an @code{ADDR_EXPR} that does not change once the
686 program is running (and which is valid in all functions).
687 @end deftypefn
688
689
690 @subsection Statement validation
691
692 @deftypefn {GIMPLE function} bool is_gimple_assign (gimple g)
693 Return true if the code of g is @code{GIMPLE_ASSIGN}.
694 @end deftypefn
695
696 @deftypefn {GIMPLE function} bool is_gimple_call (gimple g)
697 Return true if the code of g is @code{GIMPLE_CALL}.
698 @end deftypefn
699
700 @deftypefn {GIMPLE function} bool is_gimple_debug (gimple g)
701 Return true if the code of g is @code{GIMPLE_DEBUG}.
702 @end deftypefn
703
704 @deftypefn {GIMPLE function} bool gimple_assign_cast_p (gimple g)
705 Return true if g is a @code{GIMPLE_ASSIGN} that performs a type cast
706 operation.
707 @end deftypefn
708
709 @deftypefn {GIMPLE function} bool gimple_debug_bind_p (gimple g)
710 Return true if g is a @code{GIMPLE_DEBUG} that binds the value of an
711 expression to a variable.
712 @end deftypefn
713
714 @node Manipulating GIMPLE statements
715 @section Manipulating GIMPLE statements
716 @cindex Manipulating GIMPLE statements
717
718 This section documents all the functions available to handle each
719 of the GIMPLE instructions.
720
721 @subsection Common accessors
722 The following are common accessors for gimple statements.
723
724 @deftypefn {GIMPLE function} {enum gimple_code} gimple_code (gimple g)
725 Return the code for statement @code{G}.
726 @end deftypefn
727
728 @deftypefn {GIMPLE function} basic_block gimple_bb (gimple g)
729 Return the basic block to which statement @code{G} belongs to.
730 @end deftypefn
731
732 @deftypefn {GIMPLE function} tree gimple_block (gimple g)
733 Return the lexical scope block holding statement @code{G}.
734 @end deftypefn
735
736 @deftypefn {GIMPLE function} tree gimple_expr_type (gimple stmt)
737 Return the type of the main expression computed by @code{STMT}. Return
738 @code{void_type_node} if @code{STMT} computes nothing. This will only return
739 something meaningful for @code{GIMPLE_ASSIGN}, @code{GIMPLE_COND} and
740 @code{GIMPLE_CALL}.  For all other tuple codes, it will return
741 @code{void_type_node}.
742 @end deftypefn
743
744 @deftypefn {GIMPLE function} {enum tree_code} gimple_expr_code (gimple stmt)
745 Return the tree code for the expression computed by @code{STMT}.  This
746 is only meaningful for @code{GIMPLE_CALL}, @code{GIMPLE_ASSIGN} and
747 @code{GIMPLE_COND}.  If @code{STMT} is @code{GIMPLE_CALL}, it will return @code{CALL_EXPR}.
748 For @code{GIMPLE_COND}, it returns the code of the comparison predicate.
749 For @code{GIMPLE_ASSIGN} it returns the code of the operation performed
750 by the @code{RHS} of the assignment.
751 @end deftypefn
752
753 @deftypefn {GIMPLE function} void gimple_set_block (gimple g, tree block)
754 Set the lexical scope block of @code{G} to @code{BLOCK}.
755 @end deftypefn
756
757 @deftypefn {GIMPLE function} location_t gimple_locus (gimple g)
758 Return locus information for statement @code{G}.
759 @end deftypefn
760
761 @deftypefn {GIMPLE function} void gimple_set_locus (gimple g, location_t locus)
762 Set locus information for statement @code{G}.
763 @end deftypefn
764
765 @deftypefn {GIMPLE function} bool gimple_locus_empty_p (gimple g)
766 Return true if @code{G} does not have locus information.
767 @end deftypefn
768
769 @deftypefn {GIMPLE function} bool gimple_no_warning_p (gimple stmt)
770 Return true if no warnings should be emitted for statement @code{STMT}.
771 @end deftypefn
772
773 @deftypefn {GIMPLE function} void gimple_set_visited (gimple stmt, bool visited_p)
774 Set the visited status on statement @code{STMT} to @code{VISITED_P}.
775 @end deftypefn
776
777 @deftypefn {GIMPLE function} bool gimple_visited_p (gimple stmt)
778 Return the visited status on statement @code{STMT}.
779 @end deftypefn
780
781 @deftypefn {GIMPLE function} void gimple_set_plf (gimple stmt, enum plf_mask plf, bool val_p)
782 Set pass local flag @code{PLF} on statement @code{STMT} to @code{VAL_P}.
783 @end deftypefn
784
785 @deftypefn {GIMPLE function} {unsigned int} gimple_plf (gimple stmt, enum plf_mask plf)
786 Return the value of pass local flag @code{PLF} on statement @code{STMT}.
787 @end deftypefn
788
789 @deftypefn {GIMPLE function} bool gimple_has_ops (gimple g)
790 Return true if statement @code{G} has register or memory operands.
791 @end deftypefn
792
793 @deftypefn {GIMPLE function} bool gimple_has_mem_ops (gimple g)
794 Return true if statement @code{G} has memory operands.
795 @end deftypefn
796
797 @deftypefn {GIMPLE function} unsigned gimple_num_ops (gimple g)
798 Return the number of operands for statement @code{G}.
799 @end deftypefn
800
801 @deftypefn {GIMPLE function} {tree *} gimple_ops (gimple g)
802 Return the array of operands for statement @code{G}.
803 @end deftypefn
804
805 @deftypefn {GIMPLE function} tree gimple_op (gimple g, unsigned i)
806 Return operand @code{I} for statement @code{G}.
807 @end deftypefn
808
809 @deftypefn {GIMPLE function} {tree *} gimple_op_ptr (gimple g, unsigned i)
810 Return a pointer to operand @code{I} for statement @code{G}.
811 @end deftypefn
812
813 @deftypefn {GIMPLE function} void gimple_set_op (gimple g, unsigned i, tree op)
814 Set operand @code{I} of statement @code{G} to @code{OP}.
815 @end deftypefn
816
817 @deftypefn {GIMPLE function} bitmap gimple_addresses_taken (gimple stmt)
818 Return the set of symbols that have had their address taken by
819 @code{STMT}.
820 @end deftypefn
821
822 @deftypefn {GIMPLE function} {struct def_optype_d *} gimple_def_ops (gimple g)
823 Return the set of @code{DEF} operands for statement @code{G}.
824 @end deftypefn
825
826 @deftypefn {GIMPLE function} void gimple_set_def_ops (gimple g, struct def_optype_d *def)
827 Set @code{DEF} to be the set of @code{DEF} operands for statement @code{G}.
828 @end deftypefn
829
830 @deftypefn {GIMPLE function} {struct use_optype_d *} gimple_use_ops (gimple g)
831 Return the set of @code{USE} operands for statement @code{G}.
832 @end deftypefn
833
834 @deftypefn {GIMPLE function} void gimple_set_use_ops (gimple g, struct use_optype_d *use)
835 Set @code{USE} to be the set of @code{USE} operands for statement @code{G}.
836 @end deftypefn
837
838 @deftypefn {GIMPLE function} {struct voptype_d *} gimple_vuse_ops (gimple g)
839 Return the set of @code{VUSE} operands for statement @code{G}.
840 @end deftypefn
841
842 @deftypefn {GIMPLE function} void gimple_set_vuse_ops (gimple g, struct voptype_d *ops)
843 Set @code{OPS} to be the set of @code{VUSE} operands for statement @code{G}.
844 @end deftypefn
845
846 @deftypefn {GIMPLE function} {struct voptype_d *} gimple_vdef_ops (gimple g)
847 Return the set of @code{VDEF} operands for statement @code{G}.
848 @end deftypefn
849
850 @deftypefn {GIMPLE function} void gimple_set_vdef_ops (gimple g, struct voptype_d *ops)
851 Set @code{OPS} to be the set of @code{VDEF} operands for statement @code{G}.
852 @end deftypefn
853
854 @deftypefn {GIMPLE function} bitmap gimple_loaded_syms (gimple g)
855 Return the set of symbols loaded by statement @code{G}.  Each element of
856 the set is the @code{DECL_UID} of the corresponding symbol.
857 @end deftypefn
858
859 @deftypefn {GIMPLE function} bitmap gimple_stored_syms (gimple g)
860 Return the set of symbols stored by statement @code{G}.  Each element of
861 the set is the @code{DECL_UID} of the corresponding symbol.
862 @end deftypefn
863
864 @deftypefn {GIMPLE function} bool gimple_modified_p (gimple g)
865 Return true if statement @code{G} has operands and the modified field
866 has been set.
867 @end deftypefn
868
869 @deftypefn {GIMPLE function} bool gimple_has_volatile_ops (gimple stmt)
870 Return true if statement @code{STMT} contains volatile operands.
871 @end deftypefn
872
873 @deftypefn {GIMPLE function} void gimple_set_has_volatile_ops (gimple stmt, bool volatilep)
874 Return true if statement @code{STMT} contains volatile operands.
875 @end deftypefn
876
877 @deftypefn {GIMPLE function} void update_stmt (gimple s)
878 Mark statement @code{S} as modified, and update it.
879 @end deftypefn
880
881 @deftypefn {GIMPLE function} void update_stmt_if_modified (gimple s)
882 Update statement @code{S} if it has been marked modified.
883 @end deftypefn
884
885 @deftypefn {GIMPLE function} gimple gimple_copy (gimple stmt)
886 Return a deep copy of statement @code{STMT}.
887 @end deftypefn
888
889 @node Tuple specific accessors
890 @section Tuple specific accessors
891 @cindex Tuple specific accessors
892
893 @menu
894 * @code{GIMPLE_ASM}::
895 * @code{GIMPLE_ASSIGN}::
896 * @code{GIMPLE_BIND}::
897 * @code{GIMPLE_CALL}::
898 * @code{GIMPLE_CATCH}::
899 * @code{GIMPLE_COND}::
900 * @code{GIMPLE_DEBUG}::
901 * @code{GIMPLE_EH_FILTER}::
902 * @code{GIMPLE_LABEL}::
903 * @code{GIMPLE_NOP}::
904 * @code{GIMPLE_OMP_ATOMIC_LOAD}::
905 * @code{GIMPLE_OMP_ATOMIC_STORE}::
906 * @code{GIMPLE_OMP_CONTINUE}::
907 * @code{GIMPLE_OMP_CRITICAL}::
908 * @code{GIMPLE_OMP_FOR}::
909 * @code{GIMPLE_OMP_MASTER}::
910 * @code{GIMPLE_OMP_ORDERED}::
911 * @code{GIMPLE_OMP_PARALLEL}::
912 * @code{GIMPLE_OMP_RETURN}::
913 * @code{GIMPLE_OMP_SECTION}::
914 * @code{GIMPLE_OMP_SECTIONS}::
915 * @code{GIMPLE_OMP_SINGLE}::
916 * @code{GIMPLE_PHI}::
917 * @code{GIMPLE_RESX}::
918 * @code{GIMPLE_RETURN}::
919 * @code{GIMPLE_SWITCH}::
920 * @code{GIMPLE_TRY}::
921 * @code{GIMPLE_WITH_CLEANUP_EXPR}::
922 @end menu
923
924
925 @node @code{GIMPLE_ASM}
926 @subsection @code{GIMPLE_ASM}
927 @cindex @code{GIMPLE_ASM}
928
929 @deftypefn {GIMPLE function} gimple gimple_build_asm (const char *string, ninputs, noutputs, nclobbers, ...)
930 Build a @code{GIMPLE_ASM} statement.  This statement is used for
931 building in-line assembly constructs.  @code{STRING} is the assembly
932 code.  @code{NINPUT} is the number of register inputs.  @code{NOUTPUT} is the
933 number of register outputs.  @code{NCLOBBERS} is the number of clobbered
934 registers.  The rest of the arguments trees for each input,
935 output, and clobbered registers.
936 @end deftypefn
937
938 @deftypefn {GIMPLE function} gimple gimple_build_asm_vec (const char *, VEC(tree,gc) *, VEC(tree,gc) *, VEC(tree,gc) *)
939 Identical to gimple_build_asm, but the arguments are passed in
940 VECs.
941 @end deftypefn
942
943 @deftypefn {GIMPLE function} unsigned gimple_asm_ninputs (gimple g)
944 Return the number of input operands for @code{GIMPLE_ASM} @code{G}.
945 @end deftypefn
946
947 @deftypefn {GIMPLE function} unsigned gimple_asm_noutputs (gimple g)
948 Return the number of output operands for @code{GIMPLE_ASM} @code{G}.
949 @end deftypefn
950
951 @deftypefn {GIMPLE function} unsigned gimple_asm_nclobbers (gimple g)
952 Return the number of clobber operands for @code{GIMPLE_ASM} @code{G}.
953 @end deftypefn
954
955 @deftypefn {GIMPLE function} tree gimple_asm_input_op (gimple g, unsigned index)
956 Return input operand @code{INDEX} of @code{GIMPLE_ASM} @code{G}.
957 @end deftypefn
958
959 @deftypefn {GIMPLE function} void gimple_asm_set_input_op (gimple g, unsigned index, tree in_op)
960 Set @code{IN_OP} to be input operand @code{INDEX} in @code{GIMPLE_ASM} @code{G}.
961 @end deftypefn
962
963 @deftypefn {GIMPLE function} tree gimple_asm_output_op (gimple g, unsigned index)
964 Return output operand @code{INDEX} of @code{GIMPLE_ASM} @code{G}.
965 @end deftypefn
966
967 @deftypefn {GIMPLE function} void gimple_asm_set_output_op (gimple g, @
968 unsigned index, tree out_op)
969 Set @code{OUT_OP} to be output operand @code{INDEX} in @code{GIMPLE_ASM} @code{G}.
970 @end deftypefn
971
972 @deftypefn {GIMPLE function} tree gimple_asm_clobber_op (gimple g, unsigned index)
973 Return clobber operand @code{INDEX} of @code{GIMPLE_ASM} @code{G}.
974 @end deftypefn
975
976 @deftypefn {GIMPLE function} void gimple_asm_set_clobber_op (gimple g, unsigned index, tree clobber_op)
977 Set @code{CLOBBER_OP} to be clobber operand @code{INDEX} in @code{GIMPLE_ASM} @code{G}.
978 @end deftypefn
979
980 @deftypefn {GIMPLE function} {const char *} gimple_asm_string (gimple g)
981 Return the string representing the assembly instruction in
982 @code{GIMPLE_ASM} @code{G}.
983 @end deftypefn
984
985 @deftypefn {GIMPLE function} bool gimple_asm_volatile_p (gimple g)
986 Return true if @code{G} is an asm statement marked volatile.
987 @end deftypefn
988
989 @deftypefn {GIMPLE function} void gimple_asm_set_volatile (gimple g)
990 Mark asm statement @code{G} as volatile.
991 @end deftypefn
992
993 @deftypefn {GIMPLE function} void gimple_asm_clear_volatile (gimple g)
994 Remove volatile marker from asm statement @code{G}.
995 @end deftypefn
996
997 @node @code{GIMPLE_ASSIGN}
998 @subsection @code{GIMPLE_ASSIGN}
999 @cindex @code{GIMPLE_ASSIGN}
1000
1001 @deftypefn {GIMPLE function} gimple gimple_build_assign (tree lhs, tree rhs)
1002 Build a @code{GIMPLE_ASSIGN} statement.  The left-hand side is an lvalue
1003 passed in lhs.  The right-hand side can be either a unary or
1004 binary tree expression.  The expression tree rhs will be
1005 flattened and its operands assigned to the corresponding operand
1006 slots in the new statement.  This function is useful when you
1007 already have a tree expression that you want to convert into a
1008 tuple.  However, try to avoid building expression trees for the
1009 sole purpose of calling this function.  If you already have the
1010 operands in separate trees, it is better to use
1011 @code{gimple_build_assign_with_ops}.
1012 @end deftypefn
1013
1014
1015 @deftypefn {GIMPLE function} gimple gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
1016 Build a new @code{GIMPLE_ASSIGN} tuple and append it to the end of
1017 @code{*SEQ_P}.
1018 @end deftypefn
1019
1020 @code{DST}/@code{SRC} are the destination and source respectively.  You can
1021 pass ungimplified trees in @code{DST} or @code{SRC}, in which
1022 case they will be converted to a gimple operand if necessary.
1023
1024 This function returns the newly created @code{GIMPLE_ASSIGN} tuple.
1025
1026 @deftypefn {GIMPLE function} gimple gimple_build_assign_with_ops @
1027 (enum tree_code subcode, tree lhs, tree op1, tree op2)
1028 This function is similar to @code{gimple_build_assign}, but is used to
1029 build a @code{GIMPLE_ASSIGN} statement when the operands of the
1030 right-hand side of the assignment are already split into
1031 different operands.
1032
1033 The left-hand side is an lvalue passed in lhs.  Subcode is the
1034 @code{tree_code} for the right-hand side of the assignment.  Op1 and op2
1035 are the operands.  If op2 is null, subcode must be a @code{tree_code}
1036 for a unary expression.
1037 @end deftypefn
1038
1039 @deftypefn {GIMPLE function} {enum tree_code} gimple_assign_rhs_code (gimple g)
1040 Return the code of the expression computed on the @code{RHS} of
1041 assignment statement @code{G}.
1042 @end deftypefn
1043
1044
1045 @deftypefn {GIMPLE function} {enum gimple_rhs_class} gimple_assign_rhs_class (gimple g)
1046 Return the gimple rhs class of the code for the expression
1047 computed on the rhs of assignment statement @code{G}.  This will never
1048 return @code{GIMPLE_INVALID_RHS}.
1049 @end deftypefn
1050
1051 @deftypefn {GIMPLE function} tree gimple_assign_lhs (gimple g)
1052 Return the @code{LHS} of assignment statement @code{G}.
1053 @end deftypefn
1054
1055 @deftypefn {GIMPLE function} {tree *} gimple_assign_lhs_ptr (gimple g)
1056 Return a pointer to the @code{LHS} of assignment statement @code{G}.
1057 @end deftypefn
1058
1059 @deftypefn {GIMPLE function} tree gimple_assign_rhs1 (gimple g)
1060 Return the first operand on the @code{RHS} of assignment statement @code{G}.
1061 @end deftypefn
1062
1063 @deftypefn {GIMPLE function} {tree *} gimple_assign_rhs1_ptr (gimple g)
1064 Return the address of the first operand on the @code{RHS} of assignment
1065 statement @code{G}.
1066 @end deftypefn
1067
1068 @deftypefn {GIMPLE function} tree gimple_assign_rhs2 (gimple g)
1069 Return the second operand on the @code{RHS} of assignment statement @code{G}.
1070 @end deftypefn
1071
1072 @deftypefn {GIMPLE function} {tree *} gimple_assign_rhs2_ptr (gimple g)
1073 Return the address of the second operand on the @code{RHS} of assignment
1074 statement @code{G}.
1075 @end deftypefn
1076
1077 @deftypefn {GIMPLE function} tree gimple_assign_rhs3 (gimple g)
1078 Return the third operand on the @code{RHS} of assignment statement @code{G}.
1079 @end deftypefn
1080
1081 @deftypefn {GIMPLE function} {tree *} gimple_assign_rhs3_ptr (gimple g)
1082 Return the address of the third operand on the @code{RHS} of assignment
1083 statement @code{G}.
1084 @end deftypefn
1085
1086 @deftypefn {GIMPLE function} void gimple_assign_set_lhs (gimple g, tree lhs)
1087 Set @code{LHS} to be the @code{LHS} operand of assignment statement @code{G}.
1088 @end deftypefn
1089
1090 @deftypefn {GIMPLE function} void gimple_assign_set_rhs1 (gimple g, tree rhs)
1091 Set @code{RHS} to be the first operand on the @code{RHS} of assignment
1092 statement @code{G}.
1093 @end deftypefn
1094
1095 @deftypefn {GIMPLE function} void gimple_assign_set_rhs2 (gimple g, tree rhs)
1096 Set @code{RHS} to be the second operand on the @code{RHS} of assignment
1097 statement @code{G}.
1098 @end deftypefn
1099
1100 @deftypefn {GIMPLE function} void gimple_assign_set_rhs3 (gimple g, tree rhs)
1101 Set @code{RHS} to be the third operand on the @code{RHS} of assignment
1102 statement @code{G}.
1103 @end deftypefn
1104
1105 @deftypefn {GIMPLE function} bool gimple_assign_cast_p (gimple s)
1106 Return true if @code{S} is a type-cast assignment.
1107 @end deftypefn
1108
1109
1110 @node @code{GIMPLE_BIND}
1111 @subsection @code{GIMPLE_BIND}
1112 @cindex @code{GIMPLE_BIND}
1113
1114 @deftypefn {GIMPLE function} gimple gimple_build_bind (tree vars, gimple_seq body)
1115 Build a @code{GIMPLE_BIND} statement with a list of variables in @code{VARS}
1116 and a body of statements in sequence @code{BODY}.
1117 @end deftypefn
1118
1119 @deftypefn {GIMPLE function} tree gimple_bind_vars (gimple g)
1120 Return the variables declared in the @code{GIMPLE_BIND} statement @code{G}.
1121 @end deftypefn
1122
1123 @deftypefn {GIMPLE function} void gimple_bind_set_vars (gimple g, tree vars)
1124 Set @code{VARS} to be the set of variables declared in the @code{GIMPLE_BIND}
1125 statement @code{G}.
1126 @end deftypefn
1127
1128 @deftypefn {GIMPLE function} void gimple_bind_append_vars (gimple g, tree vars)
1129 Append @code{VARS} to the set of variables declared in the @code{GIMPLE_BIND}
1130 statement @code{G}.
1131 @end deftypefn
1132
1133 @deftypefn {GIMPLE function} gimple_seq gimple_bind_body (gimple g)
1134 Return the GIMPLE sequence contained in the @code{GIMPLE_BIND} statement
1135 @code{G}.
1136 @end deftypefn
1137
1138 @deftypefn {GIMPLE function} void gimple_bind_set_body (gimple g, gimple_seq seq)
1139 Set @code{SEQ} to be sequence contained in the @code{GIMPLE_BIND} statement @code{G}.
1140 @end deftypefn
1141
1142 @deftypefn {GIMPLE function} void gimple_bind_add_stmt (gimple gs, gimple stmt)
1143 Append a statement to the end of a @code{GIMPLE_BIND}'s body.
1144 @end deftypefn
1145
1146 @deftypefn {GIMPLE function} void gimple_bind_add_seq (gimple gs, gimple_seq seq)
1147 Append a sequence of statements to the end of a @code{GIMPLE_BIND}'s
1148 body.
1149 @end deftypefn
1150
1151 @deftypefn {GIMPLE function} tree gimple_bind_block (gimple g)
1152 Return the @code{TREE_BLOCK} node associated with @code{GIMPLE_BIND} statement
1153 @code{G}. This is analogous to the @code{BIND_EXPR_BLOCK} field in trees.
1154 @end deftypefn
1155
1156 @deftypefn {GIMPLE function} void gimple_bind_set_block (gimple g, tree block)
1157 Set @code{BLOCK} to be the @code{TREE_BLOCK} node associated with @code{GIMPLE_BIND}
1158 statement @code{G}.
1159 @end deftypefn
1160
1161
1162 @node @code{GIMPLE_CALL}
1163 @subsection @code{GIMPLE_CALL}
1164 @cindex @code{GIMPLE_CALL}
1165
1166 @deftypefn {GIMPLE function} gimple gimple_build_call (tree fn, unsigned nargs, ...)
1167 Build a @code{GIMPLE_CALL} statement to function @code{FN}.  The argument @code{FN}
1168 must be either a @code{FUNCTION_DECL} or a gimple call address as
1169 determined by @code{is_gimple_call_addr}.  @code{NARGS} are the number of
1170 arguments.  The rest of the arguments follow the argument @code{NARGS},
1171 and must be trees that are valid as rvalues in gimple (i.e., each
1172 operand is validated with @code{is_gimple_operand}).
1173 @end deftypefn
1174
1175
1176 @deftypefn {GIMPLE function} gimple gimple_build_call_from_tree (tree call_expr)
1177 Build a @code{GIMPLE_CALL} from a @code{CALL_EXPR} node.  The arguments and the
1178 function are taken from the expression directly.  This routine
1179 assumes that @code{call_expr} is already in GIMPLE form.  That is, its
1180 operands are GIMPLE values and the function call needs no further
1181 simplification.  All the call flags in @code{call_expr} are copied over
1182 to the new @code{GIMPLE_CALL}.
1183 @end deftypefn
1184
1185 @deftypefn {GIMPLE function} gimple gimple_build_call_vec (tree fn, @code{VEC}(tree, heap) *args)
1186 Identical to @code{gimple_build_call} but the arguments are stored in a
1187 @code{VEC}().
1188 @end deftypefn
1189
1190 @deftypefn {GIMPLE function} tree gimple_call_lhs (gimple g)
1191 Return the @code{LHS} of call statement @code{G}.
1192 @end deftypefn
1193
1194 @deftypefn {GIMPLE function} {tree *} gimple_call_lhs_ptr (gimple g)
1195 Return a pointer to the @code{LHS} of call statement @code{G}.
1196 @end deftypefn
1197
1198 @deftypefn {GIMPLE function} void gimple_call_set_lhs (gimple g, tree lhs)
1199 Set @code{LHS} to be the @code{LHS} operand of call statement @code{G}.
1200 @end deftypefn
1201
1202 @deftypefn {GIMPLE function} tree gimple_call_fn (gimple g)
1203 Return the tree node representing the function called by call
1204 statement @code{G}.
1205 @end deftypefn
1206
1207 @deftypefn {GIMPLE function} void gimple_call_set_fn (gimple g, tree fn)
1208 Set @code{FN} to be the function called by call statement @code{G}.  This has
1209 to be a gimple value specifying the address of the called
1210 function.
1211 @end deftypefn
1212
1213 @deftypefn {GIMPLE function} tree gimple_call_fndecl (gimple g)
1214 If a given @code{GIMPLE_CALL}'s callee is a @code{FUNCTION_DECL}, return it.
1215 Otherwise return @code{NULL}.  This function is analogous to
1216 @code{get_callee_fndecl} in @code{GENERIC}.
1217 @end deftypefn
1218
1219 @deftypefn {GIMPLE function} tree gimple_call_set_fndecl (gimple g, tree fndecl)
1220 Set the called function to @code{FNDECL}.
1221 @end deftypefn
1222
1223 @deftypefn {GIMPLE function} tree gimple_call_return_type (gimple g)
1224 Return the type returned by call statement @code{G}.
1225 @end deftypefn
1226
1227 @deftypefn {GIMPLE function} tree gimple_call_chain (gimple g)
1228 Return the static chain for call statement @code{G}.
1229 @end deftypefn
1230
1231 @deftypefn {GIMPLE function} void gimple_call_set_chain (gimple g, tree chain)
1232 Set @code{CHAIN} to be the static chain for call statement @code{G}.
1233 @end deftypefn
1234
1235 @deftypefn {GIMPLE function} unsigned gimple_call_num_args (gimple g)
1236 Return the number of arguments used by call statement @code{G}.
1237 @end deftypefn
1238
1239 @deftypefn {GIMPLE function} tree gimple_call_arg (gimple g, unsigned index)
1240 Return the argument at position @code{INDEX} for call statement @code{G}.  The
1241 first argument is 0.
1242 @end deftypefn
1243
1244 @deftypefn {GIMPLE function} {tree *} gimple_call_arg_ptr (gimple g, unsigned index)
1245 Return a pointer to the argument at position @code{INDEX} for call
1246 statement @code{G}.
1247 @end deftypefn
1248
1249 @deftypefn {GIMPLE function} void gimple_call_set_arg (gimple g, unsigned index, tree arg)
1250 Set @code{ARG} to be the argument at position @code{INDEX} for call statement
1251 @code{G}.
1252 @end deftypefn
1253
1254 @deftypefn {GIMPLE function} void gimple_call_set_tail (gimple s)
1255 Mark call statement @code{S} as being a tail call (i.e., a call just
1256 before the exit of a function). These calls are candidate for
1257 tail call optimization.
1258 @end deftypefn
1259
1260 @deftypefn {GIMPLE function} bool gimple_call_tail_p (gimple s)
1261 Return true if @code{GIMPLE_CALL} @code{S} is marked as a tail call.
1262 @end deftypefn
1263
1264 @deftypefn {GIMPLE function} void gimple_call_mark_uninlinable (gimple s)
1265 Mark @code{GIMPLE_CALL} @code{S} as being uninlinable.
1266 @end deftypefn
1267
1268 @deftypefn {GIMPLE function} bool gimple_call_cannot_inline_p (gimple s)
1269 Return true if @code{GIMPLE_CALL} @code{S} cannot be inlined.
1270 @end deftypefn
1271
1272 @deftypefn {GIMPLE function} bool gimple_call_noreturn_p (gimple s)
1273 Return true if @code{S} is a noreturn call.
1274 @end deftypefn
1275
1276 @deftypefn {GIMPLE function} gimple gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
1277 Build a @code{GIMPLE_CALL} identical to @code{STMT} but skipping the arguments
1278 in the positions marked by the set @code{ARGS_TO_SKIP}.
1279 @end deftypefn
1280
1281
1282 @node @code{GIMPLE_CATCH}
1283 @subsection @code{GIMPLE_CATCH}
1284 @cindex @code{GIMPLE_CATCH}
1285
1286 @deftypefn {GIMPLE function} gimple gimple_build_catch (tree types, gimple_seq handler)
1287 Build a @code{GIMPLE_CATCH} statement.  @code{TYPES} are the tree types this
1288 catch handles.  @code{HANDLER} is a sequence of statements with the code
1289 for the handler.
1290 @end deftypefn
1291
1292 @deftypefn {GIMPLE function} tree gimple_catch_types (gimple g)
1293 Return the types handled by @code{GIMPLE_CATCH} statement @code{G}.
1294 @end deftypefn
1295
1296 @deftypefn {GIMPLE function} {tree *} gimple_catch_types_ptr (gimple g)
1297 Return a pointer to the types handled by @code{GIMPLE_CATCH} statement
1298 @code{G}.
1299 @end deftypefn
1300
1301 @deftypefn {GIMPLE function} gimple_seq gimple_catch_handler (gimple g)
1302 Return the GIMPLE sequence representing the body of the handler
1303 of @code{GIMPLE_CATCH} statement @code{G}.
1304 @end deftypefn
1305
1306 @deftypefn {GIMPLE function} void gimple_catch_set_types (gimple g, tree t)
1307 Set @code{T} to be the set of types handled by @code{GIMPLE_CATCH} @code{G}.
1308 @end deftypefn
1309
1310 @deftypefn {GIMPLE function} void gimple_catch_set_handler (gimple g, gimple_seq handler)
1311 Set @code{HANDLER} to be the body of @code{GIMPLE_CATCH} @code{G}.
1312 @end deftypefn
1313
1314
1315 @node @code{GIMPLE_COND}
1316 @subsection @code{GIMPLE_COND}
1317 @cindex @code{GIMPLE_COND}
1318
1319 @deftypefn {GIMPLE function} gimple gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs, tree t_label, tree f_label)
1320 Build a @code{GIMPLE_COND} statement.  @code{A} @code{GIMPLE_COND} statement compares
1321 @code{LHS} and @code{RHS} and if the condition in @code{PRED_CODE} is true, jump to
1322 the label in @code{t_label}, otherwise jump to the label in @code{f_label}.
1323 @code{PRED_CODE} are relational operator tree codes like @code{EQ_EXPR},
1324 @code{LT_EXPR}, @code{LE_EXPR}, @code{NE_EXPR}, etc.
1325 @end deftypefn
1326
1327
1328 @deftypefn {GIMPLE function} gimple gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
1329 Build a @code{GIMPLE_COND} statement from the conditional expression
1330 tree @code{COND}.  @code{T_LABEL} and @code{F_LABEL} are as in @code{gimple_build_cond}.
1331 @end deftypefn
1332
1333 @deftypefn {GIMPLE function} {enum tree_code} gimple_cond_code (gimple g)
1334 Return the code of the predicate computed by conditional
1335 statement @code{G}.
1336 @end deftypefn
1337
1338 @deftypefn {GIMPLE function} void gimple_cond_set_code (gimple g, enum tree_code code)
1339 Set @code{CODE} to be the predicate code for the conditional statement
1340 @code{G}.
1341 @end deftypefn
1342
1343 @deftypefn {GIMPLE function} tree gimple_cond_lhs (gimple g)
1344 Return the @code{LHS} of the predicate computed by conditional statement
1345 @code{G}.
1346 @end deftypefn
1347
1348 @deftypefn {GIMPLE function} void gimple_cond_set_lhs (gimple g, tree lhs)
1349 Set @code{LHS} to be the @code{LHS} operand of the predicate computed by
1350 conditional statement @code{G}.
1351 @end deftypefn
1352
1353 @deftypefn {GIMPLE function} tree gimple_cond_rhs (gimple g)
1354 Return the @code{RHS} operand of the predicate computed by conditional
1355 @code{G}.
1356 @end deftypefn
1357
1358 @deftypefn {GIMPLE function} void gimple_cond_set_rhs (gimple g, tree rhs)
1359 Set @code{RHS} to be the @code{RHS} operand of the predicate computed by
1360 conditional statement @code{G}.
1361 @end deftypefn
1362
1363 @deftypefn {GIMPLE function} tree gimple_cond_true_label (gimple g)
1364 Return the label used by conditional statement @code{G} when its
1365 predicate evaluates to true.
1366 @end deftypefn
1367
1368 @deftypefn {GIMPLE function} void gimple_cond_set_true_label (gimple g, tree label)
1369 Set @code{LABEL} to be the label used by conditional statement @code{G} when
1370 its predicate evaluates to true.
1371 @end deftypefn
1372
1373 @deftypefn {GIMPLE function} void gimple_cond_set_false_label (gimple g, tree label)
1374 Set @code{LABEL} to be the label used by conditional statement @code{G} when
1375 its predicate evaluates to false.
1376 @end deftypefn
1377
1378 @deftypefn {GIMPLE function} tree gimple_cond_false_label (gimple g)
1379 Return the label used by conditional statement @code{G} when its
1380 predicate evaluates to false.
1381 @end deftypefn
1382
1383 @deftypefn {GIMPLE function} void gimple_cond_make_false (gimple g)
1384 Set the conditional @code{COND_STMT} to be of the form 'if (1 == 0)'.
1385 @end deftypefn
1386
1387 @deftypefn {GIMPLE function} void gimple_cond_make_true (gimple g)
1388 Set the conditional @code{COND_STMT} to be of the form 'if (1 == 1)'.
1389 @end deftypefn
1390
1391 @node @code{GIMPLE_DEBUG}
1392 @subsection @code{GIMPLE_DEBUG}
1393 @cindex @code{GIMPLE_DEBUG}
1394 @cindex @code{GIMPLE_DEBUG_BIND}
1395
1396 @deftypefn {GIMPLE function} gimple gimple_build_debug_bind (tree var, tree value, gimple stmt)
1397 Build a @code{GIMPLE_DEBUG} statement with @code{GIMPLE_DEBUG_BIND} of
1398 @code{subcode}.  The effect of this statement is to tell debug
1399 information generation machinery that the value of user variable
1400 @code{var} is given by @code{value} at that point, and to remain with
1401 that value until @code{var} runs out of scope, a
1402 dynamically-subsequent debug bind statement overrides the binding, or
1403 conflicting values reach a control flow merge point.  Even if
1404 components of the @code{value} expression change afterwards, the
1405 variable is supposed to retain the same value, though not necessarily
1406 the same location.
1407
1408 It is expected that @code{var} be most often a tree for automatic user
1409 variables (@code{VAR_DECL} or @code{PARM_DECL}) that satisfy the
1410 requirements for gimple registers, but it may also be a tree for a
1411 scalarized component of a user variable (@code{ARRAY_REF},
1412 @code{COMPONENT_REF}), or a debug temporary (@code{DEBUG_EXPR_DECL}).
1413
1414 As for @code{value}, it can be an arbitrary tree expression, but it is
1415 recommended that it be in a suitable form for a gimple assignment
1416 @code{RHS}.  It is not expected that user variables that could appear
1417 as @code{var} ever appear in @code{value}, because in the latter we'd
1418 have their @code{SSA_NAME}s instead, but even if they were not in SSA
1419 form, user variables appearing in @code{value} are to be regarded as
1420 part of the executable code space, whereas those in @code{var} are to
1421 be regarded as part of the source code space.  There is no way to
1422 refer to the value bound to a user variable within a @code{value}
1423 expression.
1424
1425 If @code{value} is @code{GIMPLE_DEBUG_BIND_NOVALUE}, debug information
1426 generation machinery is informed that the variable @code{var} is
1427 unbound, i.e., that its value is indeterminate, which sometimes means
1428 it is really unavailable, and other times that the compiler could not
1429 keep track of it.
1430
1431 Block and location information for the newly-created stmt are
1432 taken from @code{stmt}, if given.
1433 @end deftypefn
1434
1435 @deftypefn {GIMPLE function} tree gimple_debug_bind_get_var (gimple stmt)
1436 Return the user variable @var{var} that is bound at @code{stmt}.
1437 @end deftypefn
1438
1439 @deftypefn {GIMPLE function} tree gimple_debug_bind_get_value (gimple stmt)
1440 Return the value expression that is bound to a user variable at
1441 @code{stmt}.
1442 @end deftypefn
1443
1444 @deftypefn {GIMPLE function} {tree *} gimple_debug_bind_get_value_ptr (gimple stmt)
1445 Return a pointer to the value expression that is bound to a user
1446 variable at @code{stmt}.
1447 @end deftypefn
1448
1449 @deftypefn {GIMPLE function} void gimple_debug_bind_set_var (gimple stmt, tree var)
1450 Modify the user variable bound at @code{stmt} to @var{var}.
1451 @end deftypefn
1452
1453 @deftypefn {GIMPLE function} void gimple_debug_bind_set_value (gimple stmt, tree var)
1454 Modify the value bound to the user variable bound at @code{stmt} to
1455 @var{value}.
1456 @end deftypefn
1457
1458 @deftypefn {GIMPLE function} void gimple_debug_bind_reset_value (gimple stmt)
1459 Modify the value bound to the user variable bound at @code{stmt} so
1460 that the variable becomes unbound.
1461 @end deftypefn
1462
1463 @deftypefn {GIMPLE function} bool gimple_debug_bind_has_value_p (gimple stmt)
1464 Return @code{TRUE} if @code{stmt} binds a user variable to a value,
1465 and @code{FALSE} if it unbinds the variable.
1466 @end deftypefn
1467
1468 @node @code{GIMPLE_EH_FILTER}
1469 @subsection @code{GIMPLE_EH_FILTER}
1470 @cindex @code{GIMPLE_EH_FILTER}
1471
1472 @deftypefn {GIMPLE function} gimple gimple_build_eh_filter (tree types, gimple_seq failure)
1473 Build a @code{GIMPLE_EH_FILTER} statement.  @code{TYPES} are the filter's
1474 types.  @code{FAILURE} is a sequence with the filter's failure action.
1475 @end deftypefn
1476
1477 @deftypefn {GIMPLE function} tree gimple_eh_filter_types (gimple g)
1478 Return the types handled by @code{GIMPLE_EH_FILTER} statement @code{G}.
1479 @end deftypefn
1480
1481 @deftypefn {GIMPLE function} {tree *} gimple_eh_filter_types_ptr (gimple g)
1482 Return a pointer to the types handled by @code{GIMPLE_EH_FILTER}
1483 statement @code{G}.
1484 @end deftypefn
1485
1486 @deftypefn {GIMPLE function} gimple_seq gimple_eh_filter_failure (gimple g)
1487 Return the sequence of statement to execute when @code{GIMPLE_EH_FILTER}
1488 statement fails.
1489 @end deftypefn
1490
1491 @deftypefn {GIMPLE function} void gimple_eh_filter_set_types (gimple g, tree types)
1492 Set @code{TYPES} to be the set of types handled by @code{GIMPLE_EH_FILTER} @code{G}.
1493 @end deftypefn
1494
1495 @deftypefn {GIMPLE function} void gimple_eh_filter_set_failure (gimple g, gimple_seq failure)
1496 Set @code{FAILURE} to be the sequence of statements to execute on
1497 failure for @code{GIMPLE_EH_FILTER} @code{G}.
1498 @end deftypefn
1499
1500 @deftypefn {GIMPLE function} bool gimple_eh_filter_must_not_throw (gimple g)
1501 Return the @code{EH_FILTER_MUST_NOT_THROW} flag.
1502 @end deftypefn
1503
1504 @deftypefn {GIMPLE function} void gimple_eh_filter_set_must_not_throw (gimple g, bool mntp)
1505 Set the @code{EH_FILTER_MUST_NOT_THROW} flag.
1506 @end deftypefn
1507
1508
1509 @node @code{GIMPLE_LABEL}
1510 @subsection @code{GIMPLE_LABEL}
1511 @cindex @code{GIMPLE_LABEL}
1512
1513 @deftypefn {GIMPLE function} gimple gimple_build_label (tree label)
1514 Build a @code{GIMPLE_LABEL} statement with corresponding to the tree
1515 label, @code{LABEL}.
1516 @end deftypefn
1517
1518 @deftypefn {GIMPLE function} tree gimple_label_label (gimple g)
1519 Return the @code{LABEL_DECL} node used by @code{GIMPLE_LABEL} statement @code{G}.
1520 @end deftypefn
1521
1522 @deftypefn {GIMPLE function} void gimple_label_set_label (gimple g, tree label)
1523 Set @code{LABEL} to be the @code{LABEL_DECL} node used by @code{GIMPLE_LABEL}
1524 statement @code{G}.
1525 @end deftypefn
1526
1527
1528 @deftypefn {GIMPLE function} gimple gimple_build_goto (tree dest)
1529 Build a @code{GIMPLE_GOTO} statement to label @code{DEST}.
1530 @end deftypefn
1531
1532 @deftypefn {GIMPLE function} tree gimple_goto_dest (gimple g)
1533 Return the destination of the unconditional jump @code{G}.
1534 @end deftypefn
1535
1536 @deftypefn {GIMPLE function} void gimple_goto_set_dest (gimple g, tree dest)
1537 Set @code{DEST} to be the destination of the unconditional jump @code{G}.
1538 @end deftypefn
1539
1540
1541 @node @code{GIMPLE_NOP}
1542 @subsection @code{GIMPLE_NOP}
1543 @cindex @code{GIMPLE_NOP}
1544
1545 @deftypefn {GIMPLE function} gimple gimple_build_nop (void)
1546 Build a @code{GIMPLE_NOP} statement.
1547 @end deftypefn
1548
1549 @deftypefn {GIMPLE function} bool gimple_nop_p (gimple g)
1550 Returns @code{TRUE} if statement @code{G} is a @code{GIMPLE_NOP}.
1551 @end deftypefn
1552
1553 @node @code{GIMPLE_OMP_ATOMIC_LOAD}
1554 @subsection @code{GIMPLE_OMP_ATOMIC_LOAD}
1555 @cindex @code{GIMPLE_OMP_ATOMIC_LOAD}
1556
1557 @deftypefn {GIMPLE function} gimple gimple_build_omp_atomic_load (tree lhs, tree rhs)
1558 Build a @code{GIMPLE_OMP_ATOMIC_LOAD} statement.  @code{LHS} is the left-hand
1559 side of the assignment.  @code{RHS} is the right-hand side of the
1560 assignment.
1561 @end deftypefn
1562
1563 @deftypefn {GIMPLE function} void gimple_omp_atomic_load_set_lhs (gimple g, tree lhs)
1564 Set the @code{LHS} of an atomic load.
1565 @end deftypefn
1566
1567 @deftypefn {GIMPLE function} tree gimple_omp_atomic_load_lhs (gimple g)
1568 Get the @code{LHS} of an atomic load.
1569 @end deftypefn
1570
1571 @deftypefn {GIMPLE function} void gimple_omp_atomic_load_set_rhs (gimple g, tree rhs)
1572 Set the @code{RHS} of an atomic set.
1573 @end deftypefn
1574
1575 @deftypefn {GIMPLE function} tree gimple_omp_atomic_load_rhs (gimple g)
1576 Get the @code{RHS} of an atomic set.
1577 @end deftypefn
1578
1579
1580 @node @code{GIMPLE_OMP_ATOMIC_STORE}
1581 @subsection @code{GIMPLE_OMP_ATOMIC_STORE}
1582 @cindex @code{GIMPLE_OMP_ATOMIC_STORE}
1583
1584 @deftypefn {GIMPLE function} gimple gimple_build_omp_atomic_store (tree val)
1585 Build a @code{GIMPLE_OMP_ATOMIC_STORE} statement. @code{VAL} is the value to be
1586 stored.
1587 @end deftypefn
1588
1589 @deftypefn {GIMPLE function} void gimple_omp_atomic_store_set_val (gimple g, tree val)
1590 Set the value being stored in an atomic store.
1591 @end deftypefn
1592
1593 @deftypefn {GIMPLE function} tree gimple_omp_atomic_store_val (gimple g)
1594 Return the value being stored in an atomic store.
1595 @end deftypefn
1596
1597 @node @code{GIMPLE_OMP_CONTINUE}
1598 @subsection @code{GIMPLE_OMP_CONTINUE}
1599 @cindex @code{GIMPLE_OMP_CONTINUE}
1600
1601 @deftypefn {GIMPLE function} gimple gimple_build_omp_continue (tree control_def, tree control_use)
1602 Build a @code{GIMPLE_OMP_CONTINUE} statement.  @code{CONTROL_DEF} is the
1603 definition of the control variable.  @code{CONTROL_USE} is the use of
1604 the control variable.
1605 @end deftypefn
1606
1607 @deftypefn {GIMPLE function} tree gimple_omp_continue_control_def (gimple s)
1608 Return the definition of the control variable on a
1609 @code{GIMPLE_OMP_CONTINUE} in @code{S}.
1610 @end deftypefn
1611
1612 @deftypefn {GIMPLE function} tree gimple_omp_continue_control_def_ptr (gimple s)
1613 Same as above, but return the pointer.
1614 @end deftypefn
1615
1616 @deftypefn {GIMPLE function} tree gimple_omp_continue_set_control_def (gimple s)
1617 Set the control variable definition for a @code{GIMPLE_OMP_CONTINUE}
1618 statement in @code{S}.
1619 @end deftypefn
1620
1621 @deftypefn {GIMPLE function} tree gimple_omp_continue_control_use (gimple s)
1622 Return the use of the control variable on a @code{GIMPLE_OMP_CONTINUE}
1623 in @code{S}.
1624 @end deftypefn
1625
1626 @deftypefn {GIMPLE function} tree gimple_omp_continue_control_use_ptr (gimple s)
1627 Same as above, but return the pointer.
1628 @end deftypefn
1629
1630 @deftypefn {GIMPLE function} tree gimple_omp_continue_set_control_use (gimple s)
1631 Set the control variable use for a @code{GIMPLE_OMP_CONTINUE} statement
1632 in @code{S}.
1633 @end deftypefn
1634
1635
1636 @node @code{GIMPLE_OMP_CRITICAL}
1637 @subsection @code{GIMPLE_OMP_CRITICAL}
1638 @cindex @code{GIMPLE_OMP_CRITICAL}
1639
1640 @deftypefn {GIMPLE function} gimple gimple_build_omp_critical (gimple_seq body, tree name)
1641 Build a @code{GIMPLE_OMP_CRITICAL} statement. @code{BODY} is the sequence of
1642 statements for which only one thread can execute.  @code{NAME} is an
1643 optional identifier for this critical block.
1644 @end deftypefn
1645
1646 @deftypefn {GIMPLE function} tree gimple_omp_critical_name (gimple g)
1647 Return the name associated with @code{OMP_CRITICAL} statement @code{G}.
1648 @end deftypefn
1649
1650 @deftypefn {GIMPLE function} {tree *} gimple_omp_critical_name_ptr (gimple g)
1651 Return a pointer to the name associated with @code{OMP} critical
1652 statement @code{G}.
1653 @end deftypefn
1654
1655 @deftypefn {GIMPLE function} void gimple_omp_critical_set_name (gimple g, tree name)
1656 Set @code{NAME} to be the name associated with @code{OMP} critical statement @code{G}.
1657 @end deftypefn
1658
1659 @node @code{GIMPLE_OMP_FOR}
1660 @subsection @code{GIMPLE_OMP_FOR}
1661 @cindex @code{GIMPLE_OMP_FOR}
1662
1663 @deftypefn {GIMPLE function} gimple gimple_build_omp_for (gimple_seq body, @
1664 tree clauses, tree index, tree initial, tree final, tree incr, @
1665 gimple_seq pre_body, enum tree_code omp_for_cond)
1666 Build a @code{GIMPLE_OMP_FOR} statement. @code{BODY} is sequence of statements
1667 inside the for loop.  @code{CLAUSES}, are any of the @code{OMP} loop
1668 construct's clauses: private, firstprivate,  lastprivate,
1669 reductions, ordered, schedule, and nowait.  @code{PRE_BODY} is the
1670 sequence of statements that are loop invariant.  @code{INDEX} is the
1671 index variable.  @code{INITIAL} is the initial value of @code{INDEX}.  @code{FINAL} is
1672 final value of @code{INDEX}.  OMP_FOR_COND is the predicate used to
1673 compare @code{INDEX} and @code{FINAL}.  @code{INCR} is the increment expression.
1674 @end deftypefn
1675
1676 @deftypefn {GIMPLE function} tree gimple_omp_for_clauses (gimple g)
1677 Return the clauses associated with @code{OMP_FOR} @code{G}.
1678 @end deftypefn
1679
1680 @deftypefn {GIMPLE function} {tree *} gimple_omp_for_clauses_ptr (gimple g)
1681 Return a pointer to the @code{OMP_FOR} @code{G}.
1682 @end deftypefn
1683
1684 @deftypefn {GIMPLE function} void gimple_omp_for_set_clauses (gimple g, tree clauses)
1685 Set @code{CLAUSES} to be the list of clauses associated with @code{OMP_FOR} @code{G}.
1686 @end deftypefn
1687
1688 @deftypefn {GIMPLE function} tree gimple_omp_for_index (gimple g)
1689 Return the index variable for @code{OMP_FOR} @code{G}.
1690 @end deftypefn
1691
1692 @deftypefn {GIMPLE function} {tree *} gimple_omp_for_index_ptr (gimple g)
1693 Return a pointer to the index variable for @code{OMP_FOR} @code{G}.
1694 @end deftypefn
1695
1696 @deftypefn {GIMPLE function} void gimple_omp_for_set_index (gimple g, tree index)
1697 Set @code{INDEX} to be the index variable for @code{OMP_FOR} @code{G}.
1698 @end deftypefn
1699
1700 @deftypefn {GIMPLE function} tree gimple_omp_for_initial (gimple g)
1701 Return the initial value for @code{OMP_FOR} @code{G}.
1702 @end deftypefn
1703
1704 @deftypefn {GIMPLE function} {tree *} gimple_omp_for_initial_ptr (gimple g)
1705 Return a pointer to the initial value for @code{OMP_FOR} @code{G}.
1706 @end deftypefn
1707
1708 @deftypefn {GIMPLE function} void gimple_omp_for_set_initial (gimple g, tree initial)
1709 Set @code{INITIAL} to be the initial value for @code{OMP_FOR} @code{G}.
1710 @end deftypefn
1711
1712 @deftypefn {GIMPLE function} tree gimple_omp_for_final (gimple g)
1713 Return the final value for @code{OMP_FOR} @code{G}.
1714 @end deftypefn
1715
1716 @deftypefn {GIMPLE function} {tree *} gimple_omp_for_final_ptr (gimple g)
1717 turn a pointer to the final value for @code{OMP_FOR} @code{G}.
1718 @end deftypefn
1719
1720 @deftypefn {GIMPLE function} void gimple_omp_for_set_final (gimple g, tree final)
1721 Set @code{FINAL} to be the final value for @code{OMP_FOR} @code{G}.
1722 @end deftypefn
1723
1724 @deftypefn {GIMPLE function} tree gimple_omp_for_incr (gimple g)
1725 Return the increment value for @code{OMP_FOR} @code{G}.
1726 @end deftypefn
1727
1728 @deftypefn {GIMPLE function} {tree *} gimple_omp_for_incr_ptr (gimple g)
1729 Return a pointer to the increment value for @code{OMP_FOR} @code{G}.
1730 @end deftypefn
1731
1732 @deftypefn {GIMPLE function} void gimple_omp_for_set_incr (gimple g, tree incr)
1733 Set @code{INCR} to be the increment value for @code{OMP_FOR} @code{G}.
1734 @end deftypefn
1735
1736 @deftypefn {GIMPLE function} gimple_seq gimple_omp_for_pre_body (gimple g)
1737 Return the sequence of statements to execute before the @code{OMP_FOR}
1738 statement @code{G} starts.
1739 @end deftypefn
1740
1741 @deftypefn {GIMPLE function} void gimple_omp_for_set_pre_body (gimple g, gimple_seq pre_body)
1742 Set @code{PRE_BODY} to be the sequence of statements to execute before
1743 the @code{OMP_FOR} statement @code{G} starts.
1744 @end deftypefn
1745
1746 @deftypefn {GIMPLE function} void gimple_omp_for_set_cond (gimple g, enum tree_code cond)
1747 Set @code{COND} to be the condition code for @code{OMP_FOR} @code{G}.
1748 @end deftypefn
1749
1750 @deftypefn {GIMPLE function} {enum tree_code} gimple_omp_for_cond (gimple g)
1751 Return the condition code associated with @code{OMP_FOR} @code{G}.
1752 @end deftypefn
1753
1754
1755 @node @code{GIMPLE_OMP_MASTER}
1756 @subsection @code{GIMPLE_OMP_MASTER}
1757 @cindex @code{GIMPLE_OMP_MASTER}
1758
1759 @deftypefn {GIMPLE function} gimple gimple_build_omp_master (gimple_seq body)
1760 Build a @code{GIMPLE_OMP_MASTER} statement. @code{BODY} is the sequence of
1761 statements to be executed by just the master.
1762 @end deftypefn
1763
1764
1765 @node @code{GIMPLE_OMP_ORDERED}
1766 @subsection @code{GIMPLE_OMP_ORDERED}
1767 @cindex @code{GIMPLE_OMP_ORDERED}
1768
1769 @deftypefn {GIMPLE function} gimple gimple_build_omp_ordered (gimple_seq body)
1770 Build a @code{GIMPLE_OMP_ORDERED} statement.
1771 @end deftypefn
1772
1773 @code{BODY} is the sequence of statements inside a loop that will
1774 executed in sequence.
1775
1776
1777 @node @code{GIMPLE_OMP_PARALLEL}
1778 @subsection @code{GIMPLE_OMP_PARALLEL}
1779 @cindex @code{GIMPLE_OMP_PARALLEL}
1780
1781 @deftypefn {GIMPLE function} gimple gimple_build_omp_parallel (gimple_seq @
1782 body, tree clauses, tree child_fn, tree data_arg)
1783 Build a @code{GIMPLE_OMP_PARALLEL} statement.
1784 @end deftypefn
1785
1786 @code{BODY} is sequence of statements which are executed in parallel.
1787 @code{CLAUSES}, are the @code{OMP} parallel construct's clauses.  @code{CHILD_FN} is
1788 the function created for the parallel threads to execute.
1789 @code{DATA_ARG} are the shared data argument(s).
1790
1791 @deftypefn {GIMPLE function} bool gimple_omp_parallel_combined_p (gimple g)
1792 Return true if @code{OMP} parallel statement @code{G} has the
1793 @code{GF_OMP_PARALLEL_COMBINED} flag set.
1794 @end deftypefn
1795
1796 @deftypefn {GIMPLE function} void gimple_omp_parallel_set_combined_p (gimple g)
1797 Set the @code{GF_OMP_PARALLEL_COMBINED} field in @code{OMP} parallel statement
1798 @code{G}.
1799 @end deftypefn
1800
1801 @deftypefn {GIMPLE function} gimple_seq gimple_omp_body (gimple g)
1802 Return the body for the @code{OMP} statement @code{G}.
1803 @end deftypefn
1804
1805 @deftypefn {GIMPLE function} void gimple_omp_set_body (gimple g, gimple_seq body)
1806 Set @code{BODY} to be the body for the @code{OMP} statement @code{G}.
1807 @end deftypefn
1808
1809 @deftypefn {GIMPLE function} tree gimple_omp_parallel_clauses (gimple g)
1810 Return the clauses associated with @code{OMP_PARALLEL} @code{G}.
1811 @end deftypefn
1812
1813 @deftypefn {GIMPLE function} {tree *} gimple_omp_parallel_clauses_ptr (gimple g)
1814 Return a pointer to the clauses associated with @code{OMP_PARALLEL} @code{G}.
1815 @end deftypefn
1816
1817 @deftypefn {GIMPLE function} void gimple_omp_parallel_set_clauses (gimple g, tree clauses)
1818 Set @code{CLAUSES} to be the list of clauses associated with
1819 @code{OMP_PARALLEL} @code{G}.
1820 @end deftypefn
1821
1822 @deftypefn {GIMPLE function} tree gimple_omp_parallel_child_fn (gimple g)
1823 Return the child function used to hold the body of @code{OMP_PARALLEL}
1824 @code{G}.
1825 @end deftypefn
1826
1827 @deftypefn {GIMPLE function} {tree *} gimple_omp_parallel_child_fn_ptr (gimple g)
1828 Return a pointer to the child function used to hold the body of
1829 @code{OMP_PARALLEL} @code{G}.
1830 @end deftypefn
1831
1832 @deftypefn {GIMPLE function} void gimple_omp_parallel_set_child_fn (gimple g, tree child_fn)
1833 Set @code{CHILD_FN} to be the child function for @code{OMP_PARALLEL} @code{G}.
1834 @end deftypefn
1835
1836 @deftypefn {GIMPLE function} tree gimple_omp_parallel_data_arg (gimple g)
1837 Return the artificial argument used to send variables and values
1838 from the parent to the children threads in @code{OMP_PARALLEL} @code{G}.
1839 @end deftypefn
1840
1841 @deftypefn {GIMPLE function} {tree *} gimple_omp_parallel_data_arg_ptr (gimple g)
1842 Return a pointer to the data argument for @code{OMP_PARALLEL} @code{G}.
1843 @end deftypefn
1844
1845 @deftypefn {GIMPLE function} void gimple_omp_parallel_set_data_arg (gimple g, tree data_arg)
1846 Set @code{DATA_ARG} to be the data argument for @code{OMP_PARALLEL} @code{G}.
1847 @end deftypefn
1848
1849 @deftypefn {GIMPLE function} bool is_gimple_omp (gimple stmt)
1850 Returns true when the gimple statement @code{STMT} is any of the OpenMP
1851 types.
1852 @end deftypefn
1853
1854
1855 @node @code{GIMPLE_OMP_RETURN}
1856 @subsection @code{GIMPLE_OMP_RETURN}
1857 @cindex @code{GIMPLE_OMP_RETURN}
1858
1859 @deftypefn {GIMPLE function} gimple gimple_build_omp_return (bool wait_p)
1860 Build a @code{GIMPLE_OMP_RETURN} statement. @code{WAIT_P} is true if this is a
1861 non-waiting return.
1862 @end deftypefn
1863
1864 @deftypefn {GIMPLE function} void gimple_omp_return_set_nowait (gimple s)
1865 Set the nowait flag on @code{GIMPLE_OMP_RETURN} statement @code{S}.
1866 @end deftypefn
1867
1868
1869 @deftypefn {GIMPLE function} bool gimple_omp_return_nowait_p (gimple g)
1870 Return true if @code{OMP} return statement @code{G} has the
1871 @code{GF_OMP_RETURN_NOWAIT} flag set.
1872 @end deftypefn
1873
1874 @node @code{GIMPLE_OMP_SECTION}
1875 @subsection @code{GIMPLE_OMP_SECTION}
1876 @cindex @code{GIMPLE_OMP_SECTION}
1877
1878 @deftypefn {GIMPLE function} gimple gimple_build_omp_section (gimple_seq body)
1879 Build a @code{GIMPLE_OMP_SECTION} statement for a sections statement.
1880 @end deftypefn
1881
1882 @code{BODY} is the sequence of statements in the section.
1883
1884 @deftypefn {GIMPLE function} bool gimple_omp_section_last_p (gimple g)
1885 Return true if @code{OMP} section statement @code{G} has the
1886 @code{GF_OMP_SECTION_LAST} flag set.
1887 @end deftypefn
1888
1889 @deftypefn {GIMPLE function} void gimple_omp_section_set_last (gimple g)
1890 Set the @code{GF_OMP_SECTION_LAST} flag on @code{G}.
1891 @end deftypefn
1892
1893 @node @code{GIMPLE_OMP_SECTIONS}
1894 @subsection @code{GIMPLE_OMP_SECTIONS}
1895 @cindex @code{GIMPLE_OMP_SECTIONS}
1896
1897 @deftypefn {GIMPLE function} gimple gimple_build_omp_sections (gimple_seq body, tree clauses)
1898 Build a @code{GIMPLE_OMP_SECTIONS} statement. @code{BODY} is a sequence of
1899 section statements.  @code{CLAUSES} are any of the @code{OMP} sections
1900 construct's clauses: private, firstprivate, lastprivate,
1901 reduction, and nowait.
1902 @end deftypefn
1903
1904
1905 @deftypefn {GIMPLE function} gimple gimple_build_omp_sections_switch (void)
1906 Build a @code{GIMPLE_OMP_SECTIONS_SWITCH} statement.
1907 @end deftypefn
1908
1909 @deftypefn {GIMPLE function} tree gimple_omp_sections_control (gimple g)
1910 Return the control variable associated with the
1911 @code{GIMPLE_OMP_SECTIONS} in @code{G}.
1912 @end deftypefn
1913
1914 @deftypefn {GIMPLE function} {tree *} gimple_omp_sections_control_ptr (gimple g)
1915 Return a pointer to the clauses associated with the
1916 @code{GIMPLE_OMP_SECTIONS} in @code{G}.
1917 @end deftypefn
1918
1919 @deftypefn {GIMPLE function} void gimple_omp_sections_set_control (gimple g, tree control)
1920 Set @code{CONTROL} to be the set of clauses associated with the
1921 @code{GIMPLE_OMP_SECTIONS} in @code{G}.
1922 @end deftypefn
1923
1924 @deftypefn {GIMPLE function} tree gimple_omp_sections_clauses (gimple g)
1925 Return the clauses associated with @code{OMP_SECTIONS} @code{G}.
1926 @end deftypefn
1927
1928 @deftypefn {GIMPLE function} {tree *} gimple_omp_sections_clauses_ptr (gimple g)
1929 Return a pointer to the clauses associated with @code{OMP_SECTIONS} @code{G}.
1930 @end deftypefn
1931
1932 @deftypefn {GIMPLE function} void gimple_omp_sections_set_clauses (gimple g, tree clauses)
1933 Set @code{CLAUSES} to be the set of clauses associated with @code{OMP_SECTIONS}
1934 @code{G}.
1935 @end deftypefn
1936
1937
1938 @node @code{GIMPLE_OMP_SINGLE}
1939 @subsection @code{GIMPLE_OMP_SINGLE}
1940 @cindex @code{GIMPLE_OMP_SINGLE}
1941
1942 @deftypefn {GIMPLE function} gimple gimple_build_omp_single (gimple_seq body, tree clauses)
1943 Build a @code{GIMPLE_OMP_SINGLE} statement. @code{BODY} is the sequence of
1944 statements that will be executed once.  @code{CLAUSES} are any of the
1945 @code{OMP} single construct's clauses: private, firstprivate,
1946 copyprivate, nowait.
1947 @end deftypefn
1948
1949 @deftypefn {GIMPLE function} tree gimple_omp_single_clauses (gimple g)
1950 Return the clauses associated with @code{OMP_SINGLE} @code{G}.
1951 @end deftypefn
1952
1953 @deftypefn {GIMPLE function} {tree *} gimple_omp_single_clauses_ptr (gimple g)
1954 Return a pointer to the clauses associated with @code{OMP_SINGLE} @code{G}.
1955 @end deftypefn
1956
1957 @deftypefn {GIMPLE function} void gimple_omp_single_set_clauses (gimple g, tree clauses)
1958 Set @code{CLAUSES} to be the clauses associated with @code{OMP_SINGLE} @code{G}.
1959 @end deftypefn
1960
1961
1962 @node @code{GIMPLE_PHI}
1963 @subsection @code{GIMPLE_PHI}
1964 @cindex @code{GIMPLE_PHI}
1965
1966 @deftypefn {GIMPLE function} unsigned gimple_phi_capacity (gimple g)
1967 Return the maximum number of arguments supported by @code{GIMPLE_PHI} @code{G}.
1968 @end deftypefn
1969
1970 @deftypefn {GIMPLE function} unsigned gimple_phi_num_args (gimple g)
1971 Return the number of arguments in @code{GIMPLE_PHI} @code{G}. This must always
1972 be exactly the number of incoming edges for the basic block
1973 holding @code{G}.
1974 @end deftypefn
1975
1976 @deftypefn {GIMPLE function} tree gimple_phi_result (gimple g)
1977 Return the @code{SSA} name created by @code{GIMPLE_PHI} @code{G}.
1978 @end deftypefn
1979
1980 @deftypefn {GIMPLE function} {tree *} gimple_phi_result_ptr (gimple g)
1981 Return a pointer to the @code{SSA} name created by @code{GIMPLE_PHI} @code{G}.
1982 @end deftypefn
1983
1984 @deftypefn {GIMPLE function} void gimple_phi_set_result (gimple g, tree result)
1985 Set @code{RESULT} to be the @code{SSA} name created by @code{GIMPLE_PHI} @code{G}.
1986 @end deftypefn
1987
1988 @deftypefn {GIMPLE function} {struct phi_arg_d *} gimple_phi_arg (gimple g, index)
1989 Return the @code{PHI} argument corresponding to incoming edge @code{INDEX} for
1990 @code{GIMPLE_PHI} @code{G}.
1991 @end deftypefn
1992
1993 @deftypefn {GIMPLE function} void gimple_phi_set_arg (gimple g, index, struct phi_arg_d * phiarg)
1994 Set @code{PHIARG} to be the argument corresponding to incoming edge
1995 @code{INDEX} for @code{GIMPLE_PHI} @code{G}.
1996 @end deftypefn
1997
1998 @node @code{GIMPLE_RESX}
1999 @subsection @code{GIMPLE_RESX}
2000 @cindex @code{GIMPLE_RESX}
2001
2002 @deftypefn {GIMPLE function} gimple gimple_build_resx (int region)
2003 Build a @code{GIMPLE_RESX} statement which is a statement.  This
2004 statement is a placeholder for _Unwind_Resume before we know if a
2005 function call or a branch is needed.  @code{REGION} is the exception
2006 region from which control is flowing.
2007 @end deftypefn
2008
2009 @deftypefn {GIMPLE function} int gimple_resx_region (gimple g)
2010 Return the region number for @code{GIMPLE_RESX} @code{G}.
2011 @end deftypefn
2012
2013 @deftypefn {GIMPLE function} void gimple_resx_set_region (gimple g, int region)
2014 Set @code{REGION} to be the region number for @code{GIMPLE_RESX} @code{G}.
2015 @end deftypefn
2016
2017 @node @code{GIMPLE_RETURN}
2018 @subsection @code{GIMPLE_RETURN}
2019 @cindex @code{GIMPLE_RETURN}
2020
2021 @deftypefn {GIMPLE function} gimple gimple_build_return (tree retval)
2022 Build a @code{GIMPLE_RETURN} statement whose return value is retval.
2023 @end deftypefn
2024
2025 @deftypefn {GIMPLE function} tree gimple_return_retval (gimple g)
2026 Return the return value for @code{GIMPLE_RETURN} @code{G}.
2027 @end deftypefn
2028
2029 @deftypefn {GIMPLE function} void gimple_return_set_retval (gimple g, tree retval)
2030 Set @code{RETVAL} to be the return value for @code{GIMPLE_RETURN} @code{G}.
2031 @end deftypefn
2032
2033 @node @code{GIMPLE_SWITCH}
2034 @subsection @code{GIMPLE_SWITCH}
2035 @cindex @code{GIMPLE_SWITCH}
2036
2037 @deftypefn {GIMPLE function} gimple gimple_build_switch (unsigned nlabels, @
2038 tree index, tree default_label, ...)
2039 Build a @code{GIMPLE_SWITCH} statement.  @code{NLABELS} are the number of
2040 labels excluding the default label.  The default label is passed
2041 in @code{DEFAULT_LABEL}.  The rest of the arguments are trees
2042 representing the labels.  Each label is a tree of code
2043 @code{CASE_LABEL_EXPR}.
2044 @end deftypefn
2045
2046 @deftypefn {GIMPLE function} gimple gimple_build_switch_vec (tree index, tree @
2047 default_label, @code{VEC}(tree,heap) *args)
2048 This function is an alternate way of building @code{GIMPLE_SWITCH}
2049 statements.  @code{INDEX} and @code{DEFAULT_LABEL} are as in
2050 gimple_build_switch.  @code{ARGS} is a vector of @code{CASE_LABEL_EXPR} trees
2051 that contain the labels.
2052 @end deftypefn
2053
2054 @deftypefn {GIMPLE function} unsigned gimple_switch_num_labels (gimple g)
2055 Return the number of labels associated with the switch statement
2056 @code{G}.
2057 @end deftypefn
2058
2059 @deftypefn {GIMPLE function} void gimple_switch_set_num_labels (gimple g, @
2060 unsigned nlabels)
2061 Set @code{NLABELS} to be the number of labels for the switch statement
2062 @code{G}.
2063 @end deftypefn
2064
2065 @deftypefn {GIMPLE function} tree gimple_switch_index (gimple g)
2066 Return the index variable used by the switch statement @code{G}.
2067 @end deftypefn
2068
2069 @deftypefn {GIMPLE function} void gimple_switch_set_index (gimple g, tree index)
2070 Set @code{INDEX} to be the index variable for switch statement @code{G}.
2071 @end deftypefn
2072
2073 @deftypefn {GIMPLE function} tree gimple_switch_label (gimple g, unsigned index)
2074 Return the label numbered @code{INDEX}. The default label is 0, followed
2075 by any labels in a switch statement.
2076 @end deftypefn
2077
2078 @deftypefn {GIMPLE function} void gimple_switch_set_label (gimple g, unsigned @
2079 index, tree label)
2080 Set the label number @code{INDEX} to @code{LABEL}. 0 is always the default
2081 label.
2082 @end deftypefn
2083
2084 @deftypefn {GIMPLE function} tree gimple_switch_default_label (gimple g)
2085 Return the default label for a switch statement.
2086 @end deftypefn
2087
2088 @deftypefn {GIMPLE function} void gimple_switch_set_default_label (gimple g, @
2089 tree label)
2090 Set the default label for a switch statement.
2091 @end deftypefn
2092
2093
2094 @node @code{GIMPLE_TRY}
2095 @subsection @code{GIMPLE_TRY}
2096 @cindex @code{GIMPLE_TRY}
2097
2098 @deftypefn {GIMPLE function} gimple gimple_build_try (gimple_seq eval, @
2099 gimple_seq cleanup, unsigned int kind)
2100 Build a @code{GIMPLE_TRY} statement.  @code{EVAL} is a sequence with the
2101 expression to evaluate.  @code{CLEANUP} is a sequence of statements to
2102 run at clean-up time.  @code{KIND} is the enumeration value
2103 @code{GIMPLE_TRY_CATCH} if this statement denotes a try/catch construct
2104 or @code{GIMPLE_TRY_FINALLY} if this statement denotes a try/finally
2105 construct.
2106 @end deftypefn
2107
2108 @deftypefn {GIMPLE function} {enum gimple_try_flags} gimple_try_kind (gimple g)
2109 Return the kind of try block represented by @code{GIMPLE_TRY} @code{G}. This is
2110 either @code{GIMPLE_TRY_CATCH} or @code{GIMPLE_TRY_FINALLY}.
2111 @end deftypefn
2112
2113 @deftypefn {GIMPLE function} bool gimple_try_catch_is_cleanup (gimple g)
2114 Return the @code{GIMPLE_TRY_CATCH_IS_CLEANUP} flag.
2115 @end deftypefn
2116
2117 @deftypefn {GIMPLE function} gimple_seq gimple_try_eval (gimple g)
2118 Return the sequence of statements used as the body for @code{GIMPLE_TRY}
2119 @code{G}.
2120 @end deftypefn
2121
2122 @deftypefn {GIMPLE function} gimple_seq gimple_try_cleanup (gimple g)
2123 Return the sequence of statements used as the cleanup body for
2124 @code{GIMPLE_TRY} @code{G}.
2125 @end deftypefn
2126
2127 @deftypefn {GIMPLE function} void gimple_try_set_catch_is_cleanup (gimple g, @
2128 bool catch_is_cleanup)
2129 Set the @code{GIMPLE_TRY_CATCH_IS_CLEANUP} flag.
2130 @end deftypefn
2131
2132 @deftypefn {GIMPLE function} void gimple_try_set_eval (gimple g, gimple_seq eval)
2133 Set @code{EVAL} to be the sequence of statements to use as the body for
2134 @code{GIMPLE_TRY} @code{G}.
2135 @end deftypefn
2136
2137 @deftypefn {GIMPLE function} void gimple_try_set_cleanup (gimple g, gimple_seq cleanup)
2138 Set @code{CLEANUP} to be the sequence of statements to use as the
2139 cleanup body for @code{GIMPLE_TRY} @code{G}.
2140 @end deftypefn
2141
2142 @node @code{GIMPLE_WITH_CLEANUP_EXPR}
2143 @subsection @code{GIMPLE_WITH_CLEANUP_EXPR}
2144 @cindex @code{GIMPLE_WITH_CLEANUP_EXPR}
2145
2146 @deftypefn {GIMPLE function} gimple gimple_build_wce (gimple_seq cleanup)
2147 Build a @code{GIMPLE_WITH_CLEANUP_EXPR} statement.  @code{CLEANUP} is the
2148 clean-up expression.
2149 @end deftypefn
2150
2151 @deftypefn {GIMPLE function} gimple_seq gimple_wce_cleanup (gimple g)
2152 Return the cleanup sequence for cleanup statement @code{G}.
2153 @end deftypefn
2154
2155 @deftypefn {GIMPLE function} void gimple_wce_set_cleanup (gimple g, gimple_seq cleanup)
2156 Set @code{CLEANUP} to be the cleanup sequence for @code{G}.
2157 @end deftypefn
2158
2159 @deftypefn {GIMPLE function} bool gimple_wce_cleanup_eh_only (gimple g)
2160 Return the @code{CLEANUP_EH_ONLY} flag for a @code{WCE} tuple.
2161 @end deftypefn
2162
2163 @deftypefn {GIMPLE function} void gimple_wce_set_cleanup_eh_only (gimple g, bool eh_only_p)
2164 Set the @code{CLEANUP_EH_ONLY} flag for a @code{WCE} tuple.
2165 @end deftypefn
2166
2167
2168 @node GIMPLE sequences
2169 @section GIMPLE sequences
2170 @cindex GIMPLE sequences
2171
2172 GIMPLE sequences are the tuple equivalent of @code{STATEMENT_LIST}'s
2173 used in @code{GENERIC}.  They are used to chain statements together, and
2174 when used in conjunction with sequence iterators, provide a
2175 framework for iterating through statements.
2176
2177 GIMPLE sequences are of type struct @code{gimple_sequence}, but are more
2178 commonly passed by reference to functions dealing with sequences.
2179 The type for a sequence pointer is @code{gimple_seq} which is the same
2180 as struct @code{gimple_sequence} *.  When declaring a local sequence,
2181 you can define a local variable of type struct @code{gimple_sequence}.
2182 When declaring a sequence allocated on the garbage collected
2183 heap, use the function @code{gimple_seq_alloc} documented below.
2184
2185 There are convenience functions for iterating through sequences
2186 in the section entitled Sequence Iterators.
2187
2188 Below is a list of functions to manipulate and query sequences.
2189
2190 @deftypefn {GIMPLE function} void gimple_seq_add_stmt (gimple_seq *seq, gimple g)
2191 Link a gimple statement to the end of the sequence *@code{SEQ} if @code{G} is
2192 not @code{NULL}.  If *@code{SEQ} is @code{NULL}, allocate a sequence before linking.
2193 @end deftypefn
2194
2195 @deftypefn {GIMPLE function} void gimple_seq_add_seq (gimple_seq *dest, gimple_seq src)
2196 Append sequence @code{SRC} to the end of sequence *@code{DEST} if @code{SRC} is not
2197 @code{NULL}.  If *@code{DEST} is @code{NULL}, allocate a new sequence before
2198 appending.
2199 @end deftypefn
2200
2201 @deftypefn {GIMPLE function} gimple_seq gimple_seq_deep_copy (gimple_seq src)
2202 Perform a deep copy of sequence @code{SRC} and return the result.
2203 @end deftypefn
2204
2205 @deftypefn {GIMPLE function} gimple_seq gimple_seq_reverse (gimple_seq seq)
2206 Reverse the order of the statements in the sequence @code{SEQ}.  Return
2207 @code{SEQ}.
2208 @end deftypefn
2209
2210 @deftypefn {GIMPLE function} gimple gimple_seq_first (gimple_seq s)
2211 Return the first statement in sequence @code{S}.
2212 @end deftypefn
2213
2214 @deftypefn {GIMPLE function} gimple gimple_seq_last (gimple_seq s)
2215 Return the last statement in sequence @code{S}.
2216 @end deftypefn
2217
2218 @deftypefn {GIMPLE function} void gimple_seq_set_last (gimple_seq s, gimple last)
2219 Set the last statement in sequence @code{S} to the statement in @code{LAST}.
2220 @end deftypefn
2221
2222 @deftypefn {GIMPLE function} void gimple_seq_set_first (gimple_seq s, gimple first)
2223 Set the first statement in sequence @code{S} to the statement in @code{FIRST}.
2224 @end deftypefn
2225
2226 @deftypefn {GIMPLE function} void gimple_seq_init (gimple_seq s)
2227 Initialize sequence @code{S} to an empty sequence.
2228 @end deftypefn
2229
2230 @deftypefn {GIMPLE function} gimple_seq gimple_seq_alloc (void)
2231 Allocate a new sequence in the garbage collected store and return
2232 it.
2233 @end deftypefn
2234
2235 @deftypefn {GIMPLE function} void gimple_seq_copy (gimple_seq dest, gimple_seq src)
2236 Copy the sequence @code{SRC} into the sequence @code{DEST}.
2237 @end deftypefn
2238
2239 @deftypefn {GIMPLE function} bool gimple_seq_empty_p (gimple_seq s)
2240 Return true if the sequence @code{S} is empty.
2241 @end deftypefn
2242
2243 @deftypefn {GIMPLE function} gimple_seq bb_seq (basic_block bb)
2244 Returns the sequence of statements in @code{BB}.
2245 @end deftypefn
2246
2247 @deftypefn {GIMPLE function} void set_bb_seq (basic_block bb, gimple_seq seq)
2248 Sets the sequence of statements in @code{BB} to @code{SEQ}.
2249 @end deftypefn
2250
2251 @deftypefn {GIMPLE function} bool gimple_seq_singleton_p (gimple_seq seq)
2252 Determine whether @code{SEQ} contains exactly one statement.
2253 @end deftypefn
2254
2255 @node Sequence iterators
2256 @section Sequence iterators
2257 @cindex Sequence iterators
2258
2259 Sequence iterators are convenience constructs for iterating
2260 through statements in a sequence.  Given a sequence @code{SEQ}, here is
2261 a typical use of gimple sequence iterators:
2262
2263 @smallexample
2264 gimple_stmt_iterator gsi;
2265
2266 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
2267   @{
2268     gimple g = gsi_stmt (gsi);
2269     /* Do something with gimple statement @code{G}.  */
2270   @}
2271 @end smallexample
2272
2273 Backward iterations are possible:
2274
2275 @smallexample
2276         for (gsi = gsi_last (seq); !gsi_end_p (gsi); gsi_prev (&gsi))
2277 @end smallexample
2278
2279 Forward and backward iterations on basic blocks are possible with
2280 @code{gsi_start_bb} and @code{gsi_last_bb}.
2281
2282 In the documentation below we sometimes refer to enum
2283 @code{gsi_iterator_update}.  The valid options for this enumeration are:
2284
2285 @itemize @bullet
2286 @item @code{GSI_NEW_STMT}
2287 Only valid when a single statement is added.  Move the iterator to it.
2288
2289 @item @code{GSI_SAME_STMT}
2290 Leave the iterator at the same statement.
2291
2292 @item @code{GSI_CONTINUE_LINKING}
2293 Move iterator to whatever position is suitable for linking other
2294 statements in the same direction.
2295 @end itemize
2296
2297 Below is a list of the functions used to manipulate and use
2298 statement iterators.
2299
2300 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_start (gimple_seq seq)
2301 Return a new iterator pointing to the sequence @code{SEQ}'s first
2302 statement.  If @code{SEQ} is empty, the iterator's basic block is @code{NULL}.
2303 Use @code{gsi_start_bb} instead when the iterator needs to always have
2304 the correct basic block set.
2305 @end deftypefn
2306
2307 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_start_bb (basic_block bb)
2308 Return a new iterator pointing to the first statement in basic
2309 block @code{BB}.
2310 @end deftypefn
2311
2312 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_last (gimple_seq seq)
2313 Return a new iterator initially pointing to the last statement of
2314 sequence @code{SEQ}.  If @code{SEQ} is empty, the iterator's basic block is
2315 @code{NULL}.  Use @code{gsi_last_bb} instead when the iterator needs to always
2316 have the correct basic block set.
2317 @end deftypefn
2318
2319 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_last_bb (basic_block bb)
2320 Return a new iterator pointing to the last statement in basic
2321 block @code{BB}.
2322 @end deftypefn
2323
2324 @deftypefn {GIMPLE function} bool gsi_end_p (gimple_stmt_iterator i)
2325 Return @code{TRUE} if at the end of @code{I}.
2326 @end deftypefn
2327
2328 @deftypefn {GIMPLE function} bool gsi_one_before_end_p (gimple_stmt_iterator i)
2329 Return @code{TRUE} if we're one statement before the end of @code{I}.
2330 @end deftypefn
2331
2332 @deftypefn {GIMPLE function} void gsi_next (gimple_stmt_iterator *i)
2333 Advance the iterator to the next gimple statement.
2334 @end deftypefn
2335
2336 @deftypefn {GIMPLE function} void gsi_prev (gimple_stmt_iterator *i)
2337 Advance the iterator to the previous gimple statement.
2338 @end deftypefn
2339
2340 @deftypefn {GIMPLE function} gimple gsi_stmt (gimple_stmt_iterator i)
2341 Return the current stmt.
2342 @end deftypefn
2343
2344 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_after_labels (basic_block bb)
2345 Return a block statement iterator that points to the first
2346 non-label statement in block @code{BB}.
2347 @end deftypefn
2348
2349 @deftypefn {GIMPLE function} {gimple *} gsi_stmt_ptr (gimple_stmt_iterator *i)
2350 Return a pointer to the current stmt.
2351 @end deftypefn
2352
2353 @deftypefn {GIMPLE function} basic_block gsi_bb (gimple_stmt_iterator i)
2354 Return the basic block associated with this iterator.
2355 @end deftypefn
2356
2357 @deftypefn {GIMPLE function} gimple_seq gsi_seq (gimple_stmt_iterator i)
2358 Return the sequence associated with this iterator.
2359 @end deftypefn
2360
2361 @deftypefn {GIMPLE function} void gsi_remove (gimple_stmt_iterator *i, bool remove_eh_info)
2362 Remove the current stmt from the sequence.  The iterator is
2363 updated to point to the next statement.  When @code{REMOVE_EH_INFO} is
2364 true we remove the statement pointed to by iterator @code{I} from the @code{EH}
2365 tables.  Otherwise we do not modify the @code{EH} tables.  Generally,
2366 @code{REMOVE_EH_INFO} should be true when the statement is going to be
2367 removed from the @code{IL} and not reinserted elsewhere.
2368 @end deftypefn
2369
2370 @deftypefn {GIMPLE function} void gsi_link_seq_before (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode)
2371 Links the sequence of statements @code{SEQ} before the statement pointed
2372 by iterator @code{I}.  @code{MODE} indicates what to do with the iterator
2373 after insertion (see @code{enum gsi_iterator_update} above).
2374 @end deftypefn
2375
2376 @deftypefn {GIMPLE function} void gsi_link_before (gimple_stmt_iterator *i, gimple g, enum gsi_iterator_update mode)
2377 Links statement @code{G} before the statement pointed-to by iterator @code{I}.
2378 Updates iterator @code{I} according to @code{MODE}.
2379 @end deftypefn
2380
2381 @deftypefn {GIMPLE function} void gsi_link_seq_after (gimple_stmt_iterator *i, @
2382 gimple_seq seq, enum gsi_iterator_update mode)
2383 Links sequence @code{SEQ} after the statement pointed-to by iterator @code{I}.
2384 @code{MODE} is as in @code{gsi_insert_after}.
2385 @end deftypefn
2386
2387 @deftypefn {GIMPLE function} void gsi_link_after (gimple_stmt_iterator *i, @
2388 gimple g, enum gsi_iterator_update mode)
2389 Links statement @code{G} after the statement pointed-to by iterator @code{I}.
2390 @code{MODE} is as in @code{gsi_insert_after}.
2391 @end deftypefn
2392
2393 @deftypefn {GIMPLE function} gimple_seq gsi_split_seq_after (gimple_stmt_iterator i)
2394 Move all statements in the sequence after @code{I} to a new sequence.
2395 Return this new sequence.
2396 @end deftypefn
2397
2398 @deftypefn {GIMPLE function} gimple_seq gsi_split_seq_before (gimple_stmt_iterator *i)
2399 Move all statements in the sequence before @code{I} to a new sequence.
2400 Return this new sequence.
2401 @end deftypefn
2402
2403 @deftypefn {GIMPLE function} void gsi_replace (gimple_stmt_iterator *i, @
2404 gimple stmt, bool update_eh_info)
2405 Replace the statement pointed-to by @code{I} to @code{STMT}.  If @code{UPDATE_EH_INFO}
2406 is true, the exception handling information of the original
2407 statement is moved to the new statement.
2408 @end deftypefn
2409
2410 @deftypefn {GIMPLE function} void gsi_insert_before (gimple_stmt_iterator *i, @
2411 gimple stmt, enum gsi_iterator_update mode)
2412 Insert statement @code{STMT} before the statement pointed-to by iterator
2413 @code{I}, update @code{STMT}'s basic block and scan it for new operands.  @code{MODE}
2414 specifies how to update iterator @code{I} after insertion (see enum
2415 @code{gsi_iterator_update}).
2416 @end deftypefn
2417
2418 @deftypefn {GIMPLE function} void gsi_insert_seq_before (gimple_stmt_iterator *i, @
2419 gimple_seq seq, enum gsi_iterator_update mode)
2420 Like @code{gsi_insert_before}, but for all the statements in @code{SEQ}.
2421 @end deftypefn
2422
2423 @deftypefn {GIMPLE function} void gsi_insert_after (gimple_stmt_iterator *i, @
2424 gimple stmt, enum gsi_iterator_update mode)
2425 Insert statement @code{STMT} after the statement pointed-to by iterator
2426 @code{I}, update @code{STMT}'s basic block and scan it for new operands.  @code{MODE}
2427 specifies how to update iterator @code{I} after insertion (see enum
2428 @code{gsi_iterator_update}).
2429 @end deftypefn
2430
2431 @deftypefn {GIMPLE function} void gsi_insert_seq_after (gimple_stmt_iterator *i, @
2432 gimple_seq seq, enum gsi_iterator_update mode)
2433 Like @code{gsi_insert_after}, but for all the statements in @code{SEQ}.
2434 @end deftypefn
2435
2436 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_for_stmt (gimple stmt)
2437 Finds iterator for @code{STMT}.
2438 @end deftypefn
2439
2440 @deftypefn {GIMPLE function} void gsi_move_after (gimple_stmt_iterator *from, @
2441 gimple_stmt_iterator *to)
2442 Move the statement at @code{FROM} so it comes right after the statement
2443 at @code{TO}.
2444 @end deftypefn
2445
2446 @deftypefn {GIMPLE function} void gsi_move_before (gimple_stmt_iterator *from, @
2447 gimple_stmt_iterator *to)
2448 Move the statement at @code{FROM} so it comes right before the statement
2449 at @code{TO}.
2450 @end deftypefn
2451
2452 @deftypefn {GIMPLE function} void gsi_move_to_bb_end (gimple_stmt_iterator *from, @
2453 basic_block bb)
2454 Move the statement at @code{FROM} to the end of basic block @code{BB}.
2455 @end deftypefn
2456
2457 @deftypefn {GIMPLE function} void gsi_insert_on_edge (edge e, gimple stmt)
2458 Add @code{STMT} to the pending list of edge @code{E}.  No actual insertion is
2459 made until a call to @code{gsi_commit_edge_inserts}() is made.
2460 @end deftypefn
2461
2462 @deftypefn {GIMPLE function} void gsi_insert_seq_on_edge (edge e, gimple_seq seq)
2463 Add the sequence of statements in @code{SEQ} to the pending list of edge
2464 @code{E}.  No actual insertion is made until a call to
2465 @code{gsi_commit_edge_inserts}() is made.
2466 @end deftypefn
2467
2468 @deftypefn {GIMPLE function} basic_block gsi_insert_on_edge_immediate (edge e, gimple stmt)
2469 Similar to @code{gsi_insert_on_edge}+@code{gsi_commit_edge_inserts}.  If a new
2470 block has to be created, it is returned.
2471 @end deftypefn
2472
2473 @deftypefn {GIMPLE function} void gsi_commit_one_edge_insert (edge e, basic_block *new_bb)
2474 Commit insertions pending at edge @code{E}.  If a new block is created,
2475 set @code{NEW_BB} to this block, otherwise set it to @code{NULL}.
2476 @end deftypefn
2477
2478 @deftypefn {GIMPLE function} void gsi_commit_edge_inserts (void)
2479 This routine will commit all pending edge insertions, creating
2480 any new basic blocks which are necessary.
2481 @end deftypefn
2482
2483
2484 @node Adding a new GIMPLE statement code
2485 @section Adding a new GIMPLE statement code
2486 @cindex Adding a new GIMPLE statement code
2487
2488 The first step in adding a new GIMPLE statement code, is
2489 modifying the file @code{gimple.def}, which contains all the GIMPLE
2490 codes.  Then you must add a corresponding structure, and an entry
2491 in @code{union gimple_statement_d}, both of which are located in
2492 @code{gimple.h}.  This in turn, will require you to add a corresponding
2493 @code{GTY} tag in @code{gsstruct.def}, and code to handle this tag in
2494 @code{gss_for_code} which is located in @code{gimple.c}.
2495
2496 In order for the garbage collector to know the size of the
2497 structure you created in @code{gimple.h}, you need to add a case to
2498 handle your new GIMPLE statement in @code{gimple_size} which is located
2499 in @code{gimple.c}.
2500
2501 You will probably want to create a function to build the new
2502 gimple statement in @code{gimple.c}.  The function should be called
2503 @code{gimple_build_@var{new-tuple-name}}, and should return the new tuple
2504 of type gimple.
2505
2506 If your new statement requires accessors for any members or
2507 operands it may have, put simple inline accessors in
2508 @code{gimple.h} and any non-trivial accessors in @code{gimple.c} with a
2509 corresponding prototype in @code{gimple.h}.
2510
2511
2512 @node Statement and operand traversals
2513 @section Statement and operand traversals
2514 @cindex Statement and operand traversals
2515
2516 There are two functions available for walking statements and
2517 sequences: @code{walk_gimple_stmt} and @code{walk_gimple_seq},
2518 accordingly, and a third function for walking the operands in a
2519 statement: @code{walk_gimple_op}.
2520
2521 @deftypefn {GIMPLE function} tree walk_gimple_stmt (gimple_stmt_iterator *gsi, @
2522   walk_stmt_fn callback_stmt, walk_tree_fn callback_op, struct walk_stmt_info *wi)
2523 This function is used to walk the current statement in @code{GSI},
2524 optionally using traversal state stored in @code{WI}.  If @code{WI} is @code{NULL}, no
2525 state is kept during the traversal.
2526
2527 The callback @code{CALLBACK_STMT} is called.  If @code{CALLBACK_STMT} returns
2528 true, it means that the callback function has handled all the
2529 operands of the statement and it is not necessary to walk its
2530 operands.
2531
2532 If @code{CALLBACK_STMT} is @code{NULL} or it returns false, @code{CALLBACK_OP} is
2533 called on each operand of the statement via @code{walk_gimple_op}.  If
2534 @code{walk_gimple_op} returns non-@code{NULL} for any operand, the remaining
2535 operands are not scanned.
2536
2537 The return value is that returned by the last call to
2538 @code{walk_gimple_op}, or @code{NULL_TREE} if no @code{CALLBACK_OP} is specified.
2539 @end deftypefn
2540
2541
2542 @deftypefn {GIMPLE function} tree walk_gimple_op (gimple stmt, @
2543   walk_tree_fn callback_op, struct walk_stmt_info *wi)
2544 Use this function to walk the operands of statement @code{STMT}.  Every
2545 operand is walked via @code{walk_tree} with optional state information
2546 in @code{WI}.
2547
2548 @code{CALLBACK_OP} is called on each operand of @code{STMT} via @code{walk_tree}.
2549 Additional parameters to @code{walk_tree} must be stored in @code{WI}.  For
2550 each operand @code{OP}, @code{walk_tree} is called as:
2551
2552 @smallexample
2553 walk_tree (&@code{OP}, @code{CALLBACK_OP}, @code{WI}, @code{PSET})
2554 @end smallexample
2555
2556 If @code{CALLBACK_OP} returns non-@code{NULL} for an operand, the remaining
2557 operands are not scanned.  The return value is that returned by
2558 the last call to @code{walk_tree}, or @code{NULL_TREE} if no @code{CALLBACK_OP} is
2559 specified.
2560 @end deftypefn
2561
2562
2563 @deftypefn {GIMPLE function} tree walk_gimple_seq (gimple_seq seq, @
2564   walk_stmt_fn callback_stmt, walk_tree_fn callback_op, struct walk_stmt_info *wi)
2565 This function walks all the statements in the sequence @code{SEQ}
2566 calling @code{walk_gimple_stmt} on each one.  @code{WI} is as in
2567 @code{walk_gimple_stmt}.  If @code{walk_gimple_stmt} returns non-@code{NULL}, the walk
2568 is stopped and the value returned.  Otherwise, all the statements
2569 are walked and @code{NULL_TREE} returned.
2570 @end deftypefn