hammer2 - Message routing work
[dragonfly.git] / sbin / hammer2 / msg_lnk.c
1 /*
2  * Copyright (c) 2012 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 /*
35  * LNK_SPAN PROTOCOL SUPPORT FUNCTIONS
36  *
37  * This code supports the LNK_SPAN protocol.  Essentially all PFS's
38  * clients and services rendezvous with the userland hammer2 service and
39  * open LNK_SPAN transactions using a message header linkid of 0,
40  * registering any PFS's they have connectivity to with us.
41  *
42  * --
43  *
44  * Each registration maintains its own open LNK_SPAN message transaction.
45  * The SPANs are collected, aggregated, and retransmitted over available
46  * connections through the maintainance of additional LNK_SPAN message
47  * transactions on each link.
48  *
49  * The msgid for each active LNK_SPAN transaction we receive allows us to
50  * send a message to the target PFS (which might be one of many belonging
51  * to the same cluster), by specifying that msgid as the linkid in any
52  * message we send to the target PFS.
53  *
54  * Similarly the msgid we allocate for any LNK_SPAN transaction we transmit
55  * (and remember we will maintain multiple open LNK_SPAN transactions on
56  * each connection representing the topology span, so every node sees every
57  * other node as a separate open transaction).  So, similarly the msgid for
58  * these active transactions which we initiated can be used by the other
59  * end to route messages through us to another node, ultimately winding up
60  * at the identified hammer2 PFS.  We have to adjust the spanid in the message
61  * header at each hop to be representative of the outgoing LNK_SPAN we
62  * are forwarding the message through.
63  *
64  * --
65  *
66  * If we were to retransmit every LNK_SPAN transaction we receive it would
67  * create a huge mess, so we have to aggregate all received LNK_SPAN
68  * transactions, sort them by the fsid (the cluster) and sub-sort them by
69  * the pfs_fsid (individual nodes in the cluster), and only retransmit
70  * (create outgoing transactions) for a subset of the nearest distance-hops
71  * for each individual node.
72  *
73  * The higher level protocols can then issue transactions to the nodes making
74  * up a cluster to perform all actions required.
75  *
76  * --
77  *
78  * Since this is a large topology and a spanning tree protocol, links can
79  * go up and down all the time.  Any time a link goes down its transaction
80  * is closed.  The transaction has to be closed on both ends before we can
81  * delete (and potentially reuse) the related spanid.  The LNK_SPAN being
82  * closed may have been propagated out to other connections and those related
83  * LNK_SPANs are also closed.  Ultimately all routes via the lost LNK_SPAN
84  * go away, ultimately reaching all sources and all targets.
85  *
86  * Any messages in-transit using a route that goes away will be thrown away.
87  * Open transactions are only tracked at the two end-points.  When a link
88  * failure propagates to an end-point the related open transactions lose
89  * their spanid and are automatically aborted.
90  *
91  * It is important to note that internal route nodes cannot just associate
92  * a lost LNK_SPAN transaction with another route to the same destination.
93  * Message transactions MUST be serialized and MUST be ordered.  All messages
94  * for a transaction must run over the same route.  So if the route used by
95  * an active transaction is lost, the related messages will be fully aborted
96  * and the higher protocol levels will retry as appropriate.
97  *
98  * FULLY ABORTING A ROUTED MESSAGE is handled via link-failure propagation
99  * back to the originator.  Only the originator keeps tracks of a message.
100  * Routers just pass it through.  If a route is lost during transit the
101  * message is simply thrown away.
102  *
103  * It is also important to note that several paths to the same PFS can be
104  * propagated along the same link, which allows concurrency and even
105  * redundancy over several network interfaces or via different routes through
106  * the topology.  Any given transaction will use only a single route but busy
107  * servers will often have hundreds of transactions active simultaniously,
108  * so having multiple active paths through the network topology for A<->B
109  * will improve performance.
110  *
111  * --
112  *
113  * Most protocols consolidate operations rather than simply relaying them.
114  * This is particularly true of LEAF protocols (such as strict HAMMER2
115  * clients), of which there can be millions connecting into the cluster at
116  * various points.  The SPAN protocol is not used for these LEAF elements.
117  *
118  * Instead the primary service they connect to implements a proxy for the
119  * client protocols so the core topology only has to propagate a couple of
120  * LNK_SPANs and not millions.  LNK_SPANs are meant to be used only for
121  * core master nodes and satellite slaves and cache nodes.
122  */
123
124 #include "hammer2.h"
125
126 /*
127  * Maximum spanning tree distance.  This has the practical effect of
128  * stopping tail-chasing closed loops when a feeder span is lost.
129  */
130 #define HAMMER2_SPAN_MAXDIST    16
131
132 /*
133  * RED-BLACK TREE DEFINITIONS
134  *
135  * We need to track:
136  *
137  * (1) shared fsid's (a cluster).
138  * (2) unique fsid's (a node in a cluster) <--- LNK_SPAN transactions.
139  *
140  * We need to aggegate all active LNK_SPANs, aggregate, and create our own
141  * outgoing LNK_SPAN transactions on each of our connections representing
142  * the aggregated state.
143  *
144  * h2span_connect       - list of iocom connections who wish to receive SPAN
145  *                        propagation from other connections.  Might contain
146  *                        a filter string.  Only iocom's with an open
147  *                        LNK_CONN transactions are applicable for SPAN
148  *                        propagation.
149  *
150  * h2span_relay         - List of links relayed (via SPAN).  Essentially
151  *                        each relay structure represents a LNK_SPAN
152  *                        transaction that we initiated, verses h2span_link
153  *                        which is a LNK_SPAN transaction that we received.
154  *
155  * --
156  *
157  * h2span_cluster       - Organizes the shared fsid's.  One structure for
158  *                        each cluster.
159  *
160  * h2span_node          - Organizes the nodes in a cluster.  One structure
161  *                        for each unique {cluster,node}, aka {fsid, pfs_fsid}.
162  *
163  * h2span_link          - Organizes all incoming and outgoing LNK_SPAN message
164  *                        transactions related to a node.
165  *
166  *                        One h2span_link structure for each incoming LNK_SPAN
167  *                        transaction.  Links selected for propagation back
168  *                        out are also where the outgoing LNK_SPAN messages
169  *                        are indexed into (so we can propagate changes).
170  *
171  *                        The h2span_link's use a red-black tree to sort the
172  *                        distance hop metric for the incoming LNK_SPAN.  We
173  *                        then select the top N for outgoing.  When the
174  *                        topology changes the top N may also change and cause
175  *                        new outgoing LNK_SPAN transactions to be opened
176  *                        and less desireable ones to be closed, causing
177  *                        transactional aborts within the message flow in
178  *                        the process.
179  *
180  * Also note            - All outgoing LNK_SPAN message transactions are also
181  *                        entered into a red-black tree for use by the routing
182  *                        function.  This is handled by msg.c in the state
183  *                        code, not here.
184  */
185
186 struct h2span_link;
187 struct h2span_relay;
188 TAILQ_HEAD(h2span_connect_queue, h2span_connect);
189 TAILQ_HEAD(h2span_relay_queue, h2span_relay);
190
191 RB_HEAD(h2span_cluster_tree, h2span_cluster);
192 RB_HEAD(h2span_node_tree, h2span_node);
193 RB_HEAD(h2span_link_tree, h2span_link);
194 RB_HEAD(h2span_relay_tree, h2span_relay);
195
196 /*
197  * Received LNK_CONN transaction enables SPAN protocol over connection.
198  * (may contain filter).
199  */
200 struct h2span_connect {
201         TAILQ_ENTRY(h2span_connect) entry;
202         struct h2span_relay_tree tree;
203         hammer2_state_t *state;
204 };
205
206 /*
207  * All received LNK_SPANs are organized by cluster (pfs_clid),
208  * node (pfs_fsid), and link (received LNK_SPAN transaction).
209  */
210 struct h2span_cluster {
211         RB_ENTRY(h2span_cluster) rbnode;
212         struct h2span_node_tree tree;
213         uuid_t  pfs_clid;               /* shared fsid */
214         int     refs;                   /* prevents destruction */
215 };
216
217 struct h2span_node {
218         RB_ENTRY(h2span_node) rbnode;
219         struct h2span_link_tree tree;
220         struct h2span_cluster *cls;
221         uuid_t  pfs_fsid;               /* unique fsid */
222         char label[64];
223 };
224
225 struct h2span_link {
226         RB_ENTRY(h2span_link) rbnode;
227         hammer2_state_t *state;         /* state<->link */
228         struct h2span_node *node;       /* related node */
229         int32_t dist;
230         struct h2span_relay_queue relayq; /* relay out */
231         struct hammer2_router *router;  /* route out this link */
232 };
233
234 /*
235  * Any LNK_SPAN transactions we receive which are relayed out other
236  * connections utilize this structure to track the LNK_SPAN transaction
237  * we initiate on the other connections, if selected for relay.
238  *
239  * In many respects this is the core of the protocol... actually figuring
240  * out what LNK_SPANs to relay.  The spanid used for relaying is the
241  * address of the 'state' structure, which is why h2span_relay has to
242  * be entered into a RB-TREE based at h2span_connect (so we can look
243  * up the spanid to validate it).
244  *
245  * NOTE: Messages can be received via the LNK_SPAN transaction the
246  *       relay maintains, and can be replied via relay->router, but
247  *       messages are NOT initiated via a relay.  Messages are initiated
248  *       via incoming links (h2span_link's).
249  *
250  *       relay->link represents the link being relayed, NOT the LNK_SPAN
251  *       transaction the relay is holding open.
252  */
253 struct h2span_relay {
254         RB_ENTRY(h2span_relay) rbnode;  /* from h2span_connect */
255         TAILQ_ENTRY(h2span_relay) entry; /* from link */
256         struct h2span_connect *conn;
257         hammer2_state_t *state;         /* transmitted LNK_SPAN */
258         struct h2span_link *link;       /* LNK_SPAN being relayed */
259         struct hammer2_router   *router;/* route out this relay */
260 };
261
262
263 typedef struct h2span_connect h2span_connect_t;
264 typedef struct h2span_cluster h2span_cluster_t;
265 typedef struct h2span_node h2span_node_t;
266 typedef struct h2span_link h2span_link_t;
267 typedef struct h2span_relay h2span_relay_t;
268
269 static
270 int
271 h2span_cluster_cmp(h2span_cluster_t *cls1, h2span_cluster_t *cls2)
272 {
273         return(uuid_compare(&cls1->pfs_clid, &cls2->pfs_clid, NULL));
274 }
275
276 static
277 int
278 h2span_node_cmp(h2span_node_t *node1, h2span_node_t *node2)
279 {
280         return(uuid_compare(&node1->pfs_fsid, &node2->pfs_fsid, NULL));
281 }
282
283 /*
284  * NOTE: Sort/subsort must match h2span_relay_cmp() under any given
285  *       node.
286  */
287 static
288 int
289 h2span_link_cmp(h2span_link_t *link1, h2span_link_t *link2)
290 {
291         if (link1->dist < link2->dist)
292                 return(-1);
293         if (link1->dist > link2->dist)
294                 return(1);
295         if (link1->state->msgid < link2->state->msgid)
296                 return(-1);
297         if (link1->state->msgid > link2->state->msgid)
298                 return(1);
299         return(0);
300 }
301
302 /*
303  * Relay entries are sorted by node, subsorted by distance and link
304  * address (so we can match up the conn->tree relay topology with
305  * a node's link topology).
306  */
307 static
308 int
309 h2span_relay_cmp(h2span_relay_t *relay1, h2span_relay_t *relay2)
310 {
311         h2span_link_t *link1 = relay1->link;
312         h2span_link_t *link2 = relay2->link;
313
314         if ((intptr_t)link1->node < (intptr_t)link2->node)
315                 return(-1);
316         if ((intptr_t)link1->node > (intptr_t)link2->node)
317                 return(1);
318         if (link1->dist < link2->dist)
319                 return(-1);
320         if (link1->dist > link2->dist)
321                 return(1);
322         if (link1->state->msgid < link2->state->msgid)
323                 return(-1);
324         if (link1->state->msgid > link2->state->msgid)
325                 return(1);
326         return(0);
327 }
328
329 RB_PROTOTYPE_STATIC(h2span_cluster_tree, h2span_cluster,
330              rbnode, h2span_cluster_cmp);
331 RB_PROTOTYPE_STATIC(h2span_node_tree, h2span_node,
332              rbnode, h2span_node_cmp);
333 RB_PROTOTYPE_STATIC(h2span_link_tree, h2span_link,
334              rbnode, h2span_link_cmp);
335 RB_PROTOTYPE_STATIC(h2span_relay_tree, h2span_relay,
336              rbnode, h2span_relay_cmp);
337
338 RB_GENERATE_STATIC(h2span_cluster_tree, h2span_cluster,
339              rbnode, h2span_cluster_cmp);
340 RB_GENERATE_STATIC(h2span_node_tree, h2span_node,
341              rbnode, h2span_node_cmp);
342 RB_GENERATE_STATIC(h2span_link_tree, h2span_link,
343              rbnode, h2span_link_cmp);
344 RB_GENERATE_STATIC(h2span_relay_tree, h2span_relay,
345              rbnode, h2span_relay_cmp);
346
347 /*
348  * Global mutex protects cluster_tree lookups.
349  */
350 static pthread_mutex_t cluster_mtx;
351 static struct h2span_cluster_tree cluster_tree = RB_INITIALIZER(cluster_tree);
352 static struct h2span_connect_queue connq = TAILQ_HEAD_INITIALIZER(connq);
353
354 static void hammer2_lnk_span(hammer2_msg_t *msg);
355 static void hammer2_lnk_conn(hammer2_msg_t *msg);
356 static void hammer2_lnk_relay(hammer2_msg_t *msg);
357 static void hammer2_relay_scan(h2span_connect_t *conn, h2span_node_t *node);
358 static void hammer2_relay_delete(h2span_relay_t *relay);
359
360 void
361 hammer2_msg_lnk_signal(hammer2_router_t *router __unused)
362 {
363         pthread_mutex_lock(&cluster_mtx);
364         hammer2_relay_scan(NULL, NULL);
365         pthread_mutex_unlock(&cluster_mtx);
366 }
367
368 /*
369  * Receive a HAMMER2_MSG_PROTO_LNK message.  This only called for
370  * one-way and opening-transactions since state->func will be assigned
371  * in all other cases.
372  */
373 void
374 hammer2_msg_lnk(hammer2_msg_t *msg)
375 {
376         switch(msg->any.head.cmd & HAMMER2_MSGF_BASECMDMASK) {
377         case HAMMER2_LNK_CONN:
378                 hammer2_lnk_conn(msg);
379                 break;
380         case HAMMER2_LNK_SPAN:
381                 hammer2_lnk_span(msg);
382                 break;
383         default:
384                 fprintf(stderr,
385                         "MSG_PROTO_LNK: Unknown msg %08x\n", msg->any.head.cmd);
386                 hammer2_msg_reply(msg, HAMMER2_MSG_ERR_NOSUPP);
387                 /* state invalid after reply */
388                 break;
389         }
390 }
391
392 void
393 hammer2_lnk_conn(hammer2_msg_t *msg)
394 {
395         hammer2_state_t *state = msg->state;
396         h2span_connect_t *conn;
397         h2span_relay_t *relay;
398         char *alloc = NULL;
399
400         pthread_mutex_lock(&cluster_mtx);
401
402         /*
403          * On transaction start we allocate a new h2span_connect and
404          * acknowledge the request, leaving the transaction open.
405          * We then relay priority-selected SPANs.
406          */
407         if (msg->any.head.cmd & HAMMER2_MSGF_CREATE) {
408                 state->func = hammer2_lnk_conn;
409
410                 fprintf(stderr, "LNK_CONN(%08x): %s/%s\n",
411                         (uint32_t)msg->any.head.msgid,
412                         hammer2_uuid_to_str(&msg->any.lnk_conn.pfs_clid,
413                                             &alloc),
414                         msg->any.lnk_conn.label);
415                 free(alloc);
416
417                 conn = hammer2_alloc(sizeof(*conn));
418
419                 RB_INIT(&conn->tree);
420                 conn->state = state;
421                 state->any.conn = conn;
422                 TAILQ_INSERT_TAIL(&connq, conn, entry);
423
424                 hammer2_msg_result(msg, 0);
425
426 #if 0
427                 /*
428                  * Span-synchronize all nodes with the new connection
429                  */
430                 hammer2_relay_scan(conn, NULL);
431 #endif
432                 hammer2_router_signal(msg->router);
433         }
434
435         /*
436          * On transaction terminate we clean out our h2span_connect
437          * and acknowledge the request, closing the transaction.
438          */
439         if (msg->any.head.cmd & HAMMER2_MSGF_DELETE) {
440                 fprintf(stderr, "LNK_CONN: Terminated\n");
441                 conn = state->any.conn;
442                 assert(conn);
443
444                 /*
445                  * Clean out all relays.  This requires terminating each
446                  * relay transaction.
447                  */
448                 while ((relay = RB_ROOT(&conn->tree)) != NULL) {
449                         hammer2_relay_delete(relay);
450                 }
451
452                 /*
453                  * Clean out conn
454                  */
455                 conn->state = NULL;
456                 msg->state->any.conn = NULL;
457                 TAILQ_REMOVE(&connq, conn, entry);
458                 hammer2_free(conn);
459
460                 hammer2_msg_reply(msg, 0);
461                 /* state invalid after reply */
462         }
463         pthread_mutex_unlock(&cluster_mtx);
464 }
465
466 void
467 hammer2_lnk_span(hammer2_msg_t *msg)
468 {
469         hammer2_state_t *state = msg->state;
470         h2span_cluster_t dummy_cls;
471         h2span_node_t dummy_node;
472         h2span_cluster_t *cls;
473         h2span_node_t *node;
474         h2span_link_t *slink;
475         h2span_relay_t *relay;
476         char *alloc = NULL;
477
478         assert((msg->any.head.cmd & HAMMER2_MSGF_REPLY) == 0);
479
480         pthread_mutex_lock(&cluster_mtx);
481
482         /*
483          * On transaction start we initialize the tracking infrastructure
484          */
485         if (msg->any.head.cmd & HAMMER2_MSGF_CREATE) {
486                 assert(state->func == NULL);
487                 state->func = hammer2_lnk_span;
488
489                 msg->any.lnk_span.label[sizeof(msg->any.lnk_span.label)-1] = 0;
490
491                 /*
492                  * Find the cluster
493                  */
494                 dummy_cls.pfs_clid = msg->any.lnk_span.pfs_clid;
495                 cls = RB_FIND(h2span_cluster_tree, &cluster_tree, &dummy_cls);
496                 if (cls == NULL) {
497                         cls = hammer2_alloc(sizeof(*cls));
498                         cls->pfs_clid = msg->any.lnk_span.pfs_clid;
499                         RB_INIT(&cls->tree);
500                         RB_INSERT(h2span_cluster_tree, &cluster_tree, cls);
501                 }
502
503                 /*
504                  * Find the node
505                  */
506                 dummy_node.pfs_fsid = msg->any.lnk_span.pfs_fsid;
507                 node = RB_FIND(h2span_node_tree, &cls->tree, &dummy_node);
508                 if (node == NULL) {
509                         node = hammer2_alloc(sizeof(*node));
510                         node->pfs_fsid = msg->any.lnk_span.pfs_fsid;
511                         node->cls = cls;
512                         RB_INIT(&node->tree);
513                         RB_INSERT(h2span_node_tree, &cls->tree, node);
514                         snprintf(node->label, sizeof(node->label),
515                                  "%s", msg->any.lnk_span.label);
516                 }
517
518                 /*
519                  * Create the link
520                  */
521                 assert(state->any.link == NULL);
522                 slink = hammer2_alloc(sizeof(*slink));
523                 TAILQ_INIT(&slink->relayq);
524                 slink->node = node;
525                 slink->dist = msg->any.lnk_span.dist;
526                 slink->state = state;
527                 state->any.link = slink;
528
529                 /*
530                  * Embedded router structure in link for message forwarding.
531                  *
532                  * The spanning id for the router is the message id of
533                  * the SPAN link it is embedded in, allowing messages to
534                  * be routed via &slink->router.
535                  */
536                 slink->router = hammer2_router_alloc();
537                 slink->router->iocom = state->iocom;
538                 slink->router->link = slink;
539                 slink->router->spanid = state->msgid;
540                 hammer2_router_connect(slink->router);
541
542                 RB_INSERT(h2span_link_tree, &node->tree, slink);
543
544                 fprintf(stderr, "LNK_SPAN(thr %p): %p %s/%s dist=%d\n",
545                         msg->router->iocom,
546                         slink,
547                         hammer2_uuid_to_str(&msg->any.lnk_span.pfs_clid,
548                                             &alloc),
549                         msg->any.lnk_span.label,
550                         msg->any.lnk_span.dist);
551                 free(alloc);
552 #if 0
553                 hammer2_relay_scan(NULL, node);
554 #endif
555                 hammer2_router_signal(msg->router);
556         }
557
558         /*
559          * On transaction terminate we remove the tracking infrastructure.
560          */
561         if (msg->any.head.cmd & HAMMER2_MSGF_DELETE) {
562                 slink = state->any.link;
563                 assert(slink != NULL);
564                 node = slink->node;
565                 cls = node->cls;
566
567                 fprintf(stderr, "LNK_DELE(thr %p): %p %s/%s dist=%d\n",
568                         msg->router->iocom,
569                         slink,
570                         hammer2_uuid_to_str(&cls->pfs_clid, &alloc),
571                         state->msg->any.lnk_span.label,
572                         state->msg->any.lnk_span.dist);
573                 free(alloc);
574
575                 /*
576                  * Remove the router from consideration
577                  */
578                 hammer2_router_disconnect(&slink->router);
579
580                 /*
581                  * Clean out all relays.  This requires terminating each
582                  * relay transaction.
583                  */
584                 while ((relay = TAILQ_FIRST(&slink->relayq)) != NULL) {
585                         hammer2_relay_delete(relay);
586                 }
587
588                 /*
589                  * Clean out the topology
590                  */
591                 RB_REMOVE(h2span_link_tree, &node->tree, slink);
592                 if (RB_EMPTY(&node->tree)) {
593                         RB_REMOVE(h2span_node_tree, &cls->tree, node);
594                         if (RB_EMPTY(&cls->tree) && cls->refs == 0) {
595                                 RB_REMOVE(h2span_cluster_tree,
596                                           &cluster_tree, cls);
597                                 hammer2_free(cls);
598                         }
599                         node->cls = NULL;
600                         hammer2_free(node);
601                         node = NULL;
602                 }
603                 state->any.link = NULL;
604                 slink->state = NULL;
605                 slink->node = NULL;
606                 hammer2_free(slink);
607
608                 /*
609                  * We have to terminate the transaction
610                  */
611                 hammer2_state_reply(state, 0);
612                 /* state invalid after reply */
613
614                 /*
615                  * If the node still exists issue any required updates.  If
616                  * it doesn't then all related relays have already been
617                  * removed and there's nothing left to do.
618                  */
619 #if 0
620                 if (node)
621                         hammer2_relay_scan(NULL, node);
622 #endif
623                 if (node)
624                         hammer2_router_signal(msg->router);
625         }
626
627         pthread_mutex_unlock(&cluster_mtx);
628 }
629
630 /*
631  * Messages received on relay SPANs.  These are open transactions so it is
632  * in fact possible for the other end to close the transaction.
633  *
634  * XXX MPRACE on state structure
635  */
636 static void
637 hammer2_lnk_relay(hammer2_msg_t *msg)
638 {
639         hammer2_state_t *state = msg->state;
640         h2span_relay_t *relay;
641
642         assert(msg->any.head.cmd & HAMMER2_MSGF_REPLY);
643
644         if (msg->any.head.cmd & HAMMER2_MSGF_DELETE) {
645                 pthread_mutex_lock(&cluster_mtx);
646                 if ((relay = state->any.relay) != NULL) {
647                         hammer2_relay_delete(relay);
648                 } else {
649                         hammer2_state_reply(state, 0);
650                 }
651                 pthread_mutex_unlock(&cluster_mtx);
652         }
653 }
654
655 /*
656  * Update relay transactions for SPANs.
657  *
658  * Called with cluster_mtx held.
659  */
660 static void hammer2_relay_scan_specific(h2span_node_t *node,
661                                         h2span_connect_t *conn);
662
663 static void
664 hammer2_relay_scan(h2span_connect_t *conn, h2span_node_t *node)
665 {
666         h2span_cluster_t *cls;
667
668         if (node) {
669                 /*
670                  * Iterate specific node
671                  */
672                 TAILQ_FOREACH(conn, &connq, entry)
673                         hammer2_relay_scan_specific(node, conn);
674         } else {
675                 /*
676                  * Full iteration.
677                  *
678                  * Iterate cluster ids, nodes, and either a specific connection
679                  * or all connections.
680                  */
681                 RB_FOREACH(cls, h2span_cluster_tree, &cluster_tree) {
682                         /*
683                          * Iterate node ids
684                          */
685                         RB_FOREACH(node, h2span_node_tree, &cls->tree) {
686                                 /*
687                                  * Synchronize the node's link (received SPANs)
688                                  * with each connection's relays.
689                                  */
690                                 if (conn) {
691                                         hammer2_relay_scan_specific(node, conn);
692                                 } else {
693                                         TAILQ_FOREACH(conn, &connq, entry) {
694                                             hammer2_relay_scan_specific(node,
695                                                                         conn);
696                                         }
697                                         assert(conn == NULL);
698                                 }
699                         }
700                 }
701         }
702 }
703
704 /*
705  * Update the relay'd SPANs for this (node, conn).
706  *
707  * Iterate links and adjust relays to match.  We only propagate the top link
708  * for now (XXX we want to propagate the top two).
709  *
710  * The hammer2_relay_scan_cmp() function locates the first relay element
711  * for any given node.  The relay elements will be sub-sorted by dist.
712  */
713 struct relay_scan_info {
714         h2span_node_t *node;
715         h2span_relay_t *relay;
716 };
717
718 static int
719 hammer2_relay_scan_cmp(h2span_relay_t *relay, void *arg)
720 {
721         struct relay_scan_info *info = arg;
722
723         if ((intptr_t)relay->link->node < (intptr_t)info->node)
724                 return(-1);
725         if ((intptr_t)relay->link->node > (intptr_t)info->node)
726                 return(1);
727         return(0);
728 }
729
730 static int
731 hammer2_relay_scan_callback(h2span_relay_t *relay, void *arg)
732 {
733         struct relay_scan_info *info = arg;
734
735         info->relay = relay;
736         return(-1);
737 }
738
739 static void
740 hammer2_relay_scan_specific(h2span_node_t *node, h2span_connect_t *conn)
741 {
742         struct relay_scan_info info;
743         h2span_relay_t *relay;
744         h2span_relay_t *next_relay;
745         h2span_link_t *slink;
746         int count = 2;
747
748         info.node = node;
749         info.relay = NULL;
750
751         /*
752          * Locate the first related relay for the node on this connection.
753          * relay will be NULL if there were none.
754          */
755         RB_SCAN(h2span_relay_tree, &conn->tree,
756                 hammer2_relay_scan_cmp, hammer2_relay_scan_callback, &info);
757         relay = info.relay;
758         info.relay = NULL;
759         if (relay)
760                 assert(relay->link->node == node);
761
762         if (DebugOpt > 8)
763                 fprintf(stderr, "relay scan for connection %p\n", conn);
764
765         /*
766          * Iterate the node's links (received SPANs) in distance order,
767          * lowest (best) dist first.
768          */
769         /* fprintf(stderr, "LOOP\n"); */
770         RB_FOREACH(slink, h2span_link_tree, &node->tree) {
771                 /*
772                 fprintf(stderr, "SLINK %p RELAY %p(%p)\n",
773                         slink, relay, relay ? relay->link : NULL);
774                 */
775                 /*
776                  * PROPAGATE THE BEST LINKS OVER THE SPECIFIED CONNECTION.
777                  *
778                  * Track relays while iterating the best links and construct
779                  * missing relays when necessary.
780                  *
781                  * (If some prior better link was removed it would have also
782                  *  removed the relay, so the relay can only match exactly or
783                  *  be worse).
784                  */
785                 if (relay && relay->link == slink) {
786                         /*
787                          * Match, relay already in-place, get the next
788                          * relay to match against the next slink.
789                          */
790                         relay = RB_NEXT(h2span_relay_tree, &conn->tree, relay);
791                         if (--count == 0)
792                                 break;
793                 } else if (slink->dist > HAMMER2_SPAN_MAXDIST) {
794                         /*
795                          * No match but span distance is too great,
796                          * do not relay.  This prevents endless closed
797                          * loops with ever-incrementing distances when
798                          * the seed span is lost in the graph.
799                          *
800                          * All later spans will also be too far away so
801                          * we can break out of the loop.
802                          */
803                         break;
804                 } else {
805                         /*
806                          * No match, distance is ok, construct a new relay.
807                          * (slink is better than relay).
808                          */
809                         hammer2_msg_t *msg;
810
811                         assert(relay == NULL ||
812                                relay->link->node != slink->node ||
813                                relay->link->dist >= slink->dist);
814                         relay = hammer2_alloc(sizeof(*relay));
815                         relay->conn = conn;
816                         relay->link = slink;
817
818                         msg = hammer2_msg_alloc(conn->state->iocom->router, 0,
819                                                 HAMMER2_LNK_SPAN |
820                                                 HAMMER2_MSGF_CREATE,
821                                                 hammer2_lnk_relay, relay);
822                         relay->state = msg->state;
823                         relay->router = hammer2_router_alloc();
824                         relay->router->iocom = relay->state->iocom;
825                         relay->router->relay = relay;
826                         relay->router->spanid = relay->state->msgid;
827
828                         msg->any.lnk_span = slink->state->msg->any.lnk_span;
829                         msg->any.lnk_span.dist = slink->dist + 1;
830
831                         hammer2_router_connect(relay->router);
832
833                         RB_INSERT(h2span_relay_tree, &conn->tree, relay);
834                         TAILQ_INSERT_TAIL(&slink->relayq, relay, entry);
835
836                         hammer2_msg_write(msg);
837
838                         fprintf(stderr,
839                                 "RELAY SPAN %p RELAY %p ON CLS=%p NODE=%p DIST=%d "
840                                 "FD %d state %p\n",
841                                 slink,
842                                 relay,
843                                 node->cls, node, slink->dist,
844                                 conn->state->iocom->sock_fd, relay->state);
845
846                         /*
847                          * Match (created new relay), get the next relay to
848                          * match against the next slink.
849                          */
850                         relay = RB_NEXT(h2span_relay_tree, &conn->tree, relay);
851                         if (--count == 0)
852                                 break;
853                 }
854         }
855
856         /*
857          * Any remaining relay's belonging to this connection which match
858          * the node are in excess of the current aggregate spanning state
859          * and should be removed.
860          */
861         while (relay && relay->link->node == node) {
862                 next_relay = RB_NEXT(h2span_relay_tree, &conn->tree, relay);
863                 hammer2_relay_delete(relay);
864                 relay = next_relay;
865         }
866 }
867
868 static
869 void
870 hammer2_relay_delete(h2span_relay_t *relay)
871 {
872         fprintf(stderr,
873                 "RELAY DELETE %p RELAY %p ON CLS=%p NODE=%p DIST=%d FD %d STATE %p\n",
874                 relay->link,
875                 relay,
876                 relay->link->node->cls, relay->link->node,
877                 relay->link->dist,
878                 relay->conn->state->iocom->sock_fd, relay->state);
879
880         hammer2_router_disconnect(&relay->router);
881
882         RB_REMOVE(h2span_relay_tree, &relay->conn->tree, relay);
883         TAILQ_REMOVE(&relay->link->relayq, relay, entry);
884
885         if (relay->state) {
886                 relay->state->any.relay = NULL;
887                 hammer2_state_reply(relay->state, 0);
888                 /* state invalid after reply */
889                 relay->state = NULL;
890         }
891         relay->conn = NULL;
892         relay->link = NULL;
893         hammer2_free(relay);
894 }
895
896 /************************************************************************
897  *                      ROUTER AND MESSAGING HANDLES                    *
898  ************************************************************************
899  *
900  * Basically the idea here is to provide a stable data structure which
901  * can be localized to the caller for higher level protocols to work with.
902  * Depends on the context, these hammer2_handle's can be pooled by use-case
903  * and remain persistent through a client (or mount point's) life.
904  */
905
906 #if 0
907 /*
908  * Obtain a stable handle on a cluster given its uuid.  This ties directly
909  * into the global cluster topology, creating the structure if necessary
910  * (even if the uuid does not exist or does not exist yet), and preventing
911  * the structure from getting ripped out from under us while we hold a
912  * pointer to it.
913  */
914 h2span_cluster_t *
915 hammer2_cluster_get(uuid_t *pfs_clid)
916 {
917         h2span_cluster_t dummy_cls;
918         h2span_cluster_t *cls;
919
920         dummy_cls.pfs_clid = *pfs_clid;
921         pthread_mutex_lock(&cluster_mtx);
922         cls = RB_FIND(h2span_cluster_tree, &cluster_tree, &dummy_cls);
923         if (cls)
924                 ++cls->refs;
925         pthread_mutex_unlock(&cluster_mtx);
926         return (cls);
927 }
928
929 void
930 hammer2_cluster_put(h2span_cluster_t *cls)
931 {
932         pthread_mutex_lock(&cluster_mtx);
933         assert(cls->refs > 0);
934         --cls->refs;
935         if (RB_EMPTY(&cls->tree) && cls->refs == 0) {
936                 RB_REMOVE(h2span_cluster_tree,
937                           &cluster_tree, cls);
938                 hammer2_free(cls);
939         }
940         pthread_mutex_unlock(&cluster_mtx);
941 }
942
943 /*
944  * Obtain a stable handle to a specific cluster node given its uuid.
945  * This handle does NOT lock in the route to the node and is typically
946  * used as part of the hammer2_handle_*() API to obtain a set of
947  * stable nodes.
948  */
949 h2span_node_t *
950 hammer2_node_get(h2span_cluster_t *cls, uuid_t *pfs_fsid)
951 {
952 }
953
954 #endif
955
956 #if 0
957 /*
958  * Acquire a persistent router structure given the cluster and node ids.
959  * Messages can be transacted via this structure while held.  If the route
960  * is lost messages will return failure.
961  */
962 hammer2_router_t *
963 hammer2_router_get(uuid_t *pfs_clid, uuid_t *pfs_fsid)
964 {
965 }
966
967 /*
968  * Release previously acquired router.
969  */
970 void
971 hammer2_router_put(hammer2_router_t *router)
972 {
973 }
974 #endif
975
976 /************************************************************************
977  *                              DEBUGGER                                *
978  ************************************************************************/
979 /*
980  * Dumps the spanning tree
981  */
982 void
983 shell_tree(hammer2_router_t *router, char *cmdbuf __unused)
984 {
985         h2span_cluster_t *cls;
986         h2span_node_t *node;
987         h2span_link_t *slink;
988         char *uustr = NULL;
989
990         pthread_mutex_lock(&cluster_mtx);
991         RB_FOREACH(cls, h2span_cluster_tree, &cluster_tree) {
992                 router_printf(router, "Cluster %s\n",
993                              hammer2_uuid_to_str(&cls->pfs_clid, &uustr));
994                 RB_FOREACH(node, h2span_node_tree, &cls->tree) {
995                         router_printf(router, "    Node %s (%s)\n",
996                                  hammer2_uuid_to_str(&node->pfs_fsid, &uustr),
997                                  node->label);
998                         RB_FOREACH(slink, h2span_link_tree, &node->tree) {
999                                 router_printf(router, "\tLink dist=%d via %d\n",
1000                                              slink->dist,
1001                                              slink->state->iocom->sock_fd);
1002                         }
1003                 }
1004         }
1005         pthread_mutex_unlock(&cluster_mtx);
1006         if (uustr)
1007                 free(uustr);
1008 #if 0
1009         TAILQ_FOREACH(conn, &connq, entry) {
1010         }
1011 #endif
1012 }