kernel - Fix CAM peripheral error handling
[dragonfly.git] / sys / vm / vm_fault.c
1 /*
2  * Copyright (c) 2003-2014 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * ---
35  *
36  * Copyright (c) 1991, 1993
37  *      The Regents of the University of California.  All rights reserved.
38  * Copyright (c) 1994 John S. Dyson
39  * All rights reserved.
40  * Copyright (c) 1994 David Greenman
41  * All rights reserved.
42  *
43  *
44  * This code is derived from software contributed to Berkeley by
45  * The Mach Operating System project at Carnegie-Mellon University.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * ---
72  *
73  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
74  * All rights reserved.
75  *
76  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
77  *
78  * Permission to use, copy, modify and distribute this software and
79  * its documentation is hereby granted, provided that both the copyright
80  * notice and this permission notice appear in all copies of the
81  * software, derivative works or modified versions, and any portions
82  * thereof, and that both notices appear in supporting documentation.
83  *
84  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
85  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
86  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
87  *
88  * Carnegie Mellon requests users of this software to return to
89  *
90  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
91  *  School of Computer Science
92  *  Carnegie Mellon University
93  *  Pittsburgh PA 15213-3890
94  *
95  * any improvements or extensions that they make and grant Carnegie the
96  * rights to redistribute these changes.
97  */
98
99 /*
100  *      Page fault handling module.
101  */
102
103 #include <sys/param.h>
104 #include <sys/systm.h>
105 #include <sys/kernel.h>
106 #include <sys/proc.h>
107 #include <sys/vnode.h>
108 #include <sys/resourcevar.h>
109 #include <sys/vmmeter.h>
110 #include <sys/vkernel.h>
111 #include <sys/lock.h>
112 #include <sys/sysctl.h>
113
114 #include <cpu/lwbuf.h>
115
116 #include <vm/vm.h>
117 #include <vm/vm_param.h>
118 #include <vm/pmap.h>
119 #include <vm/vm_map.h>
120 #include <vm/vm_object.h>
121 #include <vm/vm_page.h>
122 #include <vm/vm_pageout.h>
123 #include <vm/vm_kern.h>
124 #include <vm/vm_pager.h>
125 #include <vm/vnode_pager.h>
126 #include <vm/vm_extern.h>
127
128 #include <sys/thread2.h>
129 #include <vm/vm_page2.h>
130
131 struct faultstate {
132         vm_page_t m;
133         vm_object_t object;
134         vm_pindex_t pindex;
135         vm_prot_t prot;
136         vm_page_t first_m;
137         vm_object_t first_object;
138         vm_prot_t first_prot;
139         vm_map_t map;
140         vm_map_entry_t entry;
141         int lookup_still_valid;
142         int hardfault;
143         int fault_flags;
144         int map_generation;
145         int shared;
146         int first_shared;
147         int wflags;
148         struct vnode *vp;
149 };
150
151 static int debug_fault = 0;
152 SYSCTL_INT(_vm, OID_AUTO, debug_fault, CTLFLAG_RW, &debug_fault, 0, "");
153 static int debug_cluster = 0;
154 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
155 static int virtual_copy_enable = 1;
156 SYSCTL_INT(_vm, OID_AUTO, virtual_copy_enable, CTLFLAG_RW,
157                 &virtual_copy_enable, 0, "");
158 int vm_shared_fault = 1;
159 TUNABLE_INT("vm.shared_fault", &vm_shared_fault);
160 SYSCTL_INT(_vm, OID_AUTO, shared_fault, CTLFLAG_RW,
161                 &vm_shared_fault, 0, "Allow shared token on vm_object");
162
163 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t, int);
164 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *,
165                         vpte_t, int, int);
166 #if 0
167 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
168 #endif
169 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
170 static void vm_prefault(pmap_t pmap, vm_offset_t addra,
171                         vm_map_entry_t entry, int prot, int fault_flags);
172 static void vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
173                         vm_map_entry_t entry, int prot, int fault_flags);
174
175 static __inline void
176 release_page(struct faultstate *fs)
177 {
178         vm_page_deactivate(fs->m);
179         vm_page_wakeup(fs->m);
180         fs->m = NULL;
181 }
182
183 /*
184  * NOTE: Once unlocked any cached fs->entry becomes invalid, any reuse
185  *       requires relocking and then checking the timestamp.
186  *
187  * NOTE: vm_map_lock_read() does not bump fs->map->timestamp so we do
188  *       not have to update fs->map_generation here.
189  *
190  * NOTE: This function can fail due to a deadlock against the caller's
191  *       holding of a vm_page BUSY.
192  */
193 static __inline int
194 relock_map(struct faultstate *fs)
195 {
196         int error;
197
198         if (fs->lookup_still_valid == FALSE && fs->map) {
199                 error = vm_map_lock_read_to(fs->map);
200                 if (error == 0)
201                         fs->lookup_still_valid = TRUE;
202         } else {
203                 error = 0;
204         }
205         return error;
206 }
207
208 static __inline void
209 unlock_map(struct faultstate *fs)
210 {
211         if (fs->lookup_still_valid && fs->map) {
212                 vm_map_lookup_done(fs->map, fs->entry, 0);
213                 fs->lookup_still_valid = FALSE;
214         }
215 }
216
217 /*
218  * Clean up after a successful call to vm_fault_object() so another call
219  * to vm_fault_object() can be made.
220  */
221 static void
222 _cleanup_successful_fault(struct faultstate *fs, int relock)
223 {
224         /*
225          * We allocated a junk page for a COW operation that did
226          * not occur, the page must be freed.
227          */
228         if (fs->object != fs->first_object) {
229                 KKASSERT(fs->first_shared == 0);
230                 vm_page_free(fs->first_m);
231                 vm_object_pip_wakeup(fs->object);
232                 fs->first_m = NULL;
233         }
234
235         /*
236          * Reset fs->object.
237          */
238         fs->object = fs->first_object;
239         if (relock && fs->lookup_still_valid == FALSE) {
240                 if (fs->map)
241                         vm_map_lock_read(fs->map);
242                 fs->lookup_still_valid = TRUE;
243         }
244 }
245
246 static void
247 _unlock_things(struct faultstate *fs, int dealloc)
248 {
249         _cleanup_successful_fault(fs, 0);
250         if (dealloc) {
251                 /*vm_object_deallocate(fs->first_object);*/
252                 /*fs->first_object = NULL; drop used later on */
253         }
254         unlock_map(fs); 
255         if (fs->vp != NULL) { 
256                 vput(fs->vp);
257                 fs->vp = NULL;
258         }
259 }
260
261 #define unlock_things(fs) _unlock_things(fs, 0)
262 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
263 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
264
265 /*
266  * Virtual copy tests.   Used by the fault code to determine if a
267  * page can be moved from an orphan vm_object into its shadow
268  * instead of copying its contents.
269  */
270 static __inline int
271 virtual_copy_test(struct faultstate *fs)
272 {
273         /*
274          * Must be holding exclusive locks
275          */
276         if (fs->first_shared || fs->shared || virtual_copy_enable == 0)
277                 return 0;
278
279         /*
280          * Map, if present, has not changed
281          */
282         if (fs->map && fs->map_generation != fs->map->timestamp)
283                 return 0;
284
285         /*
286          * Only one shadow object
287          */
288         if (fs->object->shadow_count != 1)
289                 return 0;
290
291         /*
292          * No COW refs, except us
293          */
294         if (fs->object->ref_count != 1)
295                 return 0;
296
297         /*
298          * No one else can look this object up
299          */
300         if (fs->object->handle != NULL)
301                 return 0;
302
303         /*
304          * No other ways to look the object up
305          */
306         if (fs->object->type != OBJT_DEFAULT &&
307             fs->object->type != OBJT_SWAP)
308                 return 0;
309
310         /*
311          * We don't chase down the shadow chain
312          */
313         if (fs->object != fs->first_object->backing_object)
314                 return 0;
315
316         return 1;
317 }
318
319 static __inline int
320 virtual_copy_ok(struct faultstate *fs)
321 {
322         if (virtual_copy_test(fs)) {
323                 /*
324                  * Grab the lock and re-test changeable items.
325                  */
326                 if (fs->lookup_still_valid == FALSE && fs->map) {
327                         if (lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT))
328                                 return 0;
329                         fs->lookup_still_valid = TRUE;
330                         if (virtual_copy_test(fs)) {
331                                 fs->map_generation = ++fs->map->timestamp;
332                                 return 1;
333                         }
334                         fs->lookup_still_valid = FALSE;
335                         lockmgr(&fs->map->lock, LK_RELEASE);
336                 }
337         }
338         return 0;
339 }
340
341 /*
342  * TRYPAGER 
343  *
344  * Determine if the pager for the current object *might* contain the page.
345  *
346  * We only need to try the pager if this is not a default object (default
347  * objects are zero-fill and have no real pager), and if we are not taking
348  * a wiring fault or if the FS entry is wired.
349  */
350 #define TRYPAGER(fs)    \
351                 (fs->object->type != OBJT_DEFAULT &&                    \
352                 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) ||       \
353                  (fs->wflags & FW_WIRED)))
354
355 /*
356  * vm_fault:
357  *
358  * Handle a page fault occuring at the given address, requiring the given
359  * permissions, in the map specified.  If successful, the page is inserted
360  * into the associated physical map.
361  *
362  * NOTE: The given address should be truncated to the proper page address.
363  *
364  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
365  * a standard error specifying why the fault is fatal is returned.
366  *
367  * The map in question must be referenced, and remains so.
368  * The caller may hold no locks.
369  * No other requirements.
370  */
371 int
372 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
373 {
374         int result;
375         vm_pindex_t first_pindex;
376         struct faultstate fs;
377         struct lwp *lp;
378         struct proc *p;
379         thread_t td;
380         struct vm_map_ilock ilock;
381         int didilock;
382         int growstack;
383         int retry = 0;
384         int inherit_prot;
385
386         inherit_prot = fault_type & VM_PROT_NOSYNC;
387         fs.hardfault = 0;
388         fs.fault_flags = fault_flags;
389         fs.vp = NULL;
390         fs.shared = vm_shared_fault;
391         fs.first_shared = vm_shared_fault;
392         growstack = 1;
393
394         /*
395          * vm_map interactions
396          */
397         td = curthread;
398         if ((lp = td->td_lwp) != NULL)
399                 lp->lwp_flags |= LWP_PAGING;
400
401 RetryFault:
402         /*
403          * Find the vm_map_entry representing the backing store and resolve
404          * the top level object and page index.  This may have the side
405          * effect of executing a copy-on-write on the map entry,
406          * creating a shadow object, or splitting an anonymous entry for
407          * performance, but will not COW any actual VM pages.
408          *
409          * On success fs.map is left read-locked and various other fields 
410          * are initialized but not otherwise referenced or locked.
411          *
412          * NOTE!  vm_map_lookup will try to upgrade the fault_type to
413          *        VM_FAULT_WRITE if the map entry is a virtual page table
414          *        and also writable, so we can set the 'A'accessed bit in
415          *        the virtual page table entry.
416          */
417         fs.map = map;
418         result = vm_map_lookup(&fs.map, vaddr, fault_type,
419                                &fs.entry, &fs.first_object,
420                                &first_pindex, &fs.first_prot, &fs.wflags);
421
422         /*
423          * If the lookup failed or the map protections are incompatible,
424          * the fault generally fails.
425          *
426          * The failure could be due to TDF_NOFAULT if vm_map_lookup()
427          * tried to do a COW fault.
428          *
429          * If the caller is trying to do a user wiring we have more work
430          * to do.
431          */
432         if (result != KERN_SUCCESS) {
433                 if (result == KERN_FAILURE_NOFAULT) {
434                         result = KERN_FAILURE;
435                         goto done;
436                 }
437                 if (result != KERN_PROTECTION_FAILURE ||
438                     (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
439                 {
440                         if (result == KERN_INVALID_ADDRESS && growstack &&
441                             map != &kernel_map && curproc != NULL) {
442                                 result = vm_map_growstack(map, vaddr);
443                                 if (result == KERN_SUCCESS) {
444                                         growstack = 0;
445                                         ++retry;
446                                         goto RetryFault;
447                                 }
448                                 result = KERN_FAILURE;
449                         }
450                         goto done;
451                 }
452
453                 /*
454                  * If we are user-wiring a r/w segment, and it is COW, then
455                  * we need to do the COW operation.  Note that we don't
456                  * currently COW RO sections now, because it is NOT desirable
457                  * to COW .text.  We simply keep .text from ever being COW'ed
458                  * and take the heat that one cannot debug wired .text sections.
459                  *
460                  * XXX Try to allow the above by specifying OVERRIDE_WRITE.
461                  */
462                 result = vm_map_lookup(&fs.map, vaddr,
463                                        VM_PROT_READ|VM_PROT_WRITE|
464                                         VM_PROT_OVERRIDE_WRITE,
465                                        &fs.entry, &fs.first_object,
466                                        &first_pindex, &fs.first_prot,
467                                        &fs.wflags);
468                 if (result != KERN_SUCCESS) {
469                         /* could also be KERN_FAILURE_NOFAULT */
470                         result = KERN_FAILURE;
471                         goto done;
472                 }
473
474                 /*
475                  * If we don't COW now, on a user wire, the user will never
476                  * be able to write to the mapping.  If we don't make this
477                  * restriction, the bookkeeping would be nearly impossible.
478                  *
479                  * XXX We have a shared lock, this will have a MP race but
480                  * I don't see how it can hurt anything.
481                  */
482                 if ((fs.entry->protection & VM_PROT_WRITE) == 0) {
483                         atomic_clear_char(&fs.entry->max_protection,
484                                           VM_PROT_WRITE);
485                 }
486         }
487
488         /*
489          * fs.map is read-locked
490          *
491          * Misc checks.  Save the map generation number to detect races.
492          */
493         fs.map_generation = fs.map->timestamp;
494         fs.lookup_still_valid = TRUE;
495         fs.first_m = NULL;
496         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
497         fs.prot = fs.first_prot;        /* default (used by uksmap) */
498
499         if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
500                 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
501                         panic("vm_fault: fault on nofault entry, addr: %p",
502                               (void *)vaddr);
503                 }
504                 if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
505                     vaddr >= fs.entry->start &&
506                     vaddr < fs.entry->start + PAGE_SIZE) {
507                         panic("vm_fault: fault on stack guard, addr: %p",
508                               (void *)vaddr);
509                 }
510         }
511
512         /*
513          * A user-kernel shared map has no VM object and bypasses
514          * everything.  We execute the uksmap function with a temporary
515          * fictitious vm_page.  The address is directly mapped with no
516          * management.
517          */
518         if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
519                 struct vm_page fakem;
520
521                 bzero(&fakem, sizeof(fakem));
522                 fakem.pindex = first_pindex;
523                 fakem.flags = PG_FICTITIOUS | PG_UNMANAGED;
524                 fakem.busy_count = PBUSY_LOCKED;
525                 fakem.valid = VM_PAGE_BITS_ALL;
526                 fakem.pat_mode = VM_MEMATTR_DEFAULT;
527                 if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
528                         result = KERN_FAILURE;
529                         unlock_things(&fs);
530                         goto done2;
531                 }
532                 pmap_enter(fs.map->pmap, vaddr, &fakem, fs.prot | inherit_prot,
533                            (fs.wflags & FW_WIRED), fs.entry);
534                 goto done_success;
535         }
536
537         /*
538          * A system map entry may return a NULL object.  No object means
539          * no pager means an unrecoverable kernel fault.
540          */
541         if (fs.first_object == NULL) {
542                 panic("vm_fault: unrecoverable fault at %p in entry %p",
543                         (void *)vaddr, fs.entry);
544         }
545
546         /*
547          * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
548          * is set.
549          *
550          * Unfortunately a deadlock can occur if we are forced to page-in
551          * from swap, but diving all the way into the vm_pager_get_page()
552          * function to find out is too much.  Just check the object type.
553          *
554          * The deadlock is a CAM deadlock on a busy VM page when trying
555          * to finish an I/O if another process gets stuck in
556          * vop_helper_read_shortcut() due to a swap fault.
557          */
558         if ((td->td_flags & TDF_NOFAULT) &&
559             (retry ||
560              fs.first_object->type == OBJT_VNODE ||
561              fs.first_object->type == OBJT_SWAP ||
562              fs.first_object->backing_object)) {
563                 result = KERN_FAILURE;
564                 unlock_things(&fs);
565                 goto done2;
566         }
567
568         /*
569          * If the entry is wired we cannot change the page protection.
570          */
571         if (fs.wflags & FW_WIRED)
572                 fault_type = fs.first_prot;
573
574         /*
575          * We generally want to avoid unnecessary exclusive modes on backing
576          * and terminal objects because this can seriously interfere with
577          * heavily fork()'d processes (particularly /bin/sh scripts).
578          *
579          * However, we also want to avoid unnecessary retries due to needed
580          * shared->exclusive promotion for common faults.  Exclusive mode is
581          * always needed if any page insertion, rename, or free occurs in an
582          * object (and also indirectly if any I/O is done).
583          *
584          * The main issue here is going to be fs.first_shared.  If the
585          * first_object has a backing object which isn't shadowed and the
586          * process is single-threaded we might as well use an exclusive
587          * lock/chain right off the bat.
588          */
589         if (fs.first_shared && fs.first_object->backing_object &&
590             LIST_EMPTY(&fs.first_object->shadow_head) &&
591             td->td_proc && td->td_proc->p_nthreads == 1) {
592                 fs.first_shared = 0;
593         }
594
595         /*
596          * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
597          * VM_FAULT_DIRTY  - may require swap_pager_unswapped() later, but
598          *                   we can try shared first.
599          */
600         if (fault_flags & VM_FAULT_UNSWAP) {
601                 fs.first_shared = 0;
602         }
603
604         /*
605          * Obtain a top-level object lock, shared or exclusive depending
606          * on fs.first_shared.  If a shared lock winds up being insufficient
607          * we will retry with an exclusive lock.
608          *
609          * The vnode pager lock is always shared.
610          */
611         if (fs.first_shared)
612                 vm_object_hold_shared(fs.first_object);
613         else
614                 vm_object_hold(fs.first_object);
615         if (fs.vp == NULL)
616                 fs.vp = vnode_pager_lock(fs.first_object);
617
618         /*
619          * The page we want is at (first_object, first_pindex), but if the
620          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
621          * page table to figure out the actual pindex.
622          *
623          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
624          * ONLY
625          */
626         didilock = 0;
627         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
628                 vm_map_interlock(fs.map, &ilock, vaddr, vaddr + PAGE_SIZE);
629                 didilock = 1;
630                 result = vm_fault_vpagetable(&fs, &first_pindex,
631                                              fs.entry->aux.master_pde,
632                                              fault_type, 1);
633                 if (result == KERN_TRY_AGAIN) {
634                         vm_map_deinterlock(fs.map, &ilock);
635                         vm_object_drop(fs.first_object);
636                         ++retry;
637                         goto RetryFault;
638                 }
639                 if (result != KERN_SUCCESS) {
640                         vm_map_deinterlock(fs.map, &ilock);
641                         goto done;
642                 }
643         }
644
645         /*
646          * Now we have the actual (object, pindex), fault in the page.  If
647          * vm_fault_object() fails it will unlock and deallocate the FS
648          * data.   If it succeeds everything remains locked and fs->object
649          * will have an additional PIP count if it is not equal to
650          * fs->first_object
651          *
652          * vm_fault_object will set fs->prot for the pmap operation.  It is
653          * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
654          * page can be safely written.  However, it will force a read-only
655          * mapping for a read fault if the memory is managed by a virtual
656          * page table.
657          *
658          * If the fault code uses the shared object lock shortcut
659          * we must not try to burst (we can't allocate VM pages).
660          */
661         result = vm_fault_object(&fs, first_pindex, fault_type, 1);
662
663         if (debug_fault > 0) {
664                 --debug_fault;
665                 kprintf("VM_FAULT result %d addr=%jx type=%02x flags=%02x "
666                         "fs.m=%p fs.prot=%02x fs.wflags=%02x fs.entry=%p\n",
667                         result, (intmax_t)vaddr, fault_type, fault_flags,
668                         fs.m, fs.prot, fs.wflags, fs.entry);
669         }
670
671         if (result == KERN_TRY_AGAIN) {
672                 if (didilock)
673                         vm_map_deinterlock(fs.map, &ilock);
674                 vm_object_drop(fs.first_object);
675                 ++retry;
676                 goto RetryFault;
677         }
678         if (result != KERN_SUCCESS) {
679                 if (didilock)
680                         vm_map_deinterlock(fs.map, &ilock);
681                 goto done;
682         }
683
684         /*
685          * On success vm_fault_object() does not unlock or deallocate, and fs.m
686          * will contain a busied page.
687          *
688          * Enter the page into the pmap and do pmap-related adjustments.
689          */
690         KKASSERT(fs.lookup_still_valid == TRUE);
691         vm_page_flag_set(fs.m, PG_REFERENCED);
692         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot | inherit_prot,
693                    fs.wflags & FW_WIRED, fs.entry);
694
695         if (didilock)
696                 vm_map_deinterlock(fs.map, &ilock);
697
698         /*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */
699         KKASSERT(fs.m->busy_count & PBUSY_LOCKED);
700
701         /*
702          * If the page is not wired down, then put it where the pageout daemon
703          * can find it.
704          */
705         if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
706                 if (fs.wflags & FW_WIRED)
707                         vm_page_wire(fs.m);
708                 else
709                         vm_page_unwire(fs.m, 1);
710         } else {
711                 vm_page_activate(fs.m);
712         }
713         vm_page_wakeup(fs.m);
714
715         /*
716          * Burst in a few more pages if possible.  The fs.map should still
717          * be locked.  To avoid interlocking against a vnode->getblk
718          * operation we had to be sure to unbusy our primary vm_page above
719          * first.
720          *
721          * A normal burst can continue down backing store, only execute
722          * if we are holding an exclusive lock, otherwise the exclusive
723          * locks the burst code gets might cause excessive SMP collisions.
724          *
725          * A quick burst can be utilized when there is no backing object
726          * (i.e. a shared file mmap).
727          */
728         if ((fault_flags & VM_FAULT_BURST) &&
729             (fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
730             (fs.wflags & FW_WIRED) == 0) {
731                 if (fs.first_shared == 0 && fs.shared == 0) {
732                         vm_prefault(fs.map->pmap, vaddr,
733                                     fs.entry, fs.prot, fault_flags);
734                 } else {
735                         vm_prefault_quick(fs.map->pmap, vaddr,
736                                           fs.entry, fs.prot, fault_flags);
737                 }
738         }
739
740 done_success:
741         mycpu->gd_cnt.v_vm_faults++;
742         if (td->td_lwp)
743                 ++td->td_lwp->lwp_ru.ru_minflt;
744
745         /*
746          * Unlock everything, and return
747          */
748         unlock_things(&fs);
749
750         if (td->td_lwp) {
751                 if (fs.hardfault) {
752                         td->td_lwp->lwp_ru.ru_majflt++;
753                 } else {
754                         td->td_lwp->lwp_ru.ru_minflt++;
755                 }
756         }
757
758         /*vm_object_deallocate(fs.first_object);*/
759         /*fs.m = NULL; */
760         /*fs.first_object = NULL; must still drop later */
761
762         result = KERN_SUCCESS;
763 done:
764         if (fs.first_object)
765                 vm_object_drop(fs.first_object);
766 done2:
767         if (lp)
768                 lp->lwp_flags &= ~LWP_PAGING;
769
770 #if !defined(NO_SWAPPING)
771         /*
772          * Check the process RSS limit and force deactivation and
773          * (asynchronous) paging if necessary.  This is a complex operation,
774          * only do it for direct user-mode faults, for now.
775          *
776          * To reduce overhead implement approximately a ~16MB hysteresis.
777          */
778         p = td->td_proc;
779         if ((fault_flags & VM_FAULT_USERMODE) && lp &&
780             p->p_limit && map->pmap && vm_pageout_memuse_mode >= 1 &&
781             map != &kernel_map) {
782                 vm_pindex_t limit;
783                 vm_pindex_t size;
784
785                 limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
786                                         p->p_rlimit[RLIMIT_RSS].rlim_max));
787                 size = pmap_resident_tlnw_count(map->pmap);
788                 if (limit >= 0 && size > 4096 && size - 4096 >= limit) {
789                         vm_pageout_map_deactivate_pages(map, limit);
790                 }
791         }
792 #endif
793
794         return (result);
795 }
796
797 /*
798  * Fault in the specified virtual address in the current process map, 
799  * returning a held VM page or NULL.  See vm_fault_page() for more 
800  * information.
801  *
802  * No requirements.
803  */
804 vm_page_t
805 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type,
806                     int *errorp, int *busyp)
807 {
808         struct lwp *lp = curthread->td_lwp;
809         vm_page_t m;
810
811         m = vm_fault_page(&lp->lwp_vmspace->vm_map, va, 
812                           fault_type, VM_FAULT_NORMAL,
813                           errorp, busyp);
814         return(m);
815 }
816
817 /*
818  * Fault in the specified virtual address in the specified map, doing all
819  * necessary manipulation of the object store and all necessary I/O.  Return
820  * a held VM page or NULL, and set *errorp.  The related pmap is not
821  * updated.
822  *
823  * If busyp is not NULL then *busyp will be set to TRUE if this routine
824  * decides to return a busied page (aka VM_PROT_WRITE), or FALSE if it
825  * does not (VM_PROT_WRITE not specified or busyp is NULL).  If busyp is
826  * NULL the returned page is only held.
827  *
828  * If the caller has no intention of writing to the page's contents, busyp
829  * can be passed as NULL along with VM_PROT_WRITE to force a COW operation
830  * without busying the page.
831  *
832  * The returned page will also be marked PG_REFERENCED.
833  *
834  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
835  * error will be returned.
836  *
837  * No requirements.
838  */
839 vm_page_t
840 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
841               int fault_flags, int *errorp, int *busyp)
842 {
843         vm_pindex_t first_pindex;
844         struct faultstate fs;
845         int result;
846         int retry;
847         int growstack;
848         int didcow;
849         vm_prot_t orig_fault_type = fault_type;
850
851         retry = 0;
852         didcow = 0;
853         fs.hardfault = 0;
854         fs.fault_flags = fault_flags;
855         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
856
857         /*
858          * Dive the pmap (concurrency possible).  If we find the
859          * appropriate page we can terminate early and quickly.
860          *
861          * This works great for normal programs but will always return
862          * NULL for host lookups of vkernel maps in VMM mode.
863          *
864          * NOTE: pmap_fault_page_quick() might not busy the page.  If
865          *       VM_PROT_WRITE is set in fault_type and pmap_fault_page_quick()
866          *       returns non-NULL, it will safely dirty the returned vm_page_t
867          *       for us.  We cannot safely dirty it here (it might not be
868          *       busy).
869          */
870         fs.m = pmap_fault_page_quick(map->pmap, vaddr, fault_type, busyp);
871         if (fs.m) {
872                 *errorp = 0;
873                 return(fs.m);
874         }
875
876         /*
877          * Otherwise take a concurrency hit and do a formal page
878          * fault.
879          */
880         fs.vp = NULL;
881         fs.shared = vm_shared_fault;
882         fs.first_shared = vm_shared_fault;
883         growstack = 1;
884
885         /*
886          * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
887          * VM_FAULT_DIRTY  - may require swap_pager_unswapped() later, but
888          *                   we can try shared first.
889          */
890         if (fault_flags & VM_FAULT_UNSWAP) {
891                 fs.first_shared = 0;
892         }
893
894 RetryFault:
895         /*
896          * Find the vm_map_entry representing the backing store and resolve
897          * the top level object and page index.  This may have the side
898          * effect of executing a copy-on-write on the map entry and/or
899          * creating a shadow object, but will not COW any actual VM pages.
900          *
901          * On success fs.map is left read-locked and various other fields 
902          * are initialized but not otherwise referenced or locked.
903          *
904          * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
905          *        if the map entry is a virtual page table and also writable,
906          *        so we can set the 'A'accessed bit in the virtual page table
907          *        entry.
908          */
909         fs.map = map;
910         result = vm_map_lookup(&fs.map, vaddr, fault_type,
911                                &fs.entry, &fs.first_object,
912                                &first_pindex, &fs.first_prot, &fs.wflags);
913
914         if (result != KERN_SUCCESS) {
915                 if (result == KERN_FAILURE_NOFAULT) {
916                         *errorp = KERN_FAILURE;
917                         fs.m = NULL;
918                         goto done;
919                 }
920                 if (result != KERN_PROTECTION_FAILURE ||
921                     (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
922                 {
923                         if (result == KERN_INVALID_ADDRESS && growstack &&
924                             map != &kernel_map && curproc != NULL) {
925                                 result = vm_map_growstack(map, vaddr);
926                                 if (result == KERN_SUCCESS) {
927                                         growstack = 0;
928                                         ++retry;
929                                         goto RetryFault;
930                                 }
931                                 result = KERN_FAILURE;
932                         }
933                         fs.m = NULL;
934                         *errorp = result;
935                         goto done;
936                 }
937
938                 /*
939                  * If we are user-wiring a r/w segment, and it is COW, then
940                  * we need to do the COW operation.  Note that we don't
941                  * currently COW RO sections now, because it is NOT desirable
942                  * to COW .text.  We simply keep .text from ever being COW'ed
943                  * and take the heat that one cannot debug wired .text sections.
944                  */
945                 result = vm_map_lookup(&fs.map, vaddr,
946                                        VM_PROT_READ|VM_PROT_WRITE|
947                                         VM_PROT_OVERRIDE_WRITE,
948                                        &fs.entry, &fs.first_object,
949                                        &first_pindex, &fs.first_prot,
950                                        &fs.wflags);
951                 if (result != KERN_SUCCESS) {
952                         /* could also be KERN_FAILURE_NOFAULT */
953                         *errorp = KERN_FAILURE;
954                         fs.m = NULL;
955                         goto done;
956                 }
957
958                 /*
959                  * If we don't COW now, on a user wire, the user will never
960                  * be able to write to the mapping.  If we don't make this
961                  * restriction, the bookkeeping would be nearly impossible.
962                  *
963                  * XXX We have a shared lock, this will have a MP race but
964                  * I don't see how it can hurt anything.
965                  */
966                 if ((fs.entry->protection & VM_PROT_WRITE) == 0) {
967                         atomic_clear_char(&fs.entry->max_protection,
968                                           VM_PROT_WRITE);
969                 }
970         }
971
972         /*
973          * fs.map is read-locked
974          *
975          * Misc checks.  Save the map generation number to detect races.
976          */
977         fs.map_generation = fs.map->timestamp;
978         fs.lookup_still_valid = TRUE;
979         fs.first_m = NULL;
980         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
981
982         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
983                 panic("vm_fault: fault on nofault entry, addr: %lx",
984                     (u_long)vaddr);
985         }
986
987         /*
988          * A user-kernel shared map has no VM object and bypasses
989          * everything.  We execute the uksmap function with a temporary
990          * fictitious vm_page.  The address is directly mapped with no
991          * management.
992          */
993         if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
994                 struct vm_page fakem;
995
996                 bzero(&fakem, sizeof(fakem));
997                 fakem.pindex = first_pindex;
998                 fakem.flags = PG_FICTITIOUS | PG_UNMANAGED;
999                 fakem.busy_count = PBUSY_LOCKED;
1000                 fakem.valid = VM_PAGE_BITS_ALL;
1001                 fakem.pat_mode = VM_MEMATTR_DEFAULT;
1002                 if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
1003                         *errorp = KERN_FAILURE;
1004                         fs.m = NULL;
1005                         unlock_things(&fs);
1006                         goto done2;
1007                 }
1008                 fs.m = PHYS_TO_VM_PAGE(fakem.phys_addr);
1009                 vm_page_hold(fs.m);
1010                 if (busyp)
1011                         *busyp = 0;     /* don't need to busy R or W */
1012                 unlock_things(&fs);
1013                 *errorp = 0;
1014                 goto done;
1015         }
1016
1017
1018         /*
1019          * A system map entry may return a NULL object.  No object means
1020          * no pager means an unrecoverable kernel fault.
1021          */
1022         if (fs.first_object == NULL) {
1023                 panic("vm_fault: unrecoverable fault at %p in entry %p",
1024                         (void *)vaddr, fs.entry);
1025         }
1026
1027         /*
1028          * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
1029          * is set.
1030          *
1031          * Unfortunately a deadlock can occur if we are forced to page-in
1032          * from swap, but diving all the way into the vm_pager_get_page()
1033          * function to find out is too much.  Just check the object type.
1034          */
1035         if ((curthread->td_flags & TDF_NOFAULT) &&
1036             (retry ||
1037              fs.first_object->type == OBJT_VNODE ||
1038              fs.first_object->type == OBJT_SWAP ||
1039              fs.first_object->backing_object)) {
1040                 *errorp = KERN_FAILURE;
1041                 unlock_things(&fs);
1042                 fs.m = NULL;
1043                 goto done2;
1044         }
1045
1046         /*
1047          * If the entry is wired we cannot change the page protection.
1048          */
1049         if (fs.wflags & FW_WIRED)
1050                 fault_type = fs.first_prot;
1051
1052         /*
1053          * Make a reference to this object to prevent its disposal while we
1054          * are messing with it.  Once we have the reference, the map is free
1055          * to be diddled.  Since objects reference their shadows (and copies),
1056          * they will stay around as well.
1057          *
1058          * The reference should also prevent an unexpected collapse of the
1059          * parent that might move pages from the current object into the
1060          * parent unexpectedly, resulting in corruption.
1061          *
1062          * Bump the paging-in-progress count to prevent size changes (e.g.
1063          * truncation operations) during I/O.  This must be done after
1064          * obtaining the vnode lock in order to avoid possible deadlocks.
1065          */
1066         if (fs.first_shared)
1067                 vm_object_hold_shared(fs.first_object);
1068         else
1069                 vm_object_hold(fs.first_object);
1070         if (fs.vp == NULL)
1071                 fs.vp = vnode_pager_lock(fs.first_object);      /* shared */
1072
1073         /*
1074          * The page we want is at (first_object, first_pindex), but if the
1075          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
1076          * page table to figure out the actual pindex.
1077          *
1078          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
1079          * ONLY
1080          */
1081         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1082                 result = vm_fault_vpagetable(&fs, &first_pindex,
1083                                              fs.entry->aux.master_pde,
1084                                              fault_type, 1);
1085                 if (result == KERN_TRY_AGAIN) {
1086                         vm_object_drop(fs.first_object);
1087                         ++retry;
1088                         goto RetryFault;
1089                 }
1090                 if (result != KERN_SUCCESS) {
1091                         *errorp = result;
1092                         fs.m = NULL;
1093                         goto done;
1094                 }
1095         }
1096
1097         /*
1098          * Now we have the actual (object, pindex), fault in the page.  If
1099          * vm_fault_object() fails it will unlock and deallocate the FS
1100          * data.   If it succeeds everything remains locked and fs->object
1101          * will have an additinal PIP count if it is not equal to
1102          * fs->first_object
1103          */
1104         fs.m = NULL;
1105         result = vm_fault_object(&fs, first_pindex, fault_type, 1);
1106
1107         if (result == KERN_TRY_AGAIN) {
1108                 vm_object_drop(fs.first_object);
1109                 ++retry;
1110                 didcow |= fs.wflags & FW_DIDCOW;
1111                 goto RetryFault;
1112         }
1113         if (result != KERN_SUCCESS) {
1114                 *errorp = result;
1115                 fs.m = NULL;
1116                 goto done;
1117         }
1118
1119         if ((orig_fault_type & VM_PROT_WRITE) &&
1120             (fs.prot & VM_PROT_WRITE) == 0) {
1121                 *errorp = KERN_PROTECTION_FAILURE;
1122                 unlock_and_deallocate(&fs);
1123                 fs.m = NULL;
1124                 goto done;
1125         }
1126
1127         /*
1128          * Generally speaking we don't want to update the pmap because
1129          * this routine can be called many times for situations that do
1130          * not require updating the pmap, not to mention the page might
1131          * already be in the pmap.
1132          *
1133          * However, if our vm_map_lookup() results in a COW, we need to
1134          * at least remove the pte from the pmap to guarantee proper
1135          * visibility of modifications made to the process.  For example,
1136          * modifications made by vkernel uiocopy/related routines and
1137          * modifications made by ptrace().
1138          */
1139         vm_page_flag_set(fs.m, PG_REFERENCED);
1140 #if 0
1141         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1142                    fs.wflags & FW_WIRED, NULL);
1143         mycpu->gd_cnt.v_vm_faults++;
1144         if (curthread->td_lwp)
1145                 ++curthread->td_lwp->lwp_ru.ru_minflt;
1146 #endif
1147         if ((fs.wflags | didcow) | FW_DIDCOW) {
1148                 pmap_remove(fs.map->pmap,
1149                             vaddr & ~PAGE_MASK,
1150                             (vaddr & ~PAGE_MASK) + PAGE_SIZE);
1151         }
1152
1153         /*
1154          * On success vm_fault_object() does not unlock or deallocate, and fs.m
1155          * will contain a busied page.  So we must unlock here after having
1156          * messed with the pmap.
1157          */
1158         unlock_things(&fs);
1159
1160         /*
1161          * Return a held page.  We are not doing any pmap manipulation so do
1162          * not set PG_MAPPED.  However, adjust the page flags according to
1163          * the fault type because the caller may not use a managed pmapping
1164          * (so we don't want to lose the fact that the page will be dirtied
1165          * if a write fault was specified).
1166          */
1167         if (fault_type & VM_PROT_WRITE)
1168                 vm_page_dirty(fs.m);
1169         vm_page_activate(fs.m);
1170
1171         if (curthread->td_lwp) {
1172                 if (fs.hardfault) {
1173                         curthread->td_lwp->lwp_ru.ru_majflt++;
1174                 } else {
1175                         curthread->td_lwp->lwp_ru.ru_minflt++;
1176                 }
1177         }
1178
1179         /*
1180          * Unlock everything, and return the held or busied page.
1181          */
1182         if (busyp) {
1183                 if (fault_type & VM_PROT_WRITE) {
1184                         vm_page_dirty(fs.m);
1185                         *busyp = 1;
1186                 } else {
1187                         *busyp = 0;
1188                         vm_page_hold(fs.m);
1189                         vm_page_wakeup(fs.m);
1190                 }
1191         } else {
1192                 vm_page_hold(fs.m);
1193                 vm_page_wakeup(fs.m);
1194         }
1195         /*vm_object_deallocate(fs.first_object);*/
1196         /*fs.first_object = NULL; */
1197         *errorp = 0;
1198
1199 done:
1200         if (fs.first_object)
1201                 vm_object_drop(fs.first_object);
1202 done2:
1203         return(fs.m);
1204 }
1205
1206 /*
1207  * Fault in the specified (object,offset), dirty the returned page as
1208  * needed.  If the requested fault_type cannot be done NULL and an
1209  * error is returned.
1210  *
1211  * A held (but not busied) page is returned.
1212  *
1213  * The passed in object must be held as specified by the shared
1214  * argument.
1215  */
1216 vm_page_t
1217 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
1218                      vm_prot_t fault_type, int fault_flags,
1219                      int *sharedp, int *errorp)
1220 {
1221         int result;
1222         vm_pindex_t first_pindex;
1223         struct faultstate fs;
1224         struct vm_map_entry entry;
1225
1226         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1227         bzero(&entry, sizeof(entry));
1228         entry.object.vm_object = object;
1229         entry.maptype = VM_MAPTYPE_NORMAL;
1230         entry.protection = entry.max_protection = fault_type;
1231
1232         fs.hardfault = 0;
1233         fs.fault_flags = fault_flags;
1234         fs.map = NULL;
1235         fs.shared = vm_shared_fault;
1236         fs.first_shared = *sharedp;
1237         fs.vp = NULL;
1238         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
1239
1240         /*
1241          * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
1242          * VM_FAULT_DIRTY  - may require swap_pager_unswapped() later, but
1243          *                   we can try shared first.
1244          */
1245         if (fs.first_shared && (fault_flags & VM_FAULT_UNSWAP)) {
1246                 fs.first_shared = 0;
1247                 vm_object_upgrade(object);
1248         }
1249
1250         /*
1251          * Retry loop as needed (typically for shared->exclusive transitions)
1252          */
1253 RetryFault:
1254         *sharedp = fs.first_shared;
1255         first_pindex = OFF_TO_IDX(offset);
1256         fs.first_object = object;
1257         fs.entry = &entry;
1258         fs.first_prot = fault_type;
1259         fs.wflags = 0;
1260         /*fs.map_generation = 0; unused */
1261
1262         /*
1263          * Make a reference to this object to prevent its disposal while we
1264          * are messing with it.  Once we have the reference, the map is free
1265          * to be diddled.  Since objects reference their shadows (and copies),
1266          * they will stay around as well.
1267          *
1268          * The reference should also prevent an unexpected collapse of the
1269          * parent that might move pages from the current object into the
1270          * parent unexpectedly, resulting in corruption.
1271          *
1272          * Bump the paging-in-progress count to prevent size changes (e.g.
1273          * truncation operations) during I/O.  This must be done after
1274          * obtaining the vnode lock in order to avoid possible deadlocks.
1275          */
1276         if (fs.vp == NULL)
1277                 fs.vp = vnode_pager_lock(fs.first_object);
1278
1279         fs.lookup_still_valid = TRUE;
1280         fs.first_m = NULL;
1281         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
1282
1283 #if 0
1284         /* XXX future - ability to operate on VM object using vpagetable */
1285         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1286                 result = vm_fault_vpagetable(&fs, &first_pindex,
1287                                              fs.entry->aux.master_pde,
1288                                              fault_type, 0);
1289                 if (result == KERN_TRY_AGAIN) {
1290                         if (fs.first_shared == 0 && *sharedp)
1291                                 vm_object_upgrade(object);
1292                         goto RetryFault;
1293                 }
1294                 if (result != KERN_SUCCESS) {
1295                         *errorp = result;
1296                         return (NULL);
1297                 }
1298         }
1299 #endif
1300
1301         /*
1302          * Now we have the actual (object, pindex), fault in the page.  If
1303          * vm_fault_object() fails it will unlock and deallocate the FS
1304          * data.   If it succeeds everything remains locked and fs->object
1305          * will have an additinal PIP count if it is not equal to
1306          * fs->first_object
1307          *
1308          * On KERN_TRY_AGAIN vm_fault_object() leaves fs.first_object intact.
1309          * We may have to upgrade its lock to handle the requested fault.
1310          */
1311         result = vm_fault_object(&fs, first_pindex, fault_type, 0);
1312
1313         if (result == KERN_TRY_AGAIN) {
1314                 if (fs.first_shared == 0 && *sharedp)
1315                         vm_object_upgrade(object);
1316                 goto RetryFault;
1317         }
1318         if (result != KERN_SUCCESS) {
1319                 *errorp = result;
1320                 return(NULL);
1321         }
1322
1323         if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
1324                 *errorp = KERN_PROTECTION_FAILURE;
1325                 unlock_and_deallocate(&fs);
1326                 return(NULL);
1327         }
1328
1329         /*
1330          * On success vm_fault_object() does not unlock or deallocate, so we
1331          * do it here.  Note that the returned fs.m will be busied.
1332          */
1333         unlock_things(&fs);
1334
1335         /*
1336          * Return a held page.  We are not doing any pmap manipulation so do
1337          * not set PG_MAPPED.  However, adjust the page flags according to
1338          * the fault type because the caller may not use a managed pmapping
1339          * (so we don't want to lose the fact that the page will be dirtied
1340          * if a write fault was specified).
1341          */
1342         vm_page_hold(fs.m);
1343         vm_page_activate(fs.m);
1344         if ((fault_type & VM_PROT_WRITE) || (fault_flags & VM_FAULT_DIRTY))
1345                 vm_page_dirty(fs.m);
1346         if (fault_flags & VM_FAULT_UNSWAP)
1347                 swap_pager_unswapped(fs.m);
1348
1349         /*
1350          * Indicate that the page was accessed.
1351          */
1352         vm_page_flag_set(fs.m, PG_REFERENCED);
1353
1354         if (curthread->td_lwp) {
1355                 if (fs.hardfault) {
1356                         curthread->td_lwp->lwp_ru.ru_majflt++;
1357                 } else {
1358                         curthread->td_lwp->lwp_ru.ru_minflt++;
1359                 }
1360         }
1361
1362         /*
1363          * Unlock everything, and return the held page.
1364          */
1365         vm_page_wakeup(fs.m);
1366         /*vm_object_deallocate(fs.first_object);*/
1367         /*fs.first_object = NULL; */
1368
1369         *errorp = 0;
1370         return(fs.m);
1371 }
1372
1373 /*
1374  * Translate the virtual page number (first_pindex) that is relative
1375  * to the address space into a logical page number that is relative to the
1376  * backing object.  Use the virtual page table pointed to by (vpte).
1377  *
1378  * Possibly downgrade the protection based on the vpte bits.
1379  *
1380  * This implements an N-level page table.  Any level can terminate the
1381  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
1382  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
1383  */
1384 static
1385 int
1386 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
1387                     vpte_t vpte, int fault_type, int allow_nofault)
1388 {
1389         struct lwbuf *lwb;
1390         struct lwbuf lwb_cache;
1391         int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
1392         int result;
1393         vpte_t *ptep;
1394
1395         ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1396         for (;;) {
1397                 /*
1398                  * We cannot proceed if the vpte is not valid, not readable
1399                  * for a read fault, not writable for a write fault, or
1400                  * not executable for an instruction execution fault.
1401                  */
1402                 if ((vpte & VPTE_V) == 0) {
1403                         unlock_and_deallocate(fs);
1404                         return (KERN_FAILURE);
1405                 }
1406                 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_RW) == 0) {
1407                         unlock_and_deallocate(fs);
1408                         return (KERN_FAILURE);
1409                 }
1410                 if ((fault_type & VM_PROT_EXECUTE) && (vpte & VPTE_NX)) {
1411                         unlock_and_deallocate(fs);
1412                         return (KERN_FAILURE);
1413                 }
1414                 if ((vpte & VPTE_PS) || vshift == 0)
1415                         break;
1416
1417                 /*
1418                  * Get the page table page.  Nominally we only read the page
1419                  * table, but since we are actively setting VPTE_M and VPTE_A,
1420                  * tell vm_fault_object() that we are writing it. 
1421                  *
1422                  * There is currently no real need to optimize this.
1423                  */
1424                 result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
1425                                          VM_PROT_READ|VM_PROT_WRITE,
1426                                          allow_nofault);
1427                 if (result != KERN_SUCCESS)
1428                         return (result);
1429
1430                 /*
1431                  * Process the returned fs.m and look up the page table
1432                  * entry in the page table page.
1433                  */
1434                 vshift -= VPTE_PAGE_BITS;
1435                 lwb = lwbuf_alloc(fs->m, &lwb_cache);
1436                 ptep = ((vpte_t *)lwbuf_kva(lwb) +
1437                         ((*pindex >> vshift) & VPTE_PAGE_MASK));
1438                 vm_page_activate(fs->m);
1439
1440                 /*
1441                  * Page table write-back - entire operation including
1442                  * validation of the pte must be atomic to avoid races
1443                  * against the vkernel changing the pte.
1444                  *
1445                  * If the vpte is valid for the* requested operation, do
1446                  * a write-back to the page table.
1447                  *
1448                  * XXX VPTE_M is not set properly for page directory pages.
1449                  * It doesn't get set in the page directory if the page table
1450                  * is modified during a read access.
1451                  */
1452                 for (;;) {
1453                         vpte_t nvpte;
1454
1455                         /*
1456                          * Reload for the cmpset, but make sure the pte is
1457                          * still valid.
1458                          */
1459                         vpte = *ptep;
1460                         cpu_ccfence();
1461                         nvpte = vpte;
1462
1463                         if ((vpte & VPTE_V) == 0)
1464                                 break;
1465
1466                         if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_RW))
1467                                 nvpte |= VPTE_M | VPTE_A;
1468                         if (fault_type & (VM_PROT_READ | VM_PROT_EXECUTE))
1469                                 nvpte |= VPTE_A;
1470                         if (vpte == nvpte)
1471                                 break;
1472                         if (atomic_cmpset_long(ptep, vpte, nvpte)) {
1473                                 vm_page_dirty(fs->m);
1474                                 break;
1475                         }
1476                 }
1477                 lwbuf_free(lwb);
1478                 vm_page_flag_set(fs->m, PG_REFERENCED);
1479                 vm_page_wakeup(fs->m);
1480                 fs->m = NULL;
1481                 cleanup_successful_fault(fs);
1482         }
1483
1484         /*
1485          * When the vkernel sets VPTE_RW it expects the real kernel to
1486          * reflect VPTE_M back when the page is modified via the mapping.
1487          * In order to accomplish this the real kernel must map the page
1488          * read-only for read faults and use write faults to reflect VPTE_M
1489          * back.
1490          *
1491          * Once VPTE_M has been set, the real kernel's pte allows writing.
1492          * If the vkernel clears VPTE_M the vkernel must be sure to
1493          * MADV_INVAL the real kernel's mappings to force the real kernel
1494          * to re-fault on the next write so oit can set VPTE_M again.
1495          */
1496         if ((fault_type & VM_PROT_WRITE) == 0 &&
1497             (vpte & (VPTE_RW | VPTE_M)) != (VPTE_RW | VPTE_M)) {
1498                 fs->first_prot &= ~VM_PROT_WRITE;
1499         }
1500
1501         /*
1502          * Disable EXECUTE perms if NX bit is set.
1503          */
1504         if (vpte & VPTE_NX)
1505                 fs->first_prot &= ~VM_PROT_EXECUTE;
1506
1507         /*
1508          * Combine remaining address bits with the vpte.
1509          */
1510         *pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
1511                   (*pindex & ((1L << vshift) - 1));
1512         return (KERN_SUCCESS);
1513 }
1514
1515
1516 /*
1517  * This is the core of the vm_fault code.
1518  *
1519  * Do all operations required to fault-in (fs.first_object, pindex).  Run
1520  * through the shadow chain as necessary and do required COW or virtual
1521  * copy operations.  The caller has already fully resolved the vm_map_entry
1522  * and, if appropriate, has created a copy-on-write layer.  All we need to
1523  * do is iterate the object chain.
1524  *
1525  * On failure (fs) is unlocked and deallocated and the caller may return or
1526  * retry depending on the failure code.  On success (fs) is NOT unlocked or
1527  * deallocated, fs.m will contained a resolved, busied page, and fs.object
1528  * will have an additional PIP count if it is not equal to fs.first_object.
1529  *
1530  * If locks based on fs->first_shared or fs->shared are insufficient,
1531  * clear the appropriate field(s) and return RETRY.  COWs require that
1532  * first_shared be 0, while page allocations (or frees) require that
1533  * shared be 0.  Renames require that both be 0.
1534  *
1535  * NOTE! fs->[first_]shared might be set with VM_FAULT_DIRTY also set.
1536  *       we will have to retry with it exclusive if the vm_page is
1537  *       PG_SWAPPED.
1538  *
1539  * fs->first_object must be held on call.
1540  */
1541 static
1542 int
1543 vm_fault_object(struct faultstate *fs, vm_pindex_t first_pindex,
1544                 vm_prot_t fault_type, int allow_nofault)
1545 {
1546         vm_object_t next_object;
1547         vm_pindex_t pindex;
1548         int error;
1549
1550         ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1551         fs->prot = fs->first_prot;
1552         fs->object = fs->first_object;
1553         pindex = first_pindex;
1554
1555         vm_object_chain_acquire(fs->first_object, fs->shared);
1556         vm_object_pip_add(fs->first_object, 1);
1557
1558         /* 
1559          * If a read fault occurs we try to upgrade the page protection
1560          * and make it also writable if possible.  There are three cases
1561          * where we cannot make the page mapping writable:
1562          *
1563          * (1) The mapping is read-only or the VM object is read-only,
1564          *     fs->prot above will simply not have VM_PROT_WRITE set.
1565          *
1566          * (2) If the mapping is a virtual page table fs->first_prot will
1567          *     have already been properly adjusted by vm_fault_vpagetable().
1568          *     to detect writes so we can set VPTE_M in the virtual page
1569          *     table.  Used by vkernels.
1570          *
1571          * (3) If the VM page is read-only or copy-on-write, upgrading would
1572          *     just result in an unnecessary COW fault.
1573          *
1574          * (4) If the pmap specifically requests A/M bit emulation, downgrade
1575          *     here.
1576          */
1577 #if 0
1578         /* see vpagetable code */
1579         if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1580                 if ((fault_type & VM_PROT_WRITE) == 0)
1581                         fs->prot &= ~VM_PROT_WRITE;
1582         }
1583 #endif
1584
1585         if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
1586             pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
1587                 if ((fault_type & VM_PROT_WRITE) == 0)
1588                         fs->prot &= ~VM_PROT_WRITE;
1589         }
1590
1591         /* vm_object_hold(fs->object); implied b/c object == first_object */
1592
1593         for (;;) {
1594                 /*
1595                  * The entire backing chain from first_object to object
1596                  * inclusive is chainlocked.
1597                  *
1598                  * If the object is dead, we stop here
1599                  */
1600                 if (fs->object->flags & OBJ_DEAD) {
1601                         vm_object_pip_wakeup(fs->first_object);
1602                         vm_object_chain_release_all(fs->first_object,
1603                                                     fs->object);
1604                         if (fs->object != fs->first_object)
1605                                 vm_object_drop(fs->object);
1606                         unlock_and_deallocate(fs);
1607                         return (KERN_PROTECTION_FAILURE);
1608                 }
1609
1610                 /*
1611                  * See if the page is resident.  Wait/Retry if the page is
1612                  * busy (lots of stuff may have changed so we can't continue
1613                  * in that case).
1614                  *
1615                  * We can theoretically allow the soft-busy case on a read
1616                  * fault if the page is marked valid, but since such
1617                  * pages are typically already pmap'd, putting that
1618                  * special case in might be more effort then it is
1619                  * worth.  We cannot under any circumstances mess
1620                  * around with a vm_page_t->busy page except, perhaps,
1621                  * to pmap it.
1622                  */
1623                 fs->m = vm_page_lookup_busy_try(fs->object, pindex,
1624                                                 TRUE, &error);
1625                 if (error) {
1626                         vm_object_pip_wakeup(fs->first_object);
1627                         vm_object_chain_release_all(fs->first_object,
1628                                                     fs->object);
1629                         if (fs->object != fs->first_object)
1630                                 vm_object_drop(fs->object);
1631                         unlock_things(fs);
1632                         vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1633                         mycpu->gd_cnt.v_intrans++;
1634                         /*vm_object_deallocate(fs->first_object);*/
1635                         /*fs->first_object = NULL;*/
1636                         fs->m = NULL;
1637                         return (KERN_TRY_AGAIN);
1638                 }
1639                 if (fs->m) {
1640                         /*
1641                          * The page is busied for us.
1642                          *
1643                          * If reactivating a page from PQ_CACHE we may have
1644                          * to rate-limit.
1645                          */
1646                         int queue = fs->m->queue;
1647                         vm_page_unqueue_nowakeup(fs->m);
1648
1649                         if ((queue - fs->m->pc) == PQ_CACHE && 
1650                             vm_page_count_severe()) {
1651                                 vm_page_activate(fs->m);
1652                                 vm_page_wakeup(fs->m);
1653                                 fs->m = NULL;
1654                                 vm_object_pip_wakeup(fs->first_object);
1655                                 vm_object_chain_release_all(fs->first_object,
1656                                                             fs->object);
1657                                 if (fs->object != fs->first_object)
1658                                         vm_object_drop(fs->object);
1659                                 unlock_and_deallocate(fs);
1660                                 if (allow_nofault == 0 ||
1661                                     (curthread->td_flags & TDF_NOFAULT) == 0) {
1662                                         thread_t td;
1663
1664                                         vm_wait_pfault();
1665                                         td = curthread;
1666                                         if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
1667                                                 return (KERN_PROTECTION_FAILURE);
1668                                 }
1669                                 return (KERN_TRY_AGAIN);
1670                         }
1671
1672                         /*
1673                          * If it still isn't completely valid (readable),
1674                          * or if a read-ahead-mark is set on the VM page,
1675                          * jump to readrest, else we found the page and
1676                          * can return.
1677                          *
1678                          * We can release the spl once we have marked the
1679                          * page busy.
1680                          */
1681                         if (fs->m->object != &kernel_object) {
1682                                 if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1683                                     VM_PAGE_BITS_ALL) {
1684                                         goto readrest;
1685                                 }
1686                                 if (fs->m->flags & PG_RAM) {
1687                                         if (debug_cluster)
1688                                                 kprintf("R");
1689                                         vm_page_flag_clear(fs->m, PG_RAM);
1690                                         goto readrest;
1691                                 }
1692                         }
1693                         break; /* break to PAGE HAS BEEN FOUND */
1694                 }
1695
1696                 /*
1697                  * Page is not resident, If this is the search termination
1698                  * or the pager might contain the page, allocate a new page.
1699                  */
1700                 if (TRYPAGER(fs) || fs->object == fs->first_object) {
1701                         /*
1702                          * Allocating, must be exclusive.
1703                          */
1704                         if (fs->object == fs->first_object &&
1705                             fs->first_shared) {
1706                                 fs->first_shared = 0;
1707                                 vm_object_pip_wakeup(fs->first_object);
1708                                 vm_object_chain_release_all(fs->first_object,
1709                                                             fs->object);
1710                                 if (fs->object != fs->first_object)
1711                                         vm_object_drop(fs->object);
1712                                 unlock_and_deallocate(fs);
1713                                 return (KERN_TRY_AGAIN);
1714                         }
1715                         if (fs->object != fs->first_object &&
1716                             fs->shared) {
1717                                 fs->first_shared = 0;
1718                                 fs->shared = 0;
1719                                 vm_object_pip_wakeup(fs->first_object);
1720                                 vm_object_chain_release_all(fs->first_object,
1721                                                             fs->object);
1722                                 if (fs->object != fs->first_object)
1723                                         vm_object_drop(fs->object);
1724                                 unlock_and_deallocate(fs);
1725                                 return (KERN_TRY_AGAIN);
1726                         }
1727
1728                         /*
1729                          * If the page is beyond the object size we fail
1730                          */
1731                         if (pindex >= fs->object->size) {
1732                                 vm_object_pip_wakeup(fs->first_object);
1733                                 vm_object_chain_release_all(fs->first_object,
1734                                                             fs->object);
1735                                 if (fs->object != fs->first_object)
1736                                         vm_object_drop(fs->object);
1737                                 unlock_and_deallocate(fs);
1738                                 return (KERN_PROTECTION_FAILURE);
1739                         }
1740
1741                         /*
1742                          * Allocate a new page for this object/offset pair.
1743                          *
1744                          * It is possible for the allocation to race, so
1745                          * handle the case.
1746                          */
1747                         fs->m = NULL;
1748                         if (!vm_page_count_severe()) {
1749                                 fs->m = vm_page_alloc(fs->object, pindex,
1750                                     ((fs->vp || fs->object->backing_object) ?
1751                                         VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL :
1752                                         VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1753                                         VM_ALLOC_USE_GD | VM_ALLOC_ZERO));
1754                         }
1755                         if (fs->m == NULL) {
1756                                 vm_object_pip_wakeup(fs->first_object);
1757                                 vm_object_chain_release_all(fs->first_object,
1758                                                             fs->object);
1759                                 if (fs->object != fs->first_object)
1760                                         vm_object_drop(fs->object);
1761                                 unlock_and_deallocate(fs);
1762                                 if (allow_nofault == 0 ||
1763                                     (curthread->td_flags & TDF_NOFAULT) == 0) {
1764                                         thread_t td;
1765
1766                                         vm_wait_pfault();
1767                                         td = curthread;
1768                                         if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
1769                                                 return (KERN_PROTECTION_FAILURE);
1770                                 }
1771                                 return (KERN_TRY_AGAIN);
1772                         }
1773
1774                         /*
1775                          * Fall through to readrest.  We have a new page which
1776                          * will have to be paged (since m->valid will be 0).
1777                          */
1778                 }
1779
1780 readrest:
1781                 /*
1782                  * We have found an invalid or partially valid page, a
1783                  * page with a read-ahead mark which might be partially or
1784                  * fully valid (and maybe dirty too), or we have allocated
1785                  * a new page.
1786                  *
1787                  * Attempt to fault-in the page if there is a chance that the
1788                  * pager has it, and potentially fault in additional pages
1789                  * at the same time.
1790                  *
1791                  * If TRYPAGER is true then fs.m will be non-NULL and busied
1792                  * for us.
1793                  */
1794                 if (TRYPAGER(fs)) {
1795                         int rv;
1796                         int seqaccess;
1797                         u_char behavior = vm_map_entry_behavior(fs->entry);
1798
1799                         if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1800                                 seqaccess = 0;
1801                         else
1802                                 seqaccess = -1;
1803
1804                         /*
1805                          * Doing I/O may synchronously insert additional
1806                          * pages so we can't be shared at this point either.
1807                          *
1808                          * NOTE: We can't free fs->m here in the allocated
1809                          *       case (fs->object != fs->first_object) as
1810                          *       this would require an exclusively locked
1811                          *       VM object.
1812                          */
1813                         if (fs->object == fs->first_object &&
1814                             fs->first_shared) {
1815                                 vm_page_deactivate(fs->m);
1816                                 vm_page_wakeup(fs->m);
1817                                 fs->m = NULL;
1818                                 fs->first_shared = 0;
1819                                 vm_object_pip_wakeup(fs->first_object);
1820                                 vm_object_chain_release_all(fs->first_object,
1821                                                             fs->object);
1822                                 if (fs->object != fs->first_object)
1823                                         vm_object_drop(fs->object);
1824                                 unlock_and_deallocate(fs);
1825                                 return (KERN_TRY_AGAIN);
1826                         }
1827                         if (fs->object != fs->first_object &&
1828                             fs->shared) {
1829                                 vm_page_deactivate(fs->m);
1830                                 vm_page_wakeup(fs->m);
1831                                 fs->m = NULL;
1832                                 fs->first_shared = 0;
1833                                 fs->shared = 0;
1834                                 vm_object_pip_wakeup(fs->first_object);
1835                                 vm_object_chain_release_all(fs->first_object,
1836                                                             fs->object);
1837                                 if (fs->object != fs->first_object)
1838                                         vm_object_drop(fs->object);
1839                                 unlock_and_deallocate(fs);
1840                                 return (KERN_TRY_AGAIN);
1841                         }
1842
1843                         /*
1844                          * Avoid deadlocking against the map when doing I/O.
1845                          * fs.object and the page is BUSY'd.
1846                          *
1847                          * NOTE: Once unlocked, fs->entry can become stale
1848                          *       so this will NULL it out.
1849                          *
1850                          * NOTE: fs->entry is invalid until we relock the
1851                          *       map and verify that the timestamp has not
1852                          *       changed.
1853                          */
1854                         unlock_map(fs);
1855
1856                         /*
1857                          * Acquire the page data.  We still hold a ref on
1858                          * fs.object and the page has been BUSY's.
1859                          *
1860                          * The pager may replace the page (for example, in
1861                          * order to enter a fictitious page into the
1862                          * object).  If it does so it is responsible for
1863                          * cleaning up the passed page and properly setting
1864                          * the new page BUSY.
1865                          *
1866                          * If we got here through a PG_RAM read-ahead
1867                          * mark the page may be partially dirty and thus
1868                          * not freeable.  Don't bother checking to see
1869                          * if the pager has the page because we can't free
1870                          * it anyway.  We have to depend on the get_page
1871                          * operation filling in any gaps whether there is
1872                          * backing store or not.
1873                          */
1874                         rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1875
1876                         if (rv == VM_PAGER_OK) {
1877                                 /*
1878                                  * Relookup in case pager changed page. Pager
1879                                  * is responsible for disposition of old page
1880                                  * if moved.
1881                                  *
1882                                  * XXX other code segments do relookups too.
1883                                  * It's a bad abstraction that needs to be
1884                                  * fixed/removed.
1885                                  */
1886                                 fs->m = vm_page_lookup(fs->object, pindex);
1887                                 if (fs->m == NULL) {
1888                                         vm_object_pip_wakeup(fs->first_object);
1889                                         vm_object_chain_release_all(
1890                                                 fs->first_object, fs->object);
1891                                         if (fs->object != fs->first_object)
1892                                                 vm_object_drop(fs->object);
1893                                         unlock_and_deallocate(fs);
1894                                         return (KERN_TRY_AGAIN);
1895                                 }
1896                                 ++fs->hardfault;
1897                                 break; /* break to PAGE HAS BEEN FOUND */
1898                         }
1899
1900                         /*
1901                          * Remove the bogus page (which does not exist at this
1902                          * object/offset); before doing so, we must get back
1903                          * our object lock to preserve our invariant.
1904                          *
1905                          * Also wake up any other process that may want to bring
1906                          * in this page.
1907                          *
1908                          * If this is the top-level object, we must leave the
1909                          * busy page to prevent another process from rushing
1910                          * past us, and inserting the page in that object at
1911                          * the same time that we are.
1912                          */
1913                         if (rv == VM_PAGER_ERROR) {
1914                                 if (curproc) {
1915                                         kprintf("vm_fault: pager read error, "
1916                                                 "pid %d (%s)\n",
1917                                                 curproc->p_pid,
1918                                                 curproc->p_comm);
1919                                 } else {
1920                                         kprintf("vm_fault: pager read error, "
1921                                                 "thread %p (%s)\n",
1922                                                 curthread,
1923                                                 curproc->p_comm);
1924                                 }
1925                         }
1926
1927                         /*
1928                          * Data outside the range of the pager or an I/O error
1929                          *
1930                          * The page may have been wired during the pagein,
1931                          * e.g. by the buffer cache, and cannot simply be
1932                          * freed.  Call vnode_pager_freepage() to deal with it.
1933                          *
1934                          * Also note that we cannot free the page if we are
1935                          * holding the related object shared. XXX not sure
1936                          * what to do in that case.
1937                          */
1938                         if (fs->object != fs->first_object) {
1939                                 /*
1940                                  * Scrap the page.  Check to see if the
1941                                  * vm_pager_get_page() call has already
1942                                  * dealt with it.
1943                                  */
1944                                 if (fs->m) {
1945                                         vnode_pager_freepage(fs->m);
1946                                         fs->m = NULL;
1947                                 }
1948
1949                                 /*
1950                                  * XXX - we cannot just fall out at this
1951                                  * point, m has been freed and is invalid!
1952                                  */
1953                         }
1954                         /*
1955                          * XXX - the check for kernel_map is a kludge to work
1956                          * around having the machine panic on a kernel space
1957                          * fault w/ I/O error.
1958                          */
1959                         if (((fs->map != &kernel_map) &&
1960                             (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1961                                 if (fs->m) {
1962                                         if (fs->first_shared) {
1963                                                 vm_page_deactivate(fs->m);
1964                                                 vm_page_wakeup(fs->m);
1965                                         } else {
1966                                                 vnode_pager_freepage(fs->m);
1967                                         }
1968                                         fs->m = NULL;
1969                                 }
1970                                 vm_object_pip_wakeup(fs->first_object);
1971                                 vm_object_chain_release_all(fs->first_object,
1972                                                             fs->object);
1973                                 if (fs->object != fs->first_object)
1974                                         vm_object_drop(fs->object);
1975                                 unlock_and_deallocate(fs);
1976                                 if (rv == VM_PAGER_ERROR)
1977                                         return (KERN_FAILURE);
1978                                 else
1979                                         return (KERN_PROTECTION_FAILURE);
1980                                 /* NOT REACHED */
1981                         }
1982                 }
1983
1984                 /*
1985                  * We get here if the object has a default pager (or unwiring) 
1986                  * or the pager doesn't have the page.
1987                  *
1988                  * fs->first_m will be used for the COW unless we find a
1989                  * deeper page to be mapped read-only, in which case the
1990                  * unlock*(fs) will free first_m.
1991                  */
1992                 if (fs->object == fs->first_object)
1993                         fs->first_m = fs->m;
1994
1995                 /*
1996                  * Move on to the next object.  The chain lock should prevent
1997                  * the backing_object from getting ripped out from under us.
1998                  *
1999                  * The object lock for the next object is governed by
2000                  * fs->shared.
2001                  */
2002                 if ((next_object = fs->object->backing_object) != NULL) {
2003                         if (fs->shared)
2004                                 vm_object_hold_shared(next_object);
2005                         else
2006                                 vm_object_hold(next_object);
2007                         vm_object_chain_acquire(next_object, fs->shared);
2008                         KKASSERT(next_object == fs->object->backing_object);
2009                         pindex += OFF_TO_IDX(fs->object->backing_object_offset);
2010                 }
2011
2012                 if (next_object == NULL) {
2013                         /*
2014                          * If there's no object left, fill the page in the top
2015                          * object with zeros.
2016                          */
2017                         if (fs->object != fs->first_object) {
2018 #if 0
2019                                 if (fs->first_object->backing_object !=
2020                                     fs->object) {
2021                                         vm_object_hold(fs->first_object->backing_object);
2022                                 }
2023 #endif
2024                                 vm_object_chain_release_all(
2025                                         fs->first_object->backing_object,
2026                                         fs->object);
2027 #if 0
2028                                 if (fs->first_object->backing_object !=
2029                                     fs->object) {
2030                                         vm_object_drop(fs->first_object->backing_object);
2031                                 }
2032 #endif
2033                                 vm_object_pip_wakeup(fs->object);
2034                                 vm_object_drop(fs->object);
2035                                 fs->object = fs->first_object;
2036                                 pindex = first_pindex;
2037                                 fs->m = fs->first_m;
2038                         }
2039                         fs->first_m = NULL;
2040
2041                         /*
2042                          * Zero the page and mark it valid.
2043                          */
2044                         vm_page_zero_fill(fs->m);
2045                         mycpu->gd_cnt.v_zfod++;
2046                         fs->m->valid = VM_PAGE_BITS_ALL;
2047                         break;  /* break to PAGE HAS BEEN FOUND */
2048                 }
2049                 if (fs->object != fs->first_object) {
2050                         vm_object_pip_wakeup(fs->object);
2051                         vm_object_lock_swap();
2052                         vm_object_drop(fs->object);
2053                 }
2054                 KASSERT(fs->object != next_object,
2055                         ("object loop %p", next_object));
2056                 fs->object = next_object;
2057                 vm_object_pip_add(fs->object, 1);
2058         }
2059
2060         /*
2061          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
2062          * is held.]
2063          *
2064          * object still held.
2065          * vm_map may not be locked (determined by fs->lookup_still_valid)
2066          *
2067          * local shared variable may be different from fs->shared.
2068          *
2069          * If the page is being written, but isn't already owned by the
2070          * top-level object, we have to copy it into a new page owned by the
2071          * top-level object.
2072          */
2073         KASSERT((fs->m->busy_count & PBUSY_LOCKED) != 0,
2074                 ("vm_fault: not busy after main loop"));
2075
2076         if (fs->object != fs->first_object) {
2077                 /*
2078                  * We only really need to copy if we want to write it.
2079                  */
2080                 if (fault_type & VM_PROT_WRITE) {
2081                         /*
2082                          * This allows pages to be virtually copied from a 
2083                          * backing_object into the first_object, where the 
2084                          * backing object has no other refs to it, and cannot
2085                          * gain any more refs.  Instead of a bcopy, we just 
2086                          * move the page from the backing object to the 
2087                          * first object.  Note that we must mark the page 
2088                          * dirty in the first object so that it will go out 
2089                          * to swap when needed.
2090                          */
2091                         if (virtual_copy_ok(fs)) {
2092                                 /*
2093                                  * (first_m) and (m) are both busied.  We have
2094                                  * move (m) into (first_m)'s object/pindex
2095                                  * in an atomic fashion, then free (first_m).
2096                                  *
2097                                  * first_object is held so second remove
2098                                  * followed by the rename should wind
2099                                  * up being atomic.  vm_page_free() might
2100                                  * block so we don't do it until after the
2101                                  * rename.
2102                                  */
2103                                 vm_page_protect(fs->first_m, VM_PROT_NONE);
2104                                 vm_page_remove(fs->first_m);
2105                                 vm_page_rename(fs->m, fs->first_object,
2106                                                first_pindex);
2107                                 vm_page_free(fs->first_m);
2108                                 fs->first_m = fs->m;
2109                                 fs->m = NULL;
2110                                 mycpu->gd_cnt.v_cow_optim++;
2111                         } else {
2112                                 /*
2113                                  * Oh, well, lets copy it.
2114                                  *
2115                                  * Why are we unmapping the original page
2116                                  * here?  Well, in short, not all accessors
2117                                  * of user memory go through the pmap.  The
2118                                  * procfs code doesn't have access user memory
2119                                  * via a local pmap, so vm_fault_page*()
2120                                  * can't call pmap_enter().  And the umtx*()
2121                                  * code may modify the COW'd page via a DMAP
2122                                  * or kernel mapping and not via the pmap,
2123                                  * leaving the original page still mapped
2124                                  * read-only into the pmap.
2125                                  *
2126                                  * So we have to remove the page from at
2127                                  * least the current pmap if it is in it.
2128                                  *
2129                                  * We used to just remove it from all pmaps
2130                                  * but that creates inefficiencies on SMP,
2131                                  * particularly for COW program & library
2132                                  * mappings that are concurrently exec'd.
2133                                  * Only remove the page from the current
2134                                  * pmap.
2135                                  */
2136                                 KKASSERT(fs->first_shared == 0);
2137                                 vm_page_copy(fs->m, fs->first_m);
2138                                 /*vm_page_protect(fs->m, VM_PROT_NONE);*/
2139                                 pmap_remove_specific(
2140                                     &curthread->td_lwp->lwp_vmspace->vm_pmap,
2141                                     fs->m);
2142                         }
2143
2144                         /*
2145                          * We no longer need the old page or object.
2146                          */
2147                         if (fs->m)
2148                                 release_page(fs);
2149
2150                         /*
2151                          * We intend to revert to first_object, undo the
2152                          * chain lock through to that.
2153                          */
2154 #if 0
2155                         if (fs->first_object->backing_object != fs->object)
2156                                 vm_object_hold(fs->first_object->backing_object);
2157 #endif
2158                         vm_object_chain_release_all(
2159                                         fs->first_object->backing_object,
2160                                         fs->object);
2161 #if 0
2162                         if (fs->first_object->backing_object != fs->object)
2163                                 vm_object_drop(fs->first_object->backing_object);
2164 #endif
2165
2166                         /*
2167                          * fs->object != fs->first_object due to above 
2168                          * conditional
2169                          */
2170                         vm_object_pip_wakeup(fs->object);
2171                         vm_object_drop(fs->object);
2172
2173                         /*
2174                          * Only use the new page below...
2175                          */
2176                         mycpu->gd_cnt.v_cow_faults++;
2177                         fs->m = fs->first_m;
2178                         fs->object = fs->first_object;
2179                         pindex = first_pindex;
2180                 } else {
2181                         /*
2182                          * If it wasn't a write fault avoid having to copy
2183                          * the page by mapping it read-only.
2184                          */
2185                         fs->prot &= ~VM_PROT_WRITE;
2186                 }
2187         }
2188
2189         /*
2190          * Relock the map if necessary, then check the generation count.
2191          * relock_map() will update fs->timestamp to account for the
2192          * relocking if necessary.
2193          *
2194          * If the count has changed after relocking then all sorts of
2195          * crap may have happened and we have to retry.
2196          *
2197          * NOTE: The relock_map() can fail due to a deadlock against
2198          *       the vm_page we are holding BUSY.
2199          */
2200         if (fs->lookup_still_valid == FALSE && fs->map) {
2201                 if (relock_map(fs) ||
2202                     fs->map->timestamp != fs->map_generation) {
2203                         release_page(fs);
2204                         vm_object_pip_wakeup(fs->first_object);
2205                         vm_object_chain_release_all(fs->first_object,
2206                                                     fs->object);
2207                         if (fs->object != fs->first_object)
2208                                 vm_object_drop(fs->object);
2209                         unlock_and_deallocate(fs);
2210                         return (KERN_TRY_AGAIN);
2211                 }
2212         }
2213
2214         /*
2215          * If the fault is a write, we know that this page is being
2216          * written NOW so dirty it explicitly to save on pmap_is_modified()
2217          * calls later.
2218          *
2219          * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
2220          * if the page is already dirty to prevent data written with
2221          * the expectation of being synced from not being synced.
2222          * Likewise if this entry does not request NOSYNC then make
2223          * sure the page isn't marked NOSYNC.  Applications sharing
2224          * data should use the same flags to avoid ping ponging.
2225          *
2226          * Also tell the backing pager, if any, that it should remove
2227          * any swap backing since the page is now dirty.
2228          */
2229         vm_page_activate(fs->m);
2230         if (fs->prot & VM_PROT_WRITE) {
2231                 vm_object_set_writeable_dirty(fs->m->object);
2232                 vm_set_nosync(fs->m, fs->entry);
2233                 if (fs->fault_flags & VM_FAULT_DIRTY) {
2234                         vm_page_dirty(fs->m);
2235                         if (fs->m->flags & PG_SWAPPED) {
2236                                 /*
2237                                  * If the page is swapped out we have to call
2238                                  * swap_pager_unswapped() which requires an
2239                                  * exclusive object lock.  If we are shared,
2240                                  * we must clear the shared flag and retry.
2241                                  */
2242                                 if ((fs->object == fs->first_object &&
2243                                      fs->first_shared) ||
2244                                     (fs->object != fs->first_object &&
2245                                      fs->shared)) {
2246                                         vm_page_wakeup(fs->m);
2247                                         fs->m = NULL;
2248                                         if (fs->object == fs->first_object)
2249                                                 fs->first_shared = 0;
2250                                         else
2251                                                 fs->shared = 0;
2252                                         vm_object_pip_wakeup(fs->first_object);
2253                                         vm_object_chain_release_all(
2254                                                 fs->first_object, fs->object);
2255                                         if (fs->object != fs->first_object)
2256                                                 vm_object_drop(fs->object);
2257                                         unlock_and_deallocate(fs);
2258                                         return (KERN_TRY_AGAIN);
2259                                 }
2260                                 swap_pager_unswapped(fs->m);
2261                         }
2262                 }
2263         }
2264
2265         vm_object_pip_wakeup(fs->first_object);
2266         vm_object_chain_release_all(fs->first_object, fs->object);
2267         if (fs->object != fs->first_object)
2268                 vm_object_drop(fs->object);
2269
2270         /*
2271          * Page had better still be busy.  We are still locked up and 
2272          * fs->object will have another PIP reference if it is not equal
2273          * to fs->first_object.
2274          */
2275         KASSERT(fs->m->busy_count & PBUSY_LOCKED,
2276                 ("vm_fault: page %p not busy!", fs->m));
2277
2278         /*
2279          * Sanity check: page must be completely valid or it is not fit to
2280          * map into user space.  vm_pager_get_pages() ensures this.
2281          */
2282         if (fs->m->valid != VM_PAGE_BITS_ALL) {
2283                 vm_page_zero_invalid(fs->m, TRUE);
2284                 kprintf("Warning: page %p partially invalid on fault\n", fs->m);
2285         }
2286
2287         return (KERN_SUCCESS);
2288 }
2289
2290 /*
2291  * Wire down a range of virtual addresses in a map.  The entry in question
2292  * should be marked in-transition and the map must be locked.  We must
2293  * release the map temporarily while faulting-in the page to avoid a
2294  * deadlock.  Note that the entry may be clipped while we are blocked but
2295  * will never be freed.
2296  *
2297  * No requirements.
2298  */
2299 int
2300 vm_fault_wire(vm_map_t map, vm_map_entry_t entry,
2301               boolean_t user_wire, int kmflags)
2302 {
2303         boolean_t fictitious;
2304         vm_offset_t start;
2305         vm_offset_t end;
2306         vm_offset_t va;
2307         pmap_t pmap;
2308         int rv;
2309         int wire_prot;
2310         int fault_flags;
2311         vm_page_t m;
2312
2313         if (user_wire) {
2314                 wire_prot = VM_PROT_READ;
2315                 fault_flags = VM_FAULT_USER_WIRE;
2316         } else {
2317                 wire_prot = VM_PROT_READ | VM_PROT_WRITE;
2318                 fault_flags = VM_FAULT_CHANGE_WIRING;
2319         }
2320         if (kmflags & KM_NOTLBSYNC)
2321                 wire_prot |= VM_PROT_NOSYNC;
2322
2323         pmap = vm_map_pmap(map);
2324         start = entry->start;
2325         end = entry->end;
2326
2327         switch(entry->maptype) {
2328         case VM_MAPTYPE_NORMAL:
2329         case VM_MAPTYPE_VPAGETABLE:
2330                 fictitious = entry->object.vm_object &&
2331                             ((entry->object.vm_object->type == OBJT_DEVICE) ||
2332                              (entry->object.vm_object->type == OBJT_MGTDEVICE));
2333                 break;
2334         case VM_MAPTYPE_UKSMAP:
2335                 fictitious = TRUE;
2336                 break;
2337         default:
2338                 fictitious = FALSE;
2339                 break;
2340         }
2341
2342         if (entry->eflags & MAP_ENTRY_KSTACK)
2343                 start += PAGE_SIZE;
2344         map->timestamp++;
2345         vm_map_unlock(map);
2346
2347         /*
2348          * We simulate a fault to get the page and enter it in the physical
2349          * map.
2350          */
2351         for (va = start; va < end; va += PAGE_SIZE) {
2352                 rv = vm_fault(map, va, wire_prot, fault_flags);
2353                 if (rv) {
2354                         while (va > start) {
2355                                 va -= PAGE_SIZE;
2356                                 m = pmap_unwire(pmap, va);
2357                                 if (m && !fictitious) {
2358                                         vm_page_busy_wait(m, FALSE, "vmwrpg");
2359                                         vm_page_unwire(m, 1);
2360                                         vm_page_wakeup(m);
2361                                 }
2362                         }
2363                         goto done;
2364                 }
2365         }
2366         rv = KERN_SUCCESS;
2367 done:
2368         vm_map_lock(map);
2369
2370         return (rv);
2371 }
2372
2373 /*
2374  * Unwire a range of virtual addresses in a map.  The map should be
2375  * locked.
2376  */
2377 void
2378 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
2379 {
2380         boolean_t fictitious;
2381         vm_offset_t start;
2382         vm_offset_t end;
2383         vm_offset_t va;
2384         pmap_t pmap;
2385         vm_page_t m;
2386
2387         pmap = vm_map_pmap(map);
2388         start = entry->start;
2389         end = entry->end;
2390         fictitious = entry->object.vm_object &&
2391                         ((entry->object.vm_object->type == OBJT_DEVICE) ||
2392                          (entry->object.vm_object->type == OBJT_MGTDEVICE));
2393         if (entry->eflags & MAP_ENTRY_KSTACK)
2394                 start += PAGE_SIZE;
2395
2396         /*
2397          * Since the pages are wired down, we must be able to get their
2398          * mappings from the physical map system.
2399          */
2400         for (va = start; va < end; va += PAGE_SIZE) {
2401                 m = pmap_unwire(pmap, va);
2402                 if (m && !fictitious) {
2403                         vm_page_busy_wait(m, FALSE, "vmwrpg");
2404                         vm_page_unwire(m, 1);
2405                         vm_page_wakeup(m);
2406                 }
2407         }
2408 }
2409
2410 /*
2411  * Copy all of the pages from a wired-down map entry to another.
2412  *
2413  * The source and destination maps must be locked for write.
2414  * The source and destination maps token must be held
2415  * The source map entry must be wired down (or be a sharing map
2416  * entry corresponding to a main map entry that is wired down).
2417  *
2418  * No other requirements.
2419  *
2420  * XXX do segment optimization
2421  */
2422 void
2423 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
2424                     vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
2425 {
2426         vm_object_t dst_object;
2427         vm_object_t src_object;
2428         vm_ooffset_t dst_offset;
2429         vm_ooffset_t src_offset;
2430         vm_prot_t prot;
2431         vm_offset_t vaddr;
2432         vm_page_t dst_m;
2433         vm_page_t src_m;
2434
2435         src_object = src_entry->object.vm_object;
2436         src_offset = src_entry->offset;
2437
2438         /*
2439          * Create the top-level object for the destination entry. (Doesn't
2440          * actually shadow anything - we copy the pages directly.)
2441          */
2442         vm_map_entry_allocate_object(dst_entry);
2443         dst_object = dst_entry->object.vm_object;
2444
2445         prot = dst_entry->max_protection;
2446
2447         /*
2448          * Loop through all of the pages in the entry's range, copying each
2449          * one from the source object (it should be there) to the destination
2450          * object.
2451          */
2452         vm_object_hold(src_object);
2453         vm_object_hold(dst_object);
2454
2455         for (vaddr = dst_entry->start, dst_offset = 0;
2456              vaddr < dst_entry->end;
2457              vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
2458
2459                 /*
2460                  * Allocate a page in the destination object
2461                  */
2462                 do {
2463                         dst_m = vm_page_alloc(dst_object,
2464                                               OFF_TO_IDX(dst_offset),
2465                                               VM_ALLOC_NORMAL);
2466                         if (dst_m == NULL) {
2467                                 vm_wait(0);
2468                         }
2469                 } while (dst_m == NULL);
2470
2471                 /*
2472                  * Find the page in the source object, and copy it in.
2473                  * (Because the source is wired down, the page will be in
2474                  * memory.)
2475                  */
2476                 src_m = vm_page_lookup(src_object,
2477                                        OFF_TO_IDX(dst_offset + src_offset));
2478                 if (src_m == NULL)
2479                         panic("vm_fault_copy_wired: page missing");
2480
2481                 vm_page_copy(src_m, dst_m);
2482
2483                 /*
2484                  * Enter it in the pmap...
2485                  */
2486                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE, dst_entry);
2487
2488                 /*
2489                  * Mark it no longer busy, and put it on the active list.
2490                  */
2491                 vm_page_activate(dst_m);
2492                 vm_page_wakeup(dst_m);
2493         }
2494         vm_object_drop(dst_object);
2495         vm_object_drop(src_object);
2496 }
2497
2498 #if 0
2499
2500 /*
2501  * This routine checks around the requested page for other pages that
2502  * might be able to be faulted in.  This routine brackets the viable
2503  * pages for the pages to be paged in.
2504  *
2505  * Inputs:
2506  *      m, rbehind, rahead
2507  *
2508  * Outputs:
2509  *  marray (array of vm_page_t), reqpage (index of requested page)
2510  *
2511  * Return value:
2512  *  number of pages in marray
2513  */
2514 static int
2515 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
2516                           vm_page_t *marray, int *reqpage)
2517 {
2518         int i,j;
2519         vm_object_t object;
2520         vm_pindex_t pindex, startpindex, endpindex, tpindex;
2521         vm_page_t rtm;
2522         int cbehind, cahead;
2523
2524         object = m->object;
2525         pindex = m->pindex;
2526
2527         /*
2528          * we don't fault-ahead for device pager
2529          */
2530         if ((object->type == OBJT_DEVICE) ||
2531             (object->type == OBJT_MGTDEVICE)) {
2532                 *reqpage = 0;
2533                 marray[0] = m;
2534                 return 1;
2535         }
2536
2537         /*
2538          * if the requested page is not available, then give up now
2539          */
2540         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
2541                 *reqpage = 0;   /* not used by caller, fix compiler warn */
2542                 return 0;
2543         }
2544
2545         if ((cbehind == 0) && (cahead == 0)) {
2546                 *reqpage = 0;
2547                 marray[0] = m;
2548                 return 1;
2549         }
2550
2551         if (rahead > cahead) {
2552                 rahead = cahead;
2553         }
2554
2555         if (rbehind > cbehind) {
2556                 rbehind = cbehind;
2557         }
2558
2559         /*
2560          * Do not do any readahead if we have insufficient free memory.
2561          *
2562          * XXX code was broken disabled before and has instability
2563          * with this conditonal fixed, so shortcut for now.
2564          */
2565         if (burst_fault == 0 || vm_page_count_severe()) {
2566                 marray[0] = m;
2567                 *reqpage = 0;
2568                 return 1;
2569         }
2570
2571         /*
2572          * scan backward for the read behind pages -- in memory 
2573          *
2574          * Assume that if the page is not found an interrupt will not
2575          * create it.  Theoretically interrupts can only remove (busy)
2576          * pages, not create new associations.
2577          */
2578         if (pindex > 0) {
2579                 if (rbehind > pindex) {
2580                         rbehind = pindex;
2581                         startpindex = 0;
2582                 } else {
2583                         startpindex = pindex - rbehind;
2584                 }
2585
2586                 vm_object_hold(object);
2587                 for (tpindex = pindex; tpindex > startpindex; --tpindex) {
2588                         if (vm_page_lookup(object, tpindex - 1))
2589                                 break;
2590                 }
2591
2592                 i = 0;
2593                 while (tpindex < pindex) {
2594                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2595                                                              VM_ALLOC_NULL_OK);
2596                         if (rtm == NULL) {
2597                                 for (j = 0; j < i; j++) {
2598                                         vm_page_free(marray[j]);
2599                                 }
2600                                 vm_object_drop(object);
2601                                 marray[0] = m;
2602                                 *reqpage = 0;
2603                                 return 1;
2604                         }
2605                         marray[i] = rtm;
2606                         ++i;
2607                         ++tpindex;
2608                 }
2609                 vm_object_drop(object);
2610         } else {
2611                 i = 0;
2612         }
2613
2614         /*
2615          * Assign requested page
2616          */
2617         marray[i] = m;
2618         *reqpage = i;
2619         ++i;
2620
2621         /*
2622          * Scan forwards for read-ahead pages
2623          */
2624         tpindex = pindex + 1;
2625         endpindex = tpindex + rahead;
2626         if (endpindex > object->size)
2627                 endpindex = object->size;
2628
2629         vm_object_hold(object);
2630         while (tpindex < endpindex) {
2631                 if (vm_page_lookup(object, tpindex))
2632                         break;
2633                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2634                                                      VM_ALLOC_NULL_OK);
2635                 if (rtm == NULL)
2636                         break;
2637                 marray[i] = rtm;
2638                 ++i;
2639                 ++tpindex;
2640         }
2641         vm_object_drop(object);
2642
2643         return (i);
2644 }
2645
2646 #endif
2647
2648 /*
2649  * vm_prefault() provides a quick way of clustering pagefaults into a
2650  * processes address space.  It is a "cousin" of pmap_object_init_pt,
2651  * except it runs at page fault time instead of mmap time.
2652  *
2653  * vm.fast_fault        Enables pre-faulting zero-fill pages
2654  *
2655  * vm.prefault_pages    Number of pages (1/2 negative, 1/2 positive) to
2656  *                      prefault.  Scan stops in either direction when
2657  *                      a page is found to already exist.
2658  *
2659  * This code used to be per-platform pmap_prefault().  It is now
2660  * machine-independent and enhanced to also pre-fault zero-fill pages
2661  * (see vm.fast_fault) as well as make them writable, which greatly
2662  * reduces the number of page faults programs incur.
2663  *
2664  * Application performance when pre-faulting zero-fill pages is heavily
2665  * dependent on the application.  Very tiny applications like /bin/echo
2666  * lose a little performance while applications of any appreciable size
2667  * gain performance.  Prefaulting multiple pages also reduces SMP
2668  * congestion and can improve SMP performance significantly.
2669  *
2670  * NOTE!  prot may allow writing but this only applies to the top level
2671  *        object.  If we wind up mapping a page extracted from a backing
2672  *        object we have to make sure it is read-only.
2673  *
2674  * NOTE!  The caller has already handled any COW operations on the
2675  *        vm_map_entry via the normal fault code.  Do NOT call this
2676  *        shortcut unless the normal fault code has run on this entry.
2677  *
2678  * The related map must be locked.
2679  * No other requirements.
2680  */
2681 static int vm_prefault_pages = 8;
2682 SYSCTL_INT(_vm, OID_AUTO, prefault_pages, CTLFLAG_RW, &vm_prefault_pages, 0,
2683            "Maximum number of pages to pre-fault");
2684 static int vm_fast_fault = 1;
2685 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
2686            "Burst fault zero-fill regions");
2687
2688 /*
2689  * Set PG_NOSYNC if the map entry indicates so, but only if the page
2690  * is not already dirty by other means.  This will prevent passive
2691  * filesystem syncing as well as 'sync' from writing out the page.
2692  */
2693 static void
2694 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
2695 {
2696         if (entry->eflags & MAP_ENTRY_NOSYNC) {
2697                 if (m->dirty == 0)
2698                         vm_page_flag_set(m, PG_NOSYNC);
2699         } else {
2700                 vm_page_flag_clear(m, PG_NOSYNC);
2701         }
2702 }
2703
2704 static void
2705 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot,
2706             int fault_flags)
2707 {
2708         struct lwp *lp;
2709         vm_page_t m;
2710         vm_offset_t addr;
2711         vm_pindex_t index;
2712         vm_pindex_t pindex;
2713         vm_object_t object;
2714         int pprot;
2715         int i;
2716         int noneg;
2717         int nopos;
2718         int maxpages;
2719
2720         /*
2721          * Get stable max count value, disabled if set to 0
2722          */
2723         maxpages = vm_prefault_pages;
2724         cpu_ccfence();
2725         if (maxpages <= 0)
2726                 return;
2727
2728         /*
2729          * We do not currently prefault mappings that use virtual page
2730          * tables.  We do not prefault foreign pmaps.
2731          */
2732         if (entry->maptype != VM_MAPTYPE_NORMAL)
2733                 return;
2734         lp = curthread->td_lwp;
2735         if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2736                 return;
2737
2738         /*
2739          * Limit pre-fault count to 1024 pages.
2740          */
2741         if (maxpages > 1024)
2742                 maxpages = 1024;
2743
2744         object = entry->object.vm_object;
2745         KKASSERT(object != NULL);
2746         KKASSERT(object == entry->object.vm_object);
2747
2748         /*
2749          * NOTE: VM_FAULT_DIRTY allowed later so must hold object exclusively
2750          *       now (or do something more complex XXX).
2751          */
2752         vm_object_hold(object);
2753         vm_object_chain_acquire(object, 0);
2754
2755         noneg = 0;
2756         nopos = 0;
2757         for (i = 0; i < maxpages; ++i) {
2758                 vm_object_t lobject;
2759                 vm_object_t nobject;
2760                 int allocated = 0;
2761                 int error;
2762
2763                 /*
2764                  * This can eat a lot of time on a heavily contended
2765                  * machine so yield on the tick if needed.
2766                  */
2767                 if ((i & 7) == 7)
2768                         lwkt_yield();
2769
2770                 /*
2771                  * Calculate the page to pre-fault, stopping the scan in
2772                  * each direction separately if the limit is reached.
2773                  */
2774                 if (i & 1) {
2775                         if (noneg)
2776                                 continue;
2777                         addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2778                 } else {
2779                         if (nopos)
2780                                 continue;
2781                         addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2782                 }
2783                 if (addr < entry->start) {
2784                         noneg = 1;
2785                         if (noneg && nopos)
2786                                 break;
2787                         continue;
2788                 }
2789                 if (addr >= entry->end) {
2790                         nopos = 1;
2791                         if (noneg && nopos)
2792                                 break;
2793                         continue;
2794                 }
2795
2796                 /*
2797                  * Skip pages already mapped, and stop scanning in that
2798                  * direction.  When the scan terminates in both directions
2799                  * we are done.
2800                  */
2801                 if (pmap_prefault_ok(pmap, addr) == 0) {
2802                         if (i & 1)
2803                                 noneg = 1;
2804                         else
2805                                 nopos = 1;
2806                         if (noneg && nopos)
2807                                 break;
2808                         continue;
2809                 }
2810
2811                 /*
2812                  * Follow the VM object chain to obtain the page to be mapped
2813                  * into the pmap.
2814                  *
2815                  * If we reach the terminal object without finding a page
2816                  * and we determine it would be advantageous, then allocate
2817                  * a zero-fill page for the base object.  The base object
2818                  * is guaranteed to be OBJT_DEFAULT for this case.
2819                  *
2820                  * In order to not have to check the pager via *haspage*()
2821                  * we stop if any non-default object is encountered.  e.g.
2822                  * a vnode or swap object would stop the loop.
2823                  */
2824                 index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2825                 lobject = object;
2826                 pindex = index;
2827                 pprot = prot;
2828
2829                 KKASSERT(lobject == entry->object.vm_object);
2830                 /*vm_object_hold(lobject); implied */
2831
2832                 while ((m = vm_page_lookup_busy_try(lobject, pindex,
2833                                                     TRUE, &error)) == NULL) {
2834                         if (lobject->type != OBJT_DEFAULT)
2835                                 break;
2836                         if (lobject->backing_object == NULL) {
2837                                 if (vm_fast_fault == 0)
2838                                         break;
2839                                 if ((prot & VM_PROT_WRITE) == 0 ||
2840                                     vm_page_count_min(0)) {
2841                                         break;
2842                                 }
2843
2844                                 /*
2845                                  * NOTE: Allocated from base object
2846                                  */
2847                                 m = vm_page_alloc(object, index,
2848                                                   VM_ALLOC_NORMAL |
2849                                                   VM_ALLOC_ZERO |
2850                                                   VM_ALLOC_USE_GD |
2851                                                   VM_ALLOC_NULL_OK);
2852                                 if (m == NULL)
2853                                         break;
2854                                 allocated = 1;
2855                                 pprot = prot;
2856                                 /* lobject = object .. not needed */
2857                                 break;
2858                         }
2859                         if (lobject->backing_object_offset & PAGE_MASK)
2860                                 break;
2861                         nobject = lobject->backing_object;
2862                         vm_object_hold(nobject);
2863                         KKASSERT(nobject == lobject->backing_object);
2864                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2865                         if (lobject != object) {
2866                                 vm_object_lock_swap();
2867                                 vm_object_drop(lobject);
2868                         }
2869                         lobject = nobject;
2870                         pprot &= ~VM_PROT_WRITE;
2871                         vm_object_chain_acquire(lobject, 0);
2872                 }
2873
2874                 /*
2875                  * NOTE: A non-NULL (m) will be associated with lobject if
2876                  *       it was found there, otherwise it is probably a
2877                  *       zero-fill page associated with the base object.
2878                  *
2879                  * Give-up if no page is available.
2880                  */
2881                 if (m == NULL) {
2882                         if (lobject != object) {
2883 #if 0
2884                                 if (object->backing_object != lobject)
2885                                         vm_object_hold(object->backing_object);
2886 #endif
2887                                 vm_object_chain_release_all(
2888                                         object->backing_object, lobject);
2889 #if 0
2890                                 if (object->backing_object != lobject)
2891                                         vm_object_drop(object->backing_object);
2892 #endif
2893                                 vm_object_drop(lobject);
2894                         }
2895                         break;
2896                 }
2897
2898                 /*
2899                  * The object must be marked dirty if we are mapping a
2900                  * writable page.  m->object is either lobject or object,
2901                  * both of which are still held.  Do this before we
2902                  * potentially drop the object.
2903                  */
2904                 if (pprot & VM_PROT_WRITE)
2905                         vm_object_set_writeable_dirty(m->object);
2906
2907                 /*
2908                  * Do not conditionalize on PG_RAM.  If pages are present in
2909                  * the VM system we assume optimal caching.  If caching is
2910                  * not optimal the I/O gravy train will be restarted when we
2911                  * hit an unavailable page.  We do not want to try to restart
2912                  * the gravy train now because we really don't know how much
2913                  * of the object has been cached.  The cost for restarting
2914                  * the gravy train should be low (since accesses will likely
2915                  * be I/O bound anyway).
2916                  */
2917                 if (lobject != object) {
2918 #if 0
2919                         if (object->backing_object != lobject)
2920                                 vm_object_hold(object->backing_object);
2921 #endif
2922                         vm_object_chain_release_all(object->backing_object,
2923                                                     lobject);
2924 #if 0
2925                         if (object->backing_object != lobject)
2926                                 vm_object_drop(object->backing_object);
2927 #endif
2928                         vm_object_drop(lobject);
2929                 }
2930
2931                 /*
2932                  * Enter the page into the pmap if appropriate.  If we had
2933                  * allocated the page we have to place it on a queue.  If not
2934                  * we just have to make sure it isn't on the cache queue
2935                  * (pages on the cache queue are not allowed to be mapped).
2936                  */
2937                 if (allocated) {
2938                         /*
2939                          * Page must be zerod.
2940                          */
2941                         vm_page_zero_fill(m);
2942                         mycpu->gd_cnt.v_zfod++;
2943                         m->valid = VM_PAGE_BITS_ALL;
2944
2945                         /*
2946                          * Handle dirty page case
2947                          */
2948                         if (pprot & VM_PROT_WRITE)
2949                                 vm_set_nosync(m, entry);
2950                         pmap_enter(pmap, addr, m, pprot, 0, entry);
2951                         mycpu->gd_cnt.v_vm_faults++;
2952                         if (curthread->td_lwp)
2953                                 ++curthread->td_lwp->lwp_ru.ru_minflt;
2954                         vm_page_deactivate(m);
2955                         if (pprot & VM_PROT_WRITE) {
2956                                 /*vm_object_set_writeable_dirty(m->object);*/
2957                                 vm_set_nosync(m, entry);
2958                                 if (fault_flags & VM_FAULT_DIRTY) {
2959                                         vm_page_dirty(m);
2960                                         /*XXX*/
2961                                         swap_pager_unswapped(m);
2962                                 }
2963                         }
2964                         vm_page_wakeup(m);
2965                 } else if (error) {
2966                         /* couldn't busy page, no wakeup */
2967                 } else if (
2968                     ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2969                     (m->flags & PG_FICTITIOUS) == 0) {
2970                         /*
2971                          * A fully valid page not undergoing soft I/O can
2972                          * be immediately entered into the pmap.
2973                          */
2974                         if ((m->queue - m->pc) == PQ_CACHE)
2975                                 vm_page_deactivate(m);
2976                         if (pprot & VM_PROT_WRITE) {
2977                                 /*vm_object_set_writeable_dirty(m->object);*/
2978                                 vm_set_nosync(m, entry);
2979                                 if (fault_flags & VM_FAULT_DIRTY) {
2980                                         vm_page_dirty(m);
2981                                         /*XXX*/
2982                                         swap_pager_unswapped(m);
2983                                 }
2984                         }
2985                         if (pprot & VM_PROT_WRITE)
2986                                 vm_set_nosync(m, entry);
2987                         pmap_enter(pmap, addr, m, pprot, 0, entry);
2988                         mycpu->gd_cnt.v_vm_faults++;
2989                         if (curthread->td_lwp)
2990                                 ++curthread->td_lwp->lwp_ru.ru_minflt;
2991                         vm_page_wakeup(m);
2992                 } else {
2993                         vm_page_wakeup(m);
2994                 }
2995         }
2996         vm_object_chain_release(object);
2997         vm_object_drop(object);
2998 }
2999
3000 /*
3001  * Object can be held shared
3002  */
3003 static void
3004 vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
3005                   vm_map_entry_t entry, int prot, int fault_flags)
3006 {
3007         struct lwp *lp;
3008         vm_page_t m;
3009         vm_offset_t addr;
3010         vm_pindex_t pindex;
3011         vm_object_t object;
3012         int i;
3013         int noneg;
3014         int nopos;
3015         int maxpages;
3016
3017         /*
3018          * Get stable max count value, disabled if set to 0
3019          */
3020         maxpages = vm_prefault_pages;
3021         cpu_ccfence();
3022         if (maxpages <= 0)
3023                 return;
3024
3025         /*
3026          * We do not currently prefault mappings that use virtual page
3027          * tables.  We do not prefault foreign pmaps.
3028          */
3029         if (entry->maptype != VM_MAPTYPE_NORMAL)
3030                 return;
3031         lp = curthread->td_lwp;
3032         if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
3033                 return;
3034         object = entry->object.vm_object;
3035         if (object->backing_object != NULL)
3036                 return;
3037         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
3038
3039         /*
3040          * Limit pre-fault count to 1024 pages.
3041          */
3042         if (maxpages > 1024)
3043                 maxpages = 1024;
3044
3045         noneg = 0;
3046         nopos = 0;
3047         for (i = 0; i < maxpages; ++i) {
3048                 int error;
3049
3050                 /*
3051                  * Calculate the page to pre-fault, stopping the scan in
3052                  * each direction separately if the limit is reached.
3053                  */
3054                 if (i & 1) {
3055                         if (noneg)
3056                                 continue;
3057                         addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
3058                 } else {
3059                         if (nopos)
3060                                 continue;
3061                         addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
3062                 }
3063                 if (addr < entry->start) {
3064                         noneg = 1;
3065                         if (noneg && nopos)
3066                                 break;
3067                         continue;
3068                 }
3069                 if (addr >= entry->end) {
3070                         nopos = 1;
3071                         if (noneg && nopos)
3072                                 break;
3073                         continue;
3074                 }
3075
3076                 /*
3077                  * Follow the VM object chain to obtain the page to be mapped
3078                  * into the pmap.  This version of the prefault code only
3079                  * works with terminal objects.
3080                  *
3081                  * The page must already exist.  If we encounter a problem
3082                  * we stop here.
3083                  *
3084                  * WARNING!  We cannot call swap_pager_unswapped() or insert
3085                  *           a new vm_page with a shared token.
3086                  */
3087                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
3088
3089                 /*
3090                  * Skip pages already mapped, and stop scanning in that
3091                  * direction.  When the scan terminates in both directions
3092                  * we are done.
3093                  */
3094                 if (pmap_prefault_ok(pmap, addr) == 0) {
3095                         if (i & 1)
3096                                 noneg = 1;
3097                         else
3098                                 nopos = 1;
3099                         if (noneg && nopos)
3100                                 break;
3101                         continue;
3102                 }
3103
3104                 /*
3105                  * Shortcut the read-only mapping case using the far more
3106                  * efficient vm_page_lookup_sbusy_try() function.  This
3107                  * allows us to acquire the page soft-busied only which
3108                  * is especially nice for concurrent execs of the same
3109                  * program.
3110                  *
3111                  * The lookup function also validates page suitability
3112                  * (all valid bits set, and not fictitious).
3113                  *
3114                  * If the page is in PQ_CACHE we have to fall-through
3115                  * and hard-busy it so we can move it out of PQ_CACHE.
3116                  */
3117                 if ((prot & VM_PROT_WRITE) == 0) {
3118                         m = vm_page_lookup_sbusy_try(object, pindex,
3119                                                      0, PAGE_SIZE);
3120                         if (m == NULL)
3121                                 break;
3122                         if ((m->queue - m->pc) != PQ_CACHE) {
3123                                 pmap_enter(pmap, addr, m, prot, 0, entry);
3124                                 mycpu->gd_cnt.v_vm_faults++;
3125                                 if (curthread->td_lwp)
3126                                         ++curthread->td_lwp->lwp_ru.ru_minflt;
3127                                 vm_page_sbusy_drop(m);
3128                                 continue;
3129                         }
3130                         vm_page_sbusy_drop(m);
3131                 }
3132
3133                 /*
3134                  * Fallback to normal vm_page lookup code.  This code
3135                  * hard-busies the page.  Not only that, but the page
3136                  * can remain in that state for a significant period
3137                  * time due to pmap_enter()'s overhead.
3138                  */
3139                 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
3140                 if (m == NULL || error)
3141                         break;
3142
3143                 /*
3144                  * Stop if the page cannot be trivially entered into the
3145                  * pmap.
3146                  */
3147                 if (((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) ||
3148                     (m->flags & PG_FICTITIOUS) ||
3149                     ((m->flags & PG_SWAPPED) &&
3150                      (prot & VM_PROT_WRITE) &&
3151                      (fault_flags & VM_FAULT_DIRTY))) {
3152                         vm_page_wakeup(m);
3153                         break;
3154                 }
3155
3156                 /*
3157                  * Enter the page into the pmap.  The object might be held
3158                  * shared so we can't do any (serious) modifying operation
3159                  * on it.
3160                  */
3161                 if ((m->queue - m->pc) == PQ_CACHE)
3162                         vm_page_deactivate(m);
3163                 if (prot & VM_PROT_WRITE) {
3164                         vm_object_set_writeable_dirty(m->object);
3165                         vm_set_nosync(m, entry);
3166                         if (fault_flags & VM_FAULT_DIRTY) {
3167                                 vm_page_dirty(m);
3168                                 /* can't happeen due to conditional above */
3169                                 /* swap_pager_unswapped(m); */
3170                         }
3171                 }
3172                 pmap_enter(pmap, addr, m, prot, 0, entry);
3173                 mycpu->gd_cnt.v_vm_faults++;
3174                 if (curthread->td_lwp)
3175                         ++curthread->td_lwp->lwp_ru.ru_minflt;
3176                 vm_page_wakeup(m);
3177         }
3178 }