Merge branch 'vendor/OPENSSH'
[dragonfly.git] / sys / kern / vfs_journal.c
1 /*
2  * Copyright (c) 2004-2006 The DragonFly Project.  All rights reserved.
3  * 
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  * 
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  * 
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/kern/vfs_journal.c,v 1.33 2007/05/09 00:53:34 dillon Exp $
35  */
36 /*
37  * The journaling protocol is intended to evolve into a two-way stream
38  * whereby transaction IDs can be acknowledged by the journaling target
39  * when the data has been committed to hard storage.  Both implicit and
40  * explicit acknowledgement schemes will be supported, depending on the
41  * sophistication of the journaling stream, plus resynchronization and
42  * restart when a journaling stream is interrupted.  This information will
43  * also be made available to journaling-aware filesystems to allow better
44  * management of their own physical storage synchronization mechanisms as
45  * well as to allow such filesystems to take direct advantage of the kernel's
46  * journaling layer so they don't have to roll their own.
47  *
48  * In addition, the worker thread will have access to much larger 
49  * spooling areas then the memory buffer is able to provide by e.g. 
50  * reserving swap space, in order to absorb potentially long interruptions
51  * of off-site journaling streams, and to prevent 'slow' off-site linkages
52  * from radically slowing down local filesystem operations.  
53  *
54  * Because of the non-trivial algorithms the journaling system will be
55  * required to support, use of a worker thread is mandatory.  Efficiencies
56  * are maintained by utilitizing the memory FIFO to batch transactions when
57  * possible, reducing the number of gratuitous thread switches and taking
58  * advantage of cpu caches through the use of shorter batched code paths
59  * rather then trying to do everything in the context of the process
60  * originating the filesystem op.  In the future the memory FIFO can be
61  * made per-cpu to remove BGL or other locking requirements.
62  */
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/buf.h>
66 #include <sys/conf.h>
67 #include <sys/kernel.h>
68 #include <sys/queue.h>
69 #include <sys/lock.h>
70 #include <sys/malloc.h>
71 #include <sys/mount.h>
72 #include <sys/unistd.h>
73 #include <sys/vnode.h>
74 #include <sys/poll.h>
75 #include <sys/mountctl.h>
76 #include <sys/journal.h>
77 #include <sys/file.h>
78 #include <sys/proc.h>
79 #include <sys/msfbuf.h>
80 #include <sys/socket.h>
81 #include <sys/socketvar.h>
82
83 #include <machine/limits.h>
84
85 #include <vm/vm.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vnode_pager.h>
90
91 #include <sys/file2.h>
92 #include <sys/thread2.h>
93 #include <sys/spinlock2.h>
94
95 static void journal_wthread(void *info);
96 static void journal_rthread(void *info);
97
98 static void *journal_reserve(struct journal *jo,
99                         struct journal_rawrecbeg **rawpp,
100                         int16_t streamid, int bytes);
101 static void *journal_extend(struct journal *jo,
102                         struct journal_rawrecbeg **rawpp,
103                         int truncbytes, int bytes, int *newstreamrecp);
104 static void journal_abort(struct journal *jo,
105                         struct journal_rawrecbeg **rawpp);
106 static void journal_commit(struct journal *jo,
107                         struct journal_rawrecbeg **rawpp,
108                         int bytes, int closeout);
109
110
111 MALLOC_DEFINE(M_JOURNAL, "journal", "Journaling structures");
112 MALLOC_DEFINE(M_JFIFO, "journal-fifo", "Journal FIFO");
113
114 void
115 journal_create_threads(struct journal *jo)
116 {
117         jo->flags &= ~(MC_JOURNAL_STOP_REQ | MC_JOURNAL_STOP_IMM);
118         jo->flags |= MC_JOURNAL_WACTIVE;
119         lwkt_create(journal_wthread, jo, NULL, &jo->wthread,
120                         TDF_STOPREQ, -1, "journal w:%.*s", JIDMAX, jo->id);
121         lwkt_setpri(&jo->wthread, TDPRI_KERN_DAEMON);
122         lwkt_schedule(&jo->wthread);
123
124         if (jo->flags & MC_JOURNAL_WANT_FULLDUPLEX) {
125             jo->flags |= MC_JOURNAL_RACTIVE;
126             lwkt_create(journal_rthread, jo, NULL, &jo->rthread,
127                         TDF_STOPREQ, -1, "journal r:%.*s", JIDMAX, jo->id);
128             lwkt_setpri(&jo->rthread, TDPRI_KERN_DAEMON);
129             lwkt_schedule(&jo->rthread);
130         }
131 }
132
133 void
134 journal_destroy_threads(struct journal *jo, int flags)
135 {
136     int wcount;
137
138     jo->flags |= MC_JOURNAL_STOP_REQ | (flags & MC_JOURNAL_STOP_IMM);
139     wakeup(&jo->fifo);
140     wcount = 0;
141     while (jo->flags & (MC_JOURNAL_WACTIVE | MC_JOURNAL_RACTIVE)) {
142         tsleep(jo, 0, "jwait", hz);
143         if (++wcount % 10 == 0) {
144             kprintf("Warning: journal %s waiting for descriptors to close\n",
145                 jo->id);
146         }
147     }
148
149     /*
150      * XXX SMP - threads should move to cpu requesting the restart or
151      * termination before finishing up to properly interlock.
152      */
153     tsleep(jo, 0, "jwait", hz);
154     lwkt_free_thread(&jo->wthread);
155     if (jo->flags & MC_JOURNAL_WANT_FULLDUPLEX)
156         lwkt_free_thread(&jo->rthread);
157 }
158
159 /*
160  * The per-journal worker thread is responsible for writing out the
161  * journal's FIFO to the target stream.
162  */
163 static void
164 journal_wthread(void *info)
165 {
166     struct journal *jo = info;
167     struct journal_rawrecbeg *rawp;
168     int error;
169     size_t avail;
170     size_t bytes;
171     size_t res;
172
173     for (;;) {
174         /*
175          * Calculate the number of bytes available to write.  This buffer
176          * area may contain reserved records so we can't just write it out
177          * without further checks.
178          */
179         bytes = jo->fifo.windex - jo->fifo.rindex;
180
181         /*
182          * sleep if no bytes are available or if an incomplete record is
183          * encountered (it needs to be filled in before we can write it
184          * out), and skip any pad records that we encounter.
185          */
186         if (bytes == 0) {
187             if (jo->flags & MC_JOURNAL_STOP_REQ)
188                 break;
189             tsleep(&jo->fifo, 0, "jfifo", hz);
190             continue;
191         }
192
193         /*
194          * Sleep if we can not go any further due to hitting an incomplete
195          * record.  This case should occur rarely but may have to be better
196          * optimized XXX.
197          */
198         rawp = (void *)(jo->fifo.membase + (jo->fifo.rindex & jo->fifo.mask));
199         if (rawp->begmagic == JREC_INCOMPLETEMAGIC) {
200             tsleep(&jo->fifo, 0, "jpad", hz);
201             continue;
202         }
203
204         /*
205          * Skip any pad records.  We do not write out pad records if we can
206          * help it. 
207          */
208         if (rawp->streamid == JREC_STREAMID_PAD) {
209             if ((jo->flags & MC_JOURNAL_WANT_FULLDUPLEX) == 0) {
210                 if (jo->fifo.rindex == jo->fifo.xindex) {
211                     jo->fifo.xindex += (rawp->recsize + 15) & ~15;
212                     jo->total_acked += (rawp->recsize + 15) & ~15;
213                 }
214             }
215             jo->fifo.rindex += (rawp->recsize + 15) & ~15;
216             jo->total_acked += bytes;
217             KKASSERT(jo->fifo.windex - jo->fifo.rindex >= 0);
218             continue;
219         }
220
221         /*
222          * 'bytes' is the amount of data that can potentially be written out.  
223          * Calculate 'res', the amount of data that can actually be written
224          * out.  res is bounded either by hitting the end of the physical
225          * memory buffer or by hitting an incomplete record.  Incomplete
226          * records often occur due to the way the space reservation model
227          * works.
228          */
229         res = 0;
230         avail = jo->fifo.size - (jo->fifo.rindex & jo->fifo.mask);
231         while (res < bytes && rawp->begmagic == JREC_BEGMAGIC) {
232             res += (rawp->recsize + 15) & ~15;
233             if (res >= avail) {
234                 KKASSERT(res == avail);
235                 break;
236             }
237             rawp = (void *)((char *)rawp + ((rawp->recsize + 15) & ~15));
238         }
239
240         /*
241          * Issue the write and deal with any errors or other conditions.
242          * For now assume blocking I/O.  Since we are record-aware the
243          * code cannot yet handle partial writes.
244          *
245          * We bump rindex prior to issuing the write to avoid racing
246          * the acknowledgement coming back (which could prevent the ack
247          * from bumping xindex).  Restarts are always based on xindex so
248          * we do not try to undo the rindex if an error occurs.
249          *
250          * XXX EWOULDBLOCK/NBIO
251          * XXX notification on failure
252          * XXX permanent verses temporary failures
253          * XXX two-way acknowledgement stream in the return direction / xindex
254          */
255         bytes = res;
256         jo->fifo.rindex += bytes;
257         error = fp_write(jo->fp, 
258                         jo->fifo.membase +
259                          ((jo->fifo.rindex - bytes) & jo->fifo.mask),
260                         bytes, &res, UIO_SYSSPACE);
261         if (error) {
262             kprintf("journal_thread(%s) write, error %d\n", jo->id, error);
263             /* XXX */
264         } else {
265             KKASSERT(res == bytes);
266         }
267
268         /*
269          * Advance rindex.  If the journal stream is not full duplex we also
270          * advance xindex, otherwise the rjournal thread is responsible for
271          * advancing xindex.
272          */
273         if ((jo->flags & MC_JOURNAL_WANT_FULLDUPLEX) == 0) {
274             jo->fifo.xindex += bytes;
275             jo->total_acked += bytes;
276         }
277         KKASSERT(jo->fifo.windex - jo->fifo.rindex >= 0);
278         if ((jo->flags & MC_JOURNAL_WANT_FULLDUPLEX) == 0) {
279             if (jo->flags & MC_JOURNAL_WWAIT) {
280                 jo->flags &= ~MC_JOURNAL_WWAIT; /* XXX hysteresis */
281                 wakeup(&jo->fifo.windex);
282             }
283         }
284     }
285     fp_shutdown(jo->fp, SHUT_WR);
286     jo->flags &= ~MC_JOURNAL_WACTIVE;
287     wakeup(jo);
288     wakeup(&jo->fifo.windex);
289 }
290
291 /*
292  * A second per-journal worker thread is created for two-way journaling
293  * streams to deal with the return acknowledgement stream.
294  */
295 static void
296 journal_rthread(void *info)
297 {
298     struct journal_rawrecbeg *rawp;
299     struct journal_ackrecord ack;
300     struct journal *jo = info;
301     int64_t transid;
302     int error;
303     size_t count;
304     size_t bytes;
305
306     transid = 0;
307     error = 0;
308
309     for (;;) {
310         /*
311          * We have been asked to stop
312          */
313         if (jo->flags & MC_JOURNAL_STOP_REQ)
314                 break;
315
316         /*
317          * If we have no active transaction id, get one from the return
318          * stream.
319          */
320         if (transid == 0) {
321             error = fp_read(jo->fp, &ack, sizeof(ack), &count, 
322                             1, UIO_SYSSPACE);
323 #if 0
324             kprintf("fp_read ack error %d count %d\n", error, count);
325 #endif
326             if (error || count != sizeof(ack))
327                 break;
328             if (error) {
329                 kprintf("read error %d on receive stream\n", error);
330                 break;
331             }
332             if (ack.rbeg.begmagic != JREC_BEGMAGIC ||
333                 ack.rend.endmagic != JREC_ENDMAGIC
334             ) {
335                 kprintf("bad begmagic or endmagic on receive stream\n");
336                 break;
337             }
338             transid = ack.rbeg.transid;
339         }
340
341         /*
342          * Calculate the number of unacknowledged bytes.  If there are no
343          * unacknowledged bytes then unsent data was acknowledged, report,
344          * sleep a bit, and loop in that case.  This should not happen 
345          * normally.  The ack record is thrown away.
346          */
347         bytes = jo->fifo.rindex - jo->fifo.xindex;
348
349         if (bytes == 0) {
350             kprintf("warning: unsent data acknowledged transid %08llx\n",
351                     (long long)transid);
352             tsleep(&jo->fifo.xindex, 0, "jrseq", hz);
353             transid = 0;
354             continue;
355         }
356
357         /*
358          * Since rindex has advanced, the record pointed to by xindex
359          * must be a valid record.
360          */
361         rawp = (void *)(jo->fifo.membase + (jo->fifo.xindex & jo->fifo.mask));
362         KKASSERT(rawp->begmagic == JREC_BEGMAGIC);
363         KKASSERT(rawp->recsize <= bytes);
364
365         /*
366          * The target can acknowledge several records at once.
367          */
368         if (rawp->transid < transid) {
369 #if 1
370             kprintf("ackskip %08llx/%08llx\n",
371                     (long long)rawp->transid,
372                     (long long)transid);
373 #endif
374             jo->fifo.xindex += (rawp->recsize + 15) & ~15;
375             jo->total_acked += (rawp->recsize + 15) & ~15;
376             if (jo->flags & MC_JOURNAL_WWAIT) {
377                 jo->flags &= ~MC_JOURNAL_WWAIT; /* XXX hysteresis */
378                 wakeup(&jo->fifo.windex);
379             }
380             continue;
381         }
382         if (rawp->transid == transid) {
383 #if 1
384             kprintf("ackskip %08llx/%08llx\n",
385                     (long long)rawp->transid,
386                     (long long)transid);
387 #endif
388             jo->fifo.xindex += (rawp->recsize + 15) & ~15;
389             jo->total_acked += (rawp->recsize + 15) & ~15;
390             if (jo->flags & MC_JOURNAL_WWAIT) {
391                 jo->flags &= ~MC_JOURNAL_WWAIT; /* XXX hysteresis */
392                 wakeup(&jo->fifo.windex);
393             }
394             transid = 0;
395             continue;
396         }
397         kprintf("warning: unsent data(2) acknowledged transid %08llx\n",
398                 (long long)transid);
399         transid = 0;
400     }
401     jo->flags &= ~MC_JOURNAL_RACTIVE;
402     wakeup(jo);
403     wakeup(&jo->fifo.windex);
404 }
405
406 /*
407  * This builds a pad record which the journaling thread will skip over.  Pad
408  * records are required when we are unable to reserve sufficient stream space
409  * due to insufficient space at the end of the physical memory fifo.
410  *
411  * Even though the record is not transmitted, a normal transid must be 
412  * assigned to it so link recovery operations after a failure work properly.
413  */
414 static
415 void
416 journal_build_pad(struct journal_rawrecbeg *rawp, int recsize, int64_t transid)
417 {
418     struct journal_rawrecend *rendp;
419     
420     KKASSERT((recsize & 15) == 0 && recsize >= 16);
421
422     rawp->streamid = JREC_STREAMID_PAD;
423     rawp->recsize = recsize;    /* must be 16-byte aligned */
424     rawp->transid = transid;
425     /*
426      * WARNING, rendp may overlap rawp->transid.  This is necessary to
427      * allow PAD records to fit in 16 bytes.  Use cpu_ccfence() to
428      * hopefully cause the compiler to not make any assumptions.
429      */
430     rendp = (void *)((char *)rawp + rawp->recsize - sizeof(*rendp));
431     rendp->endmagic = JREC_ENDMAGIC;
432     rendp->check = 0;
433     rendp->recsize = rawp->recsize;
434
435     /*
436      * Set the begin magic last.  This is what will allow the journal
437      * thread to write the record out.  Use a store fence to prevent
438      * compiler and cpu reordering of the writes.
439      */
440     cpu_sfence();
441     rawp->begmagic = JREC_BEGMAGIC;
442 }
443
444 /*
445  * Wake up the worker thread if the FIFO is more then half full or if
446  * someone is waiting for space to be freed up.  Otherwise let the 
447  * heartbeat deal with it.  Being able to avoid waking up the worker
448  * is the key to the journal's cpu performance.
449  */
450 static __inline
451 void
452 journal_commit_wakeup(struct journal *jo)
453 {
454     int avail;
455
456     avail = jo->fifo.size - (jo->fifo.windex - jo->fifo.xindex);
457     KKASSERT(avail >= 0);
458     if ((avail < (jo->fifo.size >> 1)) || (jo->flags & MC_JOURNAL_WWAIT))
459         wakeup(&jo->fifo);
460 }
461
462 /*
463  * Create a new BEGIN stream record with the specified streamid and the
464  * specified amount of payload space.  *rawpp will be set to point to the
465  * base of the new stream record and a pointer to the base of the payload
466  * space will be returned.  *rawpp does not need to be pre-NULLd prior to
467  * making this call.  The raw record header will be partially initialized.
468  *
469  * A stream can be extended, aborted, or committed by other API calls
470  * below.  This may result in a sequence of potentially disconnected
471  * stream records to be output to the journaling target.  The first record
472  * (the one created by this function) will be marked JREC_STREAMCTL_BEGIN,
473  * while the last record on commit or abort will be marked JREC_STREAMCTL_END
474  * (and possibly also JREC_STREAMCTL_ABORTED).  The last record could wind
475  * up being the same as the first, in which case the bits are all set in
476  * the first record.
477  *
478  * The stream record is created in an incomplete state by setting the begin
479  * magic to JREC_INCOMPLETEMAGIC.  This prevents the worker thread from
480  * flushing the fifo past our record until we have finished populating it.
481  * Other threads can reserve and operate on their own space without stalling
482  * but the stream output will stall until we have completed operations.  The
483  * memory FIFO is intended to be large enough to absorb such situations
484  * without stalling out other threads.
485  */
486 static
487 void *
488 journal_reserve(struct journal *jo, struct journal_rawrecbeg **rawpp,
489                 int16_t streamid, int bytes)
490 {
491     struct journal_rawrecbeg *rawp;
492     int avail;
493     int availtoend;
494     int req;
495
496     /*
497      * Add header and trailer overheads to the passed payload.  Note that
498      * the passed payload size need not be aligned in any way.
499      */
500     bytes += sizeof(struct journal_rawrecbeg);
501     bytes += sizeof(struct journal_rawrecend);
502
503     for (;;) {
504         /*
505          * First, check boundary conditions.  If the request would wrap around
506          * we have to skip past the ending block and return to the beginning
507          * of the FIFO's buffer.  Calculate 'req' which is the actual number
508          * of bytes being reserved, including wrap-around dead space.
509          *
510          * Neither 'bytes' or 'req' are aligned.
511          *
512          * Note that availtoend is not truncated to avail and so cannot be
513          * used to determine whether the reservation is possible by itself.
514          * Also, since all fifo ops are 16-byte aligned, we can check
515          * the size before calculating the aligned size.
516          */
517         availtoend = jo->fifo.size - (jo->fifo.windex & jo->fifo.mask);
518         KKASSERT((availtoend & 15) == 0);
519         if (bytes > availtoend) 
520             req = bytes + availtoend;   /* add pad to end */
521         else
522             req = bytes;
523
524         /*
525          * Next calculate the total available space and see if it is
526          * sufficient.  We cannot overwrite previously buffered data
527          * past xindex because otherwise we would not be able to restart
528          * a broken link at the target's last point of commit.
529          */
530         avail = jo->fifo.size - (jo->fifo.windex - jo->fifo.xindex);
531         KKASSERT(avail >= 0 && (avail & 15) == 0);
532
533         if (avail < req) {
534             /* XXX MC_JOURNAL_STOP_IMM */
535             jo->flags |= MC_JOURNAL_WWAIT;
536             ++jo->fifostalls;
537             tsleep(&jo->fifo.windex, 0, "jwrite", 0);
538             continue;
539         }
540
541         /*
542          * Create a pad record for any dead space and create an incomplete
543          * record for the live space, then return a pointer to the
544          * contiguous buffer space that was requested.
545          *
546          * NOTE: The worker thread will not flush past an incomplete
547          * record, so the reserved space can be filled in at-will.  The
548          * journaling code must also be aware the reserved sections occuring
549          * after this one will also not be written out even if completed
550          * until this one is completed.
551          *
552          * The transaction id must accomodate real and potential pad creation.
553          */
554         rawp = (void *)(jo->fifo.membase + (jo->fifo.windex & jo->fifo.mask));
555         if (req != bytes) {
556             journal_build_pad(rawp, availtoend, jo->transid);
557             ++jo->transid;
558             rawp = (void *)jo->fifo.membase;
559         }
560         rawp->begmagic = JREC_INCOMPLETEMAGIC;  /* updated by abort/commit */
561         rawp->recsize = bytes;                  /* (unaligned size) */
562         rawp->streamid = streamid | JREC_STREAMCTL_BEGIN;
563         rawp->transid = jo->transid;
564         jo->transid += 2;
565
566         /*
567          * Issue a memory barrier to guarentee that the record data has been
568          * properly initialized before we advance the write index and return
569          * a pointer to the reserved record.  Otherwise the worker thread
570          * could accidently run past us.
571          *
572          * Note that stream records are always 16-byte aligned.
573          */
574         cpu_sfence();
575         jo->fifo.windex += (req + 15) & ~15;
576         *rawpp = rawp;
577         return(rawp + 1);
578     }
579     /* not reached */
580     *rawpp = NULL;
581     return(NULL);
582 }
583
584 /*
585  * Attempt to extend the stream record by <bytes> worth of payload space.
586  *
587  * If it is possible to extend the existing stream record no truncation
588  * occurs and the record is extended as specified.  A pointer to the 
589  * truncation offset within the payload space is returned.
590  *
591  * If it is not possible to do this the existing stream record is truncated
592  * and committed, and a new stream record of size <bytes> is created.  A
593  * pointer to the base of the new stream record's payload space is returned.
594  *
595  * *rawpp is set to the new reservation in the case of a new record but
596  * the caller cannot depend on a comparison with the old rawp to determine if
597  * this case occurs because we could end up using the same memory FIFO
598  * offset for the new stream record.  Use *newstreamrecp instead.
599  */
600 static void *
601 journal_extend(struct journal *jo, struct journal_rawrecbeg **rawpp, 
602                 int truncbytes, int bytes, int *newstreamrecp)
603 {
604     struct journal_rawrecbeg *rawp;
605     int16_t streamid;
606     int availtoend;
607     int avail;
608     int osize;
609     int nsize;
610     int wbase;
611     void *rptr;
612
613     *newstreamrecp = 0;
614     rawp = *rawpp;
615     osize = (rawp->recsize + 15) & ~15;
616     nsize = (rawp->recsize + bytes + 15) & ~15;
617     wbase = (char *)rawp - jo->fifo.membase;
618
619     /*
620      * If the aligned record size does not change we can trivially adjust
621      * the record size.
622      */
623     if (nsize == osize) {
624         rawp->recsize += bytes;
625         return((char *)(rawp + 1) + truncbytes);
626     }
627
628     /*
629      * If the fifo's write index hasn't been modified since we made the
630      * reservation and we do not hit any boundary conditions, we can 
631      * trivially make the record smaller or larger.
632      */
633     if ((jo->fifo.windex & jo->fifo.mask) == wbase + osize) {
634         availtoend = jo->fifo.size - wbase;
635         avail = jo->fifo.size - (jo->fifo.windex - jo->fifo.xindex) + osize;
636         KKASSERT((availtoend & 15) == 0);
637         KKASSERT((avail & 15) == 0);
638         if (nsize <= avail && nsize <= availtoend) {
639             jo->fifo.windex += nsize - osize;
640             rawp->recsize += bytes;
641             return((char *)(rawp + 1) + truncbytes);
642         }
643     }
644
645     /*
646      * It was not possible to extend the buffer.  Commit the current
647      * buffer and create a new one.  We manually clear the BEGIN mark that
648      * journal_reserve() creates (because this is a continuing record, not
649      * the start of a new stream).
650      */
651     streamid = rawp->streamid & JREC_STREAMID_MASK;
652     journal_commit(jo, rawpp, truncbytes, 0);
653     rptr = journal_reserve(jo, rawpp, streamid, bytes);
654     rawp = *rawpp;
655     rawp->streamid &= ~JREC_STREAMCTL_BEGIN;
656     *newstreamrecp = 1;
657     return(rptr);
658 }
659
660 /*
661  * Abort a journal record.  If the transaction record represents a stream
662  * BEGIN and we can reverse the fifo's write index we can simply reverse
663  * index the entire record, as if it were never reserved in the first place.
664  *
665  * Otherwise we set the JREC_STREAMCTL_ABORTED bit and commit the record
666  * with the payload truncated to 0 bytes.
667  */
668 static void
669 journal_abort(struct journal *jo, struct journal_rawrecbeg **rawpp)
670 {
671     struct journal_rawrecbeg *rawp;
672     int osize;
673
674     rawp = *rawpp;
675     osize = (rawp->recsize + 15) & ~15;
676
677     if ((rawp->streamid & JREC_STREAMCTL_BEGIN) &&
678         (jo->fifo.windex & jo->fifo.mask) == 
679          (char *)rawp - jo->fifo.membase + osize)
680     {
681         jo->fifo.windex -= osize;
682         *rawpp = NULL;
683     } else {
684         rawp->streamid |= JREC_STREAMCTL_ABORTED;
685         journal_commit(jo, rawpp, 0, 1);
686     }
687 }
688
689 /*
690  * Commit a journal record and potentially truncate it to the specified
691  * number of payload bytes.  If you do not want to truncate the record,
692  * simply pass -1 for the bytes parameter.  Do not pass rawp->recsize, that
693  * field includes header and trailer and will not be correct.  Note that
694  * passing 0 will truncate the entire data payload of the record.
695  *
696  * The logical stream is terminated by this function.
697  *
698  * If truncation occurs, and it is not possible to physically optimize the
699  * memory FIFO due to other threads having reserved space after ours,
700  * the remaining reserved space will be covered by a pad record.
701  */
702 static void
703 journal_commit(struct journal *jo, struct journal_rawrecbeg **rawpp,
704                 int bytes, int closeout)
705 {
706     struct journal_rawrecbeg *rawp;
707     struct journal_rawrecend *rendp;
708     int osize;
709     int nsize;
710
711     rawp = *rawpp;
712     *rawpp = NULL;
713
714     KKASSERT((char *)rawp >= jo->fifo.membase &&
715              (char *)rawp + rawp->recsize <= jo->fifo.membase + jo->fifo.size);
716     KKASSERT(((intptr_t)rawp & 15) == 0);
717
718     /*
719      * Truncate the record if necessary.  If the FIFO write index as still
720      * at the end of our record we can optimally backindex it.  Otherwise
721      * we have to insert a pad record to cover the dead space.
722      *
723      * We calculate osize which is the 16-byte-aligned original recsize.
724      * We calculate nsize which is the 16-byte-aligned new recsize.
725      *
726      * Due to alignment issues or in case the passed truncation bytes is
727      * the same as the original payload, nsize may be equal to osize even
728      * if the committed bytes is less then the originally reserved bytes.
729      */
730     if (bytes >= 0) {
731         KKASSERT(bytes >= 0 && bytes <= rawp->recsize - sizeof(struct journal_rawrecbeg) - sizeof(struct journal_rawrecend));
732         osize = (rawp->recsize + 15) & ~15;
733         rawp->recsize = bytes + sizeof(struct journal_rawrecbeg) +
734                         sizeof(struct journal_rawrecend);
735         nsize = (rawp->recsize + 15) & ~15;
736         KKASSERT(nsize <= osize);
737         if (osize == nsize) {
738             /* do nothing */
739         } else if ((jo->fifo.windex & jo->fifo.mask) == (char *)rawp - jo->fifo.membase + osize) {
740             /* we are able to backindex the fifo */
741             jo->fifo.windex -= osize - nsize;
742         } else {
743             /* we cannot backindex the fifo, emplace a pad in the dead space */
744             journal_build_pad((void *)((char *)rawp + nsize), osize - nsize,
745                                 rawp->transid + 1);
746         }
747     }
748
749     /*
750      * Fill in the trailer.  Note that unlike pad records, the trailer will
751      * never overlap the header.
752      */
753     rendp = (void *)((char *)rawp + 
754             ((rawp->recsize + 15) & ~15) - sizeof(*rendp));
755     rendp->endmagic = JREC_ENDMAGIC;
756     rendp->recsize = rawp->recsize;
757     rendp->check = 0;           /* XXX check word, disabled for now */
758
759     /*
760      * Fill in begmagic last.  This will allow the worker thread to proceed.
761      * Use a memory barrier to guarentee write ordering.  Mark the stream
762      * as terminated if closeout is set.  This is the typical case.
763      */
764     if (closeout)
765         rawp->streamid |= JREC_STREAMCTL_END;
766     cpu_sfence();               /* memory and compiler barrier */
767     rawp->begmagic = JREC_BEGMAGIC;
768
769     journal_commit_wakeup(jo);
770 }
771
772 /************************************************************************
773  *                      TRANSACTION SUPPORT ROUTINES                    *
774  ************************************************************************
775  *
776  * JRECORD_*() - routines to create subrecord transactions and embed them
777  *               in the logical streams managed by the journal_*() routines.
778  */
779
780 /*
781  * Initialize the passed jrecord structure and start a new stream transaction
782  * by reserving an initial build space in the journal's memory FIFO.
783  */
784 void
785 jrecord_init(struct journal *jo, struct jrecord *jrec, int16_t streamid)
786 {
787     bzero(jrec, sizeof(*jrec));
788     jrec->jo = jo;
789     jrec->streamid = streamid;
790     jrec->stream_residual = JREC_DEFAULTSIZE;
791     jrec->stream_reserved = jrec->stream_residual;
792     jrec->stream_ptr = 
793         journal_reserve(jo, &jrec->rawp, streamid, jrec->stream_reserved);
794 }
795
796 /*
797  * Push a recursive record type.  All pushes should have matching pops.
798  * The old parent is returned and the newly pushed record becomes the
799  * new parent.  Note that the old parent's pointer may already be invalid
800  * or may become invalid if jrecord_write() had to build a new stream
801  * record, so the caller should not mess with the returned pointer in
802  * any way other then to save it.
803  */
804 struct journal_subrecord *
805 jrecord_push(struct jrecord *jrec, int16_t rectype)
806 {
807     struct journal_subrecord *save;
808
809     save = jrec->parent;
810     jrec->parent = jrecord_write(jrec, rectype|JMASK_NESTED, 0);
811     jrec->last = NULL;
812     KKASSERT(jrec->parent != NULL);
813     ++jrec->pushcount;
814     ++jrec->pushptrgood;        /* cleared on flush */
815     return(save);
816 }
817
818 /*
819  * Pop a previously pushed sub-transaction.  We must set JMASK_LAST
820  * on the last record written within the subtransaction.  If the last 
821  * record written is not accessible or if the subtransaction is empty,
822  * we must write out a pad record with JMASK_LAST set before popping.
823  *
824  * When popping a subtransaction the parent record's recsize field
825  * will be properly set.  If the parent pointer is no longer valid
826  * (which can occur if the data has already been flushed out to the
827  * stream), the protocol spec allows us to leave it 0.
828  *
829  * The saved parent pointer which we restore may or may not be valid,
830  * and if not valid may or may not be NULL, depending on the value
831  * of pushptrgood.
832  */
833 void
834 jrecord_pop(struct jrecord *jrec, struct journal_subrecord *save)
835 {
836     struct journal_subrecord *last;
837
838     KKASSERT(jrec->pushcount > 0);
839     KKASSERT(jrec->residual == 0);
840
841     /*
842      * Set JMASK_LAST on the last record we wrote at the current
843      * level.  If last is NULL we either no longer have access to the
844      * record or the subtransaction was empty and we must write out a pad
845      * record.
846      */
847     if ((last = jrec->last) == NULL) {
848         jrecord_write(jrec, JLEAF_PAD|JMASK_LAST, 0);
849         last = jrec->last;      /* reload after possible flush */
850     } else {
851         last->rectype |= JMASK_LAST;
852     }
853
854     /*
855      * pushptrgood tells us how many levels of parent record pointers
856      * are valid.  The jrec only stores the current parent record pointer
857      * (and it is only valid if pushptrgood != 0).  The higher level parent
858      * record pointers are saved by the routines calling jrecord_push() and
859      * jrecord_pop().  These pointers may become stale and we determine
860      * that fact by tracking the count of valid parent pointers with 
861      * pushptrgood.  Pointers become invalid when their related stream
862      * record gets pushed out.
863      *
864      * If no pointer is available (the data has already been pushed out),
865      * then no fixup of e.g. the length field is possible for non-leaf
866      * nodes.  The protocol allows for this situation by placing a larger
867      * burden on the program scanning the stream on the other end.
868      *
869      * [parentA]
870      *    [node X]
871      *    [parentB]
872      *       [node Y]
873      *       [node Z]
874      *    (pop B)       see NOTE B
875      * (pop A)          see NOTE A
876      *
877      * NOTE B:  This pop sets LAST in node Z if the node is still accessible,
878      *          else a PAD record is appended and LAST is set in that.
879      *
880      *          This pop sets the record size in parentB if parentB is still
881      *          accessible, else the record size is left 0 (the scanner must
882      *          deal with that).
883      *
884      *          This pop sets the new 'last' record to parentB, the pointer
885      *          to which may or may not still be accessible.
886      *
887      * NOTE A:  This pop sets LAST in parentB if the node is still accessible,
888      *          else a PAD record is appended and LAST is set in that.
889      *
890      *          This pop sets the record size in parentA if parentA is still
891      *          accessible, else the record size is left 0 (the scanner must
892      *          deal with that).
893      *
894      *          This pop sets the new 'last' record to parentA, the pointer
895      *          to which may or may not still be accessible.
896      *
897      * Also note that the last record in the stream transaction, which in
898      * the above example is parentA, does not currently have the LAST bit
899      * set.
900      *
901      * The current parent becomes the last record relative to the
902      * saved parent passed into us.  It's validity is based on 
903      * whether pushptrgood is non-zero prior to decrementing.  The saved
904      * parent becomes the new parent, and its validity is based on whether
905      * pushptrgood is non-zero after decrementing.
906      *
907      * The old jrec->parent may be NULL if it is no longer accessible.
908      * If pushptrgood is non-zero, however, it is guarenteed to not
909      * be NULL (since no flush occured).
910      */
911     jrec->last = jrec->parent;
912     --jrec->pushcount;
913     if (jrec->pushptrgood) {
914         KKASSERT(jrec->last != NULL && last != NULL);
915         if (--jrec->pushptrgood == 0) {
916             jrec->parent = NULL;        /* 'save' contains garbage or NULL */
917         } else {
918             KKASSERT(save != NULL);
919             jrec->parent = save;        /* 'save' must not be NULL */
920         }
921
922         /*
923          * Set the record size in the old parent.  'last' still points to
924          * the original last record in the subtransaction being popped,
925          * jrec->last points to the old parent (which became the last
926          * record relative to the new parent being popped into).
927          */
928         jrec->last->recsize = (char *)last + last->recsize - (char *)jrec->last;
929     } else {
930         jrec->parent = NULL;
931         KKASSERT(jrec->last == NULL);
932     }
933 }
934
935 /*
936  * Write out a leaf record, including associated data.
937  */
938 void
939 jrecord_leaf(struct jrecord *jrec, int16_t rectype, void *ptr, int bytes)
940 {
941     jrecord_write(jrec, rectype, bytes);
942     jrecord_data(jrec, ptr, bytes);
943 }
944
945 /*
946  * Write a leaf record out and return a pointer to its base.  The leaf
947  * record may contain potentially megabytes of data which is supplied
948  * in jrecord_data() calls.  The exact amount must be specified in this
949  * call.
950  *
951  * THE RETURNED SUBRECORD POINTER IS ONLY VALID IMMEDIATELY AFTER THE
952  * CALL AND MAY BECOME INVALID AT ANY TIME.  ONLY THE PUSH/POP CODE SHOULD
953  * USE THE RETURN VALUE.
954  */
955 struct journal_subrecord *
956 jrecord_write(struct jrecord *jrec, int16_t rectype, int bytes)
957 {
958     struct journal_subrecord *last;
959     int pusheditout;
960
961     /*
962      * Try to catch some obvious errors.  Nesting records must specify a
963      * size of 0, and there should be no left-overs from previous operations
964      * (such as incomplete data writeouts).
965      */
966     KKASSERT(bytes == 0 || (rectype & JMASK_NESTED) == 0);
967     KKASSERT(jrec->residual == 0);
968
969     /*
970      * Check to see if the current stream record has enough room for
971      * the new subrecord header.  If it doesn't we extend the current
972      * stream record.
973      *
974      * This may have the side effect of pushing out the current stream record
975      * and creating a new one.  We must adjust our stream tracking fields
976      * accordingly.
977      */
978     if (jrec->stream_residual < sizeof(struct journal_subrecord)) {
979         jrec->stream_ptr = journal_extend(jrec->jo, &jrec->rawp,
980                                 jrec->stream_reserved - jrec->stream_residual,
981                                 JREC_DEFAULTSIZE, &pusheditout);
982         if (pusheditout) {
983             /*
984              * If a pushout occured, the pushed out stream record was
985              * truncated as specified and the new record is exactly the
986              * extension size specified.
987              */
988             jrec->stream_reserved = JREC_DEFAULTSIZE;
989             jrec->stream_residual = JREC_DEFAULTSIZE;
990             jrec->parent = NULL;        /* no longer accessible */
991             jrec->pushptrgood = 0;      /* restored parents in pops no good */
992         } else {
993             /*
994              * If no pushout occured the stream record is NOT truncated and
995              * IS extended.
996              */
997             jrec->stream_reserved += JREC_DEFAULTSIZE;
998             jrec->stream_residual += JREC_DEFAULTSIZE;
999         }
1000     }
1001     last = (void *)jrec->stream_ptr;
1002     last->rectype = rectype;
1003     last->reserved = 0;
1004
1005     /*
1006      * We may not know the record size for recursive records and the 
1007      * header may become unavailable due to limited FIFO space.  Write
1008      * -1 to indicate this special case.
1009      */
1010     if ((rectype & JMASK_NESTED) && bytes == 0)
1011         last->recsize = -1;
1012     else
1013         last->recsize = sizeof(struct journal_subrecord) + bytes;
1014     jrec->last = last;
1015     jrec->residual = bytes;             /* remaining data to be posted */
1016     jrec->residual_align = -bytes & 7;  /* post-data alignment required */
1017     jrec->stream_ptr += sizeof(*last);  /* current write pointer */
1018     jrec->stream_residual -= sizeof(*last); /* space remaining in stream */
1019     return(last);
1020 }
1021
1022 /*
1023  * Write out the data associated with a leaf record.  Any number of calls
1024  * to this routine may be made as long as the byte count adds up to the
1025  * amount originally specified in jrecord_write().
1026  *
1027  * The act of writing out the leaf data may result in numerous stream records
1028  * being pushed out.   Callers should be aware that even the associated
1029  * subrecord header may become inaccessible due to stream record pushouts.
1030  */
1031 void
1032 jrecord_data(struct jrecord *jrec, const void *buf, int bytes)
1033 {
1034     int pusheditout;
1035     int extsize;
1036
1037     KKASSERT(bytes >= 0 && bytes <= jrec->residual);
1038
1039     /*
1040      * Push out stream records as long as there is insufficient room to hold
1041      * the remaining data.
1042      */
1043     while (jrec->stream_residual < bytes) {
1044         /*
1045          * Fill in any remaining space in the current stream record.
1046          */
1047         bcopy(buf, jrec->stream_ptr, jrec->stream_residual);
1048         buf = (const char *)buf + jrec->stream_residual;
1049         bytes -= jrec->stream_residual;
1050         /*jrec->stream_ptr += jrec->stream_residual;*/
1051         jrec->residual -= jrec->stream_residual;
1052         jrec->stream_residual = 0;
1053
1054         /*
1055          * Try to extend the current stream record, but no more then 1/4
1056          * the size of the FIFO.
1057          */
1058         extsize = jrec->jo->fifo.size >> 2;
1059         if (extsize > bytes)
1060             extsize = (bytes + 15) & ~15;
1061
1062         jrec->stream_ptr = journal_extend(jrec->jo, &jrec->rawp,
1063                                 jrec->stream_reserved - jrec->stream_residual,
1064                                 extsize, &pusheditout);
1065         if (pusheditout) {
1066             jrec->stream_reserved = extsize;
1067             jrec->stream_residual = extsize;
1068             jrec->parent = NULL;        /* no longer accessible */
1069             jrec->last = NULL;          /* no longer accessible */
1070             jrec->pushptrgood = 0;      /* restored parents in pops no good */
1071         } else {
1072             jrec->stream_reserved += extsize;
1073             jrec->stream_residual += extsize;
1074         }
1075     }
1076
1077     /*
1078      * Push out any remaining bytes into the current stream record.
1079      */
1080     if (bytes) {
1081         bcopy(buf, jrec->stream_ptr, bytes);
1082         jrec->stream_ptr += bytes;
1083         jrec->stream_residual -= bytes;
1084         jrec->residual -= bytes;
1085     }
1086
1087     /*
1088      * Handle data alignment requirements for the subrecord.  Because the
1089      * stream record's data space is more strictly aligned, it must already
1090      * have sufficient space to hold any subrecord alignment slop.
1091      */
1092     if (jrec->residual == 0 && jrec->residual_align) {
1093         KKASSERT(jrec->residual_align <= jrec->stream_residual);
1094         bzero(jrec->stream_ptr, jrec->residual_align);
1095         jrec->stream_ptr += jrec->residual_align;
1096         jrec->stream_residual -= jrec->residual_align;
1097         jrec->residual_align = 0;
1098     }
1099 }
1100
1101 /*
1102  * We are finished with the transaction.  This closes the transaction created
1103  * by jrecord_init().
1104  *
1105  * NOTE: If abortit is not set then we must be at the top level with no
1106  *       residual subrecord data left to output.
1107  *
1108  *       If abortit is set then we can be in any state, all pushes will be 
1109  *       popped and it is ok for there to be residual data.  This works 
1110  *       because the virtual stream itself is truncated.  Scanners must deal
1111  *       with this situation.
1112  *
1113  * The stream record will be committed or aborted as specified and jrecord
1114  * resources will be cleaned up.
1115  */
1116 void
1117 jrecord_done(struct jrecord *jrec, int abortit)
1118 {
1119     KKASSERT(jrec->rawp != NULL);
1120
1121     if (abortit) {
1122         journal_abort(jrec->jo, &jrec->rawp);
1123     } else {
1124         KKASSERT(jrec->pushcount == 0 && jrec->residual == 0);
1125         journal_commit(jrec->jo, &jrec->rawp, 
1126                         jrec->stream_reserved - jrec->stream_residual, 1);
1127     }
1128
1129     /*
1130      * jrec should not be used beyond this point without another init,
1131      * but clean up some fields to ensure that we panic if it is.
1132      *
1133      * Note that jrec->rawp is NULLd out by journal_abort/journal_commit.
1134      */
1135     jrec->jo = NULL;
1136     jrec->stream_ptr = NULL;
1137 }
1138
1139 /************************************************************************
1140  *                      LOW LEVEL RECORD SUPPORT ROUTINES               *
1141  ************************************************************************
1142  *
1143  * These routine create low level recursive and leaf subrecords representing
1144  * common filesystem structures.
1145  */
1146
1147 /*
1148  * Write out a filename path relative to the base of the mount point.
1149  * rectype is typically JLEAF_PATH{1,2,3,4}.
1150  */
1151 void
1152 jrecord_write_path(struct jrecord *jrec, int16_t rectype, struct namecache *ncp)
1153 {
1154     char buf[64];       /* local buffer if it fits, else malloced */
1155     char *base;
1156     int pathlen;
1157     int index;
1158     struct namecache *scan;
1159
1160     /*
1161      * Pass 1 - figure out the number of bytes required.  Include terminating
1162      *         \0 on last element and '/' separator on other elements.
1163      *
1164      * The namecache topology terminates at the root of the filesystem
1165      * (the normal lookup code would then continue by using the mount
1166      * structure to figure out what it was mounted on).
1167      */
1168 again:
1169     pathlen = 0;
1170     for (scan = ncp; scan; scan = scan->nc_parent) {
1171         if (scan->nc_nlen > 0)
1172             pathlen += scan->nc_nlen + 1;
1173     }
1174
1175     if (pathlen <= sizeof(buf))
1176         base = buf;
1177     else
1178         base = kmalloc(pathlen, M_TEMP, M_INTWAIT);
1179
1180     /*
1181      * Pass 2 - generate the path buffer
1182      */
1183     index = pathlen;
1184     for (scan = ncp; scan; scan = scan->nc_parent) {
1185         if (scan->nc_nlen == 0)
1186             continue;
1187         if (scan->nc_nlen >= index) {
1188             if (base != buf)
1189                 kfree(base, M_TEMP);
1190             goto again;
1191         }
1192         if (index == pathlen)
1193             base[--index] = 0;
1194         else
1195             base[--index] = '/';
1196         index -= scan->nc_nlen;
1197         bcopy(scan->nc_name, base + index, scan->nc_nlen);
1198     }
1199     jrecord_leaf(jrec, rectype, base + index, pathlen - index);
1200     if (base != buf)
1201         kfree(base, M_TEMP);
1202 }
1203
1204 /*
1205  * Write out a file attribute structure.  While somewhat inefficient, using
1206  * a recursive data structure is the most portable and extensible way.
1207  */
1208 void
1209 jrecord_write_vattr(struct jrecord *jrec, struct vattr *vat)
1210 {
1211     void *save;
1212
1213     save = jrecord_push(jrec, JTYPE_VATTR);
1214     if (vat->va_type != VNON)
1215         jrecord_leaf(jrec, JLEAF_VTYPE, &vat->va_type, sizeof(vat->va_type));
1216     if (vat->va_mode != (mode_t)VNOVAL)
1217         jrecord_leaf(jrec, JLEAF_MODES, &vat->va_mode, sizeof(vat->va_mode));
1218     if (vat->va_nlink != VNOVAL)
1219         jrecord_leaf(jrec, JLEAF_NLINK, &vat->va_nlink, sizeof(vat->va_nlink));
1220     if (vat->va_uid != VNOVAL)
1221         jrecord_leaf(jrec, JLEAF_UID, &vat->va_uid, sizeof(vat->va_uid));
1222     if (vat->va_gid != VNOVAL)
1223         jrecord_leaf(jrec, JLEAF_GID, &vat->va_gid, sizeof(vat->va_gid));
1224     if (vat->va_fsid != VNOVAL)
1225         jrecord_leaf(jrec, JLEAF_FSID, &vat->va_fsid, sizeof(vat->va_fsid));
1226     if (vat->va_fileid != VNOVAL)
1227         jrecord_leaf(jrec, JLEAF_INUM, &vat->va_fileid, sizeof(vat->va_fileid));
1228     if (vat->va_size != VNOVAL)
1229         jrecord_leaf(jrec, JLEAF_SIZE, &vat->va_size, sizeof(vat->va_size));
1230     if (vat->va_atime.tv_sec != VNOVAL)
1231         jrecord_leaf(jrec, JLEAF_ATIME, &vat->va_atime, sizeof(vat->va_atime));
1232     if (vat->va_mtime.tv_sec != VNOVAL)
1233         jrecord_leaf(jrec, JLEAF_MTIME, &vat->va_mtime, sizeof(vat->va_mtime));
1234     if (vat->va_ctime.tv_sec != VNOVAL)
1235         jrecord_leaf(jrec, JLEAF_CTIME, &vat->va_ctime, sizeof(vat->va_ctime));
1236     if (vat->va_gen != VNOVAL)
1237         jrecord_leaf(jrec, JLEAF_GEN, &vat->va_gen, sizeof(vat->va_gen));
1238     if (vat->va_flags != VNOVAL)
1239         jrecord_leaf(jrec, JLEAF_FLAGS, &vat->va_flags, sizeof(vat->va_flags));
1240     if (vat->va_rmajor != VNOVAL) {
1241         udev_t rdev = makeudev(vat->va_rmajor, vat->va_rminor);
1242         jrecord_leaf(jrec, JLEAF_UDEV, &rdev, sizeof(rdev));
1243         jrecord_leaf(jrec, JLEAF_UMAJOR, &vat->va_rmajor, sizeof(vat->va_rmajor));
1244         jrecord_leaf(jrec, JLEAF_UMINOR, &vat->va_rminor, sizeof(vat->va_rminor));
1245     }
1246 #if 0
1247     if (vat->va_filerev != VNOVAL)
1248         jrecord_leaf(jrec, JLEAF_FILEREV, &vat->va_filerev, sizeof(vat->va_filerev));
1249 #endif
1250     jrecord_pop(jrec, save);
1251 }
1252
1253 /*
1254  * Write out the creds used to issue a file operation.  If a process is
1255  * available write out additional tracking information related to the 
1256  * process.
1257  *
1258  * XXX additional tracking info
1259  * XXX tty line info
1260  */
1261 void
1262 jrecord_write_cred(struct jrecord *jrec, struct thread *td, struct ucred *cred)
1263 {
1264     void *save;
1265     struct proc *p;
1266
1267     save = jrecord_push(jrec, JTYPE_CRED);
1268     jrecord_leaf(jrec, JLEAF_UID, &cred->cr_uid, sizeof(cred->cr_uid));
1269     jrecord_leaf(jrec, JLEAF_GID, &cred->cr_gid, sizeof(cred->cr_gid));
1270     if (td && (p = td->td_proc) != NULL) {
1271         jrecord_leaf(jrec, JLEAF_PID, &p->p_pid, sizeof(p->p_pid));
1272         jrecord_leaf(jrec, JLEAF_COMM, p->p_comm, sizeof(p->p_comm));
1273     }
1274     jrecord_pop(jrec, save);
1275 }
1276
1277 /*
1278  * Write out information required to identify a vnode
1279  *
1280  * XXX this needs work.  We should write out the inode number as well,
1281  * and in fact avoid writing out the file path for seqential writes
1282  * occuring within e.g. a certain period of time.
1283  */
1284 void
1285 jrecord_write_vnode_ref(struct jrecord *jrec, struct vnode *vp)
1286 {
1287     struct nchandle nch;
1288
1289     nch.mount = vp->v_mount;
1290     spin_lock_wr(&vp->v_spinlock);
1291     TAILQ_FOREACH(nch.ncp, &vp->v_namecache, nc_vnode) {
1292         if ((nch.ncp->nc_flag & (NCF_UNRESOLVED|NCF_DESTROYED)) == 0)
1293             break;
1294     }
1295     if (nch.ncp) {
1296         cache_hold(&nch);
1297         spin_unlock_wr(&vp->v_spinlock);
1298         jrecord_write_path(jrec, JLEAF_PATH_REF, nch.ncp);
1299         cache_drop(&nch);
1300     } else {
1301         spin_unlock_wr(&vp->v_spinlock);
1302     }
1303 }
1304
1305 void
1306 jrecord_write_vnode_link(struct jrecord *jrec, struct vnode *vp, 
1307                          struct namecache *notncp)
1308 {
1309     struct nchandle nch;
1310
1311     nch.mount = vp->v_mount;
1312     spin_lock_wr(&vp->v_spinlock);
1313     TAILQ_FOREACH(nch.ncp, &vp->v_namecache, nc_vnode) {
1314         if (nch.ncp == notncp)
1315             continue;
1316         if ((nch.ncp->nc_flag & (NCF_UNRESOLVED|NCF_DESTROYED)) == 0)
1317             break;
1318     }
1319     if (nch.ncp) {
1320         cache_hold(&nch);
1321         spin_unlock_wr(&vp->v_spinlock);
1322         jrecord_write_path(jrec, JLEAF_PATH_REF, nch.ncp);
1323         cache_drop(&nch);
1324     } else {
1325         spin_unlock_wr(&vp->v_spinlock);
1326     }
1327 }
1328
1329 /*
1330  * Write out the data represented by a pagelist
1331  */
1332 void
1333 jrecord_write_pagelist(struct jrecord *jrec, int16_t rectype,
1334                         struct vm_page **pglist, int *rtvals, int pgcount,
1335                         off_t offset)
1336 {
1337     struct msf_buf *msf;
1338     int error;
1339     int b;
1340     int i;
1341
1342     i = 0;
1343     while (i < pgcount) {
1344         /*
1345          * Find the next valid section.  Skip any invalid elements
1346          */
1347         if (rtvals[i] != VM_PAGER_OK) {
1348             ++i;
1349             offset += PAGE_SIZE;
1350             continue;
1351         }
1352
1353         /*
1354          * Figure out how big the valid section is, capping I/O at what the
1355          * MSFBUF can represent.
1356          */
1357         b = i;
1358         while (i < pgcount && i - b != XIO_INTERNAL_PAGES && 
1359                rtvals[i] == VM_PAGER_OK
1360         ) {
1361             ++i;
1362         }
1363
1364         /*
1365          * And write it out.
1366          */
1367         if (i - b) {
1368             error = msf_map_pagelist(&msf, pglist + b, i - b, 0);
1369             if (error == 0) {
1370                 kprintf("RECORD PUTPAGES %d\n", msf_buf_bytes(msf));
1371                 jrecord_leaf(jrec, JLEAF_SEEKPOS, &offset, sizeof(offset));
1372                 jrecord_leaf(jrec, rectype, 
1373                              msf_buf_kva(msf), msf_buf_bytes(msf));
1374                 msf_buf_free(msf);
1375             } else {
1376                 kprintf("jrecord_write_pagelist: mapping failure\n");
1377             }
1378             offset += (off_t)(i - b) << PAGE_SHIFT;
1379         }
1380     }
1381 }
1382
1383 /*
1384  * Write out the data represented by a UIO.
1385  */
1386 struct jwuio_info {
1387     struct jrecord *jrec;
1388     int16_t rectype;
1389 };
1390
1391 static int jrecord_write_uio_callback(void *info, char *buf, int bytes);
1392
1393 void
1394 jrecord_write_uio(struct jrecord *jrec, int16_t rectype, struct uio *uio)
1395 {
1396     struct jwuio_info info = { jrec, rectype };
1397     int error;
1398
1399     if (uio->uio_segflg != UIO_NOCOPY) {
1400         jrecord_leaf(jrec, JLEAF_SEEKPOS, &uio->uio_offset, 
1401                      sizeof(uio->uio_offset));
1402         error = msf_uio_iterate(uio, jrecord_write_uio_callback, &info);
1403         if (error)
1404             kprintf("XXX warning uio iterate failed %d\n", error);
1405     }
1406 }
1407
1408 static int
1409 jrecord_write_uio_callback(void *info_arg, char *buf, int bytes)
1410 {
1411     struct jwuio_info *info = info_arg;
1412
1413     jrecord_leaf(info->jrec, info->rectype, buf, bytes);
1414     return(0);
1415 }
1416
1417 void
1418 jrecord_file_data(struct jrecord *jrec, struct vnode *vp, 
1419                   off_t off, off_t bytes)
1420 {
1421     const int bufsize = 8192;
1422     char *buf;
1423     int error;
1424     int n;
1425
1426     buf = kmalloc(bufsize, M_JOURNAL, M_WAITOK);
1427     jrecord_leaf(jrec, JLEAF_SEEKPOS, &off, sizeof(off));
1428     while (bytes) {
1429         n = (bytes > bufsize) ? bufsize : (int)bytes;
1430         error = vn_rdwr(UIO_READ, vp, buf, n, off, UIO_SYSSPACE, IO_NODELOCKED,
1431                         proc0.p_ucred, NULL);
1432         if (error) {
1433             jrecord_leaf(jrec, JLEAF_ERROR, &error, sizeof(error));
1434             break;
1435         }
1436         jrecord_leaf(jrec, JLEAF_FILEDATA, buf, n);
1437         bytes -= n;
1438         off += n;
1439     }
1440     kfree(buf, M_JOURNAL);
1441 }
1442