gdb - Local mods (compile)
[dragonfly.git] / sys / dev / netif / fxp / if_fxp.c
CommitLineData
984263bc
MD
1/*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice unmodified, this list of conditions, and the following
11 * disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: src/sys/dev/fxp/if_fxp.c,v 1.110.2.30 2003/06/12 16:47:05 mux Exp $
29 */
30
31/*
32 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
33 */
34
ee332442 35#include "opt_ifpoll.h"
2b71c8f1 36
984263bc
MD
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/mbuf.h>
40#include <sys/malloc.h>
984263bc 41#include <sys/kernel.h>
9db4b353 42#include <sys/interrupt.h>
984263bc
MD
43#include <sys/socket.h>
44#include <sys/sysctl.h>
37103068 45#include <sys/thread2.h>
984263bc
MD
46
47#include <net/if.h>
cb96d2fc 48#include <net/ifq_var.h>
984263bc
MD
49#include <net/if_dl.h>
50#include <net/if_media.h>
51
984263bc
MD
52#include <net/bpf.h>
53#include <sys/sockio.h>
54#include <sys/bus.h>
984263bc 55#include <sys/rman.h>
984263bc
MD
56
57#include <net/ethernet.h>
58#include <net/if_arp.h>
ee332442 59#include <net/if_poll.h>
984263bc
MD
60
61#include <vm/vm.h> /* for vtophys */
62#include <vm/pmap.h> /* for vtophys */
984263bc
MD
63
64#include <net/if_types.h>
1f2de5d4 65#include <net/vlan/if_vlan_var.h>
984263bc 66
1f2de5d4
MD
67#include <bus/pci/pcivar.h>
68#include <bus/pci/pcireg.h> /* for PCIM_CMD_xxx */
984263bc 69
1f2de5d4
MD
70#include "../mii_layer/mii.h"
71#include "../mii_layer/miivar.h"
984263bc 72
1f2de5d4
MD
73#include "if_fxpreg.h"
74#include "if_fxpvar.h"
75#include "rcvbundl.h"
984263bc 76
984263bc
MD
77#include "miibus_if.h"
78
79/*
80 * NOTE! On the Alpha, we have an alignment constraint. The
81 * card DMAs the packet immediately following the RFA. However,
82 * the first thing in the packet is a 14-byte Ethernet header.
83 * This means that the packet is misaligned. To compensate,
84 * we actually offset the RFA 2 bytes into the cluster. This
85 * alignes the packet after the Ethernet header at a 32-bit
86 * boundary. HOWEVER! This means that the RFA is misaligned!
87 */
88#define RFA_ALIGNMENT_FUDGE 2
89
90/*
91 * Set initial transmit threshold at 64 (512 bytes). This is
92 * increased by 64 (512 bytes) at a time, to maximum of 192
93 * (1536 bytes), if an underrun occurs.
94 */
95static int tx_threshold = 64;
96
97/*
98 * The configuration byte map has several undefined fields which
99 * must be one or must be zero. Set up a template for these bits
100 * only, (assuming a 82557 chip) leaving the actual configuration
101 * to fxp_init.
102 *
103 * See struct fxp_cb_config for the bit definitions.
104 */
105static u_char fxp_cb_config_template[] = {
106 0x0, 0x0, /* cb_status */
107 0x0, 0x0, /* cb_command */
108 0x0, 0x0, 0x0, 0x0, /* link_addr */
109 0x0, /* 0 */
110 0x0, /* 1 */
111 0x0, /* 2 */
112 0x0, /* 3 */
113 0x0, /* 4 */
114 0x0, /* 5 */
115 0x32, /* 6 */
116 0x0, /* 7 */
117 0x0, /* 8 */
118 0x0, /* 9 */
119 0x6, /* 10 */
120 0x0, /* 11 */
121 0x0, /* 12 */
122 0x0, /* 13 */
123 0xf2, /* 14 */
124 0x48, /* 15 */
125 0x0, /* 16 */
126 0x40, /* 17 */
127 0xf0, /* 18 */
128 0x0, /* 19 */
129 0x3f, /* 20 */
130 0x5 /* 21 */
131};
132
133struct fxp_ident {
134 u_int16_t devid;
77bf5450 135 int16_t revid; /* -1 matches anything */
984263bc
MD
136 char *name;
137};
138
139/*
140 * Claim various Intel PCI device identifiers for this driver. The
141 * sub-vendor and sub-device field are extensively used to identify
142 * particular variants, but we don't currently differentiate between
143 * them.
144 */
145static struct fxp_ident fxp_ident_table[] = {
77bf5450
HP
146 { 0x1029, -1, "Intel 82559 PCI/CardBus Pro/100" },
147 { 0x1030, -1, "Intel 82559 Pro/100 Ethernet" },
148 { 0x1031, -1, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
149 { 0x1032, -1, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
150 { 0x1033, -1, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
151 { 0x1034, -1, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
152 { 0x1035, -1, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
153 { 0x1036, -1, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
154 { 0x1037, -1, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
155 { 0x1038, -1, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
156 { 0x1039, -1, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
157 { 0x103A, -1, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
158 { 0x103B, -1, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
159 { 0x103C, -1, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
160 { 0x103D, -1, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
161 { 0x103E, -1, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
162 { 0x1050, -1, "Intel 82801BA (D865) Pro/100 VE Ethernet" },
f3f9ebbd 163 { 0x1051, -1, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
77bf5450 164 { 0x1059, -1, "Intel 82551QM Pro/100 M Mobile Connection" },
8cae915b 165 { 0x1064, -1, "Intel 82562ET/EZ/GT/GZ (ICH6/ICH6R) Pro/100 VE Ethernet" },
6378a54d 166 { 0x1065, -1, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
654dbb2a
SZ
167 { 0x1068, -1, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
168 { 0x1069, -1, "Intel 82562EM/EX/GX Pro/100 Ethernet" },
149fe16d 169 { 0x1091, -1, "Intel 82562GX Pro/100 Ethernet" },
8cae915b 170 { 0x1092, -1, "Intel Pro/100 VE Network Connection" },
6378a54d
SZ
171 { 0x1093, -1, "Intel Pro/100 VM Network Connection" },
172 { 0x1094, -1, "Intel Pro/100 946GZ (ICH7) Network Connection" },
77bf5450
HP
173 { 0x1209, -1, "Intel 82559ER Embedded 10/100 Ethernet" },
174 { 0x1229, 0x01, "Intel 82557 Pro/100 Ethernet" },
175 { 0x1229, 0x02, "Intel 82557 Pro/100 Ethernet" },
176 { 0x1229, 0x03, "Intel 82557 Pro/100 Ethernet" },
177 { 0x1229, 0x04, "Intel 82558 Pro/100 Ethernet" },
178 { 0x1229, 0x05, "Intel 82558 Pro/100 Ethernet" },
179 { 0x1229, 0x06, "Intel 82559 Pro/100 Ethernet" },
180 { 0x1229, 0x07, "Intel 82559 Pro/100 Ethernet" },
181 { 0x1229, 0x08, "Intel 82559 Pro/100 Ethernet" },
182 { 0x1229, 0x09, "Intel 82559ER Pro/100 Ethernet" },
183 { 0x1229, 0x0c, "Intel 82550 Pro/100 Ethernet" },
184 { 0x1229, 0x0d, "Intel 82550 Pro/100 Ethernet" },
185 { 0x1229, 0x0e, "Intel 82550 Pro/100 Ethernet" },
186 { 0x1229, 0x0f, "Intel 82551 Pro/100 Ethernet" },
187 { 0x1229, 0x10, "Intel 82551 Pro/100 Ethernet" },
188 { 0x1229, -1, "Intel 82557/8/9 Pro/100 Ethernet" },
189 { 0x2449, -1, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
8cae915b 190 { 0x27dc, -1, "Intel 82801GB (ICH7) 10/100 Ethernet" },
77bf5450 191 { 0, -1, NULL },
984263bc
MD
192};
193
194static int fxp_probe(device_t dev);
195static int fxp_attach(device_t dev);
196static int fxp_detach(device_t dev);
197static int fxp_shutdown(device_t dev);
198static int fxp_suspend(device_t dev);
199static int fxp_resume(device_t dev);
200
201static void fxp_intr(void *xsc);
202static void fxp_intr_body(struct fxp_softc *sc,
203 u_int8_t statack, int count);
204
205static void fxp_init(void *xsc);
206static void fxp_tick(void *xsc);
207static void fxp_powerstate_d0(device_t dev);
f0a26983 208static void fxp_start(struct ifnet *ifp, struct ifaltq_subque *);
984263bc 209static void fxp_stop(struct fxp_softc *sc);
c81df1a6 210static void fxp_release(device_t dev);
984263bc 211static int fxp_ioctl(struct ifnet *ifp, u_long command,
bd4539cc 212 caddr_t data, struct ucred *);
984263bc
MD
213static void fxp_watchdog(struct ifnet *ifp);
214static int fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
215static int fxp_mc_addrs(struct fxp_softc *sc);
216static void fxp_mc_setup(struct fxp_softc *sc);
217static u_int16_t fxp_eeprom_getword(struct fxp_softc *sc, int offset,
218 int autosize);
219static void fxp_eeprom_putword(struct fxp_softc *sc, int offset,
220 u_int16_t data);
221static void fxp_autosize_eeprom(struct fxp_softc *sc);
222static void fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
223 int offset, int words);
224static void fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
225 int offset, int words);
226static int fxp_ifmedia_upd(struct ifnet *ifp);
227static void fxp_ifmedia_sts(struct ifnet *ifp,
228 struct ifmediareq *ifmr);
229static int fxp_serial_ifmedia_upd(struct ifnet *ifp);
230static void fxp_serial_ifmedia_sts(struct ifnet *ifp,
231 struct ifmediareq *ifmr);
10d1b534 232static int fxp_miibus_readreg(device_t dev, int phy, int reg);
984263bc
MD
233static void fxp_miibus_writereg(device_t dev, int phy, int reg,
234 int value);
235static void fxp_load_ucode(struct fxp_softc *sc);
984263bc
MD
236static int sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
237static int sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
ee332442
SZ
238#ifdef IFPOLL_ENABLE
239static void fxp_npoll(struct ifnet *, struct ifpoll_info *);
240static void fxp_npoll_compat(struct ifnet *, void *, int);
9c095379
MD
241#endif
242
de1795b2 243static void fxp_lwcopy(volatile u_int32_t *src,
984263bc 244 volatile u_int32_t *dst);
de1795b2
JS
245static void fxp_scb_wait(struct fxp_softc *sc);
246static void fxp_scb_cmd(struct fxp_softc *sc, int cmd);
247static void fxp_dma_wait(volatile u_int16_t *status,
984263bc
MD
248 struct fxp_softc *sc);
249
250static device_method_t fxp_methods[] = {
251 /* Device interface */
252 DEVMETHOD(device_probe, fxp_probe),
253 DEVMETHOD(device_attach, fxp_attach),
254 DEVMETHOD(device_detach, fxp_detach),
255 DEVMETHOD(device_shutdown, fxp_shutdown),
256 DEVMETHOD(device_suspend, fxp_suspend),
257 DEVMETHOD(device_resume, fxp_resume),
258
259 /* MII interface */
260 DEVMETHOD(miibus_readreg, fxp_miibus_readreg),
261 DEVMETHOD(miibus_writereg, fxp_miibus_writereg),
262
d3c9c58e 263 DEVMETHOD_END
984263bc
MD
264};
265
266static driver_t fxp_driver = {
267 "fxp",
268 fxp_methods,
269 sizeof(struct fxp_softc),
270};
271
272static devclass_t fxp_devclass;
273
32832096
MD
274DECLARE_DUMMY_MODULE(if_fxp);
275MODULE_DEPEND(if_fxp, miibus, 1, 1, 1);
aa2b9d05
SW
276DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, NULL, NULL);
277DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, NULL, NULL);
278DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, NULL, NULL);
984263bc
MD
279
280static int fxp_rnr;
281SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
282
283/*
de1795b2 284 * Copy a 16-bit aligned 32-bit quantity.
984263bc 285 */
de1795b2 286static void
984263bc
MD
287fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
288{
984263bc
MD
289 volatile u_int16_t *a = (volatile u_int16_t *)src;
290 volatile u_int16_t *b = (volatile u_int16_t *)dst;
291
292 b[0] = a[0];
293 b[1] = a[1];
984263bc
MD
294}
295
296/*
297 * Wait for the previous command to be accepted (but not necessarily
298 * completed).
299 */
de1795b2 300static void
984263bc
MD
301fxp_scb_wait(struct fxp_softc *sc)
302{
303 int i = 10000;
304
305 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
306 DELAY(2);
c81df1a6
JS
307 if (i == 0) {
308 if_printf(&sc->arpcom.ac_if,
309 "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
984263bc
MD
310 CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
311 CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
312 CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
313 CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
c81df1a6 314 }
984263bc
MD
315}
316
de1795b2 317static void
984263bc
MD
318fxp_scb_cmd(struct fxp_softc *sc, int cmd)
319{
320
321 if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
322 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
323 fxp_scb_wait(sc);
324 }
325 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
326}
327
de1795b2 328static void
984263bc
MD
329fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
330{
331 int i = 10000;
332
333 while (!(*status & FXP_CB_STATUS_C) && --i)
334 DELAY(2);
335 if (i == 0)
c81df1a6 336 if_printf(&sc->arpcom.ac_if, "DMA timeout\n");
984263bc
MD
337}
338
339/*
340 * Return identification string if this is device is ours.
341 */
342static int
343fxp_probe(device_t dev)
344{
345 u_int16_t devid;
77bf5450 346 u_int8_t revid;
984263bc
MD
347 struct fxp_ident *ident;
348
349 if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
350 devid = pci_get_device(dev);
77bf5450 351 revid = pci_get_revid(dev);
984263bc 352 for (ident = fxp_ident_table; ident->name != NULL; ident++) {
77bf5450
HP
353 if (ident->devid == devid &&
354 (ident->revid == revid || ident->revid == -1)) {
984263bc
MD
355 device_set_desc(dev, ident->name);
356 return (0);
357 }
358 }
359 }
360 return (ENXIO);
361}
362
363static void
364fxp_powerstate_d0(device_t dev)
365{
984263bc
MD
366 u_int32_t iobase, membase, irq;
367
368 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
369 /* Save important PCI config data. */
370 iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
371 membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
372 irq = pci_read_config(dev, PCIR_INTLINE, 4);
373
374 /* Reset the power state. */
375 device_printf(dev, "chip is in D%d power mode "
376 "-- setting to D0\n", pci_get_powerstate(dev));
377
378 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
379
380 /* Restore PCI config data. */
381 pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
382 pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
383 pci_write_config(dev, PCIR_INTLINE, irq, 4);
384 }
984263bc
MD
385}
386
387static int
388fxp_attach(device_t dev)
389{
390 int error = 0;
391 struct fxp_softc *sc = device_get_softc(dev);
392 struct ifnet *ifp;
26595b18
SW
393 struct sysctl_ctx_list *ctx;
394 struct sysctl_oid *tree;
984263bc
MD
395 u_int32_t val;
396 u_int16_t data;
397 int i, rid, m1, m2, prefer_iomap;
984263bc 398
a1f4b801 399 callout_init(&sc->fxp_stat_timer);
984263bc 400
984263bc
MD
401 /*
402 * Enable bus mastering. Enable memory space too, in case
403 * BIOS/Prom forgot about it.
404 */
af340cf5
JS
405 pci_enable_busmaster(dev);
406 pci_enable_io(dev, SYS_RES_MEMORY);
984263bc
MD
407 val = pci_read_config(dev, PCIR_COMMAND, 2);
408
409 fxp_powerstate_d0(dev);
410
411 /*
412 * Figure out which we should try first - memory mapping or i/o mapping?
413 * We default to memory mapping. Then we accept an override from the
414 * command line. Then we check to see which one is enabled.
415 */
416 m1 = PCIM_CMD_MEMEN;
417 m2 = PCIM_CMD_PORTEN;
418 prefer_iomap = 0;
419 if (resource_int_value(device_get_name(dev), device_get_unit(dev),
420 "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
421 m1 = PCIM_CMD_PORTEN;
422 m2 = PCIM_CMD_MEMEN;
423 }
424
425 if (val & m1) {
426 sc->rtp =
427 (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
428 sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
4e6d744d
JS
429 sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
430 RF_ACTIVE);
984263bc
MD
431 }
432 if (sc->mem == NULL && (val & m2)) {
433 sc->rtp =
434 (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
435 sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
4e6d744d
JS
436 sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
437 RF_ACTIVE);
984263bc
MD
438 }
439
440 if (!sc->mem) {
441 device_printf(dev, "could not map device registers\n");
442 error = ENXIO;
443 goto fail;
444 }
445 if (bootverbose) {
446 device_printf(dev, "using %s space register mapping\n",
447 sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
448 }
449
450 sc->sc_st = rman_get_bustag(sc->mem);
451 sc->sc_sh = rman_get_bushandle(sc->mem);
452
453 /*
454 * Allocate our interrupt.
455 */
456 rid = 0;
4e6d744d
JS
457 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
458 RF_SHAREABLE | RF_ACTIVE);
984263bc
MD
459 if (sc->irq == NULL) {
460 device_printf(dev, "could not map interrupt\n");
461 error = ENXIO;
462 goto fail;
463 }
464
984263bc
MD
465 /*
466 * Reset to a stable state.
467 */
468 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
469 DELAY(10);
470
77652cad 471 sc->cbl_base = kmalloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
c5541aee 472 M_DEVBUF, M_WAITOK | M_ZERO);
984263bc 473
efda3bd0 474 sc->fxp_stats = kmalloc(sizeof(struct fxp_stats), M_DEVBUF,
c5541aee 475 M_WAITOK | M_ZERO);
984263bc 476
efda3bd0 477 sc->mcsp = kmalloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_WAITOK);
984263bc
MD
478
479 /*
480 * Pre-allocate our receive buffers.
481 */
482 for (i = 0; i < FXP_NRFABUFS; i++) {
483 if (fxp_add_rfabuf(sc, NULL) != 0) {
484 goto failmem;
485 }
486 }
487
488 /*
489 * Find out how large of an SEEPROM we have.
490 */
491 fxp_autosize_eeprom(sc);
492
493 /*
494 * Determine whether we must use the 503 serial interface.
495 */
496 fxp_read_eeprom(sc, &data, 6, 1);
497 if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
498 (data & FXP_PHY_SERIAL_ONLY))
499 sc->flags |= FXP_FLAG_SERIAL_MEDIA;
500
501 /*
502 * Create the sysctl tree
503 */
26595b18
SW
504 ctx = device_get_sysctl_ctx(dev);
505 tree = device_get_sysctl_tree(dev);
506 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
984263bc
MD
507 OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
508 &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I",
509 "FXP driver receive interrupt microcode bundling delay");
26595b18 510 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
984263bc
MD
511 OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
512 &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I",
513 "FXP driver receive interrupt microcode bundle size limit");
514
515 /*
516 * Pull in device tunables.
517 */
518 sc->tunable_int_delay = TUNABLE_INT_DELAY;
519 sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
7b9f668c 520 resource_int_value(device_get_name(dev), device_get_unit(dev),
984263bc 521 "int_delay", &sc->tunable_int_delay);
7b9f668c 522 resource_int_value(device_get_name(dev), device_get_unit(dev),
984263bc
MD
523 "bundle_max", &sc->tunable_bundle_max);
524
525 /*
526 * Find out the chip revision; lump all 82557 revs together.
527 */
528 fxp_read_eeprom(sc, &data, 5, 1);
529 if ((data >> 8) == 1)
530 sc->revision = FXP_REV_82557;
531 else
532 sc->revision = pci_get_revid(dev);
533
534 /*
535 * Enable workarounds for certain chip revision deficiencies.
536 *
537 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
538 * some systems based a normal 82559 design, have a defect where
539 * the chip can cause a PCI protocol violation if it receives
540 * a CU_RESUME command when it is entering the IDLE state. The
541 * workaround is to disable Dynamic Standby Mode, so the chip never
542 * deasserts CLKRUN#, and always remains in an active state.
543 *
544 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
545 */
546 i = pci_get_device(dev);
547 if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
548 sc->revision >= FXP_REV_82559_A0) {
549 fxp_read_eeprom(sc, &data, 10, 1);
550 if (data & 0x02) { /* STB enable */
551 u_int16_t cksum;
552 int i;
553
554 device_printf(dev,
555 "Disabling dynamic standby mode in EEPROM\n");
556 data &= ~0x02;
557 fxp_write_eeprom(sc, &data, 10, 1);
558 device_printf(dev, "New EEPROM ID: 0x%x\n", data);
559 cksum = 0;
560 for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
561 fxp_read_eeprom(sc, &data, i, 1);
562 cksum += data;
563 }
564 i = (1 << sc->eeprom_size) - 1;
565 cksum = 0xBABA - cksum;
566 fxp_read_eeprom(sc, &data, i, 1);
567 fxp_write_eeprom(sc, &cksum, i, 1);
568 device_printf(dev,
569 "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
570 i, data, cksum);
571#if 1
572 /*
573 * If the user elects to continue, try the software
574 * workaround, as it is better than nothing.
575 */
576 sc->flags |= FXP_FLAG_CU_RESUME_BUG;
577#endif
578 }
579 }
580
581 /*
582 * If we are not a 82557 chip, we can enable extended features.
583 */
584 if (sc->revision != FXP_REV_82557) {
585 /*
586 * If MWI is enabled in the PCI configuration, and there
587 * is a valid cacheline size (8 or 16 dwords), then tell
588 * the board to turn on MWI.
589 */
590 if (val & PCIM_CMD_MWRICEN &&
591 pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
592 sc->flags |= FXP_FLAG_MWI_ENABLE;
593
594 /* turn on the extended TxCB feature */
595 sc->flags |= FXP_FLAG_EXT_TXCB;
596
597 /* enable reception of long frames for VLAN */
598 sc->flags |= FXP_FLAG_LONG_PKT_EN;
599 }
600
601 /*
602 * Read MAC address.
603 */
604 fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
267caeeb 605 if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
c81df1a6 606 device_printf(dev, "10Mbps\n");
984263bc
MD
607 if (bootverbose) {
608 device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
609 pci_get_vendor(dev), pci_get_device(dev),
610 pci_get_subvendor(dev), pci_get_subdevice(dev),
611 pci_get_revid(dev));
612 fxp_read_eeprom(sc, &data, 10, 1);
613 device_printf(dev, "Dynamic Standby mode is %s\n",
614 data & 0x02 ? "enabled" : "disabled");
615 }
616
617 /*
618 * If this is only a 10Mbps device, then there is no MII, and
619 * the PHY will use a serial interface instead.
620 *
621 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
622 * doesn't have a programming interface of any sort. The
623 * media is sensed automatically based on how the link partner
624 * is configured. This is, in essence, manual configuration.
625 */
626 if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
627 ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
628 fxp_serial_ifmedia_sts);
629 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
630 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
631 } else {
632 if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
633 fxp_ifmedia_sts)) {
634 device_printf(dev, "MII without any PHY!\n");
635 error = ENXIO;
636 goto fail;
637 }
638 }
639
640 ifp = &sc->arpcom.ac_if;
af340cf5 641 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
984263bc
MD
642 ifp->if_baudrate = 100000000;
643 ifp->if_init = fxp_init;
644 ifp->if_softc = sc;
645 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
646 ifp->if_ioctl = fxp_ioctl;
647 ifp->if_start = fxp_start;
ee332442
SZ
648#ifdef IFPOLL_ENABLE
649 ifp->if_npoll = fxp_npoll;
9c095379 650#endif
984263bc
MD
651 ifp->if_watchdog = fxp_watchdog;
652
653 /*
654 * Attach the interface.
655 */
78195a76 656 ether_ifattach(ifp, sc->arpcom.ac_enaddr, NULL);
984263bc 657
ee332442 658#ifdef IFPOLL_ENABLE
26595b18
SW
659 ifpoll_compat_setup(&sc->fxp_npoll, ctx, (struct sysctl_oid *)tree,
660 device_get_unit(dev), ifp->if_serializer);
ee332442
SZ
661#endif
662
984263bc
MD
663 /*
664 * Tell the upper layer(s) we support long frames.
665 */
666 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
667
668 /*
669 * Let the system queue as many packets as we have available
670 * TX descriptors.
671 */
883c716a 672 ifq_set_maxlen(&ifp->if_snd, FXP_USABLE_TXCB);
4dbb2aca 673 ifq_set_ready(&ifp->if_snd);
984263bc 674
4c77af2d
SZ
675 ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->irq));
676
95893fe4 677 error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
78195a76
MD
678 fxp_intr, sc, &sc->ih,
679 ifp->if_serializer);
37103068 680 if (error) {
a3e0c8f8 681 ether_ifdetach(ifp);
37103068
JS
682 if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
683 ifmedia_removeall(&sc->sc_media);
684 device_printf(dev, "could not setup irq\n");
685 goto fail;
686 }
687
984263bc
MD
688 return (0);
689
690failmem:
691 device_printf(dev, "Failed to malloc memory\n");
692 error = ENOMEM;
693fail:
c81df1a6 694 fxp_release(dev);
984263bc
MD
695 return (error);
696}
697
698/*
699 * release all resources
700 */
701static void
c81df1a6 702fxp_release(device_t dev)
984263bc 703{
37103068 704 struct fxp_softc *sc = device_get_softc(dev);
984263bc 705
984263bc 706 if (sc->miibus)
c81df1a6 707 device_delete_child(dev, sc->miibus);
37103068 708 bus_generic_detach(dev);
984263bc
MD
709
710 if (sc->cbl_base)
efda3bd0 711 kfree(sc->cbl_base, M_DEVBUF);
984263bc 712 if (sc->fxp_stats)
efda3bd0 713 kfree(sc->fxp_stats, M_DEVBUF);
984263bc 714 if (sc->mcsp)
efda3bd0 715 kfree(sc->mcsp, M_DEVBUF);
984263bc
MD
716 if (sc->rfa_headm)
717 m_freem(sc->rfa_headm);
718
984263bc 719 if (sc->irq)
c81df1a6 720 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
984263bc 721 if (sc->mem)
c81df1a6 722 bus_release_resource(dev, sc->rtp, sc->rgd, sc->mem);
984263bc
MD
723}
724
725/*
726 * Detach interface.
727 */
728static int
729fxp_detach(device_t dev)
730{
731 struct fxp_softc *sc = device_get_softc(dev);
984263bc 732
78195a76 733 lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
984263bc
MD
734
735 /*
736 * Stop DMA and drop transmit queue.
737 */
738 fxp_stop(sc);
739
71fdcbe1
SZ
740 /*
741 * Disable interrupts.
742 *
743 * NOTE: This should be done after fxp_stop(), because software
744 * resetting in fxp_stop() may leave interrupts turned on.
745 */
746 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
747
984263bc
MD
748 /*
749 * Free all media structures.
750 */
37103068
JS
751 if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
752 ifmedia_removeall(&sc->sc_media);
984263bc 753
37103068
JS
754 if (sc->ih)
755 bus_teardown_intr(dev, sc->irq, sc->ih);
756
cdf89432
SZ
757 lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
758
759 /*
760 * Close down routes etc.
761 */
762 ether_ifdetach(&sc->arpcom.ac_if);
763
984263bc 764 /* Release our allocated resources. */
c81df1a6 765 fxp_release(dev);
984263bc
MD
766
767 return (0);
768}
769
770/*
771 * Device shutdown routine. Called at system shutdown after sync. The
772 * main purpose of this routine is to shut off receiver DMA so that
773 * kernel memory doesn't get clobbered during warmboot.
774 */
775static int
776fxp_shutdown(device_t dev)
777{
334b9734
SZ
778 struct fxp_softc *sc = device_get_softc(dev);
779 struct ifnet *ifp = &sc->arpcom.ac_if;
780
781 lwkt_serialize_enter(ifp->if_serializer);
984263bc
MD
782 /*
783 * Make sure that DMA is disabled prior to reboot. Not doing
784 * do could allow DMA to corrupt kernel memory during the
785 * reboot before the driver initializes.
786 */
334b9734
SZ
787 fxp_stop(sc);
788 lwkt_serialize_exit(ifp->if_serializer);
984263bc
MD
789 return (0);
790}
791
792/*
793 * Device suspend routine. Stop the interface and save some PCI
794 * settings in case the BIOS doesn't restore them properly on
795 * resume.
796 */
797static int
798fxp_suspend(device_t dev)
799{
800 struct fxp_softc *sc = device_get_softc(dev);
37103068 801 int i;
984263bc 802
78195a76 803 lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
984263bc
MD
804
805 fxp_stop(sc);
806
807 for (i = 0; i < 5; i++)
3dc849fa 808 sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
984263bc
MD
809 sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
810 sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
811 sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
812 sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
813
814 sc->suspended = 1;
815
78195a76 816 lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
984263bc
MD
817 return (0);
818}
819
820/*
821 * Device resume routine. Restore some PCI settings in case the BIOS
822 * doesn't, re-enable busmastering, and restart the interface if
823 * appropriate.
824 */
825static int
826fxp_resume(device_t dev)
827{
828 struct fxp_softc *sc = device_get_softc(dev);
3dc849fa 829 struct ifnet *ifp = &sc->arpcom.ac_if;
37103068 830 int i;
984263bc 831
78195a76 832 lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
984263bc
MD
833
834 fxp_powerstate_d0(dev);
835
836 /* better way to do this? */
837 for (i = 0; i < 5; i++)
3dc849fa 838 pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
984263bc
MD
839 pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
840 pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
841 pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
842 pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
843
af340cf5
JS
844 /* reenable busmastering and memory space */
845 pci_enable_busmaster(dev);
846 pci_enable_io(dev, SYS_RES_MEMORY);
984263bc
MD
847
848 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
849 DELAY(10);
850
851 /* reinitialize interface if necessary */
852 if (ifp->if_flags & IFF_UP)
853 fxp_init(sc);
854
855 sc->suspended = 0;
856
78195a76 857 lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
984263bc
MD
858 return (0);
859}
860
861static void
862fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
863{
864 u_int16_t reg;
865 int x;
866
867 /*
868 * Shift in data.
869 */
870 for (x = 1 << (length - 1); x; x >>= 1) {
871 if (data & x)
872 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
873 else
874 reg = FXP_EEPROM_EECS;
875 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
876 DELAY(1);
877 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
878 DELAY(1);
879 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
880 DELAY(1);
881 }
882}
883
884/*
885 * Read from the serial EEPROM. Basically, you manually shift in
886 * the read opcode (one bit at a time) and then shift in the address,
887 * and then you shift out the data (all of this one bit at a time).
888 * The word size is 16 bits, so you have to provide the address for
889 * every 16 bits of data.
890 */
891static u_int16_t
892fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
893{
894 u_int16_t reg, data;
895 int x;
896
897 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
898 /*
899 * Shift in read opcode.
900 */
901 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
902 /*
903 * Shift in address.
904 */
905 data = 0;
906 for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
907 if (offset & x)
908 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
909 else
910 reg = FXP_EEPROM_EECS;
911 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
912 DELAY(1);
913 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
914 DELAY(1);
915 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
916 DELAY(1);
917 reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
918 data++;
919 if (autosize && reg == 0) {
920 sc->eeprom_size = data;
921 break;
922 }
923 }
924 /*
925 * Shift out data.
926 */
927 data = 0;
928 reg = FXP_EEPROM_EECS;
929 for (x = 1 << 15; x; x >>= 1) {
930 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
931 DELAY(1);
932 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
933 data |= x;
934 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
935 DELAY(1);
936 }
937 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
938 DELAY(1);
939
940 return (data);
941}
942
943static void
944fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
945{
946 int i;
947
948 /*
949 * Erase/write enable.
950 */
951 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
952 fxp_eeprom_shiftin(sc, 0x4, 3);
953 fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
954 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
955 DELAY(1);
956 /*
957 * Shift in write opcode, address, data.
958 */
959 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
960 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
961 fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
962 fxp_eeprom_shiftin(sc, data, 16);
963 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
964 DELAY(1);
965 /*
966 * Wait for EEPROM to finish up.
967 */
968 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
969 DELAY(1);
970 for (i = 0; i < 1000; i++) {
971 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
972 break;
973 DELAY(50);
974 }
975 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
976 DELAY(1);
977 /*
978 * Erase/write disable.
979 */
980 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
981 fxp_eeprom_shiftin(sc, 0x4, 3);
982 fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
983 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
984 DELAY(1);
985}
986
987/*
988 * From NetBSD:
989 *
990 * Figure out EEPROM size.
991 *
992 * 559's can have either 64-word or 256-word EEPROMs, the 558
993 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
994 * talks about the existance of 16 to 256 word EEPROMs.
995 *
996 * The only known sizes are 64 and 256, where the 256 version is used
997 * by CardBus cards to store CIS information.
998 *
999 * The address is shifted in msb-to-lsb, and after the last
1000 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1001 * after which follows the actual data. We try to detect this zero, by
1002 * probing the data-out bit in the EEPROM control register just after
1003 * having shifted in a bit. If the bit is zero, we assume we've
1004 * shifted enough address bits. The data-out should be tri-state,
1005 * before this, which should translate to a logical one.
1006 */
1007static void
1008fxp_autosize_eeprom(struct fxp_softc *sc)
1009{
1010
1011 /* guess maximum size of 256 words */
1012 sc->eeprom_size = 8;
1013
1014 /* autosize */
7b9f668c 1015 fxp_eeprom_getword(sc, 0, 1);
984263bc
MD
1016}
1017
1018static void
1019fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1020{
1021 int i;
1022
1023 for (i = 0; i < words; i++)
1024 data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1025}
1026
1027static void
1028fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1029{
1030 int i;
1031
1032 for (i = 0; i < words; i++)
1033 fxp_eeprom_putword(sc, offset + i, data[i]);
1034}
1035
1036/*
1037 * Start packet transmission on the interface.
1038 */
1039static void
f0a26983 1040fxp_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
984263bc
MD
1041{
1042 struct fxp_softc *sc = ifp->if_softc;
1043 struct fxp_cb_tx *txp;
1044
f0a26983 1045 ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
ac72fc11
SZ
1046 ASSERT_SERIALIZED(ifp->if_serializer);
1047
984263bc
MD
1048 /*
1049 * See if we need to suspend xmit until the multicast filter
1050 * has been reprogrammed (which can only be done at the head
1051 * of the command chain).
1052 */
1053 if (sc->need_mcsetup) {
9db4b353 1054 ifq_purge(&ifp->if_snd);
984263bc
MD
1055 return;
1056 }
1057
9ed293e0 1058 if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
9db4b353
SZ
1059 return;
1060
984263bc
MD
1061 txp = NULL;
1062
1063 /*
1064 * We're finished if there is nothing more to add to the list or if
1065 * we're all filled up with buffers to transmit.
1066 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1067 * a NOP command when needed.
1068 */
883c716a 1069 while (!ifq_is_empty(&ifp->if_snd) && sc->tx_queued < FXP_USABLE_TXCB) {
984263bc 1070 struct mbuf *m, *mb_head;
50503f0f 1071 int segment, ntries = 0;
984263bc
MD
1072
1073 /*
be2f29ea 1074 * Grab a packet to transmit.
984263bc 1075 */
ac9843a1 1076 mb_head = ifq_dequeue(&ifp->if_snd);
cb96d2fc
JS
1077 if (mb_head == NULL)
1078 break;
be2f29ea 1079tbdinit:
984263bc 1080 /*
be2f29ea 1081 * Make sure that the packet fits into one TX desc
984263bc 1082 */
be2f29ea
SZ
1083 segment = 0;
1084 for (m = mb_head; m != NULL; m = m->m_next) {
984263bc 1085 if (m->m_len != 0) {
be2f29ea
SZ
1086 ++segment;
1087 if (segment >= FXP_NTXSEG)
984263bc 1088 break;
984263bc
MD
1089 }
1090 }
be2f29ea 1091 if (segment >= FXP_NTXSEG) {
984263bc
MD
1092 struct mbuf *mn;
1093
be2f29ea
SZ
1094 if (ntries) {
1095 /*
1096 * Packet is excessively fragmented,
1097 * and will never fit into one TX
1098 * desc. Give it up.
1099 */
1100 m_freem(mb_head);
d40991ef 1101 IFNET_STAT_INC(ifp, oerrors, 1);
be2f29ea 1102 continue;
9db4b353
SZ
1103 }
1104
b5523eac 1105 mn = m_dup(mb_head, M_NOWAIT);
9db4b353 1106 if (mn == NULL) {
be2f29ea 1107 m_freem(mb_head);
d40991ef 1108 IFNET_STAT_INC(ifp, oerrors, 1);
be2f29ea 1109 continue;
9db4b353
SZ
1110 }
1111
984263bc
MD
1112 m_freem(mb_head);
1113 mb_head = mn;
50503f0f 1114 ntries = 1;
984263bc
MD
1115 goto tbdinit;
1116 }
1117
be2f29ea
SZ
1118 /*
1119 * Get pointer to next available tx desc.
1120 */
1121 txp = sc->cbl_last->next;
1122
1123 /*
1124 * Go through each of the mbufs in the chain and initialize
1125 * the transmit buffer descriptors with the physical address
1126 * and size of the mbuf.
1127 */
1128 for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1129 if (m->m_len != 0) {
1130 KKASSERT(segment < FXP_NTXSEG);
1131
1132 txp->tbd[segment].tb_addr =
1133 vtophys(mtod(m, vm_offset_t));
1134 txp->tbd[segment].tb_size = m->m_len;
1135 segment++;
1136 }
1137 }
1138 KKASSERT(m == NULL);
1139
984263bc
MD
1140 txp->tbd_number = segment;
1141 txp->mb_head = mb_head;
1142 txp->cb_status = 0;
1143 if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1144 txp->cb_command =
1145 FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1146 FXP_CB_COMMAND_S;
1147 } else {
1148 txp->cb_command =
1149 FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1150 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
984263bc
MD
1151 }
1152 txp->tx_threshold = tx_threshold;
be2f29ea 1153
984263bc
MD
1154 /*
1155 * Advance the end of list forward.
1156 */
984263bc 1157 sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
984263bc
MD
1158 sc->cbl_last = txp;
1159
1160 /*
1161 * Advance the beginning of the list forward if there are
1162 * no other packets queued (when nothing is queued, cbl_first
1163 * sits on the last TxCB that was sent out).
1164 */
1165 if (sc->tx_queued == 0)
1166 sc->cbl_first = txp;
1167
1168 sc->tx_queued++;
be2f29ea
SZ
1169 /*
1170 * Set a 5 second timer just in case we don't hear
1171 * from the card again.
1172 */
1173 ifp->if_timer = 5;
984263bc 1174
7600679e 1175 BPF_MTAP(ifp, mb_head);
984263bc
MD
1176 }
1177
883c716a 1178 if (sc->tx_queued >= FXP_USABLE_TXCB)
9ed293e0 1179 ifq_set_oactive(&ifp->if_snd);
9db4b353 1180
984263bc
MD
1181 /*
1182 * We're finished. If we added to the list, issue a RESUME to get DMA
1183 * going again if suspended.
1184 */
1185 if (txp != NULL) {
1186 fxp_scb_wait(sc);
1187 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1188 }
1189}
1190
ee332442 1191#ifdef IFPOLL_ENABLE
984263bc
MD
1192
1193static void
ee332442 1194fxp_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
984263bc
MD
1195{
1196 struct fxp_softc *sc = ifp->if_softc;
1197 u_int8_t statack;
1198
ac72fc11
SZ
1199 ASSERT_SERIALIZED(ifp->if_serializer);
1200
ee332442
SZ
1201 statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1202 FXP_SCB_STATACK_FR;
1203 if (sc->fxp_npoll.ifpc_stcount-- == 0) {
1204 u_int8_t tmp;
1205
1206 sc->fxp_npoll.ifpc_stcount = sc->fxp_npoll.ifpc_stfrac;
1207
1208 tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1209 if (tmp == 0xff || tmp == 0)
1210 return; /* nothing to do */
1211 tmp &= ~statack;
1212 /* ack what we can */
1213 if (tmp != 0)
1214 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1215 statack |= tmp;
1216 }
1217 fxp_intr_body(sc, statack, count);
1218}
1219
1220static void
1221fxp_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1222{
1223 struct fxp_softc *sc = ifp->if_softc;
1224
1225 ASSERT_SERIALIZED(ifp->if_serializer);
1226
1227 if (info != NULL) {
1228 int cpuid = sc->fxp_npoll.ifpc_cpuid;
1229
1230 info->ifpi_rx[cpuid].poll_func = fxp_npoll_compat;
1231 info->ifpi_rx[cpuid].arg = NULL;
1232 info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1233
1234 if (ifp->if_flags & IFF_RUNNING) {
1235 /* disable interrupts */
1236 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
1237 FXP_SCB_INTR_DISABLE);
1238 sc->fxp_npoll.ifpc_stcount = 0;
1239 }
dfd3b18b 1240 ifq_set_cpuid(&ifp->if_snd, cpuid);
ee332442
SZ
1241 } else {
1242 if (ifp->if_flags & IFF_RUNNING) {
1243 /* enable interrupts */
1244 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
9c095379 1245 }
dfd3b18b 1246 ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->irq));
984263bc 1247 }
984263bc 1248}
9c095379 1249
ee332442 1250#endif /* IFPOLL_ENABLE */
984263bc
MD
1251
1252/*
1253 * Process interface interrupts.
1254 */
1255static void
1256fxp_intr(void *xsc)
1257{
1258 struct fxp_softc *sc = xsc;
1259 u_int8_t statack;
1260
ac72fc11
SZ
1261 ASSERT_SERIALIZED(sc->arpcom.ac_if.if_serializer);
1262
984263bc
MD
1263 if (sc->suspended) {
1264 return;
1265 }
1266
1267 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1268 /*
1269 * It should not be possible to have all bits set; the
1270 * FXP_SCB_INTR_SWI bit always returns 0 on a read. If
1271 * all bits are set, this may indicate that the card has
1272 * been physically ejected, so ignore it.
1273 */
1274 if (statack == 0xff)
1275 return;
1276
1277 /*
1278 * First ACK all the interrupts in this pass.
1279 */
1280 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1281 fxp_intr_body(sc, statack, -1);
1282 }
1283}
1284
1285static void
1286fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1287{
3dc849fa 1288 struct ifnet *ifp = &sc->arpcom.ac_if;
984263bc
MD
1289 struct mbuf *m;
1290 struct fxp_rfa *rfa;
1291 int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1292
1293 if (rnr)
1294 fxp_rnr++;
ee332442 1295#ifdef IFPOLL_ENABLE
984263bc
MD
1296 /* Pick up a deferred RNR condition if `count' ran out last time. */
1297 if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1298 sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1299 rnr = 1;
1300 }
1301#endif
1302
1303 /*
1304 * Free any finished transmit mbuf chains.
1305 *
1306 * Handle the CNA event likt a CXTNO event. It used to
1307 * be that this event (control unit not ready) was not
1308 * encountered, but it is now with the SMPng modifications.
1309 * The exact sequence of events that occur when the interface
1310 * is brought up are different now, and if this event
1311 * goes unhandled, the configuration/rxfilter setup sequence
1312 * can stall for several seconds. The result is that no
1313 * packets go out onto the wire for about 5 to 10 seconds
1314 * after the interface is ifconfig'ed for the first time.
1315 */
1316 if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1317 struct fxp_cb_tx *txp;
1318
1319 for (txp = sc->cbl_first; sc->tx_queued &&
1320 (txp->cb_status & FXP_CB_STATUS_C) != 0;
1321 txp = txp->next) {
acaaa437 1322 if ((m = txp->mb_head) != NULL) {
984263bc 1323 txp->mb_head = NULL;
acaaa437
MD
1324 sc->tx_queued--;
1325 m_freem(m);
1326 } else {
1327 sc->tx_queued--;
984263bc 1328 }
984263bc
MD
1329 }
1330 sc->cbl_first = txp;
9db4b353 1331
883c716a 1332 if (sc->tx_queued < FXP_USABLE_TXCB)
9ed293e0 1333 ifq_clr_oactive(&ifp->if_snd);
9db4b353 1334
984263bc 1335 if (sc->tx_queued == 0) {
be2f29ea 1336 ifp->if_timer = 0;
984263bc
MD
1337 if (sc->need_mcsetup)
1338 fxp_mc_setup(sc);
1339 }
9db4b353 1340
984263bc
MD
1341 /*
1342 * Try to start more packets transmitting.
1343 */
cb96d2fc 1344 if (!ifq_is_empty(&ifp->if_snd))
9db4b353 1345 if_devstart(ifp);
984263bc
MD
1346 }
1347
1348 /*
1349 * Just return if nothing happened on the receive side.
1350 */
1351 if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1352 return;
1353
1354 /*
1355 * Process receiver interrupts. If a no-resource (RNR)
1356 * condition exists, get whatever packets we can and
1357 * re-start the receiver.
1358 *
1359 * When using polling, we do not process the list to completion,
1360 * so when we get an RNR interrupt we must defer the restart
1361 * until we hit the last buffer with the C bit set.
1362 * If we run out of cycles and rfa_headm has the C bit set,
1363 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1364 * that the info will be used in the subsequent polling cycle.
1365 */
1366 for (;;) {
1367 m = sc->rfa_headm;
1368 rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
5bd08532 1369 RFA_ALIGNMENT_FUDGE);
984263bc 1370
ee332442 1371#ifdef IFPOLL_ENABLE /* loop at most count times if count >=0 */
984263bc
MD
1372 if (count >= 0 && count-- == 0) {
1373 if (rnr) {
1374 /* Defer RNR processing until the next time. */
1375 sc->flags |= FXP_FLAG_DEFERRED_RNR;
1376 rnr = 0;
1377 }
1378 break;
1379 }
ee332442 1380#endif /* IFPOLL_ENABLE */
984263bc
MD
1381
1382 if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1383 break;
1384
1385 /*
1386 * Remove first packet from the chain.
1387 */
1388 sc->rfa_headm = m->m_next;
5bd08532
MD
1389 if (sc->rfa_headm == NULL)
1390 sc->rfa_tailm = NULL;
984263bc
MD
1391 m->m_next = NULL;
1392
1393 /*
1394 * Add a new buffer to the receive chain.
1395 * If this fails, the old buffer is recycled
1396 * instead.
1397 */
1398 if (fxp_add_rfabuf(sc, m) == 0) {
1399 int total_len;
1400
1401 /*
1402 * Fetch packet length (the top 2 bits of
1403 * actual_size are flags set by the controller
1404 * upon completion), and drop the packet in case
1405 * of bogus length or CRC errors.
1406 */
1407 total_len = rfa->actual_size & 0x3fff;
1408 if (total_len < sizeof(struct ether_header) ||
1409 total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
5bd08532
MD
1410 sizeof(struct fxp_rfa) ||
1411 (rfa->rfa_status & FXP_RFA_STATUS_CRC)) {
984263bc
MD
1412 m_freem(m);
1413 continue;
1414 }
1415 m->m_pkthdr.len = m->m_len = total_len;
73029d08 1416 ifp->if_input(ifp, m, NULL, -1);
984263bc
MD
1417 }
1418 }
21f7a7d1 1419
984263bc
MD
1420 if (rnr) {
1421 fxp_scb_wait(sc);
1422 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1423 vtophys(sc->rfa_headm->m_ext.ext_buf) +
1424 RFA_ALIGNMENT_FUDGE);
1425 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1426 }
1427}
1428
1429/*
1430 * Update packet in/out/collision statistics. The i82557 doesn't
1431 * allow you to access these counters without doing a fairly
1432 * expensive DMA to get _all_ of the statistics it maintains, so
1433 * we do this operation here only once per second. The statistics
1434 * counters in the kernel are updated from the previous dump-stats
1435 * DMA and then a new dump-stats DMA is started. The on-chip
1436 * counters are zeroed when the DMA completes. If we can't start
1437 * the DMA immediately, we don't wait - we just prepare to read
1438 * them again next time.
1439 */
1440static void
1441fxp_tick(void *xsc)
1442{
1443 struct fxp_softc *sc = xsc;
3dc849fa 1444 struct ifnet *ifp = &sc->arpcom.ac_if;
984263bc
MD
1445 struct fxp_stats *sp = sc->fxp_stats;
1446 struct fxp_cb_tx *txp;
acaaa437 1447 struct mbuf *m;
984263bc 1448
78195a76
MD
1449 lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1450
d40991ef
SZ
1451 IFNET_STAT_INC(ifp, opackets, sp->tx_good);
1452 IFNET_STAT_INC(ifp, collisions, sp->tx_total_collisions);
984263bc 1453 if (sp->rx_good) {
d40991ef 1454 IFNET_STAT_INC(ifp, ipackets, sp->rx_good);
984263bc
MD
1455 sc->rx_idle_secs = 0;
1456 } else {
1457 /*
1458 * Receiver's been idle for another second.
1459 */
1460 sc->rx_idle_secs++;
1461 }
d40991ef 1462 IFNET_STAT_INC(ifp, ierrors,
984263bc
MD
1463 sp->rx_crc_errors +
1464 sp->rx_alignment_errors +
1465 sp->rx_rnr_errors +
d40991ef 1466 sp->rx_overrun_errors);
984263bc
MD
1467 /*
1468 * If any transmit underruns occured, bump up the transmit
1469 * threshold by another 512 bytes (64 * 8).
1470 */
1471 if (sp->tx_underruns) {
d40991ef 1472 IFNET_STAT_INC(ifp, oerrors, sp->tx_underruns);
984263bc
MD
1473 if (tx_threshold < 192)
1474 tx_threshold += 64;
1475 }
37103068 1476
984263bc
MD
1477 /*
1478 * Release any xmit buffers that have completed DMA. This isn't
1479 * strictly necessary to do here, but it's advantagous for mbufs
1480 * with external storage to be released in a timely manner rather
1481 * than being defered for a potentially long time. This limits
1482 * the delay to a maximum of one second.
be2f29ea 1483 */
984263bc
MD
1484 for (txp = sc->cbl_first; sc->tx_queued &&
1485 (txp->cb_status & FXP_CB_STATUS_C) != 0;
1486 txp = txp->next) {
acaaa437 1487 if ((m = txp->mb_head) != NULL) {
984263bc 1488 txp->mb_head = NULL;
acaaa437
MD
1489 sc->tx_queued--;
1490 m_freem(m);
1491 } else {
1492 sc->tx_queued--;
984263bc 1493 }
984263bc
MD
1494 }
1495 sc->cbl_first = txp;
be2f29ea 1496
883c716a 1497 if (sc->tx_queued < FXP_USABLE_TXCB)
9ed293e0 1498 ifq_clr_oactive(&ifp->if_snd);
be2f29ea
SZ
1499 if (sc->tx_queued == 0)
1500 ifp->if_timer = 0;
1501
883c716a
SZ
1502 /*
1503 * Try to start more packets transmitting.
1504 */
1505 if (!ifq_is_empty(&ifp->if_snd))
1506 if_devstart(ifp);
1507
984263bc
MD
1508 /*
1509 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1510 * then assume the receiver has locked up and attempt to clear
1511 * the condition by reprogramming the multicast filter. This is
1512 * a work-around for a bug in the 82557 where the receiver locks
1513 * up if it gets certain types of garbage in the syncronization
1514 * bits prior to the packet header. This bug is supposed to only
1515 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1516 * mode as well (perhaps due to a 10/100 speed transition).
1517 */
1518 if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1519 sc->rx_idle_secs = 0;
1520 fxp_mc_setup(sc);
1521 }
1522 /*
1523 * If there is no pending command, start another stats
1524 * dump. Otherwise punt for now.
1525 */
1526 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1527 /*
1528 * Start another stats dump.
1529 */
1530 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1531 } else {
1532 /*
1533 * A previous command is still waiting to be accepted.
1534 * Just zero our copy of the stats and wait for the
1535 * next timer event to update them.
1536 */
1537 sp->tx_good = 0;
1538 sp->tx_underruns = 0;
1539 sp->tx_total_collisions = 0;
1540
1541 sp->rx_good = 0;
1542 sp->rx_crc_errors = 0;
1543 sp->rx_alignment_errors = 0;
1544 sp->rx_rnr_errors = 0;
1545 sp->rx_overrun_errors = 0;
1546 }
1547 if (sc->miibus != NULL)
1548 mii_tick(device_get_softc(sc->miibus));
984263bc
MD
1549 /*
1550 * Schedule another timeout one second from now.
1551 */
a1f4b801 1552 callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
37103068 1553
78195a76 1554 lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
984263bc
MD
1555}
1556
1557/*
1558 * Stop the interface. Cancels the statistics updater and resets
1559 * the interface.
1560 */
1561static void
1562fxp_stop(struct fxp_softc *sc)
1563{
3dc849fa 1564 struct ifnet *ifp = &sc->arpcom.ac_if;
984263bc
MD
1565 struct fxp_cb_tx *txp;
1566 int i;
1567
334b9734
SZ
1568 ASSERT_SERIALIZED(ifp->if_serializer);
1569
9ed293e0
SZ
1570 ifp->if_flags &= ~IFF_RUNNING;
1571 ifq_clr_oactive(&ifp->if_snd);
984263bc
MD
1572 ifp->if_timer = 0;
1573
984263bc
MD
1574 /*
1575 * Cancel stats updater.
1576 */
a1f4b801 1577 callout_stop(&sc->fxp_stat_timer);
984263bc
MD
1578
1579 /*
1580 * Issue software reset, which also unloads the microcode.
1581 */
1582 sc->flags &= ~FXP_FLAG_UCODE;
1583 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1584 DELAY(50);
1585
1586 /*
1587 * Release any xmit buffers.
1588 */
1589 txp = sc->cbl_base;
1590 if (txp != NULL) {
1591 for (i = 0; i < FXP_NTXCB; i++) {
1592 if (txp[i].mb_head != NULL) {
1593 m_freem(txp[i].mb_head);
1594 txp[i].mb_head = NULL;
1595 }
1596 }
1597 }
1598 sc->tx_queued = 0;
1599
1600 /*
1601 * Free all the receive buffers then reallocate/reinitialize
1602 */
1603 if (sc->rfa_headm != NULL)
1604 m_freem(sc->rfa_headm);
1605 sc->rfa_headm = NULL;
1606 sc->rfa_tailm = NULL;
1607 for (i = 0; i < FXP_NRFABUFS; i++) {
1608 if (fxp_add_rfabuf(sc, NULL) != 0) {
1609 /*
1610 * This "can't happen" - we're at splimp()
1611 * and we just freed all the buffers we need
1612 * above.
1613 */
1614 panic("fxp_stop: no buffers!");
1615 }
1616 }
1617}
1618
1619/*
1620 * Watchdog/transmission transmit timeout handler. Called when a
1621 * transmission is started on the interface, but no interrupt is
1622 * received before the timeout. This usually indicates that the
1623 * card has wedged for some reason.
1624 */
1625static void
1626fxp_watchdog(struct ifnet *ifp)
1627{
ac72fc11
SZ
1628 ASSERT_SERIALIZED(ifp->if_serializer);
1629
af340cf5 1630 if_printf(ifp, "device timeout\n");
d40991ef 1631 IFNET_STAT_INC(ifp, oerrors, 1);
af340cf5 1632 fxp_init(ifp->if_softc);
984263bc
MD
1633}
1634
1635static void
1636fxp_init(void *xsc)
1637{
1638 struct fxp_softc *sc = xsc;
3dc849fa 1639 struct ifnet *ifp = &sc->arpcom.ac_if;
984263bc
MD
1640 struct fxp_cb_config *cbp;
1641 struct fxp_cb_ias *cb_ias;
1642 struct fxp_cb_tx *txp;
1643 struct fxp_cb_mcs *mcsp;
37103068
JS
1644 int i, prm;
1645
ac72fc11
SZ
1646 ASSERT_SERIALIZED(ifp->if_serializer);
1647
984263bc
MD
1648 /*
1649 * Cancel any pending I/O
1650 */
1651 fxp_stop(sc);
1652
1653 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1654
1655 /*
1656 * Initialize base of CBL and RFA memory. Loading with zero
1657 * sets it up for regular linear addressing.
1658 */
1659 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1660 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1661
1662 fxp_scb_wait(sc);
1663 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1664
1665 /*
1666 * Initialize base of dump-stats buffer.
1667 */
1668 fxp_scb_wait(sc);
1669 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1670 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1671
1672 /*
1673 * Attempt to load microcode if requested.
1674 */
1675 if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1676 fxp_load_ucode(sc);
1677
1678 /*
1679 * Initialize the multicast address list.
1680 */
1681 if (fxp_mc_addrs(sc)) {
1682 mcsp = sc->mcsp;
1683 mcsp->cb_status = 0;
1684 mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1685 mcsp->link_addr = -1;
1686 /*
1687 * Start the multicast setup command.
1688 */
1689 fxp_scb_wait(sc);
1690 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1691 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1692 /* ...and wait for it to complete. */
1693 fxp_dma_wait(&mcsp->cb_status, sc);
1694 }
1695
1696 /*
1697 * We temporarily use memory that contains the TxCB list to
1698 * construct the config CB. The TxCB list memory is rebuilt
1699 * later.
1700 */
1701 cbp = (struct fxp_cb_config *) sc->cbl_base;
1702
1703 /*
1704 * This bcopy is kind of disgusting, but there are a bunch of must be
1705 * zero and must be one bits in this structure and this is the easiest
1706 * way to initialize them all to proper values.
1707 */
1708 bcopy(fxp_cb_config_template,
1709 (void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1710 sizeof(fxp_cb_config_template));
1711
1712 cbp->cb_status = 0;
1713 cbp->cb_command = FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1714 cbp->link_addr = -1; /* (no) next command */
1715 cbp->byte_count = 22; /* (22) bytes to config */
1716 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1717 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1718 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1719 cbp->mwi_enable = sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1720 cbp->type_enable = 0; /* actually reserved */
1721 cbp->read_align_en = sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1722 cbp->end_wr_on_cl = sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1723 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1724 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1725 cbp->dma_mbce = 0; /* (disable) dma max counters */
1726 cbp->late_scb = 0; /* (don't) defer SCB update */
1727 cbp->direct_dma_dis = 1; /* disable direct rcv dma mode */
1728 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
1729 cbp->ci_int = 1; /* interrupt on CU idle */
1730 cbp->ext_txcb_dis = sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1731 cbp->ext_stats_dis = 1; /* disable extended counters */
1732 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
1733 cbp->save_bf = sc->revision == FXP_REV_82557 ? 1 : prm;
1734 cbp->disc_short_rx = !prm; /* discard short packets */
1735 cbp->underrun_retry = 1; /* retry mode (once) on DMA underrun */
1736 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
1737 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
1738 cbp->mediatype = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1739 cbp->csma_dis = 0; /* (don't) disable link */
1740 cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */
1741 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
1742 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
1743 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
1744 cbp->mc_wake_en = 0; /* (don't) enable PME# on mcmatch */
1745 cbp->nsai = 1; /* (don't) disable source addr insert */
1746 cbp->preamble_length = 2; /* (7 byte) preamble */
1747 cbp->loopback = 0; /* (don't) loopback */
1748 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1749 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1750 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1751 cbp->promiscuous = prm; /* promiscuous mode */
1752 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1753 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
1754 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
1755 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
1756 cbp->crscdt = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1757
1758 cbp->stripping = !prm; /* truncate rx packet to byte count */
1759 cbp->padding = 1; /* (do) pad short tx packets */
1760 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1761 cbp->long_rx_en = sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1762 cbp->ia_wake_en = 0; /* (don't) wake up on address match */
1763 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
1764 /* must set wake_en in PMCSR also */
1765 cbp->force_fdx = 0; /* (don't) force full duplex */
1766 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1767 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1768 cbp->mc_all = sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1769
1770 if (sc->revision == FXP_REV_82557) {
1771 /*
1772 * The 82557 has no hardware flow control, the values
1773 * below are the defaults for the chip.
1774 */
1775 cbp->fc_delay_lsb = 0;
1776 cbp->fc_delay_msb = 0x40;
1777 cbp->pri_fc_thresh = 3;
1778 cbp->tx_fc_dis = 0;
1779 cbp->rx_fc_restop = 0;
1780 cbp->rx_fc_restart = 0;
1781 cbp->fc_filter = 0;
1782 cbp->pri_fc_loc = 1;
1783 } else {
1784 cbp->fc_delay_lsb = 0x1f;
1785 cbp->fc_delay_msb = 0x01;
1786 cbp->pri_fc_thresh = 3;
1787 cbp->tx_fc_dis = 0; /* enable transmit FC */
1788 cbp->rx_fc_restop = 1; /* enable FC restop frames */
1789 cbp->rx_fc_restart = 1; /* enable FC restart frames */
1790 cbp->fc_filter = !prm; /* drop FC frames to host */
1791 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
1792 }
1793
1794 /*
1795 * Start the config command/DMA.
1796 */
1797 fxp_scb_wait(sc);
1798 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1799 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1800 /* ...and wait for it to complete. */
1801 fxp_dma_wait(&cbp->cb_status, sc);
1802
1803 /*
1804 * Now initialize the station address. Temporarily use the TxCB
1805 * memory area like we did above for the config CB.
1806 */
1807 cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1808 cb_ias->cb_status = 0;
1809 cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1810 cb_ias->link_addr = -1;
1811 bcopy(sc->arpcom.ac_enaddr,
1812 (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1813 sizeof(sc->arpcom.ac_enaddr));
1814
1815 /*
1816 * Start the IAS (Individual Address Setup) command/DMA.
1817 */
1818 fxp_scb_wait(sc);
1819 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1820 /* ...and wait for it to complete. */
1821 fxp_dma_wait(&cb_ias->cb_status, sc);
1822
1823 /*
1824 * Initialize transmit control block (TxCB) list.
1825 */
1826
1827 txp = sc->cbl_base;
1828 bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1829 for (i = 0; i < FXP_NTXCB; i++) {
1830 txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1831 txp[i].cb_command = FXP_CB_COMMAND_NOP;
1832 txp[i].link_addr =
1833 vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1834 if (sc->flags & FXP_FLAG_EXT_TXCB)
1835 txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1836 else
1837 txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1838 txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1839 }
1840 /*
1841 * Set the suspend flag on the first TxCB and start the control
1842 * unit. It will execute the NOP and then suspend.
1843 */
1844 txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1845 sc->cbl_first = sc->cbl_last = txp;
1846 sc->tx_queued = 1;
1847
1848 fxp_scb_wait(sc);
1849 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1850
1851 /*
1852 * Initialize receiver buffer area - RFA.
1853 */
1854 fxp_scb_wait(sc);
1855 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1856 vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1857 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1858
1859 /*
1860 * Set current media.
1861 */
1862 if (sc->miibus != NULL)
1863 mii_mediachg(device_get_softc(sc->miibus));
1864
1865 ifp->if_flags |= IFF_RUNNING;
9ed293e0 1866 ifq_clr_oactive(&ifp->if_snd);
984263bc
MD
1867
1868 /*
1869 * Enable interrupts.
1870 */
ee332442 1871#ifdef IFPOLL_ENABLE
984263bc
MD
1872 /*
1873 * ... but only do that if we are not polling. And because (presumably)
1874 * the default is interrupts on, we need to disable them explicitly!
1875 */
ee332442 1876 if (ifp->if_flags & IFF_NPOLLING) {
984263bc 1877 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
ee332442
SZ
1878 sc->fxp_npoll.ifpc_stcount = 0;
1879 } else
1880#endif /* IFPOLL_ENABLE */
984263bc 1881 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
984263bc
MD
1882
1883 /*
1884 * Start stats updater.
1885 */
a1f4b801 1886 callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
984263bc
MD
1887}
1888
1889static int
1890fxp_serial_ifmedia_upd(struct ifnet *ifp)
1891{
ac72fc11 1892 ASSERT_SERIALIZED(ifp->if_serializer);
984263bc
MD
1893 return (0);
1894}
1895
1896static void
1897fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1898{
ac72fc11 1899 ASSERT_SERIALIZED(ifp->if_serializer);
984263bc
MD
1900 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1901}
1902
1903/*
1904 * Change media according to request.
1905 */
1906static int
1907fxp_ifmedia_upd(struct ifnet *ifp)
1908{
1909 struct fxp_softc *sc = ifp->if_softc;
1910 struct mii_data *mii;
1911
ac72fc11
SZ
1912 ASSERT_SERIALIZED(ifp->if_serializer);
1913
984263bc
MD
1914 mii = device_get_softc(sc->miibus);
1915 mii_mediachg(mii);
1916 return (0);
1917}
1918
1919/*
1920 * Notify the world which media we're using.
1921 */
1922static void
1923fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1924{
1925 struct fxp_softc *sc = ifp->if_softc;
1926 struct mii_data *mii;
1927
ac72fc11
SZ
1928 ASSERT_SERIALIZED(ifp->if_serializer);
1929
984263bc
MD
1930 mii = device_get_softc(sc->miibus);
1931 mii_pollstat(mii);
1932 ifmr->ifm_active = mii->mii_media_active;
1933 ifmr->ifm_status = mii->mii_media_status;
1934
1935 if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1936 sc->cu_resume_bug = 1;
1937 else
1938 sc->cu_resume_bug = 0;
1939}
1940
1941/*
1942 * Add a buffer to the end of the RFA buffer list.
1943 * Return 0 if successful, 1 for failure. A failure results in
1944 * adding the 'oldm' (if non-NULL) on to the end of the list -
1945 * tossing out its old contents and recycling it.
1946 * The RFA struct is stuck at the beginning of mbuf cluster and the
1947 * data pointer is fixed up to point just past it.
1948 */
1949static int
1950fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1951{
1952 u_int32_t v;
1953 struct mbuf *m;
1954 struct fxp_rfa *rfa, *p_rfa;
1955
b5523eac 1956 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
984263bc
MD
1957 if (m == NULL) { /* try to recycle the old mbuf instead */
1958 if (oldm == NULL)
1959 return 1;
1960 m = oldm;
1961 m->m_data = m->m_ext.ext_buf;
1962 }
1963
1964 /*
1965 * Move the data pointer up so that the incoming data packet
1966 * will be 32-bit aligned.
1967 */
1968 m->m_data += RFA_ALIGNMENT_FUDGE;
1969
1970 /*
1971 * Get a pointer to the base of the mbuf cluster and move
1972 * data start past it.
1973 */
1974 rfa = mtod(m, struct fxp_rfa *);
1975 m->m_data += sizeof(struct fxp_rfa);
b8a16790
MD
1976 rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) -
1977 RFA_ALIGNMENT_FUDGE);
984263bc
MD
1978
1979 /*
1980 * Initialize the rest of the RFA. Note that since the RFA
1981 * is misaligned, we cannot store values directly. Instead,
1982 * we use an optimized, inline copy.
1983 */
1984
1985 rfa->rfa_status = 0;
1986 rfa->rfa_control = FXP_RFA_CONTROL_EL;
1987 rfa->actual_size = 0;
1988
1989 v = -1;
1990 fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1991 fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1992
1993 /*
1994 * If there are other buffers already on the list, attach this
1995 * one to the end by fixing up the tail to point to this one.
1996 */
1997 if (sc->rfa_headm != NULL) {
b8a16790
MD
1998 p_rfa = (struct fxp_rfa *)(sc->rfa_tailm->m_ext.ext_buf +
1999 RFA_ALIGNMENT_FUDGE);
984263bc
MD
2000 sc->rfa_tailm->m_next = m;
2001 v = vtophys(rfa);
2002 fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
2003 p_rfa->rfa_control = 0;
2004 } else {
2005 sc->rfa_headm = m;
2006 }
2007 sc->rfa_tailm = m;
2008
2009 return (m == oldm);
2010}
2011
10d1b534 2012static int
984263bc
MD
2013fxp_miibus_readreg(device_t dev, int phy, int reg)
2014{
2015 struct fxp_softc *sc = device_get_softc(dev);
2016 int count = 10000;
2017 int value;
2018
2019 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2020 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2021
2022 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2023 && count--)
2024 DELAY(10);
2025
2026 if (count <= 0)
2027 device_printf(dev, "fxp_miibus_readreg: timed out\n");
2028
2029 return (value & 0xffff);
2030}
2031
2032static void
2033fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2034{
2035 struct fxp_softc *sc = device_get_softc(dev);
2036 int count = 10000;
2037
2038 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2039 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2040 (value & 0xffff));
2041
2042 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2043 count--)
2044 DELAY(10);
2045
2046 if (count <= 0)
2047 device_printf(dev, "fxp_miibus_writereg: timed out\n");
2048}
2049
2050static int
bd4539cc 2051fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
984263bc
MD
2052{
2053 struct fxp_softc *sc = ifp->if_softc;
2054 struct ifreq *ifr = (struct ifreq *)data;
2055 struct mii_data *mii;
37103068 2056 int error = 0;
984263bc 2057
ac72fc11
SZ
2058 ASSERT_SERIALIZED(ifp->if_serializer);
2059
984263bc 2060 switch (command) {
984263bc
MD
2061
2062 case SIOCSIFFLAGS:
2063 if (ifp->if_flags & IFF_ALLMULTI)
2064 sc->flags |= FXP_FLAG_ALL_MCAST;
2065 else
2066 sc->flags &= ~FXP_FLAG_ALL_MCAST;
2067
2068 /*
2069 * If interface is marked up and not running, then start it.
2070 * If it is marked down and running, stop it.
2071 * XXX If it's up then re-initialize it. This is so flags
2072 * such as IFF_PROMISC are handled.
2073 */
2074 if (ifp->if_flags & IFF_UP) {
2075 fxp_init(sc);
2076 } else {
2077 if (ifp->if_flags & IFF_RUNNING)
2078 fxp_stop(sc);
2079 }
2080 break;
2081
2082 case SIOCADDMULTI:
2083 case SIOCDELMULTI:
2084 if (ifp->if_flags & IFF_ALLMULTI)
2085 sc->flags |= FXP_FLAG_ALL_MCAST;
2086 else
2087 sc->flags &= ~FXP_FLAG_ALL_MCAST;
2088 /*
2089 * Multicast list has changed; set the hardware filter
2090 * accordingly.
2091 */
2092 if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2093 fxp_mc_setup(sc);
2094 /*
2095 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2096 * again rather than else {}.
2097 */
2098 if (sc->flags & FXP_FLAG_ALL_MCAST)
2099 fxp_init(sc);
2100 error = 0;
2101 break;
2102
2103 case SIOCSIFMEDIA:
2104 case SIOCGIFMEDIA:
2105 if (sc->miibus != NULL) {
2106 mii = device_get_softc(sc->miibus);
2107 error = ifmedia_ioctl(ifp, ifr,
2108 &mii->mii_media, command);
2109 } else {
2110 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2111 }
2112 break;
2113
2114 default:
20de928f
JS
2115 error = ether_ioctl(ifp, command, data);
2116 break;
984263bc 2117 }
984263bc
MD
2118 return (error);
2119}
2120
2121/*
2122 * Fill in the multicast address list and return number of entries.
2123 */
2124static int
2125fxp_mc_addrs(struct fxp_softc *sc)
2126{
2127 struct fxp_cb_mcs *mcsp = sc->mcsp;
3dc849fa 2128 struct ifnet *ifp = &sc->arpcom.ac_if;
984263bc
MD
2129 struct ifmultiaddr *ifma;
2130 int nmcasts;
2131
2132 nmcasts = 0;
2133 if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
441d34b2 2134 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
984263bc
MD
2135 if (ifma->ifma_addr->sa_family != AF_LINK)
2136 continue;
2137 if (nmcasts >= MAXMCADDR) {
2138 sc->flags |= FXP_FLAG_ALL_MCAST;
2139 nmcasts = 0;
2140 break;
2141 }
2142 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2143 (void *)(uintptr_t)(volatile void *)
2144 &sc->mcsp->mc_addr[nmcasts][0], 6);
2145 nmcasts++;
2146 }
2147 }
2148 mcsp->mc_cnt = nmcasts * 6;
2149 return (nmcasts);
2150}
2151
2152/*
2153 * Program the multicast filter.
2154 *
2155 * We have an artificial restriction that the multicast setup command
2156 * must be the first command in the chain, so we take steps to ensure
2157 * this. By requiring this, it allows us to keep up the performance of
2158 * the pre-initialized command ring (esp. link pointers) by not actually
2159 * inserting the mcsetup command in the ring - i.e. its link pointer
2160 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2161 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2162 * lead into the regular TxCB ring when it completes.
2163 *
2164 * This function must be called at splimp.
2165 */
2166static void
2167fxp_mc_setup(struct fxp_softc *sc)
2168{
2169 struct fxp_cb_mcs *mcsp = sc->mcsp;
3dc849fa 2170 struct ifnet *ifp = &sc->arpcom.ac_if;
984263bc
MD
2171 int count;
2172
2173 /*
2174 * If there are queued commands, we must wait until they are all
2175 * completed. If we are already waiting, then add a NOP command
2176 * with interrupt option so that we're notified when all commands
2177 * have been completed - fxp_start() ensures that no additional
2178 * TX commands will be added when need_mcsetup is true.
2179 */
2180 if (sc->tx_queued) {
2181 struct fxp_cb_tx *txp;
2182
2183 /*
2184 * need_mcsetup will be true if we are already waiting for the
2185 * NOP command to be completed (see below). In this case, bail.
2186 */
2187 if (sc->need_mcsetup)
2188 return;
2189 sc->need_mcsetup = 1;
2190
2191 /*
2192 * Add a NOP command with interrupt so that we are notified
2193 * when all TX commands have been processed.
2194 */
2195 txp = sc->cbl_last->next;
2196 txp->mb_head = NULL;
2197 txp->cb_status = 0;
2198 txp->cb_command = FXP_CB_COMMAND_NOP |
2199 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2200 /*
2201 * Advance the end of list forward.
2202 */
2203 sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2204 sc->cbl_last = txp;
2205 sc->tx_queued++;
2206 /*
2207 * Issue a resume in case the CU has just suspended.
2208 */
2209 fxp_scb_wait(sc);
2210 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2211 /*
2212 * Set a 5 second timer just in case we don't hear from the
2213 * card again.
2214 */
2215 ifp->if_timer = 5;
2216
2217 return;
2218 }
2219 sc->need_mcsetup = 0;
2220
2221 /*
2222 * Initialize multicast setup descriptor.
2223 */
2224 mcsp->next = sc->cbl_base;
2225 mcsp->mb_head = NULL;
2226 mcsp->cb_status = 0;
2227 mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2228 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2229 mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
7b9f668c 2230 fxp_mc_addrs(sc);
984263bc
MD
2231 sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2232 sc->tx_queued = 1;
2233
2234 /*
2235 * Wait until command unit is not active. This should never
2236 * be the case when nothing is queued, but make sure anyway.
2237 */
2238 count = 100;
2239 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2240 FXP_SCB_CUS_ACTIVE && --count)
2241 DELAY(10);
2242 if (count == 0) {
c81df1a6 2243 if_printf(&sc->arpcom.ac_if, "command queue timeout\n");
984263bc
MD
2244 return;
2245 }
2246
2247 /*
2248 * Start the multicast setup command.
2249 */
2250 fxp_scb_wait(sc);
2251 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2252 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2253
2254 ifp->if_timer = 2;
2255 return;
2256}
2257
2258static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2259static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2260static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2261static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2262static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2263static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2264
2265#define UCODE(x) x, sizeof(x)
2266
2267struct ucode {
2268 u_int32_t revision;
2269 u_int32_t *ucode;
2270 int length;
2271 u_short int_delay_offset;
2272 u_short bundle_max_offset;
2273} ucode_table[] = {
2274 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2275 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2276 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2277 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2278 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2279 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2280 { FXP_REV_82550, UCODE(fxp_ucode_d102),
2281 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2282 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2283 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2284 { 0, NULL, 0, 0, 0 }
2285};
2286
2287static void
2288fxp_load_ucode(struct fxp_softc *sc)
2289{
2290 struct ucode *uc;
2291 struct fxp_cb_ucode *cbp;
2292
2293 for (uc = ucode_table; uc->ucode != NULL; uc++)
2294 if (sc->revision == uc->revision)
2295 break;
2296 if (uc->ucode == NULL)
2297 return;
2298 cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2299 cbp->cb_status = 0;
2300 cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2301 cbp->link_addr = -1; /* (no) next command */
2302 memcpy(cbp->ucode, uc->ucode, uc->length);
2303 if (uc->int_delay_offset)
2304 *(u_short *)&cbp->ucode[uc->int_delay_offset] =
2305 sc->tunable_int_delay + sc->tunable_int_delay / 2;
2306 if (uc->bundle_max_offset)
2307 *(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2308 sc->tunable_bundle_max;
2309 /*
2310 * Download the ucode to the chip.
2311 */
2312 fxp_scb_wait(sc);
2313 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2314 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2315 /* ...and wait for it to complete. */
2316 fxp_dma_wait(&cbp->cb_status, sc);
c81df1a6 2317 if_printf(&sc->arpcom.ac_if,
984263bc
MD
2318 "Microcode loaded, int_delay: %d usec bundle_max: %d\n",
2319 sc->tunable_int_delay,
2320 uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2321 sc->flags |= FXP_FLAG_UCODE;
2322}
2323
984263bc
MD
2324/*
2325 * Interrupt delay is expressed in microseconds, a multiplier is used
2326 * to convert this to the appropriate clock ticks before using.
2327 */
2328static int
2329sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2330{
2331 return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2332}
2333
2334static int
2335sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2336{
2337 return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2338}