Merge branch 'vendor/OPENSSL'
[dragonfly.git] / sys / dev / drm / i915 / i915_gem_execbuffer.c
1 /*
2  * Copyright © 2008,2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Chris Wilson <chris@chris-wilson.co.uk>
26  *
27  * $FreeBSD: src/sys/dev/drm2/i915/i915_gem_execbuffer.c,v 1.3 2012/05/28 13:58:08 kib Exp $
28  */
29
30 #include <sys/limits.h>
31 #include <sys/sfbuf.h>
32
33 #include <drm/drmP.h>
34 #include <drm/i915_drm.h>
35 #include "i915_drv.h"
36 #include "intel_drv.h"
37
38 struct change_domains {
39         uint32_t invalidate_domains;
40         uint32_t flush_domains;
41         uint32_t flush_rings;
42         uint32_t flips;
43 };
44
45 /*
46  * Set the next domain for the specified object. This
47  * may not actually perform the necessary flushing/invaliding though,
48  * as that may want to be batched with other set_domain operations
49  *
50  * This is (we hope) the only really tricky part of gem. The goal
51  * is fairly simple -- track which caches hold bits of the object
52  * and make sure they remain coherent. A few concrete examples may
53  * help to explain how it works. For shorthand, we use the notation
54  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
55  * a pair of read and write domain masks.
56  *
57  * Case 1: the batch buffer
58  *
59  *      1. Allocated
60  *      2. Written by CPU
61  *      3. Mapped to GTT
62  *      4. Read by GPU
63  *      5. Unmapped from GTT
64  *      6. Freed
65  *
66  *      Let's take these a step at a time
67  *
68  *      1. Allocated
69  *              Pages allocated from the kernel may still have
70  *              cache contents, so we set them to (CPU, CPU) always.
71  *      2. Written by CPU (using pwrite)
72  *              The pwrite function calls set_domain (CPU, CPU) and
73  *              this function does nothing (as nothing changes)
74  *      3. Mapped by GTT
75  *              This function asserts that the object is not
76  *              currently in any GPU-based read or write domains
77  *      4. Read by GPU
78  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
79  *              As write_domain is zero, this function adds in the
80  *              current read domains (CPU+COMMAND, 0).
81  *              flush_domains is set to CPU.
82  *              invalidate_domains is set to COMMAND
83  *              clflush is run to get data out of the CPU caches
84  *              then i915_dev_set_domain calls i915_gem_flush to
85  *              emit an MI_FLUSH and drm_agp_chipset_flush
86  *      5. Unmapped from GTT
87  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
88  *              flush_domains and invalidate_domains end up both zero
89  *              so no flushing/invalidating happens
90  *      6. Freed
91  *              yay, done
92  *
93  * Case 2: The shared render buffer
94  *
95  *      1. Allocated
96  *      2. Mapped to GTT
97  *      3. Read/written by GPU
98  *      4. set_domain to (CPU,CPU)
99  *      5. Read/written by CPU
100  *      6. Read/written by GPU
101  *
102  *      1. Allocated
103  *              Same as last example, (CPU, CPU)
104  *      2. Mapped to GTT
105  *              Nothing changes (assertions find that it is not in the GPU)
106  *      3. Read/written by GPU
107  *              execbuffer calls set_domain (RENDER, RENDER)
108  *              flush_domains gets CPU
109  *              invalidate_domains gets GPU
110  *              clflush (obj)
111  *              MI_FLUSH and drm_agp_chipset_flush
112  *      4. set_domain (CPU, CPU)
113  *              flush_domains gets GPU
114  *              invalidate_domains gets CPU
115  *              wait_rendering (obj) to make sure all drawing is complete.
116  *              This will include an MI_FLUSH to get the data from GPU
117  *              to memory
118  *              clflush (obj) to invalidate the CPU cache
119  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
120  *      5. Read/written by CPU
121  *              cache lines are loaded and dirtied
122  *      6. Read written by GPU
123  *              Same as last GPU access
124  *
125  * Case 3: The constant buffer
126  *
127  *      1. Allocated
128  *      2. Written by CPU
129  *      3. Read by GPU
130  *      4. Updated (written) by CPU again
131  *      5. Read by GPU
132  *
133  *      1. Allocated
134  *              (CPU, CPU)
135  *      2. Written by CPU
136  *              (CPU, CPU)
137  *      3. Read by GPU
138  *              (CPU+RENDER, 0)
139  *              flush_domains = CPU
140  *              invalidate_domains = RENDER
141  *              clflush (obj)
142  *              MI_FLUSH
143  *              drm_agp_chipset_flush
144  *      4. Updated (written) by CPU again
145  *              (CPU, CPU)
146  *              flush_domains = 0 (no previous write domain)
147  *              invalidate_domains = 0 (no new read domains)
148  *      5. Read by GPU
149  *              (CPU+RENDER, 0)
150  *              flush_domains = CPU
151  *              invalidate_domains = RENDER
152  *              clflush (obj)
153  *              MI_FLUSH
154  *              drm_agp_chipset_flush
155  */
156 static void
157 i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
158                                   struct intel_ring_buffer *ring,
159                                   struct change_domains *cd)
160 {
161         uint32_t invalidate_domains = 0, flush_domains = 0;
162
163         /*
164          * If the object isn't moving to a new write domain,
165          * let the object stay in multiple read domains
166          */
167         if (obj->base.pending_write_domain == 0)
168                 obj->base.pending_read_domains |= obj->base.read_domains;
169
170         /*
171          * Flush the current write domain if
172          * the new read domains don't match. Invalidate
173          * any read domains which differ from the old
174          * write domain
175          */
176         if (obj->base.write_domain &&
177             (((obj->base.write_domain != obj->base.pending_read_domains ||
178                obj->ring != ring)) ||
179              (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
180                 flush_domains |= obj->base.write_domain;
181                 invalidate_domains |=
182                         obj->base.pending_read_domains & ~obj->base.write_domain;
183         }
184         /*
185          * Invalidate any read caches which may have
186          * stale data. That is, any new read domains.
187          */
188         invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
189         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
190                 i915_gem_clflush_object(obj);
191
192         if (obj->base.pending_write_domain)
193                 cd->flips |= atomic_read(&obj->pending_flip);
194
195         /* The actual obj->write_domain will be updated with
196          * pending_write_domain after we emit the accumulated flush for all
197          * of our domain changes in execbuffers (which clears objects'
198          * write_domains).  So if we have a current write domain that we
199          * aren't changing, set pending_write_domain to that.
200          */
201         if (flush_domains == 0 && obj->base.pending_write_domain == 0)
202                 obj->base.pending_write_domain = obj->base.write_domain;
203
204         cd->invalidate_domains |= invalidate_domains;
205         cd->flush_domains |= flush_domains;
206         if (flush_domains & I915_GEM_GPU_DOMAINS)
207                 cd->flush_rings |= intel_ring_flag(obj->ring);
208         if (invalidate_domains & I915_GEM_GPU_DOMAINS)
209                 cd->flush_rings |= intel_ring_flag(ring);
210 }
211
212 struct eb_objects {
213         int and;
214         struct hlist_head buckets[0];
215 };
216
217 static struct eb_objects *
218 eb_create(int size)
219 {
220         struct eb_objects *eb;
221         int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
222         while (count > size)
223                 count >>= 1;
224 #if 0
225         eb = kzalloc(count*sizeof(struct hlist_head) +
226                      sizeof(struct eb_objects),
227                      GFP_KERNEL);
228 #else
229         eb = kmalloc(count*sizeof(struct hlist_head) +
230                      sizeof(struct eb_objects),
231                      DRM_I915_GEM, M_WAITOK | M_ZERO);
232 #endif
233         if (eb == NULL)
234                 return eb;
235
236         eb->and = count - 1;
237         return eb;
238 }
239
240 static void
241 eb_reset(struct eb_objects *eb)
242 {
243         memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
244 }
245
246 static void
247 eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
248 {
249         hlist_add_head(&obj->exec_node,
250                        &eb->buckets[obj->exec_handle & eb->and]);
251 }
252
253 static struct drm_i915_gem_object *
254 eb_get_object(struct eb_objects *eb, unsigned long handle)
255 {
256         struct hlist_head *head;
257         struct hlist_node *node;
258         struct drm_i915_gem_object *obj;
259
260         head = &eb->buckets[handle & eb->and];
261         hlist_for_each(node, head) {
262                 obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
263                 if (obj->exec_handle == handle)
264                         return obj;
265         }
266
267         return NULL;
268 }
269
270 static void
271 eb_destroy(struct eb_objects *eb)
272 {
273         drm_free(eb, DRM_I915_GEM);
274 }
275
276 static int
277 i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
278                                    struct eb_objects *eb,
279                                    struct drm_i915_gem_relocation_entry *reloc)
280 {
281         struct drm_device *dev = obj->base.dev;
282         struct drm_gem_object *target_obj;
283         uint32_t target_offset;
284         int ret = -EINVAL;
285
286         /* we've already hold a reference to all valid objects */
287         target_obj = &eb_get_object(eb, reloc->target_handle)->base;
288         if (unlikely(target_obj == NULL))
289                 return -ENOENT;
290
291         target_offset = to_intel_bo(target_obj)->gtt_offset;
292
293 #if WATCH_RELOC
294         DRM_INFO("%s: obj %p offset %08x target %d "
295                  "read %08x write %08x gtt %08x "
296                  "presumed %08x delta %08x\n",
297                  __func__,
298                  obj,
299                  (int) reloc->offset,
300                  (int) reloc->target_handle,
301                  (int) reloc->read_domains,
302                  (int) reloc->write_domain,
303                  (int) target_offset,
304                  (int) reloc->presumed_offset,
305                  reloc->delta);
306 #endif
307
308         /* The target buffer should have appeared before us in the
309          * exec_object list, so it should have a GTT space bound by now.
310          */
311         if (unlikely(target_offset == 0)) {
312                 DRM_DEBUG("No GTT space found for object %d\n",
313                           reloc->target_handle);
314                 return ret;
315         }
316
317         /* Validate that the target is in a valid r/w GPU domain */
318         if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
319                 DRM_DEBUG("reloc with multiple write domains: "
320                           "obj %p target %d offset %d "
321                           "read %08x write %08x",
322                           obj, reloc->target_handle,
323                           (int) reloc->offset,
324                           reloc->read_domains,
325                           reloc->write_domain);
326                 return ret;
327         }
328         if (unlikely((reloc->write_domain | reloc->read_domains)
329                      & ~I915_GEM_GPU_DOMAINS)) {
330                 DRM_DEBUG("reloc with read/write non-GPU domains: "
331                           "obj %p target %d offset %d "
332                           "read %08x write %08x",
333                           obj, reloc->target_handle,
334                           (int) reloc->offset,
335                           reloc->read_domains,
336                           reloc->write_domain);
337                 return ret;
338         }
339         if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
340                      reloc->write_domain != target_obj->pending_write_domain)) {
341                 DRM_DEBUG("Write domain conflict: "
342                           "obj %p target %d offset %d "
343                           "new %08x old %08x\n",
344                           obj, reloc->target_handle,
345                           (int) reloc->offset,
346                           reloc->write_domain,
347                           target_obj->pending_write_domain);
348                 return ret;
349         }
350
351         target_obj->pending_read_domains |= reloc->read_domains;
352         target_obj->pending_write_domain |= reloc->write_domain;
353
354         /* If the relocation already has the right value in it, no
355          * more work needs to be done.
356          */
357         if (target_offset == reloc->presumed_offset)
358                 return 0;
359
360         /* Check that the relocation address is valid... */
361         if (unlikely(reloc->offset > obj->base.size - 4)) {
362                 DRM_DEBUG("Relocation beyond object bounds: "
363                           "obj %p target %d offset %d size %d.\n",
364                           obj, reloc->target_handle,
365                           (int) reloc->offset,
366                           (int) obj->base.size);
367                 return ret;
368         }
369         if (unlikely(reloc->offset & 3)) {
370                 DRM_DEBUG("Relocation not 4-byte aligned: "
371                           "obj %p target %d offset %d.\n",
372                           obj, reloc->target_handle,
373                           (int) reloc->offset);
374                 return ret;
375         }
376
377         /* We can't wait for rendering with pagefaults disabled */
378         if (obj->active && (curthread->td_flags & TDF_NOFAULT))
379                 return -EFAULT;
380
381         reloc->delta += target_offset;
382         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
383                 uint32_t page_offset = reloc->offset & PAGE_MASK;
384                 char *vaddr;
385                 struct sf_buf *sf;
386
387                 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
388                 if (ret)
389                         return ret;
390
391                 sf = sf_buf_alloc(obj->pages[OFF_TO_IDX(reloc->offset)]);
392                 if (sf == NULL)
393                         return (-ENOMEM);
394                 vaddr = (void *)sf_buf_kva(sf);
395
396                 *(uint32_t *)(vaddr + page_offset) = reloc->delta;
397                 sf_buf_free(sf);
398         } else {
399                 uint32_t *reloc_entry;
400                 char *reloc_page;
401
402                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
403                 if (ret)
404                         return ret;
405
406                 /*
407                  * Map the page containing the relocation we're going
408                  * to perform.
409                  */
410                 reloc->offset += obj->gtt_offset;
411                 reloc_page = pmap_mapdev_attr(dev->agp->base + (reloc->offset &
412                     ~PAGE_MASK), PAGE_SIZE, PAT_WRITE_COMBINING);
413                 reloc_entry = (uint32_t *)(reloc_page + (reloc->offset &
414                     PAGE_MASK));
415                 *(volatile uint32_t *)reloc_entry = reloc->delta;
416                 pmap_unmapdev((vm_offset_t)reloc_page, PAGE_SIZE);
417         }
418
419         /* and update the user's relocation entry */
420         reloc->presumed_offset = target_offset;
421
422         return 0;
423 }
424
425 static int
426 i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
427     struct eb_objects *eb)
428 {
429         struct drm_i915_gem_relocation_entry *user_relocs;
430         struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
431         struct drm_i915_gem_relocation_entry reloc;
432         int i, ret;
433
434         user_relocs = (void *)(uintptr_t)entry->relocs_ptr;
435         for (i = 0; i < entry->relocation_count; i++) {
436                 ret = -copyin_nofault(user_relocs + i, &reloc, sizeof(reloc));
437                 if (ret != 0)
438                         return (ret);
439
440                 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &reloc);
441                 if (ret != 0)
442                         return (ret);
443
444                 ret = -copyout_nofault(&reloc.presumed_offset,
445                     &user_relocs[i].presumed_offset,
446                     sizeof(reloc.presumed_offset));
447                 if (ret != 0)
448                         return (ret);
449         }
450
451         return (0);
452 }
453
454 static int
455 i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
456     struct eb_objects *eb, struct drm_i915_gem_relocation_entry *relocs)
457 {
458         const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
459         int i, ret;
460
461         for (i = 0; i < entry->relocation_count; i++) {
462                 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
463                 if (ret)
464                         return ret;
465         }
466
467         return 0;
468 }
469
470 static int
471 i915_gem_execbuffer_relocate(struct drm_device *dev,
472                              struct eb_objects *eb,
473                              struct list_head *objects)
474 {
475         struct drm_i915_gem_object *obj;
476         thread_t td = curthread;
477         int ret;
478         int pflags;
479
480         /* Try to move as many of the relocation targets off the active list
481          * to avoid unnecessary fallbacks to the slow path, as we cannot wait
482          * for the retirement with pagefaults disabled.
483          */
484         i915_gem_retire_requests(dev);
485
486         ret = 0;
487         pflags = td->td_flags & TDF_NOFAULT;
488         atomic_set_int(&td->td_flags, TDF_NOFAULT);
489
490         /* This is the fast path and we cannot handle a pagefault whilst
491          * holding the device lock lest the user pass in the relocations
492          * contained within a mmaped bo. For in such a case we, the page
493          * fault handler would call i915_gem_fault() and we would try to
494          * acquire the device lock again. Obviously this is bad.
495          */
496
497         list_for_each_entry(obj, objects, exec_list) {
498                 ret = i915_gem_execbuffer_relocate_object(obj, eb);
499                 if (ret != 0)
500                         break;
501         }
502
503         if ((pflags & TDF_NOFAULT) == 0)
504                 atomic_clear_int(&td->td_flags, TDF_NOFAULT);
505
506         return (ret);
507 }
508
509 #define  __EXEC_OBJECT_HAS_FENCE (1<<31)
510
511 static int
512 pin_and_fence_object(struct drm_i915_gem_object *obj,
513                      struct intel_ring_buffer *ring)
514 {
515         struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
516         bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
517         bool need_fence, need_mappable;
518         int ret;
519
520         need_fence =
521                 has_fenced_gpu_access &&
522                 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
523                 obj->tiling_mode != I915_TILING_NONE;
524         need_mappable =
525                 entry->relocation_count ? true : need_fence;
526
527         ret = i915_gem_object_pin(obj, entry->alignment, need_mappable);
528         if (ret)
529                 return ret;
530
531         if (has_fenced_gpu_access) {
532                 if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
533                         if (obj->tiling_mode) {
534                                 ret = i915_gem_object_get_fence(obj);
535                                 if (ret)
536                                         goto err_unpin;
537
538                                 entry->flags |= __EXEC_OBJECT_HAS_FENCE;
539                                 i915_gem_object_pin_fence(obj);
540                         } else {
541                                 ret = i915_gem_object_put_fence(obj);
542                                 if (ret)
543                                         goto err_unpin;
544                         }
545                         obj->pending_fenced_gpu_access = true;
546                 }
547         }
548
549         entry->offset = obj->gtt_offset;
550         return 0;
551
552 err_unpin:
553         i915_gem_object_unpin(obj);
554         return ret;
555 }
556
557 static int
558 i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
559                             struct drm_file *file,
560                             struct list_head *objects)
561 {
562         drm_i915_private_t *dev_priv;
563         struct drm_i915_gem_object *obj;
564         int ret, retry;
565         bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
566         struct list_head ordered_objects;
567
568         dev_priv = ring->dev->dev_private;
569         INIT_LIST_HEAD(&ordered_objects);
570         while (!list_empty(objects)) {
571                 struct drm_i915_gem_exec_object2 *entry;
572                 bool need_fence, need_mappable;
573
574                 obj = list_first_entry(objects,
575                                        struct drm_i915_gem_object,
576                                        exec_list);
577                 entry = obj->exec_entry;
578
579                 need_fence =
580                         has_fenced_gpu_access &&
581                         entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
582                         obj->tiling_mode != I915_TILING_NONE;
583                 need_mappable =
584                         entry->relocation_count ? true : need_fence;
585
586                 if (need_mappable)
587                         list_move(&obj->exec_list, &ordered_objects);
588                 else
589                         list_move_tail(&obj->exec_list, &ordered_objects);
590
591                 obj->base.pending_read_domains = 0;
592                 obj->base.pending_write_domain = 0;
593         }
594         list_splice(&ordered_objects, objects);
595
596         /* Attempt to pin all of the buffers into the GTT.
597          * This is done in 3 phases:
598          *
599          * 1a. Unbind all objects that do not match the GTT constraints for
600          *     the execbuffer (fenceable, mappable, alignment etc).
601          * 1b. Increment pin count for already bound objects and obtain
602          *     a fence register if required.
603          * 2.  Bind new objects.
604          * 3.  Decrement pin count.
605          *
606          * This avoid unnecessary unbinding of later objects in order to makr
607          * room for the earlier objects *unless* we need to defragment.
608          */
609         retry = 0;
610         do {
611                 ret = 0;
612
613                 /* Unbind any ill-fitting objects or pin. */
614                 list_for_each_entry(obj, objects, exec_list) {
615                         struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
616                         bool need_fence, need_mappable;
617
618                         if (!obj->gtt_space)
619                                 continue;
620
621                         need_fence =
622                                 has_fenced_gpu_access &&
623                                 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
624                                 obj->tiling_mode != I915_TILING_NONE;
625                         need_mappable =
626                                 entry->relocation_count ? true : need_fence;
627
628                         if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
629                             (need_mappable && !obj->map_and_fenceable))
630                                 ret = i915_gem_object_unbind(obj);
631                         else
632                                 ret = pin_and_fence_object(obj, ring);
633                         if (ret)
634                                 goto err;
635                 }
636
637                 /* Bind fresh objects */
638                 list_for_each_entry(obj, objects, exec_list) {
639                         if (obj->gtt_space)
640                                 continue;
641
642                         ret = pin_and_fence_object(obj, ring);
643                         if (ret) {
644                                 int ret_ignore;
645
646                                 /* This can potentially raise a harmless
647                                  * -EINVAL if we failed to bind in the above
648                                  * call. It cannot raise -EINTR since we know
649                                  * that the bo is freshly bound and so will
650                                  * not need to be flushed or waited upon.
651                                  */
652                                 ret_ignore = i915_gem_object_unbind(obj);
653                                 (void)ret_ignore;
654                                 if (obj->gtt_space != NULL)
655                                         kprintf("%s: gtt_space\n", __func__);
656                                 break;
657                         }
658                 }
659
660                 /* Decrement pin count for bound objects */
661                 list_for_each_entry(obj, objects, exec_list) {
662                         struct drm_i915_gem_exec_object2 *entry;
663
664                         if (!obj->gtt_space)
665                                 continue;
666
667                         entry = obj->exec_entry;
668                         if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
669                                 i915_gem_object_unpin_fence(obj);
670                                 entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
671                         }
672
673                         i915_gem_object_unpin(obj);
674
675                         /* ... and ensure ppgtt mapping exist if needed. */
676                         if (dev_priv->mm.aliasing_ppgtt && !obj->has_aliasing_ppgtt_mapping) {
677                                 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
678                                                        obj, obj->cache_level);
679
680                                 obj->has_aliasing_ppgtt_mapping = 1;
681                         }
682                 }
683
684                 if (ret != -ENOSPC || retry > 1)
685                         return ret;
686
687                 /* First attempt, just clear anything that is purgeable.
688                  * Second attempt, clear the entire GTT.
689                  */
690                 ret = i915_gem_evict_everything(ring->dev);
691                 if (ret)
692                         return ret;
693
694                 retry++;
695         } while (1);
696
697 err:
698         list_for_each_entry_continue_reverse(obj, objects, exec_list) {
699                 struct drm_i915_gem_exec_object2 *entry;
700
701                 if (!obj->gtt_space)
702                         continue;
703
704                 entry = obj->exec_entry;
705                 if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
706                         i915_gem_object_unpin_fence(obj);
707                         entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
708                 }
709
710                 i915_gem_object_unpin(obj);
711         }
712
713         return ret;
714 }
715
716 static int
717 i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
718     struct drm_file *file, struct intel_ring_buffer *ring,
719     struct list_head *objects, struct eb_objects *eb,
720     struct drm_i915_gem_exec_object2 *exec, int count)
721 {
722         struct drm_i915_gem_relocation_entry *reloc;
723         struct drm_i915_gem_object *obj;
724         int *reloc_offset;
725         int i, total, ret;
726
727         /* We may process another execbuffer during the unlock... */
728         while (!list_empty(objects)) {
729                 obj = list_first_entry(objects,
730                                        struct drm_i915_gem_object,
731                                        exec_list);
732                 list_del_init(&obj->exec_list);
733                 drm_gem_object_unreference(&obj->base);
734         }
735
736         DRM_UNLOCK(dev);
737
738         total = 0;
739         for (i = 0; i < count; i++)
740                 total += exec[i].relocation_count;
741
742         reloc_offset = kmalloc(count * sizeof(*reloc_offset), DRM_I915_GEM,
743             M_WAITOK | M_ZERO);
744         reloc = kmalloc(total * sizeof(*reloc), DRM_I915_GEM, M_WAITOK | M_ZERO);
745
746         total = 0;
747         for (i = 0; i < count; i++) {
748                 struct drm_i915_gem_relocation_entry *user_relocs;
749
750                 user_relocs = (void *)(uintptr_t)exec[i].relocs_ptr;
751                 ret = -copyin(user_relocs, reloc + total,
752                     exec[i].relocation_count * sizeof(*reloc));
753                 if (ret != 0) {
754                         DRM_LOCK(dev);
755                         goto err;
756                 }
757
758                 reloc_offset[i] = total;
759                 total += exec[i].relocation_count;
760         }
761
762         ret = i915_mutex_lock_interruptible(dev);
763         if (ret) {
764                 DRM_LOCK(dev);
765                 goto err;
766         }
767
768         /* reacquire the objects */
769         eb_reset(eb);
770         for (i = 0; i < count; i++) {
771                 struct drm_i915_gem_object *obj;
772
773                 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
774                                                         exec[i].handle));
775                 if (&obj->base == NULL) {
776                         DRM_DEBUG("Invalid object handle %d at index %d\n",
777                                    exec[i].handle, i);
778                         ret = -ENOENT;
779                         goto err;
780                 }
781
782                 list_add_tail(&obj->exec_list, objects);
783                 obj->exec_handle = exec[i].handle;
784                 obj->exec_entry = &exec[i];
785                 eb_add_object(eb, obj);
786         }
787
788         ret = i915_gem_execbuffer_reserve(ring, file, objects);
789         if (ret)
790                 goto err;
791
792         list_for_each_entry(obj, objects, exec_list) {
793                 int offset = obj->exec_entry - exec;
794                 ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
795                     reloc + reloc_offset[offset]);
796                 if (ret)
797                         goto err;
798         }
799
800         /* Leave the user relocations as are, this is the painfully slow path,
801          * and we want to avoid the complication of dropping the lock whilst
802          * having buffers reserved in the aperture and so causing spurious
803          * ENOSPC for random operations.
804          */
805
806 err:
807         drm_free(reloc, DRM_I915_GEM);
808         drm_free(reloc_offset, DRM_I915_GEM);
809         return ret;
810 }
811
812 static int
813 i915_gem_execbuffer_flush(struct drm_device *dev,
814                           uint32_t invalidate_domains,
815                           uint32_t flush_domains,
816                           uint32_t flush_rings)
817 {
818         drm_i915_private_t *dev_priv = dev->dev_private;
819         int i, ret;
820
821         if (flush_domains & I915_GEM_DOMAIN_CPU)
822                 intel_gtt_chipset_flush();
823
824         if (flush_domains & I915_GEM_DOMAIN_GTT)
825                 cpu_sfence();
826
827         if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
828                 for (i = 0; i < I915_NUM_RINGS; i++)
829                         if (flush_rings & (1 << i)) {
830                                 ret = i915_gem_flush_ring(&dev_priv->ring[i],
831                                     invalidate_domains, flush_domains);
832                                 if (ret)
833                                         return ret;
834                         }
835         }
836
837         return 0;
838 }
839
840 static int
841 i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips)
842 {
843         u32 plane, flip_mask;
844         int ret;
845
846         /* Check for any pending flips. As we only maintain a flip queue depth
847          * of 1, we can simply insert a WAIT for the next display flip prior
848          * to executing the batch and avoid stalling the CPU.
849          */
850
851         for (plane = 0; flips >> plane; plane++) {
852                 if (((flips >> plane) & 1) == 0)
853                         continue;
854
855                 if (plane)
856                         flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
857                 else
858                         flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
859
860                 ret = intel_ring_begin(ring, 2);
861                 if (ret)
862                         return ret;
863
864                 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
865                 intel_ring_emit(ring, MI_NOOP);
866                 intel_ring_advance(ring);
867         }
868
869         return 0;
870 }
871
872 static int
873 i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
874                                 struct list_head *objects)
875 {
876         struct drm_i915_gem_object *obj;
877         struct change_domains cd;
878         int ret;
879
880         memset(&cd, 0, sizeof(cd));
881         list_for_each_entry(obj, objects, exec_list)
882                 i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
883
884         if (cd.invalidate_domains | cd.flush_domains) {
885 #if WATCH_EXEC
886                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
887                           __func__,
888                          cd.invalidate_domains,
889                          cd.flush_domains);
890 #endif
891                 ret = i915_gem_execbuffer_flush(ring->dev,
892                                                 cd.invalidate_domains,
893                                                 cd.flush_domains,
894                                                 cd.flush_rings);
895                 if (ret)
896                         return ret;
897         }
898
899         if (cd.flips) {
900                 ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips);
901                 if (ret)
902                         return ret;
903         }
904
905         list_for_each_entry(obj, objects, exec_list) {
906                 ret = i915_gem_object_sync(obj, ring);
907                 if (ret)
908                         return ret;
909         }
910
911         return 0;
912 }
913
914 static bool
915 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
916 {
917         return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
918 }
919
920 static int
921 validate_exec_list(struct drm_i915_gem_exec_object2 *exec, int count,
922     vm_page_t ***map)
923 {
924         vm_page_t *ma;
925         int i, length, page_count;
926
927         /* XXXKIB various limits checking is missing there */
928         *map = kmalloc(count * sizeof(*ma), DRM_I915_GEM, M_WAITOK | M_ZERO);
929         for (i = 0; i < count; i++) {
930                 /* First check for malicious input causing overflow */
931                 if (exec[i].relocation_count >
932                     INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
933                         return -EINVAL;
934
935                 length = exec[i].relocation_count *
936                     sizeof(struct drm_i915_gem_relocation_entry);
937                 if (length == 0) {
938                         (*map)[i] = NULL;
939                         continue;
940                 }
941                 /*
942                  * Since both start and end of the relocation region
943                  * may be not aligned on the page boundary, be
944                  * conservative and request a page slot for each
945                  * partial page.  Thus +2.
946                  */
947                 page_count = howmany(length, PAGE_SIZE) + 2;
948                 ma = (*map)[i] = kmalloc(page_count * sizeof(vm_page_t),
949                     DRM_I915_GEM, M_WAITOK | M_ZERO);
950                 if (vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
951                     exec[i].relocs_ptr, length, VM_PROT_READ | VM_PROT_WRITE,
952                     ma, page_count) == -1) {
953                         drm_free(ma, DRM_I915_GEM);
954                         (*map)[i] = NULL;
955                         return (-EFAULT);
956                 }
957         }
958
959         return 0;
960 }
961
962 static void
963 i915_gem_execbuffer_move_to_active(struct list_head *objects,
964                                    struct intel_ring_buffer *ring)
965 {
966         struct drm_i915_gem_object *obj;
967         uint32_t old_read, old_write;
968
969         list_for_each_entry(obj, objects, exec_list) {
970                 old_read = obj->base.read_domains;
971                 old_write = obj->base.write_domain;
972
973                 obj->base.read_domains = obj->base.pending_read_domains;
974                 obj->base.write_domain = obj->base.pending_write_domain;
975                 obj->fenced_gpu_access = obj->pending_fenced_gpu_access;
976
977                 i915_gem_object_move_to_active(obj, ring);
978                 if (obj->base.write_domain) {
979                         obj->dirty = 1;
980                         obj->last_write_seqno = intel_ring_get_seqno(ring);
981                         list_move_tail(&obj->gpu_write_list,
982                                        &ring->gpu_write_list);
983                         intel_mark_busy(ring->dev);
984                 }
985         }
986 }
987
988 int i915_gem_sync_exec_requests;
989
990 static void
991 i915_gem_execbuffer_retire_commands(struct drm_device *dev,
992                                     struct drm_file *file,
993                                     struct intel_ring_buffer *ring)
994 {
995         /* Unconditionally force add_request to emit a full flush. */
996         ring->gpu_caches_dirty = true;
997
998         /* Add a breadcrumb for the completion of the batch buffer */
999         (void)i915_add_request(ring, file, NULL);
1000 }
1001
1002 static void
1003 i915_gem_fix_mi_batchbuffer_end(struct drm_i915_gem_object *batch_obj,
1004     uint32_t batch_start_offset, uint32_t batch_len)
1005 {
1006         char *mkva;
1007         uint64_t po_r, po_w;
1008         uint32_t cmd;
1009         
1010         po_r = batch_obj->base.dev->agp->base + batch_obj->gtt_offset +
1011             batch_start_offset + batch_len;
1012         if (batch_len > 0)
1013                 po_r -= 4;
1014         mkva = pmap_mapdev_attr(trunc_page(po_r), 2 * PAGE_SIZE,
1015             PAT_WRITE_COMBINING);
1016         po_r &= PAGE_MASK;
1017         cmd = *(uint32_t *)(mkva + po_r);
1018
1019         if (cmd != MI_BATCH_BUFFER_END) {
1020                 /*
1021                  * batch_len != 0 due to the check at the start of
1022                  * i915_gem_do_execbuffer
1023                  */
1024                 if (batch_obj->base.size > batch_start_offset + batch_len) {
1025                         po_w = po_r + 4;
1026 /* DRM_DEBUG("batchbuffer does not end by MI_BATCH_BUFFER_END !\n"); */
1027                 } else {
1028                         po_w = po_r;
1029 DRM_DEBUG("batchbuffer does not end by MI_BATCH_BUFFER_END, overwriting last bo cmd !\n");
1030                 }
1031                 *(uint32_t *)(mkva + po_w) = MI_BATCH_BUFFER_END;
1032         }
1033
1034         pmap_unmapdev((vm_offset_t)mkva, 2 * PAGE_SIZE);
1035 }
1036
1037 int i915_fix_mi_batchbuffer_end = 0;
1038
1039  static int
1040 i915_reset_gen7_sol_offsets(struct drm_device *dev,
1041                             struct intel_ring_buffer *ring)
1042 {
1043         drm_i915_private_t *dev_priv = dev->dev_private;
1044         int ret, i;
1045
1046         if (!IS_GEN7(dev) || ring != &dev_priv->ring[RCS])
1047                 return 0;
1048
1049         ret = intel_ring_begin(ring, 4 * 3);
1050         if (ret)
1051                 return ret;
1052
1053         for (i = 0; i < 4; i++) {
1054                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1055                 intel_ring_emit(ring, GEN7_SO_WRITE_OFFSET(i));
1056                 intel_ring_emit(ring, 0);
1057         }
1058
1059         intel_ring_advance(ring);
1060
1061         return 0;
1062 }
1063
1064 static int
1065 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
1066                        struct drm_file *file,
1067                        struct drm_i915_gem_execbuffer2 *args,
1068                        struct drm_i915_gem_exec_object2 *exec)
1069 {
1070         drm_i915_private_t *dev_priv = dev->dev_private;
1071         struct list_head objects;
1072         struct eb_objects *eb;
1073         struct drm_i915_gem_object *batch_obj;
1074         struct drm_clip_rect *cliprects = NULL;
1075         struct intel_ring_buffer *ring;
1076         vm_page_t **relocs_ma;
1077         u32 exec_start, exec_len;
1078         u32 mask;
1079         u32 flags;
1080         int ret, mode, i;
1081
1082         if (!i915_gem_check_execbuffer(args)) {
1083                 DRM_DEBUG("execbuf with invalid offset/length\n");
1084                 return -EINVAL;
1085         }
1086
1087         if (args->batch_len == 0)
1088                 return (0);
1089
1090         ret = validate_exec_list(exec, args->buffer_count, &relocs_ma);
1091         if (ret)
1092                 return ret;
1093
1094         flags = 0;
1095         if (args->flags & I915_EXEC_SECURE) {
1096                 flags |= I915_DISPATCH_SECURE;
1097         }
1098         if (args->flags & I915_EXEC_IS_PINNED)
1099                 flags |= I915_DISPATCH_PINNED;
1100
1101         switch (args->flags & I915_EXEC_RING_MASK) {
1102         case I915_EXEC_DEFAULT:
1103         case I915_EXEC_RENDER:
1104                 ring = &dev_priv->ring[RCS];
1105                 break;
1106         case I915_EXEC_BSD:
1107                 if (!HAS_BSD(dev)) {
1108                         DRM_DEBUG("execbuf with invalid ring (BSD)\n");
1109                         return -EINVAL;
1110                 }
1111                 ring = &dev_priv->ring[VCS];
1112                 break;
1113         case I915_EXEC_BLT:
1114                 if (!HAS_BLT(dev)) {
1115                         DRM_DEBUG("execbuf with invalid ring (BLT)\n");
1116                         return -EINVAL;
1117                 }
1118                 ring = &dev_priv->ring[BCS];
1119                 break;
1120         default:
1121                 DRM_DEBUG("execbuf with unknown ring: %d\n",
1122                           (int)(args->flags & I915_EXEC_RING_MASK));
1123                 ret = -EINVAL;
1124                 goto pre_struct_lock_err;
1125         }
1126         if (!intel_ring_initialized(ring)) {
1127                 DRM_DEBUG("execbuf with invalid ring: %d\n",
1128                           (int)(args->flags & I915_EXEC_RING_MASK));
1129                 return -EINVAL;
1130         }
1131
1132         mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1133         mask = I915_EXEC_CONSTANTS_MASK;
1134         switch (mode) {
1135         case I915_EXEC_CONSTANTS_REL_GENERAL:
1136         case I915_EXEC_CONSTANTS_ABSOLUTE:
1137         case I915_EXEC_CONSTANTS_REL_SURFACE:
1138                 if (ring == &dev_priv->ring[RCS] &&
1139                     mode != dev_priv->relative_constants_mode) {
1140                         if (INTEL_INFO(dev)->gen < 4) {
1141                                 ret = -EINVAL;
1142                                 goto pre_struct_lock_err;
1143                         }
1144
1145                         if (INTEL_INFO(dev)->gen > 5 &&
1146                             mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
1147                                 ret = -EINVAL;
1148                                 goto pre_struct_lock_err;
1149                         }
1150
1151                         /* The HW changed the meaning on this bit on gen6 */
1152                         if (INTEL_INFO(dev)->gen >= 6)
1153                                 mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
1154                 }
1155                 break;
1156         default:
1157                 DRM_DEBUG("execbuf with unknown constants: %d\n", mode);
1158                 ret = -EINVAL;
1159                 goto pre_struct_lock_err;
1160         }
1161
1162         if (args->buffer_count < 1) {
1163                 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1164                 ret = -EINVAL;
1165                 goto pre_struct_lock_err;
1166         }
1167
1168         if (args->num_cliprects != 0) {
1169                 if (ring != &dev_priv->ring[RCS]) {
1170         DRM_DEBUG("clip rectangles are only valid with the render ring\n");
1171                         ret = -EINVAL;
1172                         goto pre_struct_lock_err;
1173                 }
1174
1175                 if (args->num_cliprects > UINT_MAX / sizeof(*cliprects)) {
1176                         DRM_DEBUG("execbuf with %u cliprects\n",
1177                                   args->num_cliprects);
1178                         ret = -EINVAL;
1179                         goto pre_struct_lock_err;
1180                 }
1181                 cliprects = kmalloc( sizeof(*cliprects) * args->num_cliprects,
1182                     DRM_I915_GEM, M_WAITOK | M_ZERO);
1183                 ret = -copyin((void *)(uintptr_t)args->cliprects_ptr, cliprects,
1184                     sizeof(*cliprects) * args->num_cliprects);
1185                 if (ret != 0)
1186                         goto pre_struct_lock_err;
1187         }
1188
1189         ret = i915_mutex_lock_interruptible(dev);
1190         if (ret)
1191                 goto pre_struct_lock_err;
1192
1193         if (dev_priv->mm.suspended) {
1194                 ret = -EBUSY;
1195                 goto struct_lock_err;
1196         }
1197
1198         eb = eb_create(args->buffer_count);
1199         if (eb == NULL) {
1200                 ret = -ENOMEM;
1201                 goto struct_lock_err;
1202         }
1203
1204         /* Look up object handles */
1205         INIT_LIST_HEAD(&objects);
1206         for (i = 0; i < args->buffer_count; i++) {
1207                 struct drm_i915_gem_object *obj;
1208                 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
1209                                                         exec[i].handle));
1210                 if (&obj->base == NULL) {
1211                         DRM_DEBUG("Invalid object handle %d at index %d\n",
1212                                    exec[i].handle, i);
1213                         /* prevent error path from reading uninitialized data */
1214                         ret = -ENOENT;
1215                         goto err;
1216                 }
1217
1218                 if (!list_empty(&obj->exec_list)) {
1219                         DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
1220                                    obj, exec[i].handle, i);
1221                         ret = -EINVAL;
1222                         goto err;
1223                 }
1224
1225                 list_add_tail(&obj->exec_list, &objects);
1226                 obj->exec_handle = exec[i].handle;
1227                 obj->exec_entry = &exec[i];
1228                 eb_add_object(eb, obj);
1229         }
1230
1231         /* take note of the batch buffer before we might reorder the lists */
1232         batch_obj = list_entry(objects.prev,
1233                                struct drm_i915_gem_object,
1234                                exec_list);
1235
1236         /* Move the objects en-masse into the GTT, evicting if necessary. */
1237         ret = i915_gem_execbuffer_reserve(ring, file, &objects);
1238         if (ret)
1239                 goto err;
1240
1241         /* The objects are in their final locations, apply the relocations. */
1242         ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
1243         if (ret) {
1244                 if (ret == -EFAULT) {
1245                         ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1246                             &objects, eb, exec, args->buffer_count);
1247                         DRM_LOCK_ASSERT(dev);
1248                 }
1249                 if (ret)
1250                         goto err;
1251         }
1252
1253         /* Set the pending read domains for the batch buffer to COMMAND */
1254         if (batch_obj->base.pending_write_domain) {
1255                 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1256                 ret = -EINVAL;
1257                 goto err;
1258         }
1259         batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1260
1261         /* snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
1262          * batch" bit. Hence we need to pin secure batches into the global gtt.
1263          * hsw should have this fixed, but let's be paranoid and do it
1264          * unconditionally for now. */
1265         if (flags & I915_DISPATCH_SECURE && !batch_obj->has_global_gtt_mapping)
1266                 i915_gem_gtt_bind_object(batch_obj, batch_obj->cache_level);
1267
1268         ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
1269         if (ret)
1270                 goto err;
1271
1272         if (ring == &dev_priv->ring[RCS] &&
1273             mode != dev_priv->relative_constants_mode) {
1274                 ret = intel_ring_begin(ring, 4);
1275                 if (ret)
1276                         goto err;
1277
1278                 intel_ring_emit(ring, MI_NOOP);
1279                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1280                 intel_ring_emit(ring, INSTPM);
1281                 intel_ring_emit(ring, mask << 16 | mode);
1282                 intel_ring_advance(ring);
1283
1284                 dev_priv->relative_constants_mode = mode;
1285         }
1286
1287         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
1288                 ret = i915_reset_gen7_sol_offsets(dev, ring);
1289                 if (ret)
1290                         goto err;
1291         }
1292
1293         exec_start = batch_obj->gtt_offset + args->batch_start_offset;
1294         exec_len = args->batch_len;
1295
1296         if (i915_fix_mi_batchbuffer_end) {
1297                 i915_gem_fix_mi_batchbuffer_end(batch_obj,
1298                     args->batch_start_offset, args->batch_len);
1299         }
1300
1301         if (cliprects) {
1302                 for (i = 0; i < args->num_cliprects; i++) {
1303                         ret = i915_emit_box_p(dev, &cliprects[i],
1304                             args->DR1, args->DR4);
1305                         if (ret)
1306                                 goto err;
1307
1308                         ret = ring->dispatch_execbuffer(ring,
1309                                                         exec_start, exec_len,
1310                                                         flags);
1311                         if (ret)
1312                                 goto err;
1313                 }
1314         } else {
1315                 ret = ring->dispatch_execbuffer(ring,
1316                                                 exec_start, exec_len,
1317                                                 flags);
1318                 if (ret)
1319                         goto err;
1320         }
1321
1322         i915_gem_execbuffer_move_to_active(&objects, ring);
1323         i915_gem_execbuffer_retire_commands(dev, file, ring);
1324
1325 err:
1326         eb_destroy(eb);
1327         while (!list_empty(&objects)) {
1328                 struct drm_i915_gem_object *obj;
1329
1330                 obj = list_first_entry(&objects, struct drm_i915_gem_object,
1331                     exec_list);
1332                 list_del_init(&obj->exec_list);
1333                 drm_gem_object_unreference(&obj->base);
1334         }
1335 struct_lock_err:
1336         DRM_UNLOCK(dev);
1337
1338 pre_struct_lock_err:
1339         for (i = 0; i < args->buffer_count; i++) {
1340                 if (relocs_ma[i] != NULL) {
1341                         vm_page_unhold_pages(relocs_ma[i], howmany(
1342                             exec[i].relocation_count *
1343                             sizeof(struct drm_i915_gem_relocation_entry),
1344                             PAGE_SIZE));
1345                         drm_free(relocs_ma[i], DRM_I915_GEM);
1346                 }
1347         }
1348         drm_free(relocs_ma, DRM_I915_GEM);
1349         drm_free(cliprects, DRM_I915_GEM);
1350         return ret;
1351 }
1352
1353 /*
1354  * Legacy execbuffer just creates an exec2 list from the original exec object
1355  * list array and passes it to the real function.
1356  */
1357 int
1358 i915_gem_execbuffer(struct drm_device *dev, void *data,
1359                     struct drm_file *file)
1360 {
1361         struct drm_i915_gem_execbuffer *args = data;
1362         struct drm_i915_gem_execbuffer2 exec2;
1363         struct drm_i915_gem_exec_object *exec_list = NULL;
1364         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1365         int ret, i;
1366
1367         DRM_DEBUG("buffers_ptr %d buffer_count %d len %08x\n",
1368             (int) args->buffers_ptr, args->buffer_count, args->batch_len);
1369
1370         if (args->buffer_count < 1) {
1371                 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1372                 return -EINVAL;
1373         }
1374
1375         /* Copy in the exec list from userland */
1376         /* XXXKIB user-controlled malloc size */
1377         exec_list = kmalloc(sizeof(*exec_list) * args->buffer_count,
1378             DRM_I915_GEM, M_WAITOK);
1379         exec2_list = kmalloc(sizeof(*exec2_list) * args->buffer_count,
1380             DRM_I915_GEM, M_WAITOK);
1381         ret = -copyin((void *)(uintptr_t)args->buffers_ptr, exec_list,
1382             sizeof(*exec_list) * args->buffer_count);
1383         if (ret != 0) {
1384                 DRM_DEBUG("copy %d exec entries failed %d\n",
1385                           args->buffer_count, ret);
1386                 drm_free(exec_list, DRM_I915_GEM);
1387                 drm_free(exec2_list, DRM_I915_GEM);
1388                 return (ret);
1389         }
1390
1391         for (i = 0; i < args->buffer_count; i++) {
1392                 exec2_list[i].handle = exec_list[i].handle;
1393                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1394                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1395                 exec2_list[i].alignment = exec_list[i].alignment;
1396                 exec2_list[i].offset = exec_list[i].offset;
1397                 if (INTEL_INFO(dev)->gen < 4)
1398                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1399                 else
1400                         exec2_list[i].flags = 0;
1401         }
1402
1403         exec2.buffers_ptr = args->buffers_ptr;
1404         exec2.buffer_count = args->buffer_count;
1405         exec2.batch_start_offset = args->batch_start_offset;
1406         exec2.batch_len = args->batch_len;
1407         exec2.DR1 = args->DR1;
1408         exec2.DR4 = args->DR4;
1409         exec2.num_cliprects = args->num_cliprects;
1410         exec2.cliprects_ptr = args->cliprects_ptr;
1411         exec2.flags = I915_EXEC_RENDER;
1412
1413         ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1414         if (!ret) {
1415                 /* Copy the new buffer offsets back to the user's exec list. */
1416                 for (i = 0; i < args->buffer_count; i++)
1417                         exec_list[i].offset = exec2_list[i].offset;
1418                 /* ... and back out to userspace */
1419                 ret = -copyout(exec_list, (void *)(uintptr_t)args->buffers_ptr,
1420                     sizeof(*exec_list) * args->buffer_count);
1421                 if (ret != 0) {
1422                         DRM_DEBUG("failed to copy %d exec entries "
1423                                   "back to user (%d)\n",
1424                                   args->buffer_count, ret);
1425                 }
1426         }
1427
1428         drm_free(exec_list, DRM_I915_GEM);
1429         drm_free(exec2_list, DRM_I915_GEM);
1430         return ret;
1431 }
1432
1433 int
1434 i915_gem_execbuffer2(struct drm_device *dev, void *data,
1435                      struct drm_file *file)
1436 {
1437         struct drm_i915_gem_execbuffer2 *args = data;
1438         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1439         int ret;
1440
1441         DRM_DEBUG("buffers_ptr %jx buffer_count %d len %08x\n",
1442             (uintmax_t)args->buffers_ptr, args->buffer_count, args->batch_len);
1443
1444         if (args->buffer_count < 1 ||
1445             args->buffer_count > UINT_MAX / sizeof(*exec2_list)) {
1446                 DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
1447                 return -EINVAL;
1448         }
1449
1450         /* XXXKIB user-controllable kmalloc size */
1451         exec2_list = kmalloc(sizeof(*exec2_list) * args->buffer_count,
1452             DRM_I915_GEM, M_WAITOK);
1453         ret = -copyin((void *)(uintptr_t)args->buffers_ptr, exec2_list,
1454             sizeof(*exec2_list) * args->buffer_count);
1455         if (ret != 0) {
1456                 DRM_DEBUG("copy %d exec entries failed %d\n",
1457                           args->buffer_count, ret);
1458                 drm_free(exec2_list, DRM_I915_GEM);
1459                 return (ret);
1460         }
1461
1462         ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1463         if (!ret) {
1464                 /* Copy the new buffer offsets back to the user's exec list. */
1465                 ret = -copyout(exec2_list, (void *)(uintptr_t)args->buffers_ptr,
1466                     sizeof(*exec2_list) * args->buffer_count);
1467                 if (ret) {
1468                         DRM_DEBUG("failed to copy %d exec entries "
1469                                   "back to user (%d)\n",
1470                                   args->buffer_count, ret);
1471                 }
1472         }
1473
1474         drm_free(exec2_list, DRM_I915_GEM);
1475         return ret;
1476 }