Merge branch 'vendor/GCC50'
[dragonfly.git] / lib / libdmsg / msg_lnk.c
1 /*
2  * Copyright (c) 2012-2014 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 /*
35  * LNK_SPAN PROTOCOL SUPPORT FUNCTIONS - Please see sys/dmsg.h for an
36  * involved explanation of the protocol.
37  */
38
39 #include "dmsg_local.h"
40
41 /*
42  * Maximum spanning tree distance.  This has the practical effect of
43  * stopping tail-chasing closed loops when a feeder span is lost.
44  */
45 #define DMSG_SPAN_MAXDIST       16
46
47 /*
48  * RED-BLACK TREE DEFINITIONS
49  *
50  * We need to track:
51  *
52  * (1) shared fsid's (a cluster).
53  * (2) unique fsid's (a node in a cluster) <--- LNK_SPAN transactions.
54  *
55  * We need to aggegate all active LNK_SPANs, aggregate, and create our own
56  * outgoing LNK_SPAN transactions on each of our connections representing
57  * the aggregated state.
58  *
59  * h2span_conn          - list of iocom connections who wish to receive SPAN
60  *                        propagation from other connections.  Might contain
61  *                        a filter string.  Only iocom's with an open
62  *                        LNK_CONN transactions are applicable for SPAN
63  *                        propagation.
64  *
65  * h2span_relay         - List of links relayed (via SPAN).  Essentially
66  *                        each relay structure represents a LNK_SPAN
67  *                        transaction that we initiated, verses h2span_link
68  *                        which is a LNK_SPAN transaction that we received.
69  *
70  * --
71  *
72  * h2span_cluster       - Organizes the shared fsid's.  One structure for
73  *                        each cluster.
74  *
75  * h2span_node          - Organizes the nodes in a cluster.  One structure
76  *                        for each unique {cluster,node}, aka {peer_id, pfs_id}.
77  *
78  * h2span_link          - Organizes all incoming and outgoing LNK_SPAN message
79  *                        transactions related to a node.
80  *
81  *                        One h2span_link structure for each incoming LNK_SPAN
82  *                        transaction.  Links selected for propagation back
83  *                        out are also where the outgoing LNK_SPAN messages
84  *                        are indexed into (so we can propagate changes).
85  *
86  *                        The h2span_link's use a red-black tree to sort the
87  *                        distance hop metric for the incoming LNK_SPAN.  We
88  *                        then select the top N for outgoing.  When the
89  *                        topology changes the top N may also change and cause
90  *                        new outgoing LNK_SPAN transactions to be opened
91  *                        and less desireable ones to be closed, causing
92  *                        transactional aborts within the message flow in
93  *                        the process.
94  *
95  * Also note            - All outgoing LNK_SPAN message transactions are also
96  *                        entered into a red-black tree for use by the routing
97  *                        function.  This is handled by msg.c in the state
98  *                        code, not here.
99  */
100
101 struct h2span_link;
102 struct h2span_relay;
103 TAILQ_HEAD(h2span_conn_queue, h2span_conn);
104 TAILQ_HEAD(h2span_relay_queue, h2span_relay);
105
106 RB_HEAD(h2span_cluster_tree, h2span_cluster);
107 RB_HEAD(h2span_node_tree, h2span_node);
108 RB_HEAD(h2span_link_tree, h2span_link);
109 RB_HEAD(h2span_relay_tree, h2span_relay);
110 uint32_t DMsgRNSS;
111
112 /*
113  * Received LNK_CONN transaction enables SPAN protocol over connection.
114  * (may contain filter).  Typically one for each mount and several may
115  * share the same media.
116  */
117 struct h2span_conn {
118         TAILQ_ENTRY(h2span_conn) entry;
119         struct h2span_relay_tree tree;
120         dmsg_state_t *state;
121         dmsg_lnk_conn_t lnk_conn;
122 };
123
124 /*
125  * All received LNK_SPANs are organized by peer id (peer_id),
126  * node (pfs_id), and link (received LNK_SPAN transaction).
127  */
128 struct h2span_cluster {
129         RB_ENTRY(h2span_cluster) rbnode;
130         struct h2span_node_tree tree;
131         uuid_t  peer_id;                /* shared fsid */
132         uint8_t peer_type;
133         uint8_t reserved01[7];
134         char    peer_label[128];        /* string identification */
135         int     refs;                   /* prevents destruction */
136 };
137
138 struct h2span_node {
139         RB_ENTRY(h2span_node) rbnode;
140         struct h2span_link_tree tree;
141         struct h2span_cluster *cls;
142         uint8_t pfs_type;
143         uint8_t reserved01[7];
144         uuid_t  pfs_id;                 /* unique pfs id */
145         char    pfs_label[128];         /* string identification */
146         void    *opaque;
147 };
148
149 struct h2span_link {
150         RB_ENTRY(h2span_link) rbnode;
151         dmsg_state_t    *state;         /* state<->link */
152         struct h2span_node *node;       /* related node */
153         struct h2span_relay_queue relayq; /* relay out */
154         dmsg_lnk_span_t lnk_span;
155 };
156
157 /*
158  * Any LNK_SPAN transactions we receive which are relayed out other
159  * connections utilize this structure to track the LNK_SPAN transactions
160  * we initiate (relay out) on other connections.  We only relay out
161  * LNK_SPANs on connections we have an open CONN transaction for.
162  *
163  * The relay structure points to the outgoing LNK_SPAN trans (out_state)
164  * and to the incoming LNK_SPAN transaction (in_state).  The relay
165  * structure holds refs on the related states.
166  *
167  * In many respects this is the core of the protocol... actually figuring
168  * out what LNK_SPANs to relay.  The spanid used for relaying is the
169  * address of the 'state' structure, which is why h2span_relay has to
170  * be entered into a RB-TREE based at h2span_conn (so we can look
171  * up the spanid to validate it).
172  */
173 struct h2span_relay {
174         TAILQ_ENTRY(h2span_relay) entry;        /* from link */
175         RB_ENTRY(h2span_relay) rbnode;          /* from h2span_conn */
176         struct h2span_conn      *conn;          /* related CONN transaction */
177         dmsg_state_t            *source_rt;     /* h2span_link state */
178         dmsg_state_t            *target_rt;     /* h2span_relay state */
179 };
180
181 typedef struct h2span_conn h2span_conn_t;
182 typedef struct h2span_cluster h2span_cluster_t;
183 typedef struct h2span_node h2span_node_t;
184 typedef struct h2span_link h2span_link_t;
185 typedef struct h2span_relay h2span_relay_t;
186
187 #define dmsg_termstr(array)     _dmsg_termstr((array), sizeof(array))
188
189 static h2span_relay_t *dmsg_generate_relay(h2span_conn_t *conn,
190                                         h2span_link_t *slink);
191 static uint32_t dmsg_rnss(void);
192
193 static __inline
194 void
195 _dmsg_termstr(char *base, size_t size)
196 {
197         base[size-1] = 0;
198 }
199
200 /*
201  * Cluster peer_type, uuid, AND label must match for a match
202  */
203 static
204 int
205 h2span_cluster_cmp(h2span_cluster_t *cls1, h2span_cluster_t *cls2)
206 {
207         int r;
208
209         if (cls1->peer_type < cls2->peer_type)
210                 return(-1);
211         if (cls1->peer_type > cls2->peer_type)
212                 return(1);
213         r = uuid_compare(&cls1->peer_id, &cls2->peer_id, NULL);
214         if (r == 0)
215                 r = strcmp(cls1->peer_label, cls2->peer_label);
216
217         return r;
218 }
219
220 /*
221  * Match against pfs_label/pfs_id.  Together these two items represent a
222  * unique node.  In most cases the primary differentiator is pfs_id but
223  * we also string-match fs_label.
224  */
225 static
226 int
227 h2span_node_cmp(h2span_node_t *node1, h2span_node_t *node2)
228 {
229         int r;
230
231         r = strcmp(node1->pfs_label, node2->pfs_label);
232         if (r == 0)
233                 r = uuid_compare(&node1->pfs_id, &node2->pfs_id, NULL);
234         return (r);
235 }
236
237 /*
238  * Sort/subsort must match h2span_relay_cmp() under any given node
239  * to make the aggregation algorithm easier, so the best links are
240  * in the same sorted order as the best relays.
241  *
242  * NOTE: We cannot use link*->state->msgid because this msgid is created
243  *       by each remote host and thus might wind up being the same.
244  */
245 static
246 int
247 h2span_link_cmp(h2span_link_t *link1, h2span_link_t *link2)
248 {
249         if (link1->lnk_span.dist < link2->lnk_span.dist)
250                 return(-1);
251         if (link1->lnk_span.dist > link2->lnk_span.dist)
252                 return(1);
253         if (link1->lnk_span.rnss < link2->lnk_span.rnss)
254                 return(-1);
255         if (link1->lnk_span.rnss > link2->lnk_span.rnss)
256                 return(1);
257 #if 1
258         if ((uintptr_t)link1->state < (uintptr_t)link2->state)
259                 return(-1);
260         if ((uintptr_t)link1->state > (uintptr_t)link2->state)
261                 return(1);
262 #else
263         if (link1->state->msgid < link2->state->msgid)
264                 return(-1);
265         if (link1->state->msgid > link2->state->msgid)
266                 return(1);
267 #endif
268         return(0);
269 }
270
271 /*
272  * Relay entries are sorted by node, subsorted by distance and link
273  * address (so we can match up the conn->tree relay topology with
274  * a node's link topology).
275  */
276 static
277 int
278 h2span_relay_cmp(h2span_relay_t *relay1, h2span_relay_t *relay2)
279 {
280         h2span_link_t *link1 = relay1->source_rt->any.link;
281         h2span_link_t *link2 = relay2->source_rt->any.link;
282
283         if ((intptr_t)link1->node < (intptr_t)link2->node)
284                 return(-1);
285         if ((intptr_t)link1->node > (intptr_t)link2->node)
286                 return(1);
287         if (link1->lnk_span.dist < link2->lnk_span.dist)
288                 return(-1);
289         if (link1->lnk_span.dist > link2->lnk_span.dist)
290                 return(1);
291         if (link1->lnk_span.rnss < link2->lnk_span.rnss)
292                 return(-1);
293         if (link1->lnk_span.rnss > link2->lnk_span.rnss)
294                 return(1);
295 #if 1
296         if ((uintptr_t)link1->state < (uintptr_t)link2->state)
297                 return(-1);
298         if ((uintptr_t)link1->state > (uintptr_t)link2->state)
299                 return(1);
300 #else
301         if (link1->state->msgid < link2->state->msgid)
302                 return(-1);
303         if (link1->state->msgid > link2->state->msgid)
304                 return(1);
305 #endif
306         return(0);
307 }
308
309 RB_PROTOTYPE_STATIC(h2span_cluster_tree, h2span_cluster,
310              rbnode, h2span_cluster_cmp);
311 RB_PROTOTYPE_STATIC(h2span_node_tree, h2span_node,
312              rbnode, h2span_node_cmp);
313 RB_PROTOTYPE_STATIC(h2span_link_tree, h2span_link,
314              rbnode, h2span_link_cmp);
315 RB_PROTOTYPE_STATIC(h2span_relay_tree, h2span_relay,
316              rbnode, h2span_relay_cmp);
317
318 RB_GENERATE_STATIC(h2span_cluster_tree, h2span_cluster,
319              rbnode, h2span_cluster_cmp);
320 RB_GENERATE_STATIC(h2span_node_tree, h2span_node,
321              rbnode, h2span_node_cmp);
322 RB_GENERATE_STATIC(h2span_link_tree, h2span_link,
323              rbnode, h2span_link_cmp);
324 RB_GENERATE_STATIC(h2span_relay_tree, h2span_relay,
325              rbnode, h2span_relay_cmp);
326
327 /*
328  * Global mutex protects cluster_tree lookups, connq, mediaq.
329  */
330 static pthread_mutex_t cluster_mtx;
331 static struct h2span_cluster_tree cluster_tree = RB_INITIALIZER(cluster_tree);
332 static struct h2span_conn_queue connq = TAILQ_HEAD_INITIALIZER(connq);
333 static struct dmsg_media_queue mediaq = TAILQ_HEAD_INITIALIZER(mediaq);
334
335 static void dmsg_lnk_span(dmsg_msg_t *msg);
336 static void dmsg_lnk_conn(dmsg_msg_t *msg);
337 static void dmsg_lnk_ping(dmsg_msg_t *msg);
338 static void dmsg_lnk_relay(dmsg_msg_t *msg);
339 static void dmsg_relay_scan(h2span_conn_t *conn, h2span_node_t *node);
340 static void dmsg_relay_delete(h2span_relay_t *relay);
341
342 void
343 dmsg_msg_lnk_signal(dmsg_iocom_t *iocom __unused)
344 {
345         pthread_mutex_lock(&cluster_mtx);
346         dmsg_relay_scan(NULL, NULL);
347         pthread_mutex_unlock(&cluster_mtx);
348 }
349
350 /*
351  * DMSG_PROTO_LNK - Generic DMSG_PROTO_LNK.
352  *            (incoming iocom lock not held)
353  *
354  * This function is typically called for one-way and opening-transactions
355  * since state->func is assigned after that, but it will also be called
356  * if no state->func is assigned on transaction-open.
357  */
358 void
359 dmsg_msg_lnk(dmsg_msg_t *msg)
360 {
361         dmsg_iocom_t *iocom = msg->state->iocom;
362
363         switch(msg->tcmd & DMSGF_BASECMDMASK) {
364         case DMSG_LNK_CONN:
365                 dmsg_lnk_conn(msg);
366                 break;
367         case DMSG_LNK_SPAN:
368                 dmsg_lnk_span(msg);
369                 break;
370         case DMSG_LNK_PING:
371                 dmsg_lnk_ping(msg);
372                 break;
373         default:
374                 iocom->usrmsg_callback(msg, 1);
375                 /* state invalid after reply */
376                 break;
377         }
378 }
379
380 /*
381  * LNK_CONN - iocom identify message reception.
382  *            (incoming iocom lock not held)
383  *
384  * Remote node identifies itself to us, sets up a SPAN filter, and gives us
385  * the ok to start transmitting SPANs.
386  */
387 void
388 dmsg_lnk_conn(dmsg_msg_t *msg)
389 {
390         dmsg_state_t *state = msg->state;
391         dmsg_iocom_t *iocom = state->iocom;
392         dmsg_media_t *media;
393         h2span_conn_t *conn;
394         h2span_relay_t *relay;
395         char *alloc = NULL;
396
397         pthread_mutex_lock(&cluster_mtx);
398
399         dmio_printf(iocom, 3,
400                 "dmsg_lnk_conn: msg %p cmd %08x state %p "
401                 "txcmd %08x rxcmd %08x\n",
402                 msg, msg->any.head.cmd, state,
403                 state->txcmd, state->rxcmd);
404
405         switch(msg->any.head.cmd & DMSGF_TRANSMASK) {
406         case DMSG_LNK_CONN | DMSGF_CREATE:
407         case DMSG_LNK_CONN | DMSGF_CREATE | DMSGF_DELETE:
408                 /*
409                  * On transaction start we allocate a new h2span_conn and
410                  * acknowledge the request, leaving the transaction open.
411                  * We then relay priority-selected SPANs.
412                  */
413                 dmio_printf(iocom, 3, "LNK_CONN(%08x): %s/%s\n",
414                         (uint32_t)msg->any.head.msgid,
415                         dmsg_uuid_to_str(&msg->any.lnk_conn.peer_id, &alloc),
416                         msg->any.lnk_conn.peer_label);
417                 free(alloc);
418
419                 conn = dmsg_alloc(sizeof(*conn));
420                 assert(state->iocom->conn == NULL);
421
422                 RB_INIT(&conn->tree);
423                 state->iocom->conn = conn;      /* XXX only one */
424                 state->iocom->conn_msgid = state->msgid;
425                 dmsg_state_hold(state);
426                 conn->state = state;
427                 state->func = dmsg_lnk_conn;
428                 state->any.conn = conn;
429                 TAILQ_INSERT_TAIL(&connq, conn, entry);
430                 conn->lnk_conn = msg->any.lnk_conn;
431
432                 /*
433                  * Set up media
434                  */
435                 TAILQ_FOREACH(media, &mediaq, entry) {
436                         if (uuid_compare(&msg->any.lnk_conn.media_id,
437                                          &media->media_id, NULL) == 0) {
438                                 break;
439                         }
440                 }
441                 if (media == NULL) {
442                         media = dmsg_alloc(sizeof(*media));
443                         media->media_id = msg->any.lnk_conn.media_id;
444                         TAILQ_INSERT_TAIL(&mediaq, media, entry);
445                 }
446                 state->media = media;
447                 ++media->refs;
448
449                 if ((msg->any.head.cmd & DMSGF_DELETE) == 0) {
450                         iocom->usrmsg_callback(msg, 0);
451                         dmsg_msg_result(msg, 0);
452                         dmsg_iocom_signal(iocom);
453                         break;
454                 }
455                 /* FALL THROUGH */
456         case DMSG_LNK_CONN | DMSGF_DELETE:
457         case DMSG_LNK_ERROR | DMSGF_DELETE:
458                 /*
459                  * On transaction terminate we clean out our h2span_conn
460                  * and acknowledge the request, closing the transaction.
461                  */
462                 dmio_printf(iocom, 3, "%s\n", "LNK_CONN: Terminated");
463                 conn = state->any.conn;
464                 assert(conn);
465
466                 /*
467                  * Adjust media refs
468                  *
469                  * Callback will clean out media config / user-opaque state
470                  */
471                 media = state->media;
472                 --media->refs;
473                 if (media->refs == 0) {
474                         dmio_printf(iocom, 3, "%s\n", "Media shutdown");
475                         TAILQ_REMOVE(&mediaq, media, entry);
476                         pthread_mutex_unlock(&cluster_mtx);
477                         iocom->usrmsg_callback(msg, 0);
478                         pthread_mutex_lock(&cluster_mtx);
479                         dmsg_free(media);
480                 }
481                 state->media = NULL;
482
483                 /*
484                  * Clean out all relays.  This requires terminating each
485                  * relay transaction.
486                  */
487                 while ((relay = RB_ROOT(&conn->tree)) != NULL) {
488                         dmsg_relay_delete(relay);
489                 }
490
491                 /*
492                  * Clean out conn
493                  */
494                 conn->state = NULL;
495                 msg->state->any.conn = NULL;
496                 msg->state->iocom->conn = NULL;
497                 TAILQ_REMOVE(&connq, conn, entry);
498                 dmsg_free(conn);
499
500                 dmsg_msg_reply(msg, 0);
501                 dmsg_state_drop(state);
502                 /* state invalid after reply */
503                 break;
504         default:
505                 iocom->usrmsg_callback(msg, 1);
506 #if 0
507                 if (msg->any.head.cmd & DMSGF_DELETE)
508                         goto deleteconn;
509                 dmsg_msg_reply(msg, DMSG_ERR_NOSUPP);
510 #endif
511                 break;
512         }
513         pthread_mutex_unlock(&cluster_mtx);
514 }
515
516 /*
517  * LNK_SPAN - Spanning tree protocol message reception
518  *            (incoming iocom lock not held)
519  *
520  * Receive a spanning tree transactional message, creating or destroying
521  * a SPAN and propagating it to other iocoms.
522  */
523 void
524 dmsg_lnk_span(dmsg_msg_t *msg)
525 {
526         dmsg_state_t *state = msg->state;
527         dmsg_iocom_t *iocom = state->iocom;
528         h2span_cluster_t dummy_cls;
529         h2span_node_t dummy_node;
530         h2span_cluster_t *cls;
531         h2span_node_t *node;
532         h2span_link_t *slink;
533         h2span_relay_t *relay;
534         char *alloc = NULL;
535
536         /*
537          * XXX
538          *
539          * Ignore reply to LNK_SPAN.  The reply is expected and will commands
540          * to flow in both directions on the open transaction.  This will also
541          * ignore DMSGF_REPLY|DMSGF_DELETE messages.  Since we take no action
542          * if the other end unexpectedly closes their side of the transaction,
543          * we can ignore that too.
544          */
545         if (msg->any.head.cmd & DMSGF_REPLY) {
546                 dmio_printf(iocom, 2, "%s\n",
547                             "Ignore reply to LNK_SPAN");
548                 return;
549         }
550
551         pthread_mutex_lock(&cluster_mtx);
552
553         /*
554          * On transaction start we initialize the tracking infrastructure
555          */
556         if (msg->any.head.cmd & DMSGF_CREATE) {
557                 assert(state->func == NULL);
558                 state->func = dmsg_lnk_span;
559
560                 dmsg_termstr(msg->any.lnk_span.peer_label);
561                 dmsg_termstr(msg->any.lnk_span.pfs_label);
562
563                 /*
564                  * Find the cluster
565                  */
566                 dummy_cls.peer_id = msg->any.lnk_span.peer_id;
567                 dummy_cls.peer_type = msg->any.lnk_span.peer_type;
568                 bcopy(msg->any.lnk_span.peer_label, dummy_cls.peer_label,
569                       sizeof(dummy_cls.peer_label));
570                 cls = RB_FIND(h2span_cluster_tree, &cluster_tree, &dummy_cls);
571                 if (cls == NULL) {
572                         cls = dmsg_alloc(sizeof(*cls));
573                         cls->peer_id = msg->any.lnk_span.peer_id;
574                         cls->peer_type = msg->any.lnk_span.peer_type;
575                         bcopy(msg->any.lnk_span.peer_label,
576                               cls->peer_label, sizeof(cls->peer_label));
577                         RB_INIT(&cls->tree);
578                         RB_INSERT(h2span_cluster_tree, &cluster_tree, cls);
579                 }
580
581                 /*
582                  * Find the node
583                  */
584                 dummy_node.pfs_id = msg->any.lnk_span.pfs_id;
585                 bcopy(msg->any.lnk_span.pfs_label, dummy_node.pfs_label,
586                       sizeof(dummy_node.pfs_label));
587                 node = RB_FIND(h2span_node_tree, &cls->tree, &dummy_node);
588                 if (node == NULL) {
589                         node = dmsg_alloc(sizeof(*node));
590                         node->pfs_id = msg->any.lnk_span.pfs_id;
591                         node->pfs_type = msg->any.lnk_span.pfs_type;
592                         bcopy(msg->any.lnk_span.pfs_label, node->pfs_label,
593                               sizeof(node->pfs_label));
594                         node->cls = cls;
595                         RB_INIT(&node->tree);
596                         RB_INSERT(h2span_node_tree, &cls->tree, node);
597                 }
598
599                 /*
600                  * Create the link
601                  *
602                  * NOTE: Sub-transactions on the incoming SPAN can be used
603                  *       to talk to the originator.  We should not set-up
604                  *       state->relay for incoming SPANs since our sub-trans
605                  *       is running on the same interface (i.e. no actual
606                  *       relaying need be done).
607                  *
608                  * NOTE: Later on when we relay the SPAN out the outgoing
609                  *       SPAN state will be set up to relay back to this
610                  *       state.
611                  *
612                  * NOTE: It is possible for SPAN targets to send one-way
613                  *       messages to the originator but it is not possible
614                  *       for the originator to (currently) broadcast one-way
615                  *       messages to all of its SPAN targets.  The protocol
616                  *       allows such a feature to be added in the future.
617                  */
618                 assert(state->any.link == NULL);
619                 dmsg_state_hold(state);
620                 slink = dmsg_alloc(sizeof(*slink));
621                 TAILQ_INIT(&slink->relayq);
622                 slink->node = node;
623                 slink->state = state;
624                 state->any.link = slink;
625                 slink->lnk_span = msg->any.lnk_span;
626
627                 RB_INSERT(h2span_link_tree, &node->tree, slink);
628
629                 dmio_printf(iocom, 3,
630                             "LNK_SPAN(thr %p): %p %s cl=%s fs=%s dist=%d\n",
631                             iocom, slink,
632                             dmsg_uuid_to_str(&msg->any.lnk_span.peer_id,
633                                              &alloc),
634                             msg->any.lnk_span.peer_label,
635                             msg->any.lnk_span.pfs_label,
636                             msg->any.lnk_span.dist);
637                 free(alloc);
638 #if 0
639                 dmsg_relay_scan(NULL, node);
640 #endif
641                 /*
642                  * Ack the open, which will issue a CREATE on our side, and
643                  * leave the transaction open.  Necessary to allow the
644                  * transaction to be used as a virtual circuit.
645                  */
646                 dmsg_state_result(state, 0);
647                 dmsg_iocom_signal(iocom);
648         }
649
650         /*
651          * On transaction terminate we remove the tracking infrastructure.
652          */
653         if (msg->any.head.cmd & DMSGF_DELETE) {
654                 slink = state->any.link;
655                 assert(slink->state == state);
656                 assert(slink != NULL);
657                 node = slink->node;
658                 cls = node->cls;
659
660                 dmio_printf(iocom, 3,
661                             "LNK_DELE(thr %p): %p %s cl=%s fs=%s\n",
662                             iocom, slink,
663                             dmsg_uuid_to_str(&cls->peer_id, &alloc),
664                             cls->peer_label,
665                             node->pfs_label);
666                 free(alloc);
667
668                 /*
669                  * Clean out all relays.  This requires terminating each
670                  * relay transaction.
671                  */
672                 while ((relay = TAILQ_FIRST(&slink->relayq)) != NULL) {
673                         dmsg_relay_delete(relay);
674                 }
675
676                 /*
677                  * Clean out the topology
678                  */
679                 RB_REMOVE(h2span_link_tree, &node->tree, slink);
680                 if (RB_EMPTY(&node->tree)) {
681                         RB_REMOVE(h2span_node_tree, &cls->tree, node);
682                         if (RB_EMPTY(&cls->tree) && cls->refs == 0) {
683                                 RB_REMOVE(h2span_cluster_tree,
684                                           &cluster_tree, cls);
685                                 dmsg_free(cls);
686                         }
687                         node->cls = NULL;
688                         dmsg_free(node);
689                         node = NULL;
690                 }
691                 state->any.link = NULL;
692                 slink->state = NULL;
693                 slink->node = NULL;
694                 dmsg_state_drop(state);
695                 dmsg_free(slink);
696
697                 /*
698                  * We have to terminate the transaction
699                  */
700                 dmsg_state_reply(state, 0);
701                 /* state invalid after reply */
702
703                 /*
704                  * If the node still exists issue any required updates.  If
705                  * it doesn't then all related relays have already been
706                  * removed and there's nothing left to do.
707                  */
708 #if 0
709                 if (node)
710                         dmsg_relay_scan(NULL, node);
711 #endif
712                 if (node)
713                         dmsg_iocom_signal(iocom);
714         }
715
716         pthread_mutex_unlock(&cluster_mtx);
717 }
718
719 /*
720  * Respond to a PING with a PING|REPLY, forward replies to the usermsg
721  * callback.
722  */
723 static
724 void
725 dmsg_lnk_ping(dmsg_msg_t *msg)
726 {
727         dmsg_msg_t *rep;
728
729         if (msg->any.head.cmd & DMSGF_REPLY) {
730                 msg->state->iocom->usrmsg_callback(msg, 1);
731         } else {
732                 rep = dmsg_msg_alloc(msg->state, 0,
733                                      DMSG_LNK_PING | DMSGF_REPLY,
734                                      NULL, NULL);
735                 dmsg_msg_write(rep);
736         }
737 }
738
739 /*
740  * Update relay transactions for SPANs.
741  *
742  * Called with cluster_mtx held.
743  */
744 static void dmsg_relay_scan_specific(h2span_node_t *node,
745                                         h2span_conn_t *conn);
746
747 static void
748 dmsg_relay_scan(h2span_conn_t *conn, h2span_node_t *node)
749 {
750         h2span_cluster_t *cls;
751
752         if (node) {
753                 /*
754                  * Iterate specific node
755                  */
756                 TAILQ_FOREACH(conn, &connq, entry)
757                         dmsg_relay_scan_specific(node, conn);
758         } else {
759                 /*
760                  * Full iteration.
761                  *
762                  * Iterate cluster ids, nodes, and either a specific connection
763                  * or all connections.
764                  */
765                 RB_FOREACH(cls, h2span_cluster_tree, &cluster_tree) {
766                         /*
767                          * Iterate node ids
768                          */
769                         RB_FOREACH(node, h2span_node_tree, &cls->tree) {
770                                 /*
771                                  * Synchronize the node's link (received SPANs)
772                                  * with each connection's relays.
773                                  */
774                                 if (conn) {
775                                         dmsg_relay_scan_specific(node, conn);
776                                 } else {
777                                         TAILQ_FOREACH(conn, &connq, entry) {
778                                             dmsg_relay_scan_specific(node,
779                                                                         conn);
780                                         }
781                                         assert(conn == NULL);
782                                 }
783                         }
784                 }
785         }
786 }
787
788 /*
789  * Update the relay'd SPANs for this (node, conn).
790  *
791  * Iterate links and adjust relays to match.  We only propagate the top link
792  * for now (XXX we want to propagate the top two).
793  *
794  * The dmsg_relay_scan_cmp() function locates the first relay element
795  * for any given node.  The relay elements will be sub-sorted by dist.
796  */
797 struct relay_scan_info {
798         h2span_node_t *node;
799         h2span_relay_t *relay;
800 };
801
802 static int
803 dmsg_relay_scan_cmp(h2span_relay_t *relay, void *arg)
804 {
805         struct relay_scan_info *info = arg;
806
807         if ((intptr_t)relay->source_rt->any.link->node < (intptr_t)info->node)
808                 return(-1);
809         if ((intptr_t)relay->source_rt->any.link->node > (intptr_t)info->node)
810                 return(1);
811         return(0);
812 }
813
814 static int
815 dmsg_relay_scan_callback(h2span_relay_t *relay, void *arg)
816 {
817         struct relay_scan_info *info = arg;
818
819         info->relay = relay;
820         return(-1);
821 }
822
823 static void
824 dmsg_relay_scan_specific(h2span_node_t *node, h2span_conn_t *conn)
825 {
826         struct relay_scan_info info;
827         h2span_relay_t *relay;
828         h2span_relay_t *next_relay;
829         h2span_link_t *slink;
830         dmsg_lnk_conn_t *lconn;
831         dmsg_lnk_span_t *lspan;
832         int count;
833         int maxcount = 2;
834 #ifdef REQUIRE_SYMMETRICAL
835         uint32_t lastdist = DMSG_SPAN_MAXDIST;
836         uint32_t lastrnss = 0;
837 #endif
838
839         info.node = node;
840         info.relay = NULL;
841
842         /*
843          * Locate the first related relay for the node on this connection.
844          * relay will be NULL if there were none.
845          */
846         RB_SCAN(h2span_relay_tree, &conn->tree,
847                 dmsg_relay_scan_cmp, dmsg_relay_scan_callback, &info);
848         relay = info.relay;
849         info.relay = NULL;
850         if (relay)
851                 assert(relay->source_rt->any.link->node == node);
852
853         dm_printf(9, "relay scan for connection %p\n", conn);
854
855         /*
856          * Iterate the node's links (received SPANs) in distance order,
857          * lowest (best) dist first.
858          *
859          * PROPAGATE THE BEST LINKS OVER THE SPECIFIED CONNECTION.
860          *
861          * Track relays while iterating the best links and construct
862          * missing relays when necessary.
863          *
864          * (If some prior better link was removed it would have also
865          *  removed the relay, so the relay can only match exactly or
866          *  be worse).
867          */
868         count = 0;
869         RB_FOREACH(slink, h2span_link_tree, &node->tree) {
870                 /*
871                  * Increment count of successful relays.  This isn't
872                  * quite accurate if we break out but nothing after
873                  * the loop uses (count).
874                  *
875                  * If count exceeds the maximum number of relays we desire
876                  * we normally want to break out.  However, in order to
877                  * guarantee a symmetric path we have to continue if both
878                  * (dist) and (rnss) continue to match.  Otherwise the SPAN
879                  * propagation in the reverse direction may choose different
880                  * routes and we will not have a symmetric path.
881                  *
882                  * NOTE: Spanning tree does not have to be symmetrical so
883                  *       this code is not currently enabled.
884                  */
885                 if (++count >= maxcount) {
886 #ifdef REQUIRE_SYMMETRICAL
887                         if (lastdist != slink->lnk_span.dist ||
888                             lastrnss != slink->lnk_span.rnss) {
889                                 break;
890                         }
891 #else
892                         break;
893 #endif
894                         /* go beyond the nominal maximum desired relays */
895                 }
896
897                 /*
898                  * Match, relay already in-place, get the next
899                  * relay to match against the next slink.
900                  */
901                 if (relay && relay->source_rt->any.link == slink) {
902                         relay = RB_NEXT(h2span_relay_tree, &conn->tree, relay);
903                         continue;
904                 }
905
906                 /*
907                  * We might want this SLINK, if it passes our filters.
908                  *
909                  * The spanning tree can cause closed loops so we have
910                  * to limit slink->dist.
911                  */
912                 if (slink->lnk_span.dist > DMSG_SPAN_MAXDIST)
913                         break;
914
915                 /*
916                  * Don't bother transmitting a LNK_SPAN out the same
917                  * connection it came in on.  Trivial optimization.
918                  */
919                 if (slink->state->iocom == conn->state->iocom)
920                         break;
921
922                 /*
923                  * NOTE ON FILTERS: The protocol spec allows non-requested
924                  * SPANs to be transmitted, the other end is expected to
925                  * leave their transactions open but otherwise ignore them.
926                  *
927                  * Don't bother transmitting if the remote connection
928                  * is not accepting this SPAN's peer_type.
929                  */
930                 lspan = &slink->lnk_span;
931                 lconn = &conn->lnk_conn;
932                 if (((1LLU << lspan->peer_type) & lconn->peer_mask) == 0)
933                         break;
934
935                 /*
936                  * Do not give pure clients visibility to other pure clients
937                  */
938                 if (lconn->peer_type == DMSG_PEER_CLIENT &&
939                     lspan->peer_type == DMSG_PEER_CLIENT) {
940                         break;
941                 }
942
943                 /*
944                  * Clients can set peer_id to filter the peer_id of incoming
945                  * spans.  Other peer types set peer_id to advertising their
946                  * peer_id. XXX
947                  *
948                  * NOTE: peer_label is not a filter on clients, it identifies 
949                  *       the client just as it identifies other peer types.
950                  */
951                 if (lconn->peer_type == DMSG_PEER_CLIENT &&
952                     !uuid_is_nil(&lconn->peer_id, NULL) &&
953                     uuid_compare(&slink->node->cls->peer_id,
954                                  &lconn->peer_id, NULL)) {
955                         break;
956                 }
957
958                 /*
959                  * NOTE! pfs_id differentiates nodes within the same cluster
960                  *       so we obviously don't want to match those.  Similarly
961                  *       for pfs_label.
962                  */
963
964                 /*
965                  * Ok, we've accepted this SPAN for relaying.
966                  */
967                 assert(relay == NULL ||
968                        relay->source_rt->any.link->node != slink->node ||
969                        relay->source_rt->any.link->lnk_span.dist >=
970                         slink->lnk_span.dist);
971                 relay = dmsg_generate_relay(conn, slink);
972 #ifdef REQUIRE_SYMMETRICAL
973                 lastdist = slink->lnk_span.dist;
974                 lastrnss = slink->lnk_span.rnss;
975 #endif
976
977                 /*
978                  * Match (created new relay), get the next relay to
979                  * match against the next slink.
980                  */
981                 relay = RB_NEXT(h2span_relay_tree, &conn->tree, relay);
982         }
983
984         /*
985          * Any remaining relay's belonging to this connection which match
986          * the node are in excess of the current aggregate spanning state
987          * and should be removed.
988          */
989         while (relay && relay->source_rt->any.link->node == node) {
990                 next_relay = RB_NEXT(h2span_relay_tree, &conn->tree, relay);
991                 dm_printf(9, "%s\n", "RELAY DELETE FROM EXTRAS");
992                 dmsg_relay_delete(relay);
993                 relay = next_relay;
994         }
995 }
996
997 /*
998  * Find the slink associated with the msgid and return its state,
999  * so the caller can issue a transaction.
1000  */
1001 dmsg_state_t *
1002 dmsg_findspan(const char *label)
1003 {
1004         dmsg_state_t *state;
1005         h2span_cluster_t *cls;
1006         h2span_node_t *node;
1007         h2span_link_t *slink;
1008         uint64_t msgid = strtoull(label, NULL, 16);
1009
1010         pthread_mutex_lock(&cluster_mtx);
1011
1012         state = NULL;
1013         RB_FOREACH(cls, h2span_cluster_tree, &cluster_tree) {
1014                 RB_FOREACH(node, h2span_node_tree, &cls->tree) {
1015                         RB_FOREACH(slink, h2span_link_tree, &node->tree) {
1016                                 if (slink->state->msgid == msgid) {
1017                                         state = slink->state;
1018                                         goto done;
1019                                 }
1020                         }
1021                 }
1022         }
1023 done:
1024         pthread_mutex_unlock(&cluster_mtx);
1025
1026         dm_printf(8, "findspan: %p\n", state);
1027
1028         return state;
1029 }
1030
1031
1032 /*
1033  * Helper function to generate missing relay on target connection.
1034  *
1035  * cluster_mtx must be held
1036  */
1037 static
1038 h2span_relay_t *
1039 dmsg_generate_relay(h2span_conn_t *conn, h2span_link_t *slink)
1040 {
1041         h2span_relay_t *relay;
1042         dmsg_msg_t *msg;
1043
1044         dmsg_state_hold(slink->state);
1045         relay = dmsg_alloc(sizeof(*relay));
1046         relay->conn = conn;
1047         relay->source_rt = slink->state;
1048         /* relay->source_rt->any.link = slink; */
1049
1050         /*
1051          * NOTE: relay->target_rt->any.relay set to relay by alloc.
1052          *
1053          * NOTE: LNK_SPAN is transmitted as a top-level transaction.
1054          */
1055         msg = dmsg_msg_alloc(&conn->state->iocom->state0,
1056                              0, DMSG_LNK_SPAN | DMSGF_CREATE,
1057                              dmsg_lnk_relay, relay);
1058         dmsg_state_hold(msg->state);
1059         relay->target_rt = msg->state;
1060
1061         msg->any.lnk_span = slink->lnk_span;
1062         msg->any.lnk_span.dist = slink->lnk_span.dist + 1;
1063         msg->any.lnk_span.rnss = slink->lnk_span.rnss + dmsg_rnss();
1064
1065         RB_INSERT(h2span_relay_tree, &conn->tree, relay);
1066         TAILQ_INSERT_TAIL(&slink->relayq, relay, entry);
1067
1068         /*
1069          * Seed the relay so new sub-transactions received on the outgoing
1070          * SPAN circuit are relayed back to the originator.
1071          */
1072         msg->state->relay = relay->source_rt;
1073         dmsg_state_hold(msg->state->relay);
1074
1075         dmsg_msg_write(msg);
1076
1077         return (relay);
1078 }
1079
1080 /*
1081  * Messages received on relay SPANs.  These are open transactions so it is
1082  * in fact possible for the other end to close the transaction.
1083  *
1084  * XXX MPRACE on state structure
1085  */
1086 static void
1087 dmsg_lnk_relay(dmsg_msg_t *msg)
1088 {
1089         dmsg_state_t *state = msg->state;
1090         h2span_relay_t *relay;
1091
1092         assert(msg->any.head.cmd & DMSGF_REPLY);
1093
1094         if (msg->any.head.cmd & DMSGF_DELETE) {
1095                 pthread_mutex_lock(&cluster_mtx);
1096                 dm_printf(8, "%s\n", "RELAY DELETE FROM LNK_RELAY MSG");
1097                 if ((relay = state->any.relay) != NULL) {
1098                         dmsg_relay_delete(relay);
1099                 } else {
1100                         dmsg_state_reply(state, 0);
1101                 }
1102                 pthread_mutex_unlock(&cluster_mtx);
1103         }
1104 }
1105
1106 /*
1107  * cluster_mtx held by caller
1108  */
1109 static
1110 void
1111 dmsg_relay_delete(h2span_relay_t *relay)
1112 {
1113         dm_printf(8,
1114                   "RELAY DELETE %p RELAY %p ON CLS=%p NODE=%p "
1115                   "DIST=%d FD %d STATE %p\n",
1116                   relay->source_rt->any.link,
1117                   relay,
1118                   relay->source_rt->any.link->node->cls,
1119                   relay->source_rt->any.link->node,
1120                   relay->source_rt->any.link->lnk_span.dist,
1121                   relay->conn->state->iocom->sock_fd,
1122                   relay->target_rt);
1123
1124         RB_REMOVE(h2span_relay_tree, &relay->conn->tree, relay);
1125         TAILQ_REMOVE(&relay->source_rt->any.link->relayq, relay, entry);
1126
1127         if (relay->target_rt) {
1128                 relay->target_rt->any.relay = NULL;
1129                 dmsg_state_reply(relay->target_rt, 0);
1130                 dmsg_state_drop(relay->target_rt);
1131                 /* state invalid after reply */
1132                 relay->target_rt = NULL;
1133         }
1134
1135         /*
1136          * NOTE: relay->source_rt->refs is held by the relay SPAN
1137          *       state, not by this relay structure.
1138          */
1139         relay->conn = NULL;
1140         if (relay->source_rt) {
1141                 dmsg_state_drop(relay->source_rt);
1142                 relay->source_rt = NULL;
1143         }
1144         dmsg_free(relay);
1145 }
1146
1147 /************************************************************************
1148  *                      ROUTER AND MESSAGING HANDLES                    *
1149  ************************************************************************
1150  *
1151  * Basically the idea here is to provide a stable data structure which
1152  * can be localized to the caller for higher level protocols to work with.
1153  * Depends on the context, these dmsg_handle's can be pooled by use-case
1154  * and remain persistent through a client (or mount point's) life.
1155  */
1156
1157 #if 0
1158 /*
1159  * Obtain a stable handle on a cluster given its uuid.  This ties directly
1160  * into the global cluster topology, creating the structure if necessary
1161  * (even if the uuid does not exist or does not exist yet), and preventing
1162  * the structure from getting ripped out from under us while we hold a
1163  * pointer to it.
1164  */
1165 h2span_cluster_t *
1166 dmsg_cluster_get(uuid_t *peer_id)
1167 {
1168         h2span_cluster_t dummy_cls;
1169         h2span_cluster_t *cls;
1170
1171         dummy_cls.peer_id = *peer_id;
1172         pthread_mutex_lock(&cluster_mtx);
1173         cls = RB_FIND(h2span_cluster_tree, &cluster_tree, &dummy_cls);
1174         if (cls)
1175                 ++cls->refs;
1176         pthread_mutex_unlock(&cluster_mtx);
1177         return (cls);
1178 }
1179
1180 void
1181 dmsg_cluster_put(h2span_cluster_t *cls)
1182 {
1183         pthread_mutex_lock(&cluster_mtx);
1184         assert(cls->refs > 0);
1185         --cls->refs;
1186         if (RB_EMPTY(&cls->tree) && cls->refs == 0) {
1187                 RB_REMOVE(h2span_cluster_tree,
1188                           &cluster_tree, cls);
1189                 dmsg_free(cls);
1190         }
1191         pthread_mutex_unlock(&cluster_mtx);
1192 }
1193
1194 /*
1195  * Obtain a stable handle to a specific cluster node given its uuid.
1196  * This handle does NOT lock in the route to the node and is typically
1197  * used as part of the dmsg_handle_*() API to obtain a set of
1198  * stable nodes.
1199  */
1200 h2span_node_t *
1201 dmsg_node_get(h2span_cluster_t *cls, uuid_t *pfs_id)
1202 {
1203 }
1204
1205 #endif
1206
1207 /*
1208  * Dumps the spanning tree
1209  *
1210  * DEBUG ONLY
1211  */
1212 void
1213 dmsg_shell_tree(dmsg_iocom_t *iocom, char *cmdbuf __unused)
1214 {
1215         h2span_cluster_t *cls;
1216         h2span_node_t *node;
1217         h2span_link_t *slink;
1218         h2span_relay_t *relay;
1219         char *uustr = NULL;
1220
1221         pthread_mutex_lock(&cluster_mtx);
1222         RB_FOREACH(cls, h2span_cluster_tree, &cluster_tree) {
1223                 dmsg_printf(iocom, "Cluster %s %s (%s)\n",
1224                                   dmsg_peer_type_to_str(cls->peer_type),
1225                                   dmsg_uuid_to_str(&cls->peer_id, &uustr),
1226                                   cls->peer_label);
1227                 RB_FOREACH(node, h2span_node_tree, &cls->tree) {
1228                         dmsg_printf(iocom, "    Node %02x %s (%s)\n",
1229                                 node->pfs_type,
1230                                 dmsg_uuid_to_str(&node->pfs_id, &uustr),
1231                                 node->pfs_label);
1232                         RB_FOREACH(slink, h2span_link_tree, &node->tree) {
1233                                 dmsg_printf(iocom,
1234                                             "\tSLink msgid %016jx "
1235                                             "dist=%d via %d\n",
1236                                             (intmax_t)slink->state->msgid,
1237                                             slink->lnk_span.dist,
1238                                             slink->state->iocom->sock_fd);
1239                                 TAILQ_FOREACH(relay, &slink->relayq, entry) {
1240                                         dmsg_printf(iocom,
1241                                             "\t    Relay-out msgid %016jx "
1242                                             "via %d\n",
1243                                             (intmax_t)relay->target_rt->msgid,
1244                                             relay->target_rt->iocom->sock_fd);
1245                                 }
1246                         }
1247                 }
1248         }
1249         pthread_mutex_unlock(&cluster_mtx);
1250         if (uustr)
1251                 free(uustr);
1252 #if 0
1253         TAILQ_FOREACH(conn, &connq, entry) {
1254         }
1255 #endif
1256 }
1257
1258 /*
1259  * DEBUG ONLY
1260  *
1261  * Locate the state representing an incoming LNK_SPAN given its msgid.
1262  */
1263 int
1264 dmsg_debug_findspan(uint64_t msgid, dmsg_state_t **statep)
1265 {
1266         h2span_cluster_t *cls;
1267         h2span_node_t *node;
1268         h2span_link_t *slink;
1269
1270         pthread_mutex_lock(&cluster_mtx);
1271         RB_FOREACH(cls, h2span_cluster_tree, &cluster_tree) {
1272                 RB_FOREACH(node, h2span_node_tree, &cls->tree) {
1273                         RB_FOREACH(slink, h2span_link_tree, &node->tree) {
1274                                 if (slink->state->msgid == msgid) {
1275                                         *statep = slink->state;
1276                                         goto found;
1277                                 }
1278                         }
1279                 }
1280         }
1281         pthread_mutex_unlock(&cluster_mtx);
1282         *statep = NULL;
1283         return(ENOENT);
1284 found:
1285         pthread_mutex_unlock(&cluster_mtx);
1286         return(0);
1287 }
1288
1289 /*
1290  * Random number sub-sort value to add to SPAN rnss fields on relay.
1291  * This allows us to differentiate spans with the same <dist> field
1292  * for relaying purposes.  We must normally limit the number of relays
1293  * for any given SPAN origination but we must also guarantee that a
1294  * symmetric reverse path exists, so we use the rnss field as a sub-sort
1295  * (since there can be thousands or millions if we only match on <dist>),
1296  * and if there STILL too many spans we go past the limit.
1297  */
1298 static
1299 uint32_t
1300 dmsg_rnss(void)
1301 {
1302         if (DMsgRNSS == 0) {
1303                 pthread_mutex_lock(&cluster_mtx);
1304                 while (DMsgRNSS == 0) {
1305                         srandomdev();
1306                         DMsgRNSS = random();
1307                 }
1308                 pthread_mutex_unlock(&cluster_mtx);
1309         }
1310         return(DMsgRNSS);
1311 }