drm/i915: Use kzalloc()
[dragonfly.git] / sys / dev / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  * Copyright (c) 2011 The FreeBSD Foundation
27  * All rights reserved.
28  *
29  * This software was developed by Konstantin Belousov under sponsorship from
30  * the FreeBSD Foundation.
31  *
32  * Redistribution and use in source and binary forms, with or without
33  * modification, are permitted provided that the following conditions
34  * are met:
35  * 1. Redistributions of source code must retain the above copyright
36  *    notice, this list of conditions and the following disclaimer.
37  * 2. Redistributions in binary form must reproduce the above copyright
38  *    notice, this list of conditions and the following disclaimer in the
39  *    documentation and/or other materials provided with the distribution.
40  *
41  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  */
54
55 #include <sys/resourcevar.h>
56 #include <sys/sfbuf.h>
57
58 #include <drm/drmP.h>
59 #include <drm/i915_drm.h>
60 #include "i915_drv.h"
61 #include "intel_drv.h"
62 #include <linux/shmem_fs.h>
63 #include <linux/completion.h>
64 #include <linux/highmem.h>
65 #include <linux/jiffies.h>
66 #include <linux/time.h>
67
68 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
69 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
70 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
71                                                     unsigned alignment,
72                                                     bool map_and_fenceable,
73                                                     bool nonblocking);
74 static int i915_gem_phys_pwrite(struct drm_device *dev,
75                                 struct drm_i915_gem_object *obj,
76                                 struct drm_i915_gem_pwrite *args,
77                                 struct drm_file *file);
78
79 static void i915_gem_write_fence(struct drm_device *dev, int reg,
80                                  struct drm_i915_gem_object *obj);
81 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
82                                          struct drm_i915_fence_reg *fence,
83                                          bool enable);
84
85 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
86
87 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj);
88 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
89
90 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
91 {
92         if (obj->tiling_mode)
93                 i915_gem_release_mmap(obj);
94
95         /* As we do not have an associated fence register, we will force
96          * a tiling change if we ever need to acquire one.
97          */
98         obj->fence_dirty = false;
99         obj->fence_reg = I915_FENCE_REG_NONE;
100 }
101
102 static bool i915_gem_object_is_inactive(struct drm_i915_gem_object *obj);
103 static void i915_gem_lowmem(void *arg);
104
105 /* some bookkeeping */
106 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
107                                   size_t size)
108 {
109         dev_priv->mm.object_count++;
110         dev_priv->mm.object_memory += size;
111 }
112
113 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
114                                      size_t size)
115 {
116         dev_priv->mm.object_count--;
117         dev_priv->mm.object_memory -= size;
118 }
119
120 static int
121 i915_gem_wait_for_error(struct i915_gpu_error *error)
122 {
123         int ret;
124
125 #define EXIT_COND (!i915_reset_in_progress(error) || \
126                    i915_terminally_wedged(error))
127         if (EXIT_COND)
128                 return 0;
129
130         /*
131          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
132          * userspace. If it takes that long something really bad is going on and
133          * we should simply try to bail out and fail as gracefully as possible.
134          */
135         ret = wait_event_interruptible_timeout(error->reset_queue,
136                                                EXIT_COND,
137                                                10*HZ);
138         if (ret == 0) {
139                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
140                 return -EIO;
141         } else if (ret < 0) {
142                 return ret;
143         }
144 #undef EXIT_COND
145
146         return 0;
147 }
148
149 int i915_mutex_lock_interruptible(struct drm_device *dev)
150 {
151         struct drm_i915_private *dev_priv = dev->dev_private;
152         int ret;
153
154         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
155         if (ret)
156                 return ret;
157
158         ret = lockmgr(&dev->struct_mutex, LK_EXCLUSIVE|LK_SLEEPFAIL);
159         if (ret)
160                 return -EINTR;
161
162         WARN_ON(i915_verify_lists(dev));
163         return 0;
164 }
165
166 static inline bool
167 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
168 {
169         return !obj->active;
170 }
171
172 int
173 i915_gem_init_ioctl(struct drm_device *dev, void *data,
174                     struct drm_file *file)
175 {
176         struct drm_i915_gem_init *args = data;
177
178         if (drm_core_check_feature(dev, DRIVER_MODESET))
179                 return -ENODEV;
180
181         if (args->gtt_start >= args->gtt_end ||
182             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
183                 return -EINVAL;
184
185         /* GEM with user mode setting was never supported on ilk and later. */
186         if (INTEL_INFO(dev)->gen >= 5)
187                 return -ENODEV;
188
189         mutex_lock(&dev->struct_mutex);
190         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
191                                   args->gtt_end);
192         mutex_unlock(&dev->struct_mutex);
193
194         return 0;
195 }
196
197 int
198 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
199                             struct drm_file *file)
200 {
201         struct drm_i915_private *dev_priv = dev->dev_private;
202         struct drm_i915_gem_get_aperture *args = data;
203         struct drm_i915_gem_object *obj;
204         size_t pinned;
205
206         pinned = 0;
207         mutex_lock(&dev->struct_mutex);
208         list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
209                 if (obj->pin_count)
210                         pinned += obj->gtt_space->size;
211         mutex_unlock(&dev->struct_mutex);
212
213         args->aper_size = dev_priv->gtt.total;
214         args->aper_available_size = args->aper_size - pinned;
215
216         return 0;
217 }
218
219 static int
220 i915_gem_create(struct drm_file *file,
221                 struct drm_device *dev,
222                 uint64_t size,
223                 uint32_t *handle_p)
224 {
225         struct drm_i915_gem_object *obj;
226         int ret;
227         u32 handle;
228
229         size = roundup(size, PAGE_SIZE);
230         if (size == 0)
231                 return -EINVAL;
232
233         /* Allocate the new object */
234         obj = i915_gem_alloc_object(dev, size);
235         if (obj == NULL)
236                 return -ENOMEM;
237
238         handle = 0;
239         ret = drm_gem_handle_create(file, &obj->base, &handle);
240         if (ret) {
241                 drm_gem_object_release(&obj->base);
242                 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
243                 drm_free(obj, M_DRM);
244                 return (-ret);
245         }
246
247         /* drop reference from allocate - handle holds it now */
248         drm_gem_object_unreference(&obj->base);
249         *handle_p = handle;
250         return 0;
251 }
252
253 int
254 i915_gem_dumb_create(struct drm_file *file,
255                      struct drm_device *dev,
256                      struct drm_mode_create_dumb *args)
257 {
258
259         /* have to work out size/pitch and return them */
260         args->pitch = roundup2(args->width * ((args->bpp + 7) / 8), 64);
261         args->size = args->pitch * args->height;
262         return i915_gem_create(file, dev,
263                                args->size, &args->handle);
264 }
265
266 int i915_gem_dumb_destroy(struct drm_file *file,
267                           struct drm_device *dev,
268                           uint32_t handle)
269 {
270
271         return drm_gem_handle_delete(file, handle);
272 }
273
274 /**
275  * Creates a new mm object and returns a handle to it.
276  */
277 int
278 i915_gem_create_ioctl(struct drm_device *dev, void *data,
279                       struct drm_file *file)
280 {
281         struct drm_i915_gem_create *args = data;
282
283         return i915_gem_create(file, dev,
284                                args->size, &args->handle);
285 }
286
287 static inline void vm_page_reference(vm_page_t m)
288 {
289         vm_page_flag_set(m, PG_REFERENCED);
290 }
291
292 static int
293 i915_gem_shmem_pread(struct drm_device *dev,
294                      struct drm_i915_gem_object *obj,
295                      struct drm_i915_gem_pread *args,
296                      struct drm_file *file)
297 {
298         vm_object_t vm_obj;
299         vm_page_t m;
300         struct sf_buf *sf;
301         vm_offset_t mkva;
302         vm_pindex_t obj_pi;
303         int cnt, do_bit17_swizzling, length, obj_po, ret, swizzled_po;
304
305         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
306
307         obj->dirty = 1;
308         vm_obj = obj->base.vm_obj;
309         ret = 0;
310
311         VM_OBJECT_LOCK(vm_obj);
312         vm_object_pip_add(vm_obj, 1);
313         while (args->size > 0) {
314                 obj_pi = OFF_TO_IDX(args->offset);
315                 obj_po = args->offset & PAGE_MASK;
316
317                 m = shmem_read_mapping_page(vm_obj, obj_pi);
318                 VM_OBJECT_UNLOCK(vm_obj);
319
320                 sf = sf_buf_alloc(m);
321                 mkva = sf_buf_kva(sf);
322                 length = min(args->size, PAGE_SIZE - obj_po);
323                 while (length > 0) {
324                         if (do_bit17_swizzling &&
325                             (VM_PAGE_TO_PHYS(m) & (1 << 17)) != 0) {
326                                 cnt = roundup2(obj_po + 1, 64);
327                                 cnt = min(cnt - obj_po, length);
328                                 swizzled_po = obj_po ^ 64;
329                         } else {
330                                 cnt = length;
331                                 swizzled_po = obj_po;
332                         }
333                         ret = -copyout_nofault(
334                             (char *)mkva + swizzled_po,
335                             (void *)(uintptr_t)args->data_ptr, cnt);
336                         if (ret != 0)
337                                 break;
338                         args->data_ptr += cnt;
339                         args->size -= cnt;
340                         length -= cnt;
341                         args->offset += cnt;
342                         obj_po += cnt;
343                 }
344                 sf_buf_free(sf);
345                 VM_OBJECT_LOCK(vm_obj);
346                 vm_page_reference(m);
347                 vm_page_busy_wait(m, FALSE, "i915gem");
348                 vm_page_unwire(m, 1);
349                 vm_page_wakeup(m);
350
351                 if (ret != 0)
352                         break;
353         }
354         vm_object_pip_wakeup(vm_obj);
355         VM_OBJECT_UNLOCK(vm_obj);
356
357         return (ret);
358 }
359
360 /**
361  * Reads data from the object referenced by handle.
362  *
363  * On error, the contents of *data are undefined.
364  */
365 int
366 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
367                      struct drm_file *file)
368 {
369         struct drm_i915_gem_pread *args = data;
370         struct drm_i915_gem_object *obj;
371         int ret = 0;
372
373         if (args->size == 0)
374                 return 0;
375
376         ret = i915_mutex_lock_interruptible(dev);
377         if (ret)
378                 return ret;
379
380         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
381         if (&obj->base == NULL) {
382                 ret = -ENOENT;
383                 goto unlock;
384         }
385
386         /* Bounds check source.  */
387         if (args->offset > obj->base.size ||
388             args->size > obj->base.size - args->offset) {
389                 ret = -EINVAL;
390                 goto out;
391         }
392
393         ret = i915_gem_shmem_pread(dev, obj, args, file);
394 out:
395         drm_gem_object_unreference(&obj->base);
396 unlock:
397         mutex_unlock(&dev->struct_mutex);
398         return ret;
399 }
400
401 #if 0
402 /* This is the fast write path which cannot handle
403  * page faults in the source data
404  */
405
406 static inline int
407 fast_user_write(struct io_mapping *mapping,
408                 loff_t page_base, int page_offset,
409                 char __user *user_data,
410                 int length)
411 {
412         void __iomem *vaddr_atomic;
413         void *vaddr;
414         unsigned long unwritten;
415
416         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
417         /* We can use the cpu mem copy function because this is X86. */
418         vaddr = (void __force*)vaddr_atomic + page_offset;
419         unwritten = __copy_from_user_inatomic_nocache(vaddr,
420                                                       user_data, length);
421         io_mapping_unmap_atomic(vaddr_atomic);
422         return unwritten;
423 }
424
425 /**
426  * This is the fast pwrite path, where we copy the data directly from the
427  * user into the GTT, uncached.
428  */
429 static int
430 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
431                          struct drm_i915_gem_object *obj,
432                          struct drm_i915_gem_pwrite *args,
433                          struct drm_file *file)
434 {
435         drm_i915_private_t *dev_priv = dev->dev_private;
436         ssize_t remain;
437         loff_t offset, page_base;
438         char __user *user_data;
439         int page_offset, page_length, ret;
440
441         ret = i915_gem_object_pin(obj, 0, true, true);
442         if (ret)
443                 goto out;
444
445         ret = i915_gem_object_set_to_gtt_domain(obj, true);
446         if (ret)
447                 goto out_unpin;
448
449         ret = i915_gem_object_put_fence(obj);
450         if (ret)
451                 goto out_unpin;
452
453         user_data = to_user_ptr(args->data_ptr);
454         remain = args->size;
455
456         offset = obj->gtt_offset + args->offset;
457
458         while (remain > 0) {
459                 /* Operation in this page
460                  *
461                  * page_base = page offset within aperture
462                  * page_offset = offset within page
463                  * page_length = bytes to copy for this page
464                  */
465                 page_base = offset & PAGE_MASK;
466                 page_offset = offset_in_page(offset);
467                 page_length = remain;
468                 if ((page_offset + remain) > PAGE_SIZE)
469                         page_length = PAGE_SIZE - page_offset;
470
471                 /* If we get a fault while copying data, then (presumably) our
472                  * source page isn't available.  Return the error and we'll
473                  * retry in the slow path.
474                  */
475                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
476                                     page_offset, user_data, page_length)) {
477                         ret = -EFAULT;
478                         goto out_unpin;
479                 }
480
481                 remain -= page_length;
482                 user_data += page_length;
483                 offset += page_length;
484         }
485
486 out_unpin:
487         i915_gem_object_unpin(obj);
488 out:
489         return ret;
490 }
491 #endif
492
493 static int
494 i915_gem_gtt_write(struct drm_device *dev, struct drm_i915_gem_object *obj,
495     uint64_t data_ptr, uint64_t size, uint64_t offset, struct drm_file *file)
496 {
497         vm_offset_t mkva;
498         int ret;
499
500         /*
501          * Pass the unaligned physical address and size to pmap_mapdev_attr()
502          * so it can properly calculate whether an extra page needs to be
503          * mapped or not to cover the requested range.  The function will
504          * add the page offset into the returned mkva for us.
505          */
506         mkva = (vm_offset_t)pmap_mapdev_attr(dev->agp->base + obj->gtt_offset +
507             offset, size, PAT_WRITE_COMBINING);
508         ret = -copyin_nofault((void *)(uintptr_t)data_ptr, (char *)mkva, size);
509         pmap_unmapdev(mkva, size);
510         return ret;
511 }
512
513 static int
514 i915_gem_shmem_pwrite(struct drm_device *dev,
515                       struct drm_i915_gem_object *obj,
516                       struct drm_i915_gem_pwrite *args,
517                       struct drm_file *file)
518 {
519         vm_object_t vm_obj;
520         vm_page_t m;
521         struct sf_buf *sf;
522         vm_offset_t mkva;
523         vm_pindex_t obj_pi;
524         int cnt, do_bit17_swizzling, length, obj_po, ret, swizzled_po;
525
526         do_bit17_swizzling = 0;
527
528         obj->dirty = 1;
529         vm_obj = obj->base.vm_obj;
530         ret = 0;
531
532         VM_OBJECT_LOCK(vm_obj);
533         vm_object_pip_add(vm_obj, 1);
534         while (args->size > 0) {
535                 obj_pi = OFF_TO_IDX(args->offset);
536                 obj_po = args->offset & PAGE_MASK;
537
538                 m = shmem_read_mapping_page(vm_obj, obj_pi);
539                 VM_OBJECT_UNLOCK(vm_obj);
540
541                 sf = sf_buf_alloc(m);
542                 mkva = sf_buf_kva(sf);
543                 length = min(args->size, PAGE_SIZE - obj_po);
544                 while (length > 0) {
545                         if (do_bit17_swizzling &&
546                             (VM_PAGE_TO_PHYS(m) & (1 << 17)) != 0) {
547                                 cnt = roundup2(obj_po + 1, 64);
548                                 cnt = min(cnt - obj_po, length);
549                                 swizzled_po = obj_po ^ 64;
550                         } else {
551                                 cnt = length;
552                                 swizzled_po = obj_po;
553                         }
554                         ret = -copyin_nofault(
555                             (void *)(uintptr_t)args->data_ptr,
556                             (char *)mkva + swizzled_po, cnt);
557                         if (ret != 0)
558                                 break;
559                         args->data_ptr += cnt;
560                         args->size -= cnt;
561                         length -= cnt;
562                         args->offset += cnt;
563                         obj_po += cnt;
564                 }
565                 sf_buf_free(sf);
566                 VM_OBJECT_LOCK(vm_obj);
567                 vm_page_dirty(m);
568                 vm_page_reference(m);
569                 vm_page_busy_wait(m, FALSE, "i915gem");
570                 vm_page_unwire(m, 1);
571                 vm_page_wakeup(m);
572
573                 if (ret != 0)
574                         break;
575         }
576         vm_object_pip_wakeup(vm_obj);
577         VM_OBJECT_UNLOCK(vm_obj);
578
579         return (ret);
580 }
581
582 /**
583  * Writes data to the object referenced by handle.
584  *
585  * On error, the contents of the buffer that were to be modified are undefined.
586  */
587 int
588 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
589                       struct drm_file *file)
590 {
591         struct drm_i915_gem_pwrite *args = data;
592         struct drm_i915_gem_object *obj;
593         vm_page_t *ma;
594         vm_offset_t start, end;
595         int npages, ret;
596
597         if (args->size == 0)
598                 return 0;
599
600         start = trunc_page(args->data_ptr);
601         end = round_page(args->data_ptr + args->size);
602         npages = howmany(end - start, PAGE_SIZE);
603         ma = kmalloc(npages * sizeof(vm_page_t), M_DRM, M_WAITOK |
604             M_ZERO);
605         npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
606             (vm_offset_t)args->data_ptr, args->size,
607             VM_PROT_READ, ma, npages);
608         if (npages == -1) {
609                 ret = -EFAULT;
610                 goto free_ma;
611         }
612
613         ret = i915_mutex_lock_interruptible(dev);
614         if (ret != 0)
615                 goto unlocked;
616
617         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
618         if (&obj->base == NULL) {
619                 ret = -ENOENT;
620                 goto unlock;
621         }
622
623         /* Bounds check destination. */
624         if (args->offset > obj->base.size ||
625             args->size > obj->base.size - args->offset) {
626                 ret = -EINVAL;
627                 goto out;
628         }
629
630         if (obj->phys_obj) {
631                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
632         } else if (obj->gtt_space &&
633                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
634                 ret = i915_gem_object_pin(obj, 0, true, false);
635                 if (ret != 0)
636                         goto out;
637                 ret = i915_gem_object_set_to_gtt_domain(obj, true);
638                 if (ret != 0)
639                         goto out_unpin;
640                 ret = i915_gem_object_put_fence(obj);
641                 if (ret != 0)
642                         goto out_unpin;
643                 ret = i915_gem_gtt_write(dev, obj, args->data_ptr, args->size,
644                     args->offset, file);
645 out_unpin:
646                 i915_gem_object_unpin(obj);
647         } else {
648                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
649                 if (ret != 0)
650                         goto out;
651                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
652         }
653 out:
654         drm_gem_object_unreference(&obj->base);
655 unlock:
656         mutex_unlock(&dev->struct_mutex);
657 unlocked:
658         vm_page_unhold_pages(ma, npages);
659 free_ma:
660         drm_free(ma, M_DRM);
661         return ret;
662 }
663
664 int
665 i915_gem_check_wedge(struct i915_gpu_error *error,
666                      bool interruptible)
667 {
668         if (i915_reset_in_progress(error)) {
669                 /* Non-interruptible callers can't handle -EAGAIN, hence return
670                  * -EIO unconditionally for these. */
671                 if (!interruptible)
672                         return -EIO;
673
674                 /* Recovery complete, but the reset failed ... */
675                 if (i915_terminally_wedged(error))
676                         return -EIO;
677
678                 return -EAGAIN;
679         }
680
681         return 0;
682 }
683
684 /*
685  * Compare seqno against outstanding lazy request. Emit a request if they are
686  * equal.
687  */
688 static int
689 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
690 {
691         int ret;
692
693         DRM_LOCK_ASSERT(ring->dev);
694
695         ret = 0;
696         if (seqno == ring->outstanding_lazy_request)
697                 ret = i915_add_request(ring, NULL, NULL);
698
699         return ret;
700 }
701
702 /**
703  * __wait_seqno - wait until execution of seqno has finished
704  * @ring: the ring expected to report seqno
705  * @seqno: duh!
706  * @reset_counter: reset sequence associated with the given seqno
707  * @interruptible: do an interruptible wait (normally yes)
708  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
709  *
710  * Note: It is of utmost importance that the passed in seqno and reset_counter
711  * values have been read by the caller in an smp safe manner. Where read-side
712  * locks are involved, it is sufficient to read the reset_counter before
713  * unlocking the lock that protects the seqno. For lockless tricks, the
714  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
715  * inserted.
716  *
717  * Returns 0 if the seqno was found within the alloted time. Else returns the
718  * errno with remaining time filled in timeout argument.
719  */
720 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
721                         unsigned reset_counter,
722                         bool interruptible, struct timespec *timeout)
723 {
724         drm_i915_private_t *dev_priv = ring->dev->dev_private;
725         struct timespec before, now, wait_time={1,0};
726         unsigned long timeout_jiffies;
727         long end;
728         bool wait_forever = true;
729         int ret;
730
731         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
732                 return 0;
733
734         if (timeout != NULL) {
735                 wait_time = *timeout;
736                 wait_forever = false;
737         }
738
739         timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
740
741         if (WARN_ON(!ring->irq_get(ring)))
742                 return -ENODEV;
743
744         /* Record current time in case interrupted by signal, or wedged * */
745         getrawmonotonic(&before);
746
747 #define EXIT_COND \
748         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
749          i915_reset_in_progress(&dev_priv->gpu_error) || \
750          reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
751         do {
752                 if (interruptible)
753                         end = wait_event_interruptible_timeout(ring->irq_queue,
754                                                                EXIT_COND,
755                                                                timeout_jiffies);
756                 else
757                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
758                                                  timeout_jiffies);
759
760                 /* We need to check whether any gpu reset happened in between
761                  * the caller grabbing the seqno and now ... */
762                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
763                         end = -EAGAIN;
764
765                 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
766                  * gone. */
767                 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
768                 if (ret)
769                         end = ret;
770         } while (end == 0 && wait_forever);
771
772         getrawmonotonic(&now);
773
774         ring->irq_put(ring);
775 #undef EXIT_COND
776
777         if (timeout) {
778                 struct timespec sleep_time = timespec_sub(now, before);
779                 *timeout = timespec_sub(*timeout, sleep_time);
780                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
781                         set_normalized_timespec(timeout, 0, 0);
782         }
783
784         switch (end) {
785         case -EIO:
786         case -EAGAIN: /* Wedged */
787         case -ERESTARTSYS: /* Signal */
788                 return (int)end;
789         case 0: /* Timeout */
790                 return -ETIMEDOUT;      /* -ETIME on Linux */
791         default: /* Completed */
792                 WARN_ON(end < 0); /* We're not aware of other errors */
793                 return 0;
794         }
795 }
796
797 /**
798  * Waits for a sequence number to be signaled, and cleans up the
799  * request and object lists appropriately for that event.
800  */
801 int
802 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
803 {
804         struct drm_device *dev = ring->dev;
805         struct drm_i915_private *dev_priv = dev->dev_private;
806         bool interruptible = dev_priv->mm.interruptible;
807         int ret;
808
809         DRM_LOCK_ASSERT(dev);
810         BUG_ON(seqno == 0);
811
812         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
813         if (ret)
814                 return ret;
815
816         ret = i915_gem_check_olr(ring, seqno);
817         if (ret)
818                 return ret;
819
820         return __wait_seqno(ring, seqno,
821                             atomic_read(&dev_priv->gpu_error.reset_counter),
822                             interruptible, NULL);
823 }
824
825 /**
826  * Ensures that all rendering to the object has completed and the object is
827  * safe to unbind from the GTT or access from the CPU.
828  */
829 static __must_check int
830 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
831                                bool readonly)
832 {
833         struct intel_ring_buffer *ring = obj->ring;
834         u32 seqno;
835         int ret;
836
837         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
838         if (seqno == 0)
839                 return 0;
840
841         ret = i915_wait_seqno(ring, seqno);
842         if (ret)
843                 return ret;
844
845         i915_gem_retire_requests_ring(ring);
846
847         /* Manually manage the write flush as we may have not yet
848          * retired the buffer.
849          */
850         if (obj->last_write_seqno &&
851             i915_seqno_passed(seqno, obj->last_write_seqno)) {
852                 obj->last_write_seqno = 0;
853                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
854         }
855
856         return 0;
857 }
858
859 /* A nonblocking variant of the above wait. This is a highly dangerous routine
860  * as the object state may change during this call.
861  */
862 static __must_check int
863 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
864                                             bool readonly)
865 {
866         struct drm_device *dev = obj->base.dev;
867         struct drm_i915_private *dev_priv = dev->dev_private;
868         struct intel_ring_buffer *ring = obj->ring;
869         unsigned reset_counter;
870         u32 seqno;
871         int ret;
872
873         DRM_LOCK_ASSERT(dev);
874         BUG_ON(!dev_priv->mm.interruptible);
875
876         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
877         if (seqno == 0)
878                 return 0;
879
880         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
881         if (ret)
882                 return ret;
883
884         ret = i915_gem_check_olr(ring, seqno);
885         if (ret)
886                 return ret;
887
888         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
889         mutex_unlock(&dev->struct_mutex);
890         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
891         mutex_lock(&dev->struct_mutex);
892
893         i915_gem_retire_requests_ring(ring);
894
895         /* Manually manage the write flush as we may have not yet
896          * retired the buffer.
897          */
898         if (obj->last_write_seqno &&
899             i915_seqno_passed(seqno, obj->last_write_seqno)) {
900                 obj->last_write_seqno = 0;
901                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
902         }
903
904         return ret;
905 }
906
907 /**
908  * Called when user space prepares to use an object with the CPU, either
909  * through the mmap ioctl's mapping or a GTT mapping.
910  */
911 int
912 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
913                           struct drm_file *file)
914 {
915         struct drm_i915_gem_set_domain *args = data;
916         struct drm_i915_gem_object *obj;
917         uint32_t read_domains = args->read_domains;
918         uint32_t write_domain = args->write_domain;
919         int ret;
920
921         /* Only handle setting domains to types used by the CPU. */
922         if (write_domain & I915_GEM_GPU_DOMAINS)
923                 return -EINVAL;
924
925         if (read_domains & I915_GEM_GPU_DOMAINS)
926                 return -EINVAL;
927
928         /* Having something in the write domain implies it's in the read
929          * domain, and only that read domain.  Enforce that in the request.
930          */
931         if (write_domain != 0 && read_domains != write_domain)
932                 return -EINVAL;
933
934         ret = i915_mutex_lock_interruptible(dev);
935         if (ret)
936                 return ret;
937
938         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
939         if (&obj->base == NULL) {
940                 ret = -ENOENT;
941                 goto unlock;
942         }
943
944         /* Try to flush the object off the GPU without holding the lock.
945          * We will repeat the flush holding the lock in the normal manner
946          * to catch cases where we are gazumped.
947          */
948         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
949         if (ret)
950                 goto unref;
951
952         if (read_domains & I915_GEM_DOMAIN_GTT) {
953                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
954
955                 /* Silently promote "you're not bound, there was nothing to do"
956                  * to success, since the client was just asking us to
957                  * make sure everything was done.
958                  */
959                 if (ret == -EINVAL)
960                         ret = 0;
961         } else {
962                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
963         }
964
965 unref:
966         drm_gem_object_unreference(&obj->base);
967 unlock:
968         mutex_unlock(&dev->struct_mutex);
969         return ret;
970 }
971
972 /**
973  * Called when user space has done writes to this buffer
974  */
975 int
976 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
977                          struct drm_file *file)
978 {
979         struct drm_i915_gem_sw_finish *args = data;
980         struct drm_i915_gem_object *obj;
981         int ret = 0;
982
983         ret = i915_mutex_lock_interruptible(dev);
984         if (ret)
985                 return ret;
986         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
987         if (&obj->base == NULL) {
988                 ret = -ENOENT;
989                 goto unlock;
990         }
991
992         /* Pinned buffers may be scanout, so flush the cache */
993         if (obj->pin_count)
994                 i915_gem_object_flush_cpu_write_domain(obj);
995
996         drm_gem_object_unreference(&obj->base);
997 unlock:
998         mutex_unlock(&dev->struct_mutex);
999         return ret;
1000 }
1001
1002 /**
1003  * Maps the contents of an object, returning the address it is mapped
1004  * into.
1005  *
1006  * While the mapping holds a reference on the contents of the object, it doesn't
1007  * imply a ref on the object itself.
1008  */
1009 int
1010 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1011                     struct drm_file *file)
1012 {
1013         struct drm_i915_gem_mmap *args = data;
1014         struct drm_gem_object *obj;
1015         struct proc *p = curproc;
1016         vm_map_t map = &p->p_vmspace->vm_map;
1017         vm_offset_t addr;
1018         vm_size_t size;
1019         int error = 0, rv;
1020
1021         obj = drm_gem_object_lookup(dev, file, args->handle);
1022         if (obj == NULL)
1023                 return -ENOENT;
1024
1025         if (args->size == 0)
1026                 goto out;
1027
1028         size = round_page(args->size);
1029         if (map->size + size > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
1030                 error = ENOMEM;
1031                 goto out;
1032         }
1033
1034         addr = 0;
1035         vm_object_hold(obj->vm_obj);
1036         vm_object_reference_locked(obj->vm_obj);
1037         vm_object_drop(obj->vm_obj);
1038         rv = vm_map_find(map, obj->vm_obj, NULL,
1039                          args->offset, &addr, args->size,
1040                          PAGE_SIZE, /* align */
1041                          TRUE, /* fitit */
1042                          VM_MAPTYPE_NORMAL, /* maptype */
1043                          VM_PROT_READ | VM_PROT_WRITE, /* prot */
1044                          VM_PROT_READ | VM_PROT_WRITE, /* max */
1045                          MAP_SHARED /* cow */);
1046         if (rv != KERN_SUCCESS) {
1047                 vm_object_deallocate(obj->vm_obj);
1048                 error = -vm_mmap_to_errno(rv);
1049         } else {
1050                 args->addr_ptr = (uint64_t)addr;
1051         }
1052 out:
1053         drm_gem_object_unreference(obj);
1054         return (error);
1055 }
1056
1057 /**
1058  * i915_gem_fault - fault a page into the GTT
1059  * vma: VMA in question
1060  * vmf: fault info
1061  *
1062  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1063  * from userspace.  The fault handler takes care of binding the object to
1064  * the GTT (if needed), allocating and programming a fence register (again,
1065  * only if needed based on whether the old reg is still valid or the object
1066  * is tiled) and inserting a new PTE into the faulting process.
1067  *
1068  * Note that the faulting process may involve evicting existing objects
1069  * from the GTT and/or fence registers to make room.  So performance may
1070  * suffer if the GTT working set is large or there are few fence registers
1071  * left.
1072  */
1073 #if 0
1074 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1075 {
1076         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1077         struct drm_device *dev = obj->base.dev;
1078         drm_i915_private_t *dev_priv = dev->dev_private;
1079         pgoff_t page_offset;
1080         unsigned long pfn;
1081         int ret = 0;
1082         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1083
1084         /* We don't use vmf->pgoff since that has the fake offset */
1085         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1086                 PAGE_SHIFT;
1087
1088         ret = i915_mutex_lock_interruptible(dev);
1089         if (ret)
1090                 goto out;
1091
1092         trace_i915_gem_object_fault(obj, page_offset, true, write);
1093
1094         /* Access to snoopable pages through the GTT is incoherent. */
1095         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1096                 ret = -EINVAL;
1097                 goto unlock;
1098         }
1099
1100         /* Now bind it into the GTT if needed */
1101         ret = i915_gem_object_pin(obj, 0, true, false);
1102         if (ret)
1103                 goto unlock;
1104
1105         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1106         if (ret)
1107                 goto unpin;
1108
1109         ret = i915_gem_object_get_fence(obj);
1110         if (ret)
1111                 goto unpin;
1112
1113         obj->fault_mappable = true;
1114
1115         pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) +
1116                 page_offset;
1117
1118         /* Finally, remap it using the new GTT offset */
1119         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1120 unpin:
1121         i915_gem_object_unpin(obj);
1122 unlock:
1123         mutex_unlock(&dev->struct_mutex);
1124 out:
1125         switch (ret) {
1126         case -EIO:
1127                 /* If this -EIO is due to a gpu hang, give the reset code a
1128                  * chance to clean up the mess. Otherwise return the proper
1129                  * SIGBUS. */
1130                 if (i915_terminally_wedged(&dev_priv->gpu_error))
1131                         return VM_FAULT_SIGBUS;
1132         case -EAGAIN:
1133                 /* Give the error handler a chance to run and move the
1134                  * objects off the GPU active list. Next time we service the
1135                  * fault, we should be able to transition the page into the
1136                  * GTT without touching the GPU (and so avoid further
1137                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1138                  * with coherency, just lost writes.
1139                  */
1140                 set_need_resched();
1141         case 0:
1142         case -ERESTARTSYS:
1143         case -EINTR:
1144         case -EBUSY:
1145                 /*
1146                  * EBUSY is ok: this just means that another thread
1147                  * already did the job.
1148                  */
1149                 return VM_FAULT_NOPAGE;
1150         case -ENOMEM:
1151                 return VM_FAULT_OOM;
1152         case -ENOSPC:
1153                 return VM_FAULT_SIGBUS;
1154         default:
1155                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1156                 return VM_FAULT_SIGBUS;
1157         }
1158 }
1159 #endif
1160
1161 /**
1162  * i915_gem_release_mmap - remove physical page mappings
1163  * @obj: obj in question
1164  *
1165  * Preserve the reservation of the mmapping with the DRM core code, but
1166  * relinquish ownership of the pages back to the system.
1167  *
1168  * It is vital that we remove the page mapping if we have mapped a tiled
1169  * object through the GTT and then lose the fence register due to
1170  * resource pressure. Similarly if the object has been moved out of the
1171  * aperture, than pages mapped into userspace must be revoked. Removing the
1172  * mapping will then trigger a page fault on the next user access, allowing
1173  * fixup by i915_gem_fault().
1174  */
1175 void
1176 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1177 {
1178         vm_object_t devobj;
1179         vm_page_t m;
1180         int i, page_count;
1181
1182         if (!obj->fault_mappable)
1183                 return;
1184
1185         devobj = cdev_pager_lookup(obj);
1186         if (devobj != NULL) {
1187                 page_count = OFF_TO_IDX(obj->base.size);
1188
1189                 VM_OBJECT_LOCK(devobj);
1190                 for (i = 0; i < page_count; i++) {
1191                         m = vm_page_lookup_busy_wait(devobj, i, TRUE, "915unm");
1192                         if (m == NULL)
1193                                 continue;
1194                         cdev_pager_free_page(devobj, m);
1195                 }
1196                 VM_OBJECT_UNLOCK(devobj);
1197                 vm_object_deallocate(devobj);
1198         }
1199
1200         obj->fault_mappable = false;
1201 }
1202
1203 uint32_t
1204 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1205 {
1206         uint32_t gtt_size;
1207
1208         if (INTEL_INFO(dev)->gen >= 4 ||
1209             tiling_mode == I915_TILING_NONE)
1210                 return size;
1211
1212         /* Previous chips need a power-of-two fence region when tiling */
1213         if (INTEL_INFO(dev)->gen == 3)
1214                 gtt_size = 1024*1024;
1215         else
1216                 gtt_size = 512*1024;
1217
1218         while (gtt_size < size)
1219                 gtt_size <<= 1;
1220
1221         return gtt_size;
1222 }
1223
1224 /**
1225  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1226  * @obj: object to check
1227  *
1228  * Return the required GTT alignment for an object, taking into account
1229  * potential fence register mapping.
1230  */
1231 uint32_t
1232 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1233                            int tiling_mode, bool fenced)
1234 {
1235
1236         /*
1237          * Minimum alignment is 4k (GTT page size), but might be greater
1238          * if a fence register is needed for the object.
1239          */
1240         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1241             tiling_mode == I915_TILING_NONE)
1242                 return 4096;
1243
1244         /*
1245          * Previous chips need to be aligned to the size of the smallest
1246          * fence register that can contain the object.
1247          */
1248         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1249 }
1250
1251 int
1252 i915_gem_mmap_gtt(struct drm_file *file,
1253                   struct drm_device *dev,
1254                   uint32_t handle,
1255                   uint64_t *offset)
1256 {
1257         struct drm_i915_private *dev_priv = dev->dev_private;
1258         struct drm_i915_gem_object *obj;
1259         int ret;
1260
1261         ret = i915_mutex_lock_interruptible(dev);
1262         if (ret)
1263                 return ret;
1264
1265         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1266         if (&obj->base == NULL) {
1267                 ret = -ENOENT;
1268                 goto unlock;
1269         }
1270
1271         if (obj->base.size > dev_priv->gtt.mappable_end) {
1272                 ret = -E2BIG;
1273                 goto out;
1274         }
1275
1276         if (obj->madv != I915_MADV_WILLNEED) {
1277                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1278                 ret = -EINVAL;
1279                 goto out;
1280         }
1281
1282         ret = drm_gem_create_mmap_offset(&obj->base);
1283         if (ret)
1284                 goto out;
1285
1286         *offset = DRM_GEM_MAPPING_OFF(obj->base.map_list.key) |
1287             DRM_GEM_MAPPING_KEY;
1288 out:
1289         drm_gem_object_unreference(&obj->base);
1290 unlock:
1291         mutex_unlock(&dev->struct_mutex);
1292         return ret;
1293 }
1294
1295 /**
1296  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1297  * @dev: DRM device
1298  * @data: GTT mapping ioctl data
1299  * @file: GEM object info
1300  *
1301  * Simply returns the fake offset to userspace so it can mmap it.
1302  * The mmap call will end up in drm_gem_mmap(), which will set things
1303  * up so we can get faults in the handler above.
1304  *
1305  * The fault handler will take care of binding the object into the GTT
1306  * (since it may have been evicted to make room for something), allocating
1307  * a fence register, and mapping the appropriate aperture address into
1308  * userspace.
1309  */
1310 int
1311 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1312                         struct drm_file *file)
1313 {
1314         struct drm_i915_gem_mmap_gtt *args = data;
1315
1316         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1317 }
1318
1319 /* Immediately discard the backing storage */
1320 static void
1321 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1322 {
1323         vm_object_t vm_obj;
1324
1325         vm_obj = obj->base.vm_obj;
1326         VM_OBJECT_LOCK(vm_obj);
1327         vm_object_page_remove(vm_obj, 0, 0, false);
1328         VM_OBJECT_UNLOCK(vm_obj);
1329         obj->madv = __I915_MADV_PURGED;
1330 }
1331
1332 static inline int
1333 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1334 {
1335         return obj->madv == I915_MADV_DONTNEED;
1336 }
1337
1338 static void
1339 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1340 {
1341         vm_page_t m;
1342         int page_count, i;
1343
1344         BUG_ON(obj->madv == __I915_MADV_PURGED);
1345
1346         if (obj->tiling_mode != I915_TILING_NONE)
1347                 i915_gem_object_save_bit_17_swizzle(obj);
1348         if (obj->madv == I915_MADV_DONTNEED)
1349                 obj->dirty = 0;
1350         page_count = obj->base.size / PAGE_SIZE;
1351         VM_OBJECT_LOCK(obj->base.vm_obj);
1352 #if GEM_PARANOID_CHECK_GTT
1353         i915_gem_assert_pages_not_mapped(obj->base.dev, obj->pages, page_count);
1354 #endif
1355         for (i = 0; i < page_count; i++) {
1356                 m = obj->pages[i];
1357                 if (obj->dirty)
1358                         vm_page_dirty(m);
1359                 if (obj->madv == I915_MADV_WILLNEED)
1360                         vm_page_reference(m);
1361                 vm_page_busy_wait(obj->pages[i], FALSE, "i915gem");
1362                 vm_page_unwire(obj->pages[i], 1);
1363                 vm_page_wakeup(obj->pages[i]);
1364         }
1365         VM_OBJECT_UNLOCK(obj->base.vm_obj);
1366         obj->dirty = 0;
1367         drm_free(obj->pages, M_DRM);
1368         obj->pages = NULL;
1369 }
1370
1371 int
1372 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1373 {
1374         const struct drm_i915_gem_object_ops *ops = obj->ops;
1375
1376         if (obj->pages == NULL)
1377                 return 0;
1378
1379         BUG_ON(obj->gtt_space);
1380
1381         if (obj->pages_pin_count)
1382                 return -EBUSY;
1383
1384         /* ->put_pages might need to allocate memory for the bit17 swizzle
1385          * array, hence protect them from being reaped by removing them from gtt
1386          * lists early. */
1387         list_del(&obj->gtt_list);
1388
1389         ops->put_pages(obj);
1390         obj->pages = NULL;
1391
1392         if (i915_gem_object_is_purgeable(obj))
1393                 i915_gem_object_truncate(obj);
1394
1395         return 0;
1396 }
1397
1398 static int
1399 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1400 {
1401         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1402         struct drm_device *dev;
1403         vm_object_t vm_obj;
1404         int page_count, i, j;
1405         struct vm_page *page;
1406
1407         dev = obj->base.dev;
1408         KASSERT(obj->pages == NULL, ("Obj already has pages"));
1409         page_count = obj->base.size / PAGE_SIZE;
1410         obj->pages = kmalloc(page_count * sizeof(vm_page_t), M_DRM,
1411             M_WAITOK);
1412
1413         vm_obj = obj->base.vm_obj;
1414         VM_OBJECT_LOCK(vm_obj);
1415
1416         for (i = 0; i < page_count; i++) {
1417                 page = shmem_read_mapping_page(vm_obj, i);
1418                 if (IS_ERR(page)) {
1419                         i915_gem_purge(dev_priv, page_count);
1420                         goto err_pages;
1421                 }
1422
1423                 obj->pages[i] = page;
1424         }
1425
1426         VM_OBJECT_UNLOCK(vm_obj);
1427         if (i915_gem_object_needs_bit17_swizzle(obj))
1428                 i915_gem_object_do_bit_17_swizzle(obj);
1429
1430         return 0;
1431
1432 err_pages:
1433         for (j = 0; j < i; j++) {
1434                 page = obj->pages[j];
1435                 vm_page_busy_wait(page, FALSE, "i915gem");
1436                 vm_page_unwire(page, 0);
1437                 vm_page_wakeup(page);
1438         }
1439         VM_OBJECT_UNLOCK(vm_obj);
1440         drm_free(obj->pages, M_DRM);
1441         obj->pages = NULL;
1442         return (-EIO);
1443 }
1444
1445 /* Ensure that the associated pages are gathered from the backing storage
1446  * and pinned into our object. i915_gem_object_get_pages() may be called
1447  * multiple times before they are released by a single call to
1448  * i915_gem_object_put_pages() - once the pages are no longer referenced
1449  * either as a result of memory pressure (reaping pages under the shrinker)
1450  * or as the object is itself released.
1451  */
1452 int
1453 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1454 {
1455         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1456         const struct drm_i915_gem_object_ops *ops = obj->ops;
1457         int ret;
1458
1459         if (obj->pages)
1460                 return 0;
1461
1462         if (obj->madv != I915_MADV_WILLNEED) {
1463                 DRM_ERROR("Attempting to obtain a purgeable object\n");
1464                 return -EINVAL;
1465         }
1466
1467         BUG_ON(obj->pages_pin_count);
1468
1469         ret = ops->get_pages(obj);
1470         if (ret)
1471                 return ret;
1472
1473         list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1474         return 0;
1475 }
1476
1477 void
1478 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1479                                struct intel_ring_buffer *ring)
1480 {
1481         struct drm_device *dev = obj->base.dev;
1482         struct drm_i915_private *dev_priv = dev->dev_private;
1483         u32 seqno = intel_ring_get_seqno(ring);
1484
1485         BUG_ON(ring == NULL);
1486         obj->ring = ring;
1487
1488         /* Add a reference if we're newly entering the active list. */
1489         if (!obj->active) {
1490                 drm_gem_object_reference(&obj->base);
1491                 obj->active = 1;
1492         }
1493
1494         /* Move from whatever list we were on to the tail of execution. */
1495         list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1496         list_move_tail(&obj->ring_list, &ring->active_list);
1497
1498         obj->last_read_seqno = seqno;
1499
1500         if (obj->fenced_gpu_access) {
1501                 obj->last_fenced_seqno = seqno;
1502
1503                 /* Bump MRU to take account of the delayed flush */
1504                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1505                         struct drm_i915_fence_reg *reg;
1506
1507                         reg = &dev_priv->fence_regs[obj->fence_reg];
1508                         list_move_tail(&reg->lru_list,
1509                                        &dev_priv->mm.fence_list);
1510                 }
1511         }
1512 }
1513
1514 static void
1515 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1516 {
1517         struct drm_device *dev = obj->base.dev;
1518         struct drm_i915_private *dev_priv = dev->dev_private;
1519
1520         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1521         BUG_ON(!obj->active);
1522
1523         list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1524
1525         list_del_init(&obj->ring_list);
1526         obj->ring = NULL;
1527
1528         obj->last_read_seqno = 0;
1529         obj->last_write_seqno = 0;
1530         obj->base.write_domain = 0;
1531
1532         obj->last_fenced_seqno = 0;
1533         obj->fenced_gpu_access = false;
1534
1535         obj->active = 0;
1536         drm_gem_object_unreference(&obj->base);
1537
1538         WARN_ON(i915_verify_lists(dev));
1539 }
1540
1541 static int
1542 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1543 {
1544         struct drm_i915_private *dev_priv = dev->dev_private;
1545         struct intel_ring_buffer *ring;
1546         int ret, i, j;
1547
1548         /* Carefully retire all requests without writing to the rings */
1549         for_each_ring(ring, dev_priv, i) {
1550                 ret = intel_ring_idle(ring);
1551                 if (ret)
1552                         return ret;
1553         }
1554         i915_gem_retire_requests(dev);
1555
1556         /* Finally reset hw state */
1557         for_each_ring(ring, dev_priv, i) {
1558                 intel_ring_init_seqno(ring, seqno);
1559
1560                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1561                         ring->sync_seqno[j] = 0;
1562         }
1563
1564         return 0;
1565 }
1566
1567 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1568 {
1569         struct drm_i915_private *dev_priv = dev->dev_private;
1570         int ret;
1571
1572         if (seqno == 0)
1573                 return -EINVAL;
1574
1575         /* HWS page needs to be set less than what we
1576          * will inject to ring
1577          */
1578         ret = i915_gem_init_seqno(dev, seqno - 1);
1579         if (ret)
1580                 return ret;
1581
1582         /* Carefully set the last_seqno value so that wrap
1583          * detection still works
1584          */
1585         dev_priv->next_seqno = seqno;
1586         dev_priv->last_seqno = seqno - 1;
1587         if (dev_priv->last_seqno == 0)
1588                 dev_priv->last_seqno--;
1589
1590         return 0;
1591 }
1592
1593 int
1594 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1595 {
1596         struct drm_i915_private *dev_priv = dev->dev_private;
1597
1598         /* reserve 0 for non-seqno */
1599         if (dev_priv->next_seqno == 0) {
1600                 int ret = i915_gem_init_seqno(dev, 0);
1601                 if (ret)
1602                         return ret;
1603
1604                 dev_priv->next_seqno = 1;
1605         }
1606
1607         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
1608         return 0;
1609 }
1610
1611 int
1612 i915_add_request(struct intel_ring_buffer *ring,
1613                  struct drm_file *file,
1614                  u32 *out_seqno)
1615 {
1616         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1617         struct drm_i915_gem_request *request;
1618         u32 request_ring_position;
1619         int was_empty;
1620         int ret;
1621
1622         /*
1623          * Emit any outstanding flushes - execbuf can fail to emit the flush
1624          * after having emitted the batchbuffer command. Hence we need to fix
1625          * things up similar to emitting the lazy request. The difference here
1626          * is that the flush _must_ happen before the next request, no matter
1627          * what.
1628          */
1629         ret = intel_ring_flush_all_caches(ring);
1630         if (ret)
1631                 return ret;
1632
1633         request = kmalloc(sizeof(*request), M_DRM, M_WAITOK);
1634         if (request == NULL)
1635                 return -ENOMEM;
1636
1637
1638         /* Record the position of the start of the request so that
1639          * should we detect the updated seqno part-way through the
1640          * GPU processing the request, we never over-estimate the
1641          * position of the head.
1642          */
1643         request_ring_position = intel_ring_get_tail(ring);
1644
1645         ret = ring->add_request(ring);
1646         if (ret) {
1647                 kfree(request);
1648                 return ret;
1649         }
1650
1651         request->seqno = intel_ring_get_seqno(ring);
1652         request->ring = ring;
1653         request->tail = request_ring_position;
1654         request->emitted_jiffies = jiffies;
1655         was_empty = list_empty(&ring->request_list);
1656         list_add_tail(&request->list, &ring->request_list);
1657         request->file_priv = NULL;
1658
1659         if (file) {
1660                 struct drm_i915_file_private *file_priv = file->driver_priv;
1661
1662                 spin_lock(&file_priv->mm.lock);
1663                 request->file_priv = file_priv;
1664                 list_add_tail(&request->client_list,
1665                               &file_priv->mm.request_list);
1666                 spin_unlock(&file_priv->mm.lock);
1667         }
1668
1669         ring->outstanding_lazy_request = 0;
1670
1671         if (!dev_priv->mm.suspended) {
1672                 if (i915_enable_hangcheck) {
1673                         mod_timer(&dev_priv->gpu_error.hangcheck_timer,
1674                                   round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
1675                 }
1676                 if (was_empty) {
1677                         queue_delayed_work(dev_priv->wq,
1678                                            &dev_priv->mm.retire_work,
1679                                            round_jiffies_up_relative(hz));
1680                         intel_mark_busy(dev_priv->dev);
1681                 }
1682         }
1683
1684         if (out_seqno)
1685                 *out_seqno = request->seqno;
1686         return 0;
1687 }
1688
1689 static inline void
1690 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1691 {
1692         struct drm_i915_file_private *file_priv = request->file_priv;
1693
1694         if (!file_priv)
1695                 return;
1696
1697         spin_lock(&file_priv->mm.lock);
1698         if (request->file_priv) {
1699                 list_del(&request->client_list);
1700                 request->file_priv = NULL;
1701         }
1702         spin_unlock(&file_priv->mm.lock);
1703 }
1704
1705 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1706                                       struct intel_ring_buffer *ring)
1707 {
1708         while (!list_empty(&ring->request_list)) {
1709                 struct drm_i915_gem_request *request;
1710
1711                 request = list_first_entry(&ring->request_list,
1712                                            struct drm_i915_gem_request,
1713                                            list);
1714
1715                 list_del(&request->list);
1716                 i915_gem_request_remove_from_client(request);
1717                 drm_free(request, M_DRM);
1718         }
1719
1720         while (!list_empty(&ring->active_list)) {
1721                 struct drm_i915_gem_object *obj;
1722
1723                 obj = list_first_entry(&ring->active_list,
1724                                        struct drm_i915_gem_object,
1725                                        ring_list);
1726
1727                 i915_gem_object_move_to_inactive(obj);
1728         }
1729 }
1730
1731 void i915_gem_restore_fences(struct drm_device *dev)
1732 {
1733         struct drm_i915_private *dev_priv = dev->dev_private;
1734         int i;
1735
1736         for (i = 0; i < dev_priv->num_fence_regs; i++) {
1737                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1738                 i915_gem_write_fence(dev, i, reg->obj);
1739         }
1740 }
1741
1742 void i915_gem_reset(struct drm_device *dev)
1743 {
1744         struct drm_i915_private *dev_priv = dev->dev_private;
1745         struct drm_i915_gem_object *obj;
1746         struct intel_ring_buffer *ring;
1747         int i;
1748
1749         for_each_ring(ring, dev_priv, i)
1750                 i915_gem_reset_ring_lists(dev_priv, ring);
1751
1752         /* Move everything out of the GPU domains to ensure we do any
1753          * necessary invalidation upon reuse.
1754          */
1755         list_for_each_entry(obj,
1756                             &dev_priv->mm.inactive_list,
1757                             mm_list)
1758         {
1759                 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1760         }
1761
1762         i915_gem_restore_fences(dev);
1763 }
1764
1765 /**
1766  * This function clears the request list as sequence numbers are passed.
1767  */
1768 void
1769 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1770 {
1771         uint32_t seqno;
1772
1773         if (list_empty(&ring->request_list))
1774                 return;
1775
1776         WARN_ON(i915_verify_lists(ring->dev));
1777
1778         seqno = ring->get_seqno(ring, true);
1779
1780         while (!list_empty(&ring->request_list)) {
1781                 struct drm_i915_gem_request *request;
1782
1783                 request = list_first_entry(&ring->request_list,
1784                                            struct drm_i915_gem_request,
1785                                            list);
1786
1787                 if (!i915_seqno_passed(seqno, request->seqno))
1788                         break;
1789
1790                 /* We know the GPU must have read the request to have
1791                  * sent us the seqno + interrupt, so use the position
1792                  * of tail of the request to update the last known position
1793                  * of the GPU head.
1794                  */
1795                 ring->last_retired_head = request->tail;
1796
1797                 list_del(&request->list);
1798                 i915_gem_request_remove_from_client(request);
1799                 kfree(request);
1800         }
1801
1802         /* Move any buffers on the active list that are no longer referenced
1803          * by the ringbuffer to the flushing/inactive lists as appropriate.
1804          */
1805         while (!list_empty(&ring->active_list)) {
1806                 struct drm_i915_gem_object *obj;
1807
1808                 obj = list_first_entry(&ring->active_list,
1809                                       struct drm_i915_gem_object,
1810                                       ring_list);
1811
1812                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
1813                         break;
1814
1815                 i915_gem_object_move_to_inactive(obj);
1816         }
1817
1818         if (unlikely(ring->trace_irq_seqno &&
1819                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1820                 ring->irq_put(ring);
1821                 ring->trace_irq_seqno = 0;
1822         }
1823
1824 }
1825
1826 void
1827 i915_gem_retire_requests(struct drm_device *dev)
1828 {
1829         drm_i915_private_t *dev_priv = dev->dev_private;
1830         struct intel_ring_buffer *ring;
1831         int i;
1832
1833         for_each_ring(ring, dev_priv, i)
1834                 i915_gem_retire_requests_ring(ring);
1835 }
1836
1837 static long
1838 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1839                   bool purgeable_only)
1840 {
1841         struct drm_i915_gem_object *obj, *next;
1842         long count = 0;
1843
1844         list_for_each_entry_safe(obj, next,
1845                                  &dev_priv->mm.unbound_list,
1846                                  gtt_list) {
1847 #if 0
1848                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1849                     i915_gem_object_put_pages(obj) == 0) {
1850                         count += obj->base.size >> PAGE_SHIFT;
1851                         if (count >= target)
1852                                 return count;
1853                 }
1854 #endif
1855         }
1856
1857         list_for_each_entry_safe(obj, next,
1858                                  &dev_priv->mm.inactive_list,
1859                                  mm_list) {
1860 #if 0
1861                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1862                     i915_gem_object_unbind(obj) == 0 &&
1863                     i915_gem_object_put_pages(obj) == 0) {
1864                         count += obj->base.size >> PAGE_SHIFT;
1865                         if (count >= target)
1866                                 return count;
1867                 }
1868 #endif
1869         }
1870
1871         return count;
1872 }
1873
1874 static long
1875 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1876 {
1877         return __i915_gem_shrink(dev_priv, target, true);
1878 }
1879
1880 static void
1881 i915_gem_retire_work_handler(struct work_struct *work)
1882 {
1883         drm_i915_private_t *dev_priv;
1884         struct drm_device *dev;
1885         struct intel_ring_buffer *ring;
1886         bool idle;
1887         int i;
1888
1889         dev_priv = container_of(work, drm_i915_private_t,
1890                                 mm.retire_work.work);
1891         dev = dev_priv->dev;
1892
1893         /* Come back later if the device is busy... */
1894         if (lockmgr(&dev->struct_mutex, LK_EXCLUSIVE|LK_NOWAIT)) {
1895                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
1896                                    round_jiffies_up_relative(hz));
1897                 return;
1898         }
1899
1900         i915_gem_retire_requests(dev);
1901
1902         /* Send a periodic flush down the ring so we don't hold onto GEM
1903          * objects indefinitely.
1904          */
1905         idle = true;
1906         for_each_ring(ring, dev_priv, i) {
1907                 if (ring->gpu_caches_dirty)
1908                         i915_add_request(ring, NULL, NULL);
1909
1910                 idle &= list_empty(&ring->request_list);
1911         }
1912
1913         if (!dev_priv->mm.suspended && !idle)
1914                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
1915                                    round_jiffies_up_relative(hz));
1916         if (idle)
1917                 intel_mark_idle(dev);
1918
1919         mutex_unlock(&dev->struct_mutex);
1920 }
1921 /**
1922  * Ensures that an object will eventually get non-busy by flushing any required
1923  * write domains, emitting any outstanding lazy request and retiring and
1924  * completed requests.
1925  */
1926 static int
1927 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
1928 {
1929         int ret;
1930
1931         if (obj->active) {
1932                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
1933                 if (ret)
1934                         return ret;
1935
1936                 i915_gem_retire_requests_ring(obj->ring);
1937         }
1938
1939         return 0;
1940 }
1941
1942 /**
1943  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
1944  * @DRM_IOCTL_ARGS: standard ioctl arguments
1945  *
1946  * Returns 0 if successful, else an error is returned with the remaining time in
1947  * the timeout parameter.
1948  *  -ETIME: object is still busy after timeout
1949  *  -ERESTARTSYS: signal interrupted the wait
1950  *  -ENONENT: object doesn't exist
1951  * Also possible, but rare:
1952  *  -EAGAIN: GPU wedged
1953  *  -ENOMEM: damn
1954  *  -ENODEV: Internal IRQ fail
1955  *  -E?: The add request failed
1956  *
1957  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
1958  * non-zero timeout parameter the wait ioctl will wait for the given number of
1959  * nanoseconds on an object becoming unbusy. Since the wait itself does so
1960  * without holding struct_mutex the object may become re-busied before this
1961  * function completes. A similar but shorter * race condition exists in the busy
1962  * ioctl
1963  */
1964 int
1965 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
1966 {
1967         drm_i915_private_t *dev_priv = dev->dev_private;
1968         struct drm_i915_gem_wait *args = data;
1969         struct drm_i915_gem_object *obj;
1970         struct intel_ring_buffer *ring = NULL;
1971         struct timespec timeout_stack, *timeout = NULL;
1972         unsigned reset_counter;
1973         u32 seqno = 0;
1974         int ret = 0;
1975
1976         if (args->timeout_ns >= 0) {
1977                 timeout_stack = ns_to_timespec(args->timeout_ns);
1978                 timeout = &timeout_stack;
1979         }
1980
1981         ret = i915_mutex_lock_interruptible(dev);
1982         if (ret)
1983                 return ret;
1984
1985         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
1986         if (&obj->base == NULL) {
1987                 mutex_unlock(&dev->struct_mutex);
1988                 return -ENOENT;
1989         }
1990
1991         /* Need to make sure the object gets inactive eventually. */
1992         ret = i915_gem_object_flush_active(obj);
1993         if (ret)
1994                 goto out;
1995
1996         if (obj->active) {
1997                 seqno = obj->last_read_seqno;
1998                 ring = obj->ring;
1999         }
2000
2001         if (seqno == 0)
2002                  goto out;
2003
2004         /* Do this after OLR check to make sure we make forward progress polling
2005          * on this IOCTL with a 0 timeout (like busy ioctl)
2006          */
2007         if (!args->timeout_ns) {
2008                 ret = -ETIMEDOUT;
2009                 goto out;
2010         }
2011
2012         drm_gem_object_unreference(&obj->base);
2013         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2014         mutex_unlock(&dev->struct_mutex);
2015
2016         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2017         if (timeout)
2018                 args->timeout_ns = timespec_to_ns(timeout);
2019         return ret;
2020
2021 out:
2022         drm_gem_object_unreference(&obj->base);
2023         mutex_unlock(&dev->struct_mutex);
2024         return ret;
2025 }
2026
2027 /**
2028  * i915_gem_object_sync - sync an object to a ring.
2029  *
2030  * @obj: object which may be in use on another ring.
2031  * @to: ring we wish to use the object on. May be NULL.
2032  *
2033  * This code is meant to abstract object synchronization with the GPU.
2034  * Calling with NULL implies synchronizing the object with the CPU
2035  * rather than a particular GPU ring.
2036  *
2037  * Returns 0 if successful, else propagates up the lower layer error.
2038  */
2039 int
2040 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2041                      struct intel_ring_buffer *to)
2042 {
2043         struct intel_ring_buffer *from = obj->ring;
2044         u32 seqno;
2045         int ret, idx;
2046
2047         if (from == NULL || to == from)
2048                 return 0;
2049
2050         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2051                 return i915_gem_object_wait_rendering(obj, false);
2052
2053         idx = intel_ring_sync_index(from, to);
2054
2055         seqno = obj->last_read_seqno;
2056         if (seqno <= from->sync_seqno[idx])
2057                 return 0;
2058
2059         ret = i915_gem_check_olr(obj->ring, seqno);
2060         if (ret)
2061                 return ret;
2062
2063         ret = to->sync_to(to, from, seqno);
2064         if (!ret)
2065                 /* We use last_read_seqno because sync_to()
2066                  * might have just caused seqno wrap under
2067                  * the radar.
2068                  */
2069                 from->sync_seqno[idx] = obj->last_read_seqno;
2070
2071         return ret;
2072 }
2073
2074 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2075 {
2076         u32 old_write_domain, old_read_domains;
2077
2078         /* Force a pagefault for domain tracking on next user access */
2079         i915_gem_release_mmap(obj);
2080
2081         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2082                 return;
2083
2084         /* Wait for any direct GTT access to complete */
2085         cpu_mfence();
2086
2087         old_read_domains = obj->base.read_domains;
2088         old_write_domain = obj->base.write_domain;
2089
2090         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2091         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2092
2093 }
2094
2095 /**
2096  * Unbinds an object from the GTT aperture.
2097  */
2098 int
2099 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2100 {
2101         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2102         int ret;
2103
2104         if (obj->gtt_space == NULL)
2105                 return 0;
2106
2107         if (obj->pin_count)
2108                 return -EBUSY;
2109
2110         BUG_ON(obj->pages == NULL);
2111
2112         ret = i915_gem_object_finish_gpu(obj);
2113         if (ret)
2114                 return ret;
2115         /* Continue on if we fail due to EIO, the GPU is hung so we
2116          * should be safe and we need to cleanup or else we might
2117          * cause memory corruption through use-after-free.
2118          */
2119
2120         i915_gem_object_finish_gtt(obj);
2121
2122         /* Move the object to the CPU domain to ensure that
2123          * any possible CPU writes while it's not in the GTT
2124          * are flushed when we go to remap it.
2125          */
2126         if (ret == 0)
2127                 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2128         if (ret == -ERESTARTSYS)
2129                 return ret;
2130         if (ret) {
2131                 /* In the event of a disaster, abandon all caches and
2132                  * hope for the best.
2133                  */
2134                 i915_gem_clflush_object(obj);
2135                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2136         }
2137
2138         /* release the fence reg _after_ flushing */
2139         ret = i915_gem_object_put_fence(obj);
2140         if (ret)
2141                 return ret;
2142
2143         if (obj->has_global_gtt_mapping)
2144                 i915_gem_gtt_unbind_object(obj);
2145         if (obj->has_aliasing_ppgtt_mapping) {
2146                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2147                 obj->has_aliasing_ppgtt_mapping = 0;
2148         }
2149         i915_gem_gtt_finish_object(obj);
2150
2151         i915_gem_object_put_pages_gtt(obj);
2152
2153         list_del_init(&obj->gtt_list);
2154         list_del_init(&obj->mm_list);
2155         /* Avoid an unnecessary call to unbind on rebind. */
2156         obj->map_and_fenceable = true;
2157
2158         drm_mm_put_block(obj->gtt_space);
2159         obj->gtt_space = NULL;
2160         obj->gtt_offset = 0;
2161
2162         if (i915_gem_object_is_purgeable(obj))
2163                 i915_gem_object_truncate(obj);
2164
2165         return ret;
2166 }
2167
2168 int i915_gpu_idle(struct drm_device *dev)
2169 {
2170         drm_i915_private_t *dev_priv = dev->dev_private;
2171         struct intel_ring_buffer *ring;
2172         int ret, i;
2173
2174         /* Flush everything onto the inactive list. */
2175         for_each_ring(ring, dev_priv, i) {
2176                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2177                 if (ret)
2178                         return ret;
2179
2180                 ret = intel_ring_idle(ring);
2181                 if (ret)
2182                         return ret;
2183         }
2184
2185         return 0;
2186 }
2187
2188 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2189                                  struct drm_i915_gem_object *obj)
2190 {
2191         drm_i915_private_t *dev_priv = dev->dev_private;
2192         int fence_reg;
2193         int fence_pitch_shift;
2194         uint64_t val;
2195
2196         if (INTEL_INFO(dev)->gen >= 6) {
2197                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2198                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2199         } else {
2200                 fence_reg = FENCE_REG_965_0;
2201                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2202         }
2203
2204         if (obj) {
2205                 u32 size = obj->gtt_space->size;
2206
2207                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2208                                  0xfffff000) << 32;
2209                 val |= obj->gtt_offset & 0xfffff000;
2210                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2211                 if (obj->tiling_mode == I915_TILING_Y)
2212                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2213                 val |= I965_FENCE_REG_VALID;
2214         } else
2215                 val = 0;
2216
2217         fence_reg += reg * 8;
2218         I915_WRITE64(fence_reg, val);
2219         POSTING_READ(fence_reg);
2220 }
2221
2222 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2223                                  struct drm_i915_gem_object *obj)
2224 {
2225         drm_i915_private_t *dev_priv = dev->dev_private;
2226         u32 val;
2227
2228         if (obj) {
2229                 u32 size = obj->gtt_space->size;
2230                 int pitch_val;
2231                 int tile_width;
2232
2233                 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2234                      (size & -size) != size ||
2235                      (obj->gtt_offset & (size - 1)),
2236                      "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2237                      obj->gtt_offset, obj->map_and_fenceable, size);
2238
2239                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2240                         tile_width = 128;
2241                 else
2242                         tile_width = 512;
2243
2244                 /* Note: pitch better be a power of two tile widths */
2245                 pitch_val = obj->stride / tile_width;
2246                 pitch_val = ffs(pitch_val) - 1;
2247
2248                 val = obj->gtt_offset;
2249                 if (obj->tiling_mode == I915_TILING_Y)
2250                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2251                 val |= I915_FENCE_SIZE_BITS(size);
2252                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2253                 val |= I830_FENCE_REG_VALID;
2254         } else
2255                 val = 0;
2256
2257         if (reg < 8)
2258                 reg = FENCE_REG_830_0 + reg * 4;
2259         else
2260                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2261
2262         I915_WRITE(reg, val);
2263         POSTING_READ(reg);
2264 }
2265
2266 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2267                                 struct drm_i915_gem_object *obj)
2268 {
2269         drm_i915_private_t *dev_priv = dev->dev_private;
2270         uint32_t val;
2271
2272         if (obj) {
2273                 u32 size = obj->gtt_space->size;
2274                 uint32_t pitch_val;
2275
2276                 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2277                      (size & -size) != size ||
2278                      (obj->gtt_offset & (size - 1)),
2279                      "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2280                      obj->gtt_offset, size);
2281
2282                 pitch_val = obj->stride / 128;
2283                 pitch_val = ffs(pitch_val) - 1;
2284
2285                 val = obj->gtt_offset;
2286                 if (obj->tiling_mode == I915_TILING_Y)
2287                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2288                 val |= I830_FENCE_SIZE_BITS(size);
2289                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2290                 val |= I830_FENCE_REG_VALID;
2291         } else
2292                 val = 0;
2293
2294         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2295         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2296 }
2297
2298 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2299 {
2300         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2301 }
2302
2303 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2304                                  struct drm_i915_gem_object *obj)
2305 {
2306         struct drm_i915_private *dev_priv = dev->dev_private;
2307
2308         /* Ensure that all CPU reads are completed before installing a fence
2309          * and all writes before removing the fence.
2310          */
2311         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2312                 cpu_mfence();
2313
2314         switch (INTEL_INFO(dev)->gen) {
2315         case 7:
2316         case 6:
2317         case 5:
2318         case 4: i965_write_fence_reg(dev, reg, obj); break;
2319         case 3: i915_write_fence_reg(dev, reg, obj); break;
2320         case 2: i830_write_fence_reg(dev, reg, obj); break;
2321         default: BUG();
2322         }
2323
2324         /* And similarly be paranoid that no direct access to this region
2325          * is reordered to before the fence is installed.
2326          */
2327         if (i915_gem_object_needs_mb(obj))
2328                 cpu_mfence();
2329 }
2330
2331 static inline int fence_number(struct drm_i915_private *dev_priv,
2332                                struct drm_i915_fence_reg *fence)
2333 {
2334         return fence - dev_priv->fence_regs;
2335 }
2336
2337 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2338                                          struct drm_i915_fence_reg *fence,
2339                                          bool enable)
2340 {
2341         struct drm_device *dev = obj->base.dev;
2342         struct drm_i915_private *dev_priv = dev->dev_private;
2343         int fence_reg = fence_number(dev_priv, fence);
2344
2345         /* In order to fully serialize access to the fenced region and
2346          * the update to the fence register we need to take extreme
2347          * measures on SNB+. In theory, the write to the fence register
2348          * flushes all memory transactions before, and coupled with the
2349          * mb() placed around the register write we serialise all memory
2350          * operations with respect to the changes in the tiler. Yet, on
2351          * SNB+ we need to take a step further and emit an explicit wbinvd()
2352          * on each processor in order to manually flush all memory
2353          * transactions before updating the fence register.
2354          */
2355         if (HAS_LLC(obj->base.dev))
2356                 cpu_wbinvd_on_all_cpus();
2357         i915_gem_write_fence(dev, fence_reg, enable ? obj : NULL);
2358
2359         if (enable) {
2360                 obj->fence_reg = fence_reg;
2361                 fence->obj = obj;
2362                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2363         } else {
2364                 obj->fence_reg = I915_FENCE_REG_NONE;
2365                 fence->obj = NULL;
2366                 list_del_init(&fence->lru_list);
2367         }
2368 }
2369
2370 static int
2371 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2372 {
2373         if (obj->last_fenced_seqno) {
2374                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2375                 if (ret)
2376                         return ret;
2377
2378                 obj->last_fenced_seqno = 0;
2379         }
2380
2381         obj->fenced_gpu_access = false;
2382         return 0;
2383 }
2384
2385 int
2386 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2387 {
2388         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2389         struct drm_i915_fence_reg *fence;
2390         int ret;
2391
2392         ret = i915_gem_object_wait_fence(obj);
2393         if (ret)
2394                 return ret;
2395
2396         if (obj->fence_reg == I915_FENCE_REG_NONE)
2397                 return 0;
2398
2399         fence = &dev_priv->fence_regs[obj->fence_reg];
2400
2401         i915_gem_object_fence_lost(obj);
2402         i915_gem_object_update_fence(obj, fence, false);
2403
2404         return 0;
2405 }
2406
2407 static struct drm_i915_fence_reg *
2408 i915_find_fence_reg(struct drm_device *dev)
2409 {
2410         struct drm_i915_private *dev_priv = dev->dev_private;
2411         struct drm_i915_fence_reg *reg, *avail;
2412         int i;
2413
2414         /* First try to find a free reg */
2415         avail = NULL;
2416         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2417                 reg = &dev_priv->fence_regs[i];
2418                 if (!reg->obj)
2419                         return reg;
2420
2421                 if (!reg->pin_count)
2422                         avail = reg;
2423         }
2424
2425         if (avail == NULL)
2426                 return NULL;
2427
2428         /* None available, try to steal one or wait for a user to finish */
2429         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2430                 if (reg->pin_count)
2431                         continue;
2432
2433                 return reg;
2434         }
2435
2436         return NULL;
2437 }
2438
2439 /**
2440  * i915_gem_object_get_fence - set up fencing for an object
2441  * @obj: object to map through a fence reg
2442  *
2443  * When mapping objects through the GTT, userspace wants to be able to write
2444  * to them without having to worry about swizzling if the object is tiled.
2445  * This function walks the fence regs looking for a free one for @obj,
2446  * stealing one if it can't find any.
2447  *
2448  * It then sets up the reg based on the object's properties: address, pitch
2449  * and tiling format.
2450  *
2451  * For an untiled surface, this removes any existing fence.
2452  */
2453 int
2454 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2455 {
2456         struct drm_device *dev = obj->base.dev;
2457         struct drm_i915_private *dev_priv = dev->dev_private;
2458         bool enable = obj->tiling_mode != I915_TILING_NONE;
2459         struct drm_i915_fence_reg *reg;
2460         int ret;
2461
2462         /* Have we updated the tiling parameters upon the object and so
2463          * will need to serialise the write to the associated fence register?
2464          */
2465         if (obj->fence_dirty) {
2466                 ret = i915_gem_object_wait_fence(obj);
2467                 if (ret)
2468                         return ret;
2469         }
2470
2471         /* Just update our place in the LRU if our fence is getting reused. */
2472         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2473                 reg = &dev_priv->fence_regs[obj->fence_reg];
2474                 if (!obj->fence_dirty) {
2475                         list_move_tail(&reg->lru_list,
2476                                        &dev_priv->mm.fence_list);
2477                         return 0;
2478                 }
2479         } else if (enable) {
2480                 reg = i915_find_fence_reg(dev);
2481                 if (reg == NULL)
2482                         return -EDEADLK;
2483
2484                 if (reg->obj) {
2485                         struct drm_i915_gem_object *old = reg->obj;
2486
2487                         ret = i915_gem_object_wait_fence(old);
2488                         if (ret)
2489                                 return ret;
2490
2491                         i915_gem_object_fence_lost(old);
2492                 }
2493         } else
2494                 return 0;
2495
2496         i915_gem_object_update_fence(obj, reg, enable);
2497         obj->fence_dirty = false;
2498
2499         return 0;
2500 }
2501
2502 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2503                                      struct drm_mm_node *gtt_space,
2504                                      unsigned long cache_level)
2505 {
2506         struct drm_mm_node *other;
2507
2508         /* On non-LLC machines we have to be careful when putting differing
2509          * types of snoopable memory together to avoid the prefetcher
2510          * crossing memory domains and dying.
2511          */
2512         if (HAS_LLC(dev))
2513                 return true;
2514
2515         if (gtt_space == NULL)
2516                 return true;
2517
2518         if (list_empty(&gtt_space->node_list))
2519                 return true;
2520
2521         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2522         if (other->allocated && !other->hole_follows && other->color != cache_level)
2523                 return false;
2524
2525         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2526         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2527                 return false;
2528
2529         return true;
2530 }
2531
2532 static void i915_gem_verify_gtt(struct drm_device *dev)
2533 {
2534 #if WATCH_GTT
2535         struct drm_i915_private *dev_priv = dev->dev_private;
2536         struct drm_i915_gem_object *obj;
2537         int err = 0;
2538
2539         list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2540                 if (obj->gtt_space == NULL) {
2541                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
2542                         err++;
2543                         continue;
2544                 }
2545
2546                 if (obj->cache_level != obj->gtt_space->color) {
2547                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2548                                obj->gtt_space->start,
2549                                obj->gtt_space->start + obj->gtt_space->size,
2550                                obj->cache_level,
2551                                obj->gtt_space->color);
2552                         err++;
2553                         continue;
2554                 }
2555
2556                 if (!i915_gem_valid_gtt_space(dev,
2557                                               obj->gtt_space,
2558                                               obj->cache_level)) {
2559                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2560                                obj->gtt_space->start,
2561                                obj->gtt_space->start + obj->gtt_space->size,
2562                                obj->cache_level);
2563                         err++;
2564                         continue;
2565                 }
2566         }
2567
2568         WARN_ON(err);
2569 #endif
2570 }
2571
2572 /**
2573  * Finds free space in the GTT aperture and binds the object there.
2574  */
2575 static int
2576 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2577                             unsigned alignment,
2578                             bool map_and_fenceable,
2579                             bool nonblocking)
2580 {
2581         struct drm_device *dev = obj->base.dev;
2582         drm_i915_private_t *dev_priv = dev->dev_private;
2583         struct drm_mm_node *free_space;
2584         uint32_t size, fence_size, fence_alignment, unfenced_alignment;
2585         bool mappable, fenceable;
2586         int ret;
2587
2588         fence_size = i915_gem_get_gtt_size(dev,
2589                                            obj->base.size,
2590                                            obj->tiling_mode);
2591         fence_alignment = i915_gem_get_gtt_alignment(dev,
2592                                                      obj->base.size,
2593                                                      obj->tiling_mode, true);
2594         unfenced_alignment =
2595                 i915_gem_get_gtt_alignment(dev,
2596                                                     obj->base.size,
2597                                                     obj->tiling_mode, false);
2598
2599         if (alignment == 0)
2600                 alignment = map_and_fenceable ? fence_alignment :
2601                                                 unfenced_alignment;
2602         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2603                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2604                 return -EINVAL;
2605         }
2606
2607         size = map_and_fenceable ? fence_size : obj->base.size;
2608
2609         /* If the object is bigger than the entire aperture, reject it early
2610          * before evicting everything in a vain attempt to find space.
2611          */
2612         if (obj->base.size >
2613             (map_and_fenceable ? dev_priv->gtt.mappable_end : dev_priv->gtt.total)) {
2614                 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2615                 return -E2BIG;
2616         }
2617
2618  search_free:
2619         if (map_and_fenceable)
2620                 free_space =
2621                         drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2622                                                           size, alignment, obj->cache_level,
2623                                                           0, dev_priv->gtt.mappable_end,
2624                                                           false);
2625         else
2626                 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2627                                                       size, alignment, obj->cache_level,
2628                                                       false);
2629         if (free_space != NULL) {
2630                 if (map_and_fenceable)
2631                         obj->gtt_space =
2632                                 drm_mm_get_block_range_generic(free_space,
2633                                                                size, alignment, obj->cache_level,
2634                                                                0, dev_priv->gtt.mappable_end,
2635                                                                false);
2636                 else
2637                         obj->gtt_space =
2638                                 drm_mm_get_block_generic(free_space,
2639                                                          size, alignment, obj->cache_level,
2640                                                          false);
2641         }
2642         if (obj->gtt_space == NULL) {
2643                 ret = i915_gem_evict_something(dev, size, alignment,
2644                                                obj->cache_level,
2645                                                map_and_fenceable,
2646                                                nonblocking);
2647                 if (ret)
2648                         return ret;
2649
2650                 goto search_free;
2651         }
2652
2653         /*
2654          * NOTE: i915_gem_object_get_pages_gtt() cannot
2655          *       return ENOMEM, since we used VM_ALLOC_RETRY.
2656          */
2657         ret = i915_gem_object_get_pages_gtt(obj);
2658         if (ret != 0) {
2659                 drm_mm_put_block(obj->gtt_space);
2660                 obj->gtt_space = NULL;
2661                 return ret;
2662         }
2663
2664         i915_gem_gtt_bind_object(obj, obj->cache_level);
2665         if (ret != 0) {
2666                 i915_gem_object_put_pages_gtt(obj);
2667                 drm_mm_put_block(obj->gtt_space);
2668                 obj->gtt_space = NULL;
2669                 if (i915_gem_evict_everything(dev))
2670                         return (ret);
2671                 goto search_free;
2672         }
2673
2674         list_add_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2675         list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2676
2677         obj->gtt_offset = obj->gtt_space->start;
2678
2679         fenceable =
2680                 obj->gtt_space->size == fence_size &&
2681                 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
2682
2683         mappable =
2684                 obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
2685
2686         obj->map_and_fenceable = mappable && fenceable;
2687
2688         i915_gem_verify_gtt(dev);
2689         return 0;
2690 }
2691
2692 void
2693 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2694 {
2695
2696         /* If we don't have a page list set up, then we're not pinned
2697          * to GPU, and we can ignore the cache flush because it'll happen
2698          * again at bind time.
2699          */
2700         if (obj->pages == NULL)
2701                 return;
2702
2703         /*
2704          * Stolen memory is always coherent with the GPU as it is explicitly
2705          * marked as wc by the system, or the system is cache-coherent.
2706          */
2707         if (obj->stolen)
2708                 return;
2709
2710         /* If the GPU is snooping the contents of the CPU cache,
2711          * we do not need to manually clear the CPU cache lines.  However,
2712          * the caches are only snooped when the render cache is
2713          * flushed/invalidated.  As we always have to emit invalidations
2714          * and flushes when moving into and out of the RENDER domain, correct
2715          * snooping behaviour occurs naturally as the result of our domain
2716          * tracking.
2717          */
2718         if (obj->cache_level != I915_CACHE_NONE)
2719                 return;
2720
2721         drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2722 }
2723
2724 /** Flushes the GTT write domain for the object if it's dirty. */
2725 static void
2726 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2727 {
2728         uint32_t old_write_domain;
2729
2730         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2731                 return;
2732
2733         /* No actual flushing is required for the GTT write domain.  Writes
2734          * to it immediately go to main memory as far as we know, so there's
2735          * no chipset flush.  It also doesn't land in render cache.
2736          *
2737          * However, we do have to enforce the order so that all writes through
2738          * the GTT land before any writes to the device, such as updates to
2739          * the GATT itself.
2740          */
2741         cpu_sfence();
2742
2743         old_write_domain = obj->base.write_domain;
2744         obj->base.write_domain = 0;
2745 }
2746
2747 /** Flushes the CPU write domain for the object if it's dirty. */
2748 static void
2749 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2750 {
2751         uint32_t old_write_domain;
2752
2753         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2754                 return;
2755
2756         i915_gem_clflush_object(obj);
2757         i915_gem_chipset_flush(obj->base.dev);
2758         old_write_domain = obj->base.write_domain;
2759         obj->base.write_domain = 0;
2760 }
2761
2762 /**
2763  * Moves a single object to the GTT read, and possibly write domain.
2764  *
2765  * This function returns when the move is complete, including waiting on
2766  * flushes to occur.
2767  */
2768 int
2769 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2770 {
2771         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2772         uint32_t old_write_domain, old_read_domains;
2773         int ret;
2774
2775         /* Not valid to be called on unbound objects. */
2776         if (obj->gtt_space == NULL)
2777                 return -EINVAL;
2778
2779         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2780                 return 0;
2781
2782         ret = i915_gem_object_wait_rendering(obj, !write);
2783         if (ret)
2784                 return ret;
2785
2786         i915_gem_object_flush_cpu_write_domain(obj);
2787
2788         /* Serialise direct access to this object with the barriers for
2789          * coherent writes from the GPU, by effectively invalidating the
2790          * GTT domain upon first access.
2791          */
2792         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2793                 cpu_mfence();
2794
2795         old_write_domain = obj->base.write_domain;
2796         old_read_domains = obj->base.read_domains;
2797
2798         /* It should now be out of any other write domains, and we can update
2799          * the domain values for our changes.
2800          */
2801         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2802         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2803         if (write) {
2804                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2805                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2806                 obj->dirty = 1;
2807         }
2808
2809         /* And bump the LRU for this access */
2810         if (i915_gem_object_is_inactive(obj))
2811                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2812
2813         return 0;
2814 }
2815
2816 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2817                                     enum i915_cache_level cache_level)
2818 {
2819         struct drm_device *dev = obj->base.dev;
2820         drm_i915_private_t *dev_priv = dev->dev_private;
2821         int ret;
2822
2823         if (obj->cache_level == cache_level)
2824                 return 0;
2825
2826         if (obj->pin_count) {
2827                 DRM_DEBUG("can not change the cache level of pinned objects\n");
2828                 return -EBUSY;
2829         }
2830
2831         if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
2832                 ret = i915_gem_object_unbind(obj);
2833                 if (ret)
2834                         return ret;
2835         }
2836
2837         if (obj->gtt_space) {
2838                 ret = i915_gem_object_finish_gpu(obj);
2839                 if (ret)
2840                         return ret;
2841
2842                 i915_gem_object_finish_gtt(obj);
2843
2844                 /* Before SandyBridge, you could not use tiling or fence
2845                  * registers with snooped memory, so relinquish any fences
2846                  * currently pointing to our region in the aperture.
2847                  */
2848                 if (INTEL_INFO(dev)->gen < 6) {
2849                         ret = i915_gem_object_put_fence(obj);
2850                         if (ret)
2851                                 return ret;
2852                 }
2853
2854                 if (obj->has_global_gtt_mapping)
2855                         i915_gem_gtt_bind_object(obj, cache_level);
2856                 if (obj->has_aliasing_ppgtt_mapping)
2857                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2858                                                obj, cache_level);
2859
2860                 obj->gtt_space->color = cache_level;
2861         }
2862
2863         if (cache_level == I915_CACHE_NONE) {
2864                 u32 old_read_domains, old_write_domain;
2865
2866                 /* If we're coming from LLC cached, then we haven't
2867                  * actually been tracking whether the data is in the
2868                  * CPU cache or not, since we only allow one bit set
2869                  * in obj->write_domain and have been skipping the clflushes.
2870                  * Just set it to the CPU cache for now.
2871                  */
2872                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2873                 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2874
2875                 old_read_domains = obj->base.read_domains;
2876                 old_write_domain = obj->base.write_domain;
2877
2878                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2879                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2880
2881         }
2882
2883         obj->cache_level = cache_level;
2884         i915_gem_verify_gtt(dev);
2885         return 0;
2886 }
2887
2888 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
2889                                struct drm_file *file)
2890 {
2891         struct drm_i915_gem_caching *args = data;
2892         struct drm_i915_gem_object *obj;
2893         int ret;
2894
2895         ret = i915_mutex_lock_interruptible(dev);
2896         if (ret)
2897                 return ret;
2898
2899         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
2900         if (&obj->base == NULL) {
2901                 ret = -ENOENT;
2902                 goto unlock;
2903         }
2904
2905         args->caching = obj->cache_level != I915_CACHE_NONE;
2906
2907         drm_gem_object_unreference(&obj->base);
2908 unlock:
2909         mutex_unlock(&dev->struct_mutex);
2910         return ret;
2911 }
2912
2913 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
2914                                struct drm_file *file)
2915 {
2916         struct drm_i915_gem_caching *args = data;
2917         struct drm_i915_gem_object *obj;
2918         enum i915_cache_level level;
2919         int ret;
2920
2921         switch (args->caching) {
2922         case I915_CACHING_NONE:
2923                 level = I915_CACHE_NONE;
2924                 break;
2925         case I915_CACHING_CACHED:
2926                 level = I915_CACHE_LLC;
2927                 break;
2928         default:
2929                 return -EINVAL;
2930         }
2931
2932         ret = i915_mutex_lock_interruptible(dev);
2933         if (ret)
2934                 return ret;
2935
2936         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
2937         if (&obj->base == NULL) {
2938                 ret = -ENOENT;
2939                 goto unlock;
2940         }
2941
2942         ret = i915_gem_object_set_cache_level(obj, level);
2943
2944         drm_gem_object_unreference(&obj->base);
2945 unlock:
2946         mutex_unlock(&dev->struct_mutex);
2947         return ret;
2948 }
2949
2950 /*
2951  * Prepare buffer for display plane (scanout, cursors, etc).
2952  * Can be called from an uninterruptible phase (modesetting) and allows
2953  * any flushes to be pipelined (for pageflips).
2954  */
2955 int
2956 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2957                                      u32 alignment,
2958                                      struct intel_ring_buffer *pipelined)
2959 {
2960         u32 old_read_domains, old_write_domain;
2961         int ret;
2962
2963         if (pipelined != obj->ring) {
2964                 ret = i915_gem_object_sync(obj, pipelined);
2965                 if (ret)
2966                         return ret;
2967         }
2968
2969         /* The display engine is not coherent with the LLC cache on gen6.  As
2970          * a result, we make sure that the pinning that is about to occur is
2971          * done with uncached PTEs. This is lowest common denominator for all
2972          * chipsets.
2973          *
2974          * However for gen6+, we could do better by using the GFDT bit instead
2975          * of uncaching, which would allow us to flush all the LLC-cached data
2976          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
2977          */
2978         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
2979         if (ret)
2980                 return ret;
2981
2982         /* As the user may map the buffer once pinned in the display plane
2983          * (e.g. libkms for the bootup splash), we have to ensure that we
2984          * always use map_and_fenceable for all scanout buffers.
2985          */
2986         ret = i915_gem_object_pin(obj, alignment, true, false);
2987         if (ret)
2988                 return ret;
2989
2990         i915_gem_object_flush_cpu_write_domain(obj);
2991
2992         old_write_domain = obj->base.write_domain;
2993         old_read_domains = obj->base.read_domains;
2994
2995         /* It should now be out of any other write domains, and we can update
2996          * the domain values for our changes.
2997          */
2998         obj->base.write_domain = 0;
2999         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3000
3001         return 0;
3002 }
3003
3004 int
3005 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3006 {
3007         int ret;
3008
3009         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3010                 return 0;
3011
3012         ret = i915_gem_object_wait_rendering(obj, false);
3013         if (ret)
3014                 return ret;
3015
3016         /* Ensure that we invalidate the GPU's caches and TLBs. */
3017         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3018         return 0;
3019 }
3020
3021 /**
3022  * Moves a single object to the CPU read, and possibly write domain.
3023  *
3024  * This function returns when the move is complete, including waiting on
3025  * flushes to occur.
3026  */
3027 int
3028 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3029 {
3030         uint32_t old_write_domain, old_read_domains;
3031         int ret;
3032
3033         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3034                 return 0;
3035
3036         ret = i915_gem_object_wait_rendering(obj, !write);
3037         if (ret)
3038                 return ret;
3039
3040         i915_gem_object_flush_gtt_write_domain(obj);
3041
3042         old_write_domain = obj->base.write_domain;
3043         old_read_domains = obj->base.read_domains;
3044
3045         /* Flush the CPU cache if it's still invalid. */
3046         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3047                 i915_gem_clflush_object(obj);
3048
3049                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3050         }
3051
3052         /* It should now be out of any other write domains, and we can update
3053          * the domain values for our changes.
3054          */
3055         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3056
3057         /* If we're writing through the CPU, then the GPU read domains will
3058          * need to be invalidated at next use.
3059          */
3060         if (write) {
3061                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3062                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3063         }
3064
3065         return 0;
3066 }
3067
3068 /* Throttle our rendering by waiting until the ring has completed our requests
3069  * emitted over 20 msec ago.
3070  *
3071  * Note that if we were to use the current jiffies each time around the loop,
3072  * we wouldn't escape the function with any frames outstanding if the time to
3073  * render a frame was over 20ms.
3074  *
3075  * This should get us reasonable parallelism between CPU and GPU but also
3076  * relatively low latency when blocking on a particular request to finish.
3077  */
3078 static int
3079 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3080 {
3081         struct drm_i915_private *dev_priv = dev->dev_private;
3082         struct drm_i915_file_private *file_priv = file->driver_priv;
3083         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3084         struct drm_i915_gem_request *request;
3085         struct intel_ring_buffer *ring = NULL;
3086         unsigned reset_counter;
3087         u32 seqno = 0;
3088         int ret;
3089
3090         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3091         if (ret)
3092                 return ret;
3093
3094         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3095         if (ret)
3096                 return ret;
3097
3098         spin_lock(&file_priv->mm.lock);
3099         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3100                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3101                         break;
3102
3103                 ring = request->ring;
3104                 seqno = request->seqno;
3105         }
3106         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3107         spin_unlock(&file_priv->mm.lock);
3108
3109         if (seqno == 0)
3110                 return 0;
3111
3112         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3113         if (ret == 0)
3114                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3115
3116         return ret;
3117 }
3118
3119 int
3120 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3121                     uint32_t alignment,
3122                     bool map_and_fenceable,
3123                     bool nonblocking)
3124 {
3125         int ret;
3126
3127         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3128                 return -EBUSY;
3129
3130         if (obj->gtt_space != NULL) {
3131                 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3132                     (map_and_fenceable && !obj->map_and_fenceable)) {
3133                         WARN(obj->pin_count,
3134                              "bo is already pinned with incorrect alignment:"
3135                              " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3136                              " obj->map_and_fenceable=%d\n",
3137                              obj->gtt_offset, alignment,
3138                              map_and_fenceable,
3139                              obj->map_and_fenceable);
3140                         ret = i915_gem_object_unbind(obj);
3141                         if (ret)
3142                                 return ret;
3143                 }
3144         }
3145
3146         if (obj->gtt_space == NULL) {
3147                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3148
3149                 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3150                                                   map_and_fenceable,
3151                                                   nonblocking);
3152                 if (ret)
3153                         return ret;
3154
3155                 if (!dev_priv->mm.aliasing_ppgtt)
3156                         i915_gem_gtt_bind_object(obj, obj->cache_level);
3157         }
3158
3159         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3160                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3161
3162         obj->pin_count++;
3163         obj->pin_mappable |= map_and_fenceable;
3164
3165         return 0;
3166 }
3167
3168 void
3169 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3170 {
3171         BUG_ON(obj->pin_count == 0);
3172         BUG_ON(obj->gtt_space == NULL);
3173
3174         if (--obj->pin_count == 0)
3175                 obj->pin_mappable = false;
3176 }
3177
3178 int
3179 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3180                    struct drm_file *file)
3181 {
3182         struct drm_i915_gem_pin *args = data;
3183         struct drm_i915_gem_object *obj;
3184         int ret;
3185
3186         ret = i915_mutex_lock_interruptible(dev);
3187         if (ret)
3188                 return ret;
3189
3190         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3191         if (&obj->base == NULL) {
3192                 ret = -ENOENT;
3193                 goto unlock;
3194         }
3195
3196         if (obj->madv != I915_MADV_WILLNEED) {
3197                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3198                 ret = -EINVAL;
3199                 goto out;
3200         }
3201
3202         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3203                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3204                           args->handle);
3205                 ret = -EINVAL;
3206                 goto out;
3207         }
3208
3209         if (obj->user_pin_count == 0) {
3210                 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3211                 if (ret)
3212                         goto out;
3213         }
3214
3215         obj->user_pin_count++;
3216         obj->pin_filp = file;
3217
3218         /* XXX - flush the CPU caches for pinned objects
3219          * as the X server doesn't manage domains yet
3220          */
3221         i915_gem_object_flush_cpu_write_domain(obj);
3222         args->offset = obj->gtt_offset;
3223 out:
3224         drm_gem_object_unreference(&obj->base);
3225 unlock:
3226         mutex_unlock(&dev->struct_mutex);
3227         return ret;
3228 }
3229
3230 int
3231 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3232                      struct drm_file *file)
3233 {
3234         struct drm_i915_gem_pin *args = data;
3235         struct drm_i915_gem_object *obj;
3236         int ret;
3237
3238         ret = i915_mutex_lock_interruptible(dev);
3239         if (ret)
3240                 return ret;
3241
3242         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3243         if (&obj->base == NULL) {
3244                 ret = -ENOENT;
3245                 goto unlock;
3246         }
3247
3248         if (obj->pin_filp != file) {
3249                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3250                           args->handle);
3251                 ret = -EINVAL;
3252                 goto out;
3253         }
3254         obj->user_pin_count--;
3255         if (obj->user_pin_count == 0) {
3256                 obj->pin_filp = NULL;
3257                 i915_gem_object_unpin(obj);
3258         }
3259
3260 out:
3261         drm_gem_object_unreference(&obj->base);
3262 unlock:
3263         mutex_unlock(&dev->struct_mutex);
3264         return ret;
3265 }
3266
3267 int
3268 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3269                     struct drm_file *file)
3270 {
3271         struct drm_i915_gem_busy *args = data;
3272         struct drm_i915_gem_object *obj;
3273         int ret;
3274
3275         ret = i915_mutex_lock_interruptible(dev);
3276         if (ret)
3277                 return ret;
3278
3279         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3280         if (&obj->base == NULL) {
3281                 ret = -ENOENT;
3282                 goto unlock;
3283         }
3284
3285         /* Count all active objects as busy, even if they are currently not used
3286          * by the gpu. Users of this interface expect objects to eventually
3287          * become non-busy without any further actions, therefore emit any
3288          * necessary flushes here.
3289          */
3290         ret = i915_gem_object_flush_active(obj);
3291
3292         args->busy = obj->active;
3293         if (obj->ring) {
3294                 args->busy |= intel_ring_flag(obj->ring) << 16;
3295         }
3296
3297         drm_gem_object_unreference(&obj->base);
3298 unlock:
3299         mutex_unlock(&dev->struct_mutex);
3300         return ret;
3301 }
3302
3303 int
3304 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3305                         struct drm_file *file_priv)
3306 {
3307         return i915_gem_ring_throttle(dev, file_priv);
3308 }
3309
3310 int
3311 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3312                        struct drm_file *file_priv)
3313 {
3314         struct drm_i915_gem_madvise *args = data;
3315         struct drm_i915_gem_object *obj;
3316         int ret;
3317
3318         switch (args->madv) {
3319         case I915_MADV_DONTNEED:
3320         case I915_MADV_WILLNEED:
3321             break;
3322         default:
3323             return -EINVAL;
3324         }
3325
3326         ret = i915_mutex_lock_interruptible(dev);
3327         if (ret)
3328                 return ret;
3329
3330         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3331         if (&obj->base == NULL) {
3332                 ret = -ENOENT;
3333                 goto unlock;
3334         }
3335
3336         if (obj->pin_count) {
3337                 ret = -EINVAL;
3338                 goto out;
3339         }
3340
3341         if (obj->madv != __I915_MADV_PURGED)
3342                 obj->madv = args->madv;
3343
3344         /* if the object is no longer attached, discard its backing storage */
3345         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3346                 i915_gem_object_truncate(obj);
3347
3348         args->retained = obj->madv != __I915_MADV_PURGED;
3349
3350 out:
3351         drm_gem_object_unreference(&obj->base);
3352 unlock:
3353         mutex_unlock(&dev->struct_mutex);
3354         return ret;
3355 }
3356
3357 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3358                           const struct drm_i915_gem_object_ops *ops)
3359 {
3360         INIT_LIST_HEAD(&obj->mm_list);
3361         INIT_LIST_HEAD(&obj->gtt_list);
3362         INIT_LIST_HEAD(&obj->ring_list);
3363         INIT_LIST_HEAD(&obj->exec_list);
3364
3365         obj->ops = ops;
3366
3367         obj->fence_reg = I915_FENCE_REG_NONE;
3368         obj->madv = I915_MADV_WILLNEED;
3369         /* Avoid an unnecessary call to unbind on the first bind. */
3370         obj->map_and_fenceable = true;
3371
3372         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3373 }
3374
3375 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3376         .get_pages = i915_gem_object_get_pages_gtt,
3377         .put_pages = i915_gem_object_put_pages_gtt,
3378 };
3379
3380 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3381                                                   size_t size)
3382 {
3383         struct drm_i915_gem_object *obj;
3384 #if 0
3385         struct address_space *mapping;
3386         u32 mask;
3387 #endif
3388
3389         obj = kmalloc(sizeof(*obj), M_DRM, M_WAITOK | M_ZERO);
3390         if (obj == NULL)
3391                 return NULL;
3392
3393         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3394                 kfree(obj);
3395                 return NULL;
3396         }
3397
3398 #if 0
3399         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3400         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3401                 /* 965gm cannot relocate objects above 4GiB. */
3402                 mask &= ~__GFP_HIGHMEM;
3403                 mask |= __GFP_DMA32;
3404         }
3405
3406         mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3407         mapping_set_gfp_mask(mapping, mask);
3408 #endif
3409
3410         i915_gem_object_init(obj, &i915_gem_object_ops);
3411
3412         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3413         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3414
3415         if (HAS_LLC(dev)) {
3416                 /* On some devices, we can have the GPU use the LLC (the CPU
3417                  * cache) for about a 10% performance improvement
3418                  * compared to uncached.  Graphics requests other than
3419                  * display scanout are coherent with the CPU in
3420                  * accessing this cache.  This means in this mode we
3421                  * don't need to clflush on the CPU side, and on the
3422                  * GPU side we only need to flush internal caches to
3423                  * get data visible to the CPU.
3424                  *
3425                  * However, we maintain the display planes as UC, and so
3426                  * need to rebind when first used as such.
3427                  */
3428                 obj->cache_level = I915_CACHE_LLC;
3429         } else
3430                 obj->cache_level = I915_CACHE_NONE;
3431
3432         return obj;
3433 }
3434
3435 int i915_gem_init_object(struct drm_gem_object *obj)
3436 {
3437         BUG();
3438
3439         return 0;
3440 }
3441
3442 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3443 {
3444         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3445         struct drm_device *dev = obj->base.dev;
3446         drm_i915_private_t *dev_priv = dev->dev_private;
3447
3448         if (obj->phys_obj)
3449                 i915_gem_detach_phys_object(dev, obj);
3450
3451         obj->pin_count = 0;
3452         if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3453                 bool was_interruptible;
3454
3455                 was_interruptible = dev_priv->mm.interruptible;
3456                 dev_priv->mm.interruptible = false;
3457
3458                 WARN_ON(i915_gem_object_unbind(obj));
3459
3460                 dev_priv->mm.interruptible = was_interruptible;
3461         }
3462
3463         drm_gem_free_mmap_offset(&obj->base);
3464
3465         drm_gem_object_release(&obj->base);
3466         i915_gem_info_remove_obj(dev_priv, obj->base.size);
3467
3468         drm_free(obj->bit_17, M_DRM);
3469         drm_free(obj, M_DRM);
3470 }
3471
3472 int
3473 i915_gem_idle(struct drm_device *dev)
3474 {
3475         drm_i915_private_t *dev_priv = dev->dev_private;
3476         int ret;
3477
3478         mutex_lock(&dev->struct_mutex);
3479
3480         if (dev_priv->mm.suspended) {
3481                 mutex_unlock(&dev->struct_mutex);
3482                 return 0;
3483         }
3484
3485         ret = i915_gpu_idle(dev);
3486         if (ret) {
3487                 mutex_unlock(&dev->struct_mutex);
3488                 return ret;
3489         }
3490         i915_gem_retire_requests(dev);
3491
3492         /* Under UMS, be paranoid and evict. */
3493         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3494                 i915_gem_evict_everything(dev);
3495
3496         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3497          * We need to replace this with a semaphore, or something.
3498          * And not confound mm.suspended!
3499          */
3500         dev_priv->mm.suspended = 1;
3501         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
3502
3503         i915_kernel_lost_context(dev);
3504         i915_gem_cleanup_ringbuffer(dev);
3505
3506         mutex_unlock(&dev->struct_mutex);
3507
3508         /* Cancel the retire work handler, which should be idle now. */
3509         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3510
3511         return 0;
3512 }
3513
3514 void i915_gem_l3_remap(struct drm_device *dev)
3515 {
3516         drm_i915_private_t *dev_priv = dev->dev_private;
3517         u32 misccpctl;
3518         int i;
3519
3520         if (!HAS_L3_GPU_CACHE(dev))
3521                 return;
3522
3523         if (!dev_priv->l3_parity.remap_info)
3524                 return;
3525
3526         misccpctl = I915_READ(GEN7_MISCCPCTL);
3527         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3528         POSTING_READ(GEN7_MISCCPCTL);
3529
3530         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3531                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3532                 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3533                         DRM_DEBUG("0x%x was already programmed to %x\n",
3534                                   GEN7_L3LOG_BASE + i, remap);
3535                 if (remap && !dev_priv->l3_parity.remap_info[i/4])
3536                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
3537                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3538         }
3539
3540         /* Make sure all the writes land before disabling dop clock gating */
3541         POSTING_READ(GEN7_L3LOG_BASE);
3542
3543         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3544 }
3545
3546 void i915_gem_init_swizzling(struct drm_device *dev)
3547 {
3548         drm_i915_private_t *dev_priv = dev->dev_private;
3549
3550         if (INTEL_INFO(dev)->gen < 5 ||
3551             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3552                 return;
3553
3554         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3555                                  DISP_TILE_SURFACE_SWIZZLING);
3556
3557         if (IS_GEN5(dev))
3558                 return;
3559
3560         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3561         if (IS_GEN6(dev))
3562                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3563         else if (IS_GEN7(dev))
3564                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3565         else
3566                 BUG();
3567 }
3568
3569 static bool
3570 intel_enable_blt(struct drm_device *dev)
3571 {
3572         int revision;
3573
3574         if (!HAS_BLT(dev))
3575                 return false;
3576
3577         /* The blitter was dysfunctional on early prototypes */
3578         revision = pci_read_config(dev->dev, PCIR_REVID, 1);
3579         if (IS_GEN6(dev) && revision < 8) {
3580                 DRM_INFO("BLT not supported on this pre-production hardware;"
3581                          " graphics performance will be degraded.\n");
3582                 return false;
3583         }
3584
3585         return true;
3586 }
3587
3588 static int i915_gem_init_rings(struct drm_device *dev)
3589 {
3590         struct drm_i915_private *dev_priv = dev->dev_private;
3591         int ret;
3592
3593         ret = intel_init_render_ring_buffer(dev);
3594         if (ret)
3595                 return ret;
3596
3597         if (HAS_BSD(dev)) {
3598                 ret = intel_init_bsd_ring_buffer(dev);
3599                 if (ret)
3600                         goto cleanup_render_ring;
3601         }
3602
3603         if (intel_enable_blt(dev)) {
3604                 ret = intel_init_blt_ring_buffer(dev);
3605                 if (ret)
3606                         goto cleanup_bsd_ring;
3607         }
3608
3609         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
3610         if (ret)
3611                 goto cleanup_blt_ring;
3612
3613         return 0;
3614
3615 cleanup_blt_ring:
3616         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
3617 cleanup_bsd_ring:
3618         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3619 cleanup_render_ring:
3620         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3621
3622         return ret;
3623 }
3624
3625 int
3626 i915_gem_init_hw(struct drm_device *dev)
3627 {
3628         drm_i915_private_t *dev_priv = dev->dev_private;
3629         int ret;
3630
3631 #if 0
3632         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3633                 return -EIO;
3634 #endif
3635
3636         if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3637                 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3638
3639         if (HAS_PCH_NOP(dev)) {
3640                 u32 temp = I915_READ(GEN7_MSG_CTL);
3641                 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
3642                 I915_WRITE(GEN7_MSG_CTL, temp);
3643         }
3644
3645         i915_gem_l3_remap(dev);
3646
3647         i915_gem_init_swizzling(dev);
3648
3649         ret = i915_gem_init_rings(dev);
3650         if (ret)
3651                 return ret;
3652
3653         /*
3654          * XXX: There was some w/a described somewhere suggesting loading
3655          * contexts before PPGTT.
3656          */
3657         i915_gem_context_init(dev);
3658         if (dev_priv->mm.aliasing_ppgtt) {
3659                 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
3660                 if (ret) {
3661                         i915_gem_cleanup_aliasing_ppgtt(dev);
3662                         DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
3663                 }
3664         }
3665
3666         return 0;
3667 }
3668
3669 int i915_gem_init(struct drm_device *dev)
3670 {
3671         struct drm_i915_private *dev_priv = dev->dev_private;
3672         int ret;
3673
3674         mutex_lock(&dev->struct_mutex);
3675
3676         if (IS_VALLEYVIEW(dev)) {
3677                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
3678                 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
3679                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
3680                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
3681         }
3682
3683         i915_gem_init_global_gtt(dev);
3684
3685         ret = i915_gem_init_hw(dev);
3686         mutex_unlock(&dev->struct_mutex);
3687         if (ret) {
3688                 i915_gem_cleanup_aliasing_ppgtt(dev);
3689                 return ret;
3690         }
3691
3692         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3693         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3694                 dev_priv->dri1.allow_batchbuffer = 1;
3695         return 0;
3696 }
3697
3698 void
3699 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3700 {
3701         drm_i915_private_t *dev_priv = dev->dev_private;
3702         struct intel_ring_buffer *ring;
3703         int i;
3704
3705         for_each_ring(ring, dev_priv, i)
3706                 intel_cleanup_ring_buffer(ring);
3707 }
3708
3709 int
3710 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3711                        struct drm_file *file_priv)
3712 {
3713         drm_i915_private_t *dev_priv = dev->dev_private;
3714         int ret;
3715
3716         if (drm_core_check_feature(dev, DRIVER_MODESET))
3717                 return 0;
3718
3719         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
3720                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3721                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
3722         }
3723
3724         mutex_lock(&dev->struct_mutex);
3725         dev_priv->mm.suspended = 0;
3726
3727         ret = i915_gem_init_hw(dev);
3728         if (ret != 0) {
3729                 mutex_unlock(&dev->struct_mutex);
3730                 return ret;
3731         }
3732
3733         KASSERT(list_empty(&dev_priv->mm.active_list), ("active list"));
3734         mutex_unlock(&dev->struct_mutex);
3735
3736         ret = drm_irq_install(dev);
3737         if (ret)
3738                 goto cleanup_ringbuffer;
3739
3740         return 0;
3741
3742 cleanup_ringbuffer:
3743         mutex_lock(&dev->struct_mutex);
3744         i915_gem_cleanup_ringbuffer(dev);
3745         dev_priv->mm.suspended = 1;
3746         mutex_unlock(&dev->struct_mutex);
3747
3748         return ret;
3749 }
3750
3751 int
3752 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3753                        struct drm_file *file_priv)
3754 {
3755         if (drm_core_check_feature(dev, DRIVER_MODESET))
3756                 return 0;
3757
3758         drm_irq_uninstall(dev);
3759         return i915_gem_idle(dev);
3760 }
3761
3762 void
3763 i915_gem_lastclose(struct drm_device *dev)
3764 {
3765         int ret;
3766
3767         if (drm_core_check_feature(dev, DRIVER_MODESET))
3768                 return;
3769
3770         ret = i915_gem_idle(dev);
3771         if (ret)
3772                 DRM_ERROR("failed to idle hardware: %d\n", ret);
3773 }
3774
3775 static void
3776 init_ring_lists(struct intel_ring_buffer *ring)
3777 {
3778         INIT_LIST_HEAD(&ring->active_list);
3779         INIT_LIST_HEAD(&ring->request_list);
3780 }
3781
3782 void
3783 i915_gem_load(struct drm_device *dev)
3784 {
3785         int i;
3786         drm_i915_private_t *dev_priv = dev->dev_private;
3787
3788         INIT_LIST_HEAD(&dev_priv->mm.active_list);
3789         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3790         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
3791         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
3792         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3793         for (i = 0; i < I915_NUM_RINGS; i++)
3794                 init_ring_lists(&dev_priv->ring[i]);
3795         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3796                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3797         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3798                           i915_gem_retire_work_handler);
3799         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
3800
3801         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3802         if (IS_GEN3(dev)) {
3803                 I915_WRITE(MI_ARB_STATE,
3804                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
3805         }
3806
3807         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3808
3809         /* Old X drivers will take 0-2 for front, back, depth buffers */
3810         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3811                 dev_priv->fence_reg_start = 3;
3812
3813         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
3814                 dev_priv->num_fence_regs = 32;
3815         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3816                 dev_priv->num_fence_regs = 16;
3817         else
3818                 dev_priv->num_fence_regs = 8;
3819
3820         /* Initialize fence registers to zero */
3821         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3822         i915_gem_restore_fences(dev);
3823
3824         i915_gem_detect_bit_6_swizzle(dev);
3825         init_waitqueue_head(&dev_priv->pending_flip_queue);
3826
3827         dev_priv->mm.interruptible = true;
3828
3829 #if 0
3830         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3831         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3832         register_shrinker(&dev_priv->mm.inactive_shrinker);
3833 #else
3834         dev_priv->mm.inactive_shrinker = EVENTHANDLER_REGISTER(vm_lowmem,
3835             i915_gem_lowmem, dev, EVENTHANDLER_PRI_ANY);
3836 #endif
3837 }
3838
3839 /*
3840  * Create a physically contiguous memory object for this object
3841  * e.g. for cursor + overlay regs
3842  */
3843 static int i915_gem_init_phys_object(struct drm_device *dev,
3844                                      int id, int size, int align)
3845 {
3846         drm_i915_private_t *dev_priv = dev->dev_private;
3847         struct drm_i915_gem_phys_object *phys_obj;
3848         int ret;
3849
3850         if (dev_priv->mm.phys_objs[id - 1] || !size)
3851                 return 0;
3852
3853         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3854         if (!phys_obj)
3855                 return -ENOMEM;
3856
3857         phys_obj->id = id;
3858
3859         phys_obj->handle = drm_pci_alloc(dev, size, align);
3860         if (!phys_obj->handle) {
3861                 ret = -ENOMEM;
3862                 goto kfree_obj;
3863         }
3864         pmap_change_attr((vm_offset_t)phys_obj->handle->vaddr,
3865             size / PAGE_SIZE, PAT_WRITE_COMBINING);
3866
3867         dev_priv->mm.phys_objs[id - 1] = phys_obj;
3868
3869         return 0;
3870
3871 kfree_obj:
3872         drm_free(phys_obj, M_DRM);
3873         return ret;
3874 }
3875
3876 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3877 {
3878         drm_i915_private_t *dev_priv = dev->dev_private;
3879         struct drm_i915_gem_phys_object *phys_obj;
3880
3881         if (!dev_priv->mm.phys_objs[id - 1])
3882                 return;
3883
3884         phys_obj = dev_priv->mm.phys_objs[id - 1];
3885         if (phys_obj->cur_obj) {
3886                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3887         }
3888
3889         drm_pci_free(dev, phys_obj->handle);
3890         drm_free(phys_obj, M_DRM);
3891         dev_priv->mm.phys_objs[id - 1] = NULL;
3892 }
3893
3894 void i915_gem_free_all_phys_object(struct drm_device *dev)
3895 {
3896         int i;
3897
3898         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3899                 i915_gem_free_phys_object(dev, i);
3900 }
3901
3902 void i915_gem_detach_phys_object(struct drm_device *dev,
3903                                  struct drm_i915_gem_object *obj)
3904 {
3905         struct vm_object *mapping = obj->base.vm_obj;
3906         char *vaddr;
3907         int i;
3908         int page_count;
3909
3910         if (!obj->phys_obj)
3911                 return;
3912         vaddr = obj->phys_obj->handle->vaddr;
3913
3914         page_count = obj->base.size / PAGE_SIZE;
3915         VM_OBJECT_LOCK(obj->base.vm_obj);
3916         for (i = 0; i < page_count; i++) {
3917                 struct vm_page *page = shmem_read_mapping_page(mapping, i);
3918                 if (!IS_ERR(page)) {
3919                         VM_OBJECT_UNLOCK(obj->base.vm_obj);
3920                         char *dst = kmap_atomic(page);
3921                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3922                         kunmap_atomic(dst);
3923
3924                         drm_clflush_pages(&page, 1);
3925
3926 #if 0
3927                         set_page_dirty(page);
3928                         mark_page_accessed(page);
3929                         page_cache_release(page);
3930 #endif
3931                         VM_OBJECT_LOCK(obj->base.vm_obj);
3932                         vm_page_reference(page);
3933                         vm_page_dirty(page);
3934                         vm_page_busy_wait(page, FALSE, "i915gem");
3935                         vm_page_unwire(page, 0);
3936                         vm_page_wakeup(page);
3937                 }
3938         }
3939         VM_OBJECT_UNLOCK(obj->base.vm_obj);
3940         intel_gtt_chipset_flush();
3941
3942         obj->phys_obj->cur_obj = NULL;
3943         obj->phys_obj = NULL;
3944 }
3945
3946 int
3947 i915_gem_attach_phys_object(struct drm_device *dev,
3948                             struct drm_i915_gem_object *obj,
3949                             int id,
3950                             int align)
3951 {
3952         struct vm_object *mapping = obj->base.vm_obj;
3953         drm_i915_private_t *dev_priv = dev->dev_private;
3954         int ret = 0;
3955         int page_count;
3956         int i;
3957
3958         if (id > I915_MAX_PHYS_OBJECT)
3959                 return -EINVAL;
3960
3961         if (obj->phys_obj) {
3962                 if (obj->phys_obj->id == id)
3963                         return 0;
3964                 i915_gem_detach_phys_object(dev, obj);
3965         }
3966
3967         /* create a new object */
3968         if (!dev_priv->mm.phys_objs[id - 1]) {
3969                 ret = i915_gem_init_phys_object(dev, id,
3970                                                 obj->base.size, align);
3971                 if (ret) {
3972                         DRM_ERROR("failed to init phys object %d size: %zu\n",
3973                                   id, obj->base.size);
3974                         return ret;
3975                 }
3976         }
3977
3978         /* bind to the object */
3979         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
3980         obj->phys_obj->cur_obj = obj;
3981
3982         page_count = obj->base.size / PAGE_SIZE;
3983
3984         VM_OBJECT_LOCK(obj->base.vm_obj);
3985         for (i = 0; i < page_count; i++) {
3986                 struct vm_page *page;
3987                 char *dst, *src;
3988
3989                 page = shmem_read_mapping_page(mapping, i);
3990                 VM_OBJECT_UNLOCK(obj->base.vm_obj);
3991                 if (IS_ERR(page))
3992                         return PTR_ERR(page);
3993
3994                 src = kmap_atomic(page);
3995                 dst = (char*)obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3996                 memcpy(dst, src, PAGE_SIZE);
3997                 kunmap_atomic(src);
3998
3999 #if 0
4000                 mark_page_accessed(page);
4001                 page_cache_release(page);
4002 #endif
4003                 VM_OBJECT_LOCK(obj->base.vm_obj);
4004                 vm_page_reference(page);
4005                 vm_page_busy_wait(page, FALSE, "i915gem");
4006                 vm_page_unwire(page, 0);
4007                 vm_page_wakeup(page);
4008         }
4009         VM_OBJECT_UNLOCK(obj->base.vm_obj);
4010
4011         return 0;
4012 }
4013
4014 static int
4015 i915_gem_phys_pwrite(struct drm_device *dev,
4016                      struct drm_i915_gem_object *obj,
4017                      struct drm_i915_gem_pwrite *args,
4018                      struct drm_file *file_priv)
4019 {
4020         void *vaddr = (char *)obj->phys_obj->handle->vaddr + args->offset;
4021         char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4022
4023         if (copyin_nofault(user_data, vaddr, args->size) != 0) {
4024                 unsigned long unwritten;
4025
4026                 /* The physical object once assigned is fixed for the lifetime
4027                  * of the obj, so we can safely drop the lock and continue
4028                  * to access vaddr.
4029                  */
4030                 mutex_unlock(&dev->struct_mutex);
4031                 unwritten = copy_from_user(vaddr, user_data, args->size);
4032                 mutex_lock(&dev->struct_mutex);
4033                 if (unwritten)
4034                         return -EFAULT;
4035         }
4036
4037         i915_gem_chipset_flush(dev);
4038         return 0;
4039 }
4040
4041 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4042 {
4043         struct drm_i915_file_private *file_priv = file->driver_priv;
4044
4045         /* Clean up our request list when the client is going away, so that
4046          * later retire_requests won't dereference our soon-to-be-gone
4047          * file_priv.
4048          */
4049         spin_lock(&file_priv->mm.lock);
4050         while (!list_empty(&file_priv->mm.request_list)) {
4051                 struct drm_i915_gem_request *request;
4052
4053                 request = list_first_entry(&file_priv->mm.request_list,
4054                                            struct drm_i915_gem_request,
4055                                            client_list);
4056                 list_del(&request->client_list);
4057                 request->file_priv = NULL;
4058         }
4059         spin_unlock(&file_priv->mm.lock);
4060 }
4061
4062 static int
4063 i915_gem_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
4064     vm_ooffset_t foff, struct ucred *cred, u_short *color)
4065 {
4066
4067         *color = 0; /* XXXKIB */
4068         return (0);
4069 }
4070
4071 int i915_intr_pf;
4072
4073 static int
4074 i915_gem_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot,
4075     vm_page_t *mres)
4076 {
4077         struct drm_gem_object *gem_obj;
4078         struct drm_i915_gem_object *obj;
4079         struct drm_device *dev;
4080         drm_i915_private_t *dev_priv;
4081         vm_page_t m, oldm;
4082         int cause, ret;
4083         bool write;
4084
4085         gem_obj = vm_obj->handle;
4086         obj = to_intel_bo(gem_obj);
4087         dev = obj->base.dev;
4088         dev_priv = dev->dev_private;
4089 #if 0
4090         write = (prot & VM_PROT_WRITE) != 0;
4091 #else
4092         write = true;
4093 #endif
4094         vm_object_pip_add(vm_obj, 1);
4095
4096         /*
4097          * Remove the placeholder page inserted by vm_fault() from the
4098          * object before dropping the object lock. If
4099          * i915_gem_release_mmap() is active in parallel on this gem
4100          * object, then it owns the drm device sx and might find the
4101          * placeholder already. Then, since the page is busy,
4102          * i915_gem_release_mmap() sleeps waiting for the busy state
4103          * of the page cleared. We will be not able to acquire drm
4104          * device lock until i915_gem_release_mmap() is able to make a
4105          * progress.
4106          */
4107         if (*mres != NULL) {
4108                 oldm = *mres;
4109                 vm_page_remove(oldm);
4110                 *mres = NULL;
4111         } else
4112                 oldm = NULL;
4113 retry:
4114         VM_OBJECT_UNLOCK(vm_obj);
4115 unlocked_vmobj:
4116         cause = ret = 0;
4117         m = NULL;
4118
4119         if (i915_intr_pf) {
4120                 ret = i915_mutex_lock_interruptible(dev);
4121                 if (ret != 0) {
4122                         cause = 10;
4123                         goto out;
4124                 }
4125         } else
4126                 mutex_lock(&dev->struct_mutex);
4127
4128         /*
4129          * Since the object lock was dropped, other thread might have
4130          * faulted on the same GTT address and instantiated the
4131          * mapping for the page.  Recheck.
4132          */
4133         VM_OBJECT_LOCK(vm_obj);
4134         m = vm_page_lookup(vm_obj, OFF_TO_IDX(offset));
4135         if (m != NULL) {
4136                 if ((m->flags & PG_BUSY) != 0) {
4137                         mutex_unlock(&dev->struct_mutex);
4138 #if 0 /* XXX */
4139                         vm_page_sleep(m, "915pee");
4140 #endif
4141                         goto retry;
4142                 }
4143                 goto have_page;
4144         } else
4145                 VM_OBJECT_UNLOCK(vm_obj);
4146
4147         /* Access to snoopable pages through the GTT is incoherent. */
4148         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
4149                 ret = -EINVAL;
4150                 goto unlock;
4151         }
4152
4153         /* Now bind it into the GTT if needed */
4154         if (!obj->map_and_fenceable) {
4155                 ret = i915_gem_object_unbind(obj);
4156                 if (ret != 0) {
4157                         cause = 20;
4158                         goto unlock;
4159                 }
4160         }
4161         if (!obj->gtt_space) {
4162                 ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
4163                 if (ret != 0) {
4164                         cause = 30;
4165                         goto unlock;
4166                 }
4167
4168                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
4169                 if (ret != 0) {
4170                         cause = 40;
4171                         goto unlock;
4172                 }
4173         }
4174
4175         if (obj->tiling_mode == I915_TILING_NONE)
4176                 ret = i915_gem_object_put_fence(obj);
4177         else
4178                 ret = i915_gem_object_get_fence(obj);
4179         if (ret != 0) {
4180                 cause = 50;
4181                 goto unlock;
4182         }
4183
4184         if (i915_gem_object_is_inactive(obj))
4185                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
4186
4187         obj->fault_mappable = true;
4188         VM_OBJECT_LOCK(vm_obj);
4189         m = vm_phys_fictitious_to_vm_page(dev->agp->base + obj->gtt_offset +
4190             offset);
4191         if (m == NULL) {
4192                 cause = 60;
4193                 ret = -EFAULT;
4194                 goto unlock;
4195         }
4196         KASSERT((m->flags & PG_FICTITIOUS) != 0,
4197             ("not fictitious %p", m));
4198         KASSERT(m->wire_count == 1, ("wire_count not 1 %p", m));
4199
4200         if ((m->flags & PG_BUSY) != 0) {
4201                 mutex_unlock(&dev->struct_mutex);
4202 #if 0 /* XXX */
4203                 vm_page_sleep(m, "915pbs");
4204 #endif
4205                 goto retry;
4206         }
4207         m->valid = VM_PAGE_BITS_ALL;
4208         vm_page_insert(m, vm_obj, OFF_TO_IDX(offset));
4209 have_page:
4210         *mres = m;
4211         vm_page_busy_try(m, false);
4212
4213         mutex_unlock(&dev->struct_mutex);
4214         if (oldm != NULL) {
4215                 vm_page_free(oldm);
4216         }
4217         vm_object_pip_wakeup(vm_obj);
4218         return (VM_PAGER_OK);
4219
4220 unlock:
4221         mutex_unlock(&dev->struct_mutex);
4222 out:
4223         KASSERT(ret != 0, ("i915_gem_pager_fault: wrong return"));
4224         if (ret == -EAGAIN || ret == -EIO || ret == -EINTR) {
4225                 goto unlocked_vmobj;
4226         }
4227         VM_OBJECT_LOCK(vm_obj);
4228         vm_object_pip_wakeup(vm_obj);
4229         return (VM_PAGER_ERROR);
4230 }
4231
4232 static void
4233 i915_gem_pager_dtor(void *handle)
4234 {
4235         struct drm_gem_object *obj;
4236         struct drm_device *dev;
4237
4238         obj = handle;
4239         dev = obj->dev;
4240
4241         mutex_lock(&dev->struct_mutex);
4242         drm_gem_free_mmap_offset(obj);
4243         i915_gem_release_mmap(to_intel_bo(obj));
4244         drm_gem_object_unreference(obj);
4245         mutex_unlock(&dev->struct_mutex);
4246 }
4247
4248 struct cdev_pager_ops i915_gem_pager_ops = {
4249         .cdev_pg_fault  = i915_gem_pager_fault,
4250         .cdev_pg_ctor   = i915_gem_pager_ctor,
4251         .cdev_pg_dtor   = i915_gem_pager_dtor
4252 };
4253
4254 #define GEM_PARANOID_CHECK_GTT 0
4255 #if GEM_PARANOID_CHECK_GTT
4256 static void
4257 i915_gem_assert_pages_not_mapped(struct drm_device *dev, vm_page_t *ma,
4258     int page_count)
4259 {
4260         struct drm_i915_private *dev_priv;
4261         vm_paddr_t pa;
4262         unsigned long start, end;
4263         u_int i;
4264         int j;
4265
4266         dev_priv = dev->dev_private;
4267         start = OFF_TO_IDX(dev_priv->mm.gtt_start);
4268         end = OFF_TO_IDX(dev_priv->mm.gtt_end);
4269         for (i = start; i < end; i++) {
4270                 pa = intel_gtt_read_pte_paddr(i);
4271                 for (j = 0; j < page_count; j++) {
4272                         if (pa == VM_PAGE_TO_PHYS(ma[j])) {
4273                                 panic("Page %p in GTT pte index %d pte %x",
4274                                     ma[i], i, intel_gtt_read_pte(i));
4275                         }
4276                 }
4277         }
4278 }
4279 #endif
4280
4281 static int
4282 i915_gpu_is_active(struct drm_device *dev)
4283 {
4284         drm_i915_private_t *dev_priv = dev->dev_private;
4285
4286         return !list_empty(&dev_priv->mm.active_list);
4287 }
4288
4289 static void
4290 i915_gem_lowmem(void *arg)
4291 {
4292         struct drm_device *dev;
4293         struct drm_i915_private *dev_priv;
4294         struct drm_i915_gem_object *obj, *next;
4295         int cnt, cnt_fail, cnt_total;
4296
4297         dev = arg;
4298         dev_priv = dev->dev_private;
4299
4300         if (lockmgr(&dev->struct_mutex, LK_EXCLUSIVE|LK_NOWAIT))
4301                 return;
4302
4303 rescan:
4304         /* first scan for clean buffers */
4305         i915_gem_retire_requests(dev);
4306
4307         cnt_total = cnt_fail = cnt = 0;
4308
4309         list_for_each_entry_safe(obj, next, &dev_priv->mm.inactive_list,
4310             mm_list) {
4311                 if (i915_gem_object_is_purgeable(obj)) {
4312                         if (i915_gem_object_unbind(obj) != 0)
4313                                 cnt_total++;
4314                 } else
4315                         cnt_total++;
4316         }
4317
4318         /* second pass, evict/count anything still on the inactive list */
4319         list_for_each_entry_safe(obj, next, &dev_priv->mm.inactive_list,
4320             mm_list) {
4321                 if (i915_gem_object_unbind(obj) == 0)
4322                         cnt++;
4323                 else
4324                         cnt_fail++;
4325         }
4326
4327         if (cnt_fail > cnt_total / 100 && i915_gpu_is_active(dev)) {
4328                 /*
4329                  * We are desperate for pages, so as a last resort, wait
4330                  * for the GPU to finish and discard whatever we can.
4331                  * This has a dramatic impact to reduce the number of
4332                  * OOM-killer events whilst running the GPU aggressively.
4333                  */
4334                 if (i915_gpu_idle(dev) == 0)
4335                         goto rescan;
4336         }
4337         mutex_unlock(&dev->struct_mutex);
4338 }