service(8): Sync with FreeBSD.
[dragonfly.git] / usr.sbin / nscd / nscd.c
1 /*-
2  * Copyright (c) 2005 Michael Bushkov <bushman@rsu.ru>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in thereg
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/usr.sbin/nscd/nscd.c,v 1.7 2008/10/23 00:27:35 delphij Exp $
27  */
28
29 #include <sys/types.h>
30 #include <sys/event.h>
31 #include <sys/socket.h>
32 #include <sys/time.h>
33 #include <sys/param.h>
34 #include <sys/un.h>
35 #include <assert.h>
36 #include <err.h>
37 #include <errno.h>
38 #include <fcntl.h>
39 #include <libutil.h>
40 #include <pthread.h>
41 #include <signal.h>
42 #include <stdio.h>
43 #include <stdlib.h>
44 #include <string.h>
45 #include <unistd.h>
46
47 #include "agents/passwd.h"
48 #include "agents/group.h"
49 #include "agents/services.h"
50 #include "cachelib.h"
51 #include "config.h"
52 #include "debug.h"
53 #include "log.h"
54 #include "nscdcli.h"
55 #include "parser.h"
56 #include "pidfile.h"
57 #include "query.h"
58 #include "singletons.h"
59
60 #ifndef CONFIG_PATH
61 #define CONFIG_PATH "/etc/nscd.conf"
62 #endif
63 #define DEFAULT_CONFIG_PATH     "nscd.conf"
64
65 #define MAX_SOCKET_IO_SIZE      4096
66
67 struct processing_thread_args {
68         cache   the_cache;
69         struct configuration    *the_configuration;
70         struct runtime_env              *the_runtime_env;
71 };
72
73 static void accept_connection(struct kevent *, struct runtime_env *,
74         struct configuration *);
75 static void destroy_cache_(cache);
76 static void destroy_runtime_env(struct runtime_env *);
77 static cache init_cache_(struct configuration *);
78 static struct runtime_env *init_runtime_env(struct configuration *);
79 static void processing_loop(cache, struct runtime_env *,
80         struct configuration *);
81 static void process_socket_event(struct kevent *, struct runtime_env *,
82         struct configuration *);
83 static void process_timer_event(struct kevent *, struct runtime_env *,
84         struct configuration *);
85 static void *processing_thread(void *);
86 static void usage(void);
87
88 void get_time_func(struct timeval *);
89
90 static void
91 usage(void)
92 {
93         fprintf(stderr,
94             "usage: nscd [-dnst] [-i cachename] [-I cachename]\n");
95         exit(1);
96 }
97
98 static cache
99 init_cache_(struct configuration *config)
100 {
101         struct cache_params params;
102         cache retval;
103
104         struct configuration_entry *config_entry;
105         size_t  size, i;
106         int res;
107
108         TRACE_IN(init_cache_);
109
110         memset(&params, 0, sizeof(struct cache_params));
111         params.get_time_func = get_time_func;
112         retval = init_cache(&params);
113
114         size = configuration_get_entries_size(config);
115         for (i = 0; i < size; ++i) {
116                 config_entry = configuration_get_entry(config, i);
117                 /*
118                  * We should register common entries now - multipart entries
119                  * would be registered automatically during the queries.
120                  */
121                 res = register_cache_entry(retval, (struct cache_entry_params *)
122                         &config_entry->positive_cache_params);
123                 config_entry->positive_cache_entry = find_cache_entry(retval,
124                         config_entry->positive_cache_params.entry_name);
125                 assert(config_entry->positive_cache_entry !=
126                         INVALID_CACHE_ENTRY);
127
128                 res = register_cache_entry(retval, (struct cache_entry_params *)
129                         &config_entry->negative_cache_params);
130                 config_entry->negative_cache_entry = find_cache_entry(retval,
131                         config_entry->negative_cache_params.entry_name);
132                 assert(config_entry->negative_cache_entry !=
133                         INVALID_CACHE_ENTRY);
134         }
135
136         LOG_MSG_2("cache", "cache was successfully initialized");
137         TRACE_OUT(init_cache_);
138         return (retval);
139 }
140
141 static void
142 destroy_cache_(cache the_cache)
143 {
144         TRACE_IN(destroy_cache_);
145         destroy_cache(the_cache);
146         TRACE_OUT(destroy_cache_);
147 }
148
149 /*
150  * Socket and kqueues are prepared here. We have one global queue for both
151  * socket and timers events.
152  */
153 static struct runtime_env *
154 init_runtime_env(struct configuration *config)
155 {
156         int serv_addr_len;
157         struct sockaddr_un serv_addr;
158
159         struct kevent eventlist;
160         struct timespec timeout;
161
162         struct runtime_env *retval;
163
164         TRACE_IN(init_runtime_env);
165         retval = (struct runtime_env *)calloc(1, sizeof(struct runtime_env));
166         assert(retval != NULL);
167
168         retval->sockfd = socket(PF_LOCAL, SOCK_STREAM, 0);
169
170         if (config->force_unlink == 1)
171                 unlink(config->socket_path);
172
173         memset(&serv_addr, 0, sizeof(struct sockaddr_un));
174         serv_addr.sun_family = PF_LOCAL;
175         strlcpy(serv_addr.sun_path, config->socket_path,
176                 sizeof(serv_addr.sun_path));
177         serv_addr_len = sizeof(serv_addr.sun_family) +
178                 strlen(serv_addr.sun_path) + 1;
179
180         if (bind(retval->sockfd, (struct sockaddr *)&serv_addr,
181                 serv_addr_len) == -1) {
182                 close(retval->sockfd);
183                 free(retval);
184
185                 LOG_ERR_2("runtime environment", "can't bind socket to path: "
186                         "%s", config->socket_path);
187                 TRACE_OUT(init_runtime_env);
188                 return (NULL);
189         }
190         LOG_MSG_2("runtime environment", "using socket %s",
191                 config->socket_path);
192
193         /*
194          * Here we're marking socket as non-blocking and setting its backlog
195          * to the maximum value
196          */
197         chmod(config->socket_path, config->socket_mode);
198         listen(retval->sockfd, -1);
199         fcntl(retval->sockfd, F_SETFL, O_NONBLOCK);
200
201         retval->queue = kqueue();
202         assert(retval->queue != -1);
203
204         EV_SET(&eventlist, retval->sockfd, EVFILT_READ, EV_ADD | EV_ONESHOT,
205                 0, 0, 0);
206         memset(&timeout, 0, sizeof(struct timespec));
207         kevent(retval->queue, &eventlist, 1, NULL, 0, &timeout);
208
209         LOG_MSG_2("runtime environment", "successfully initialized");
210         TRACE_OUT(init_runtime_env);
211         return (retval);
212 }
213
214 static void
215 destroy_runtime_env(struct runtime_env *env)
216 {
217         TRACE_IN(destroy_runtime_env);
218         close(env->queue);
219         close(env->sockfd);
220         free(env);
221         TRACE_OUT(destroy_runtime_env);
222 }
223
224 static void
225 accept_connection(struct kevent *event_data, struct runtime_env *env,
226         struct configuration *config)
227 {
228         struct kevent   eventlist[2];
229         struct timespec timeout;
230         struct query_state      *qstate;
231
232         int     fd;
233         int     res;
234
235         uid_t   euid;
236         gid_t   egid;
237
238         TRACE_IN(accept_connection);
239         fd = accept(event_data->ident, NULL, NULL);
240         if (fd == -1) {
241                 LOG_ERR_2("accept_connection", "error %d during accept()",
242                     errno);
243                 TRACE_OUT(accept_connection);
244                 return;
245         }
246
247         if (getpeereid(fd, &euid, &egid) != 0) {
248                 LOG_ERR_2("accept_connection", "error %d during getpeereid()",
249                         errno);
250                 TRACE_OUT(accept_connection);
251                 return;
252         }
253
254         qstate = init_query_state(fd, sizeof(int), euid, egid);
255         if (qstate == NULL) {
256                 LOG_ERR_2("accept_connection", "can't init query_state");
257                 TRACE_OUT(accept_connection);
258                 return;
259         }
260
261         memset(&timeout, 0, sizeof(struct timespec));
262         EV_SET(&eventlist[0], fd, EVFILT_TIMER, EV_ADD | EV_ONESHOT,
263                 0, qstate->timeout.tv_sec * 1000, qstate);
264         EV_SET(&eventlist[1], fd, EVFILT_READ, EV_ADD | EV_ONESHOT,
265                 NOTE_LOWAT, qstate->kevent_watermark, qstate);
266         res = kevent(env->queue, eventlist, 2, NULL, 0, &timeout);
267         if (res < 0)
268                 LOG_ERR_2("accept_connection", "kevent error");
269
270         TRACE_OUT(accept_connection);
271 }
272
273 static void
274 process_socket_event(struct kevent *event_data, struct runtime_env *env,
275         struct configuration *config)
276 {
277         struct kevent   eventlist[2];
278         struct timeval  query_timeout;
279         struct timespec kevent_timeout;
280         int     nevents;
281         int     eof_res, res;
282         ssize_t io_res;
283         struct query_state *qstate;
284
285         TRACE_IN(process_socket_event);
286         eof_res = event_data->flags & EV_EOF ? 1 : 0;
287         res = 0;
288
289         memset(&kevent_timeout, 0, sizeof(struct timespec));
290         EV_SET(&eventlist[0], event_data->ident, EVFILT_TIMER, EV_DELETE,
291                 0, 0, NULL);
292         nevents = kevent(env->queue, eventlist, 1, NULL, 0, &kevent_timeout);
293         if (nevents == -1) {
294                 if (errno == ENOENT) {
295                         /* the timer is already handling this event */
296                         TRACE_OUT(process_socket_event);
297                         return;
298                 } else {
299                         /* some other error happened */
300                         LOG_ERR_2("process_socket_event", "kevent error, errno"
301                                 " is %d", errno);
302                         TRACE_OUT(process_socket_event);
303                         return;
304                 }
305         }
306         qstate = (struct query_state *)event_data->udata;
307
308         /*
309          * If the buffer that is to be send/received is too large,
310          * we send it implicitly, by using query_io_buffer_read and
311          * query_io_buffer_write functions in the query_state. These functions
312          * use the temporary buffer, which is later send/received in parts.
313          * The code below implements buffer splitting/mergind for send/receive
314          * operations. It also does the actual socket IO operations.
315          */
316         if (((qstate->use_alternate_io == 0) &&
317                 (qstate->kevent_watermark <= event_data->data)) ||
318                 ((qstate->use_alternate_io != 0) &&
319                 (qstate->io_buffer_watermark <= event_data->data))) {
320                 if (qstate->use_alternate_io != 0) {
321                         switch (qstate->io_buffer_filter) {
322                         case EVFILT_READ:
323                                 io_res = query_socket_read(qstate,
324                                         qstate->io_buffer_p,
325                                         qstate->io_buffer_watermark);
326                                 if (io_res < 0) {
327                                         qstate->use_alternate_io = 0;
328                                         qstate->process_func = NULL;
329                                 } else {
330                                         qstate->io_buffer_p += io_res;
331                                         if (qstate->io_buffer_p ==
332                                                 qstate->io_buffer +
333                                                 qstate->io_buffer_size) {
334                                                 qstate->io_buffer_p =
335                                                     qstate->io_buffer;
336                                                 qstate->use_alternate_io = 0;
337                                         }
338                                 }
339                         break;
340                         default:
341                         break;
342                         }
343                 }
344
345                 if (qstate->use_alternate_io == 0) {
346                         do {
347                                 res = qstate->process_func(qstate);
348                         } while ((qstate->kevent_watermark == 0) &&
349                                         (qstate->process_func != NULL) &&
350                                         (res == 0));
351
352                         if (res != 0)
353                                 qstate->process_func = NULL;
354                 }
355
356                 if ((qstate->use_alternate_io != 0) &&
357                         (qstate->io_buffer_filter == EVFILT_WRITE)) {
358                         io_res = query_socket_write(qstate, qstate->io_buffer_p,
359                                 qstate->io_buffer_watermark);
360                         if (io_res < 0) {
361                                 qstate->use_alternate_io = 0;
362                                 qstate->process_func = NULL;
363                         } else
364                                 qstate->io_buffer_p += io_res;
365                 }
366         } else {
367                 /* assuming that socket was closed */
368                 qstate->process_func = NULL;
369                 qstate->use_alternate_io = 0;
370         }
371
372         if (((qstate->process_func == NULL) &&
373                 (qstate->use_alternate_io == 0)) ||
374                 (eof_res != 0) || (res != 0)) {
375                 destroy_query_state(qstate);
376                 close(event_data->ident);
377                 TRACE_OUT(process_socket_event);
378                 return;
379         }
380
381         /* updating the query_state lifetime variable */
382         get_time_func(&query_timeout);
383         query_timeout.tv_usec = 0;
384         query_timeout.tv_sec -= qstate->creation_time.tv_sec;
385         if (query_timeout.tv_sec > qstate->timeout.tv_sec)
386                 query_timeout.tv_sec = 0;
387         else
388                 query_timeout.tv_sec = qstate->timeout.tv_sec -
389                         query_timeout.tv_sec;
390
391         if ((qstate->use_alternate_io != 0) && (qstate->io_buffer_p ==
392                 qstate->io_buffer + qstate->io_buffer_size))
393                 qstate->use_alternate_io = 0;
394
395         if (qstate->use_alternate_io == 0) {
396                 /*
397                  * If we must send/receive the large block of data,
398                  * we should prepare the query_state's io_XXX fields.
399                  * We should also substitute its write_func and read_func
400                  * with the query_io_buffer_write and query_io_buffer_read,
401                  * which will allow us to implicitly send/receive this large
402                  * buffer later (in the subsequent calls to the
403                  * process_socket_event).
404                  */
405                 if (qstate->kevent_watermark > MAX_SOCKET_IO_SIZE) {
406                         if (qstate->io_buffer != NULL)
407                                 free(qstate->io_buffer);
408
409                         qstate->io_buffer = (char *)calloc(1,
410                                 qstate->kevent_watermark);
411                         assert(qstate->io_buffer != NULL);
412
413                         qstate->io_buffer_p = qstate->io_buffer;
414                         qstate->io_buffer_size = qstate->kevent_watermark;
415                         qstate->io_buffer_filter = qstate->kevent_filter;
416
417                         qstate->write_func = query_io_buffer_write;
418                         qstate->read_func = query_io_buffer_read;
419
420                         if (qstate->kevent_filter == EVFILT_READ)
421                                 qstate->use_alternate_io = 1;
422
423                         qstate->io_buffer_watermark = MAX_SOCKET_IO_SIZE;
424                         EV_SET(&eventlist[1], event_data->ident,
425                                 qstate->kevent_filter, EV_ADD | EV_ONESHOT,
426                                 NOTE_LOWAT, MAX_SOCKET_IO_SIZE, qstate);
427                 } else {
428                         EV_SET(&eventlist[1], event_data->ident,
429                                 qstate->kevent_filter, EV_ADD | EV_ONESHOT,
430                                 NOTE_LOWAT, qstate->kevent_watermark, qstate);
431                 }
432         } else {
433                 if (qstate->io_buffer + qstate->io_buffer_size -
434                         qstate->io_buffer_p <
435                         MAX_SOCKET_IO_SIZE) {
436                         qstate->io_buffer_watermark = qstate->io_buffer +
437                                 qstate->io_buffer_size - qstate->io_buffer_p;
438                         EV_SET(&eventlist[1], event_data->ident,
439                                 qstate->io_buffer_filter,
440                                 EV_ADD | EV_ONESHOT, NOTE_LOWAT,
441                                 qstate->io_buffer_watermark,
442                                 qstate);
443                 } else {
444                         qstate->io_buffer_watermark = MAX_SOCKET_IO_SIZE;
445                         EV_SET(&eventlist[1], event_data->ident,
446                                 qstate->io_buffer_filter, EV_ADD | EV_ONESHOT,
447                                 NOTE_LOWAT, MAX_SOCKET_IO_SIZE, qstate);
448                 }
449         }
450         EV_SET(&eventlist[0], event_data->ident, EVFILT_TIMER,
451                 EV_ADD | EV_ONESHOT, 0, query_timeout.tv_sec * 1000, qstate);
452         kevent(env->queue, eventlist, 2, NULL, 0, &kevent_timeout);
453
454         TRACE_OUT(process_socket_event);
455 }
456
457 /*
458  * This routine is called if timer event has been signaled in the kqueue. It
459  * just closes the socket and destroys the query_state.
460  */
461 static void
462 process_timer_event(struct kevent *event_data, struct runtime_env *env,
463         struct configuration *config)
464 {
465         struct query_state      *qstate;
466
467         TRACE_IN(process_timer_event);
468         qstate = (struct query_state *)event_data->udata;
469         destroy_query_state(qstate);
470         close(event_data->ident);
471         TRACE_OUT(process_timer_event);
472 }
473
474 /*
475  * Processing loop is the basic processing routine, that forms a body of each
476  * procssing thread
477  */
478 static void
479 processing_loop(cache the_cache, struct runtime_env *env,
480         struct configuration *config)
481 {
482         struct timespec timeout;
483         const int eventlist_size = 1;
484         struct kevent eventlist[eventlist_size];
485         int nevents, i;
486
487         TRACE_MSG("=> processing_loop");
488         memset(&timeout, 0, sizeof(struct timespec));
489         memset(&eventlist, 0, sizeof(struct kevent) * eventlist_size);
490
491         for (;;) {
492                 nevents = kevent(env->queue, NULL, 0, eventlist,
493                         eventlist_size, NULL);
494                 /*
495                  * we can only receive 1 event on success
496                  */
497                 if (nevents == 1) {
498                         struct kevent *event_data;
499                         event_data = &eventlist[0];
500
501                         if (event_data->ident == env->sockfd) {
502                                 for (i = 0; i < event_data->data; ++i)
503                                     accept_connection(event_data, env, config);
504
505                                 EV_SET(eventlist, s_runtime_env->sockfd,
506                                     EVFILT_READ, EV_ADD | EV_ONESHOT,
507                                     0, 0, 0);
508                                 memset(&timeout, 0,
509                                     sizeof(struct timespec));
510                                 kevent(s_runtime_env->queue, eventlist,
511                                     1, NULL, 0, &timeout);
512
513                         } else {
514                                 switch (event_data->filter) {
515                                 case EVFILT_READ:
516                                 case EVFILT_WRITE:
517                                         process_socket_event(event_data,
518                                                 env, config);
519                                         break;
520                                 case EVFILT_TIMER:
521                                         process_timer_event(event_data,
522                                                 env, config);
523                                         break;
524                                 default:
525                                         break;
526                                 }
527                         }
528                 } else {
529                         /* this branch shouldn't be currently executed */
530                 }
531         }
532
533         TRACE_MSG("<= processing_loop");
534 }
535
536 /*
537  * Wrapper above the processing loop function. It sets the thread signal mask
538  * to avoid SIGPIPE signals (which can happen if the client works incorrectly).
539  */
540 static void *
541 processing_thread(void *data)
542 {
543         struct processing_thread_args   *args;
544         sigset_t new;
545
546         TRACE_MSG("=> processing_thread");
547         args = (struct processing_thread_args *)data;
548
549         sigemptyset(&new);
550         sigaddset(&new, SIGPIPE);
551         if (pthread_sigmask(SIG_BLOCK, &new, NULL) != 0)
552                 LOG_ERR_1("processing thread",
553                         "thread can't block the SIGPIPE signal");
554
555         processing_loop(args->the_cache, args->the_runtime_env,
556                 args->the_configuration);
557         free(args);
558         TRACE_MSG("<= processing_thread");
559
560         return (NULL);
561 }
562
563 void
564 get_time_func(struct timeval *time)
565 {
566         struct timespec res;
567         memset(&res, 0, sizeof(struct timespec));
568         clock_gettime(CLOCK_MONOTONIC, &res);
569
570         time->tv_sec = res.tv_sec;
571         time->tv_usec = 0;
572 }
573
574 /*
575  * The idea of _nss_cache_cycle_prevention_function is that nsdispatch will
576  * search for this symbol in the executable. This symbol is the attribute of
577  * the caching daemon. So, if it exists, nsdispatch won't try to connect to
578  * the caching daemon and will just ignore the 'cache' source in the
579  * nsswitch.conf. This method helps to avoid cycles and organize
580  * self-performing requests.
581  */
582 void
583 _nss_cache_cycle_prevention_function(void)
584 {
585 }
586
587 int
588 main(int argc, char *argv[])
589 {
590         struct processing_thread_args *thread_args;
591         pthread_t *threads;
592
593         struct pidfh *pidfile;
594         pid_t pid;
595
596         char const *config_file;
597         char const *error_str;
598         int error_line;
599         int i, res;
600
601         int trace_mode_enabled;
602         int force_single_threaded;
603         int do_not_daemonize;
604         int clear_user_cache_entries, clear_all_cache_entries;
605         char *user_config_entry_name, *global_config_entry_name;
606         int show_statistics;
607         int daemon_mode, interactive_mode;
608
609
610         /* by default all debug messages are omitted */
611         TRACE_OFF();
612
613         /* parsing command line arguments */
614         trace_mode_enabled = 0;
615         force_single_threaded = 0;
616         do_not_daemonize = 0;
617         clear_user_cache_entries = 0;
618         clear_all_cache_entries = 0;
619         show_statistics = 0;
620         user_config_entry_name = NULL;
621         global_config_entry_name = NULL;
622         while ((res = getopt(argc, argv, "nstdi:I:")) != -1) {
623                 switch (res) {
624                 case 'n':
625                         do_not_daemonize = 1;
626                         break;
627                 case 's':
628                         force_single_threaded = 1;
629                         break;
630                 case 't':
631                         trace_mode_enabled = 1;
632                         break;
633                 case 'i':
634                         clear_user_cache_entries = 1;
635                         if (optarg != NULL)
636                                 if (strcmp(optarg, "all") != 0)
637                                         user_config_entry_name = strdup(optarg);
638                         break;
639                 case 'I':
640                         clear_all_cache_entries = 1;
641                         if (optarg != NULL)
642                                 if (strcmp(optarg, "all") != 0)
643                                         global_config_entry_name =
644                                                 strdup(optarg);
645                         break;
646                 case 'd':
647                         show_statistics = 1;
648                         break;
649                 case '?':
650                 default:
651                         usage();
652                         /* NOT REACHED */
653                 }
654         }
655
656         daemon_mode = do_not_daemonize | force_single_threaded |
657                 trace_mode_enabled;
658         interactive_mode = clear_user_cache_entries | clear_all_cache_entries |
659                 show_statistics;
660
661         if ((daemon_mode != 0) && (interactive_mode != 0)) {
662                 LOG_ERR_1("main", "daemon mode and interactive_mode arguments "
663                         "can't be used together");
664                 usage();
665         }
666
667         if (interactive_mode != 0) {
668                 FILE *pidfin = fopen(DEFAULT_PIDFILE_PATH, "r");
669                 char pidbuf[256];
670
671                 struct nscd_connection_params connection_params;
672                 nscd_connection connection;
673
674                 int result;
675
676                 if (pidfin == NULL)
677                         errx(EXIT_FAILURE, "There is no daemon running.");
678
679                 memset(pidbuf, 0, sizeof(pidbuf));
680                 fread(pidbuf, sizeof(pidbuf) - 1, 1, pidfin);
681                 fclose(pidfin);
682
683                 if (ferror(pidfin) != 0)
684                         errx(EXIT_FAILURE, "Can't read from pidfile.");
685
686                 if (sscanf(pidbuf, "%d", &pid) != 1)
687                         errx(EXIT_FAILURE, "Invalid pidfile.");
688                 LOG_MSG_1("main", "daemon PID is %d", pid);
689
690
691                 memset(&connection_params, 0,
692                         sizeof(struct nscd_connection_params));
693                 connection_params.socket_path = DEFAULT_SOCKET_PATH;
694                 connection = open_nscd_connection__(&connection_params);
695                 if (connection == INVALID_NSCD_CONNECTION)
696                         errx(EXIT_FAILURE, "Can't connect to the daemon.");
697
698                 if (clear_user_cache_entries != 0) {
699                         result = nscd_transform__(connection,
700                                 user_config_entry_name, TT_USER);
701                         if (result != 0)
702                                 LOG_MSG_1("main",
703                                         "user cache transformation failed");
704                         else
705                                 LOG_MSG_1("main",
706                                         "user cache_transformation "
707                                         "succeeded");
708                 }
709
710                 if (clear_all_cache_entries != 0) {
711                         if (geteuid() != 0)
712                                 errx(EXIT_FAILURE, "Only root can initiate "
713                                         "global cache transformation.");
714
715                         result = nscd_transform__(connection,
716                                 global_config_entry_name, TT_ALL);
717                         if (result != 0)
718                                 LOG_MSG_1("main",
719                                         "global cache transformation "
720                                         "failed");
721                         else
722                                 LOG_MSG_1("main",
723                                         "global cache transformation "
724                                         "succeeded");
725                 }
726
727                 close_nscd_connection__(connection);
728
729                 free(user_config_entry_name);
730                 free(global_config_entry_name);
731                 return (EXIT_SUCCESS);
732         }
733
734         pidfile = pidfile_open(DEFAULT_PIDFILE_PATH, 0644, &pid);
735         if (pidfile == NULL) {
736                 if (errno == EEXIST)
737                         errx(EXIT_FAILURE, "Daemon already running, pid: %d.",
738                                 pid);
739                 warn("Cannot open or create pidfile");
740         }
741
742         if (trace_mode_enabled == 1)
743                 TRACE_ON();
744
745         /* blocking the main thread from receiving SIGPIPE signal */
746         sigblock(sigmask(SIGPIPE));
747
748         /* daemonization */
749         if (do_not_daemonize == 0) {
750                 res = daemon(0, trace_mode_enabled == 0 ? 0 : 1);
751                 if (res != 0) {
752                         LOG_ERR_1("main", "can't daemonize myself: %s",
753                                 strerror(errno));
754                         pidfile_remove(pidfile);
755                         goto fin;
756                 } else
757                         LOG_MSG_1("main", "successfully daemonized");
758         }
759
760         pidfile_write(pidfile);
761
762         s_agent_table = init_agent_table();
763         register_agent(s_agent_table, init_passwd_agent());
764         register_agent(s_agent_table, init_passwd_mp_agent());
765         register_agent(s_agent_table, init_group_agent());
766         register_agent(s_agent_table, init_group_mp_agent());
767         register_agent(s_agent_table, init_services_agent());
768         register_agent(s_agent_table, init_services_mp_agent());
769         LOG_MSG_1("main", "request agents registered successfully");
770
771         /*
772          * Hosts agent can't work properly until we have access to the
773          * appropriate dtab structures, which are used in nsdispatch
774          * calls
775          *
776          register_agent(s_agent_table, init_hosts_agent());
777         */
778
779         /* configuration initialization */
780         s_configuration = init_configuration();
781         fill_configuration_defaults(s_configuration);
782
783         error_str = NULL;
784         error_line = 0;
785         config_file = CONFIG_PATH;
786
787         res = parse_config_file(s_configuration, config_file, &error_str,
788                 &error_line);
789         if ((res != 0) && (error_str == NULL)) {
790                 config_file = DEFAULT_CONFIG_PATH;
791                 res = parse_config_file(s_configuration, config_file,
792                         &error_str, &error_line);
793         }
794
795         if (res != 0) {
796                 if (error_str != NULL) {
797                 LOG_ERR_1("main", "error in configuration file(%s, %d): %s\n",
798                         config_file, error_line, error_str);
799                 } else {
800                 LOG_ERR_1("main", "no configuration file found "
801                         "- was looking for %s and %s",
802                         CONFIG_PATH, DEFAULT_CONFIG_PATH);
803                 }
804                 destroy_configuration(s_configuration);
805                 return (-1);
806         }
807
808         if (force_single_threaded == 1)
809                 s_configuration->threads_num = 1;
810
811         /* cache initialization */
812         s_cache = init_cache_(s_configuration);
813         if (s_cache == NULL) {
814                 LOG_ERR_1("main", "can't initialize the cache");
815                 destroy_configuration(s_configuration);
816                 return (-1);
817         }
818
819         /* runtime environment initialization */
820         s_runtime_env = init_runtime_env(s_configuration);
821         if (s_runtime_env == NULL) {
822                 LOG_ERR_1("main", "can't initialize the runtime environment");
823                 destroy_configuration(s_configuration);
824                 destroy_cache_(s_cache);
825                 return (-1);
826         }
827
828         if (s_configuration->threads_num > 1) {
829                 threads = (pthread_t *)calloc(1, sizeof(pthread_t) *
830                         s_configuration->threads_num);
831                 for (i = 0; i < s_configuration->threads_num; ++i) {
832                         thread_args = (struct processing_thread_args *)malloc(
833                                 sizeof(struct processing_thread_args));
834                         thread_args->the_cache = s_cache;
835                         thread_args->the_runtime_env = s_runtime_env;
836                         thread_args->the_configuration = s_configuration;
837
838                         LOG_MSG_1("main", "thread #%d was successfully created",
839                                 i);
840                         pthread_create(&threads[i], NULL, processing_thread,
841                                 thread_args);
842
843                         thread_args = NULL;
844                 }
845
846                 for (i = 0; i < s_configuration->threads_num; ++i)
847                         pthread_join(threads[i], NULL);
848         } else {
849                 LOG_MSG_1("main", "working in single-threaded mode");
850                 processing_loop(s_cache, s_runtime_env, s_configuration);
851         }
852
853 fin:
854         /* runtime environment destruction */
855         destroy_runtime_env(s_runtime_env);
856
857         /* cache destruction */
858         destroy_cache_(s_cache);
859
860         /* configuration destruction */
861         destroy_configuration(s_configuration);
862
863         /* agents table destruction */
864         destroy_agent_table(s_agent_table);
865
866         pidfile_remove(pidfile);
867         return (EXIT_SUCCESS);
868 }