kernel - Add reapctl() system call for managing sub-processes
[dragonfly.git] / sys / kern / kern_intr.c
1 /*
2  * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com> All rights reserved.
3  * Copyright (c) 1997, Stefan Esser <se@freebsd.org> All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_intr.c,v 1.24.2.1 2001/10/14 20:05:50 luigi Exp $
27  *
28  */
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/malloc.h>
33 #include <sys/kernel.h>
34 #include <sys/sysctl.h>
35 #include <sys/thread.h>
36 #include <sys/proc.h>
37 #include <sys/random.h>
38 #include <sys/serialize.h>
39 #include <sys/interrupt.h>
40 #include <sys/bus.h>
41 #include <sys/machintr.h>
42
43 #include <machine/frame.h>
44
45 #include <sys/thread2.h>
46 #include <sys/mplock2.h>
47
48 struct intr_info;
49
50 typedef struct intrec {
51     struct intrec *next;
52     struct intr_info *info;
53     inthand2_t  *handler;
54     void        *argument;
55     char        *name;
56     int         intr;
57     int         intr_flags;
58     struct lwkt_serialize *serializer;
59 } *intrec_t;
60
61 struct intr_info {
62         intrec_t        i_reclist;
63         struct thread   *i_thread;      /* don't embed struct thread */
64         struct random_softc i_random;
65         int             i_running;
66         long            i_count;        /* interrupts dispatched */
67         int             i_mplock_required;
68         int             i_fast;
69         int             i_slow;
70         int             i_state;
71         int             i_errorticks;
72         unsigned long   i_straycount;
73         int             i_cpuid;
74         int             i_intr;
75 };
76
77 static struct intr_info intr_info_ary[MAXCPU][MAX_INTS];
78 static struct intr_info *swi_info_ary[MAX_SOFTINTS];
79
80 static int max_installed_hard_intr[MAXCPU];
81
82 #define EMERGENCY_INTR_POLLING_FREQ_MAX 20000
83
84 /*
85  * Assert that callers into interrupt handlers don't return with
86  * dangling tokens, spinlocks, or mp locks.
87  */
88 #ifdef INVARIANTS
89
90 #define TD_INVARIANTS_DECLARE   \
91         int spincount;          \
92         lwkt_tokref_t curstop
93
94 #define TD_INVARIANTS_GET(td)                                   \
95         do {                                                    \
96                 spincount = (td)->td_gd->gd_spinlocks;          \
97                 curstop = (td)->td_toks_stop;                   \
98         } while(0)
99
100 #define TD_INVARIANTS_TEST(td, name)                                    \
101         do {                                                            \
102                 KASSERT(spincount == (td)->td_gd->gd_spinlocks,         \
103                         ("spincount mismatch after interrupt handler %s", \
104                         name));                                         \
105                 KASSERT(curstop == (td)->td_toks_stop,                  \
106                         ("token count mismatch after interrupt handler %s", \
107                         name));                                         \
108         } while(0)
109
110 #else
111
112 /* !INVARIANTS */
113
114 #define TD_INVARIANTS_DECLARE
115 #define TD_INVARIANTS_GET(td)
116 #define TD_INVARIANTS_TEST(td, name)
117
118 #endif /* ndef INVARIANTS */
119
120 static int sysctl_emergency_freq(SYSCTL_HANDLER_ARGS);
121 static int sysctl_emergency_enable(SYSCTL_HANDLER_ARGS);
122 static void emergency_intr_timer_callback(systimer_t, int, struct intrframe *);
123 static void ithread_handler(void *arg);
124 static void ithread_emergency(void *arg);
125 static void report_stray_interrupt(struct intr_info *info, const char *func);
126 static void int_moveto_destcpu(int *, int);
127 static void int_moveto_origcpu(int, int);
128 static void sched_ithd_intern(struct intr_info *info);
129
130 static struct systimer emergency_intr_timer[MAXCPU];
131 static struct thread emergency_intr_thread[MAXCPU];
132
133 #define ISTATE_NOTHREAD         0
134 #define ISTATE_NORMAL           1
135 #define ISTATE_LIVELOCKED       2
136
137 static int livelock_limit = 40000;
138 static int livelock_lowater = 20000;
139 static int livelock_debug = -1;
140 SYSCTL_INT(_kern, OID_AUTO, livelock_limit,
141         CTLFLAG_RW, &livelock_limit, 0, "Livelock interrupt rate limit");
142 SYSCTL_INT(_kern, OID_AUTO, livelock_lowater,
143         CTLFLAG_RW, &livelock_lowater, 0, "Livelock low-water mark restore");
144 SYSCTL_INT(_kern, OID_AUTO, livelock_debug,
145         CTLFLAG_RW, &livelock_debug, 0, "Livelock debug intr#");
146
147 static int emergency_intr_enable = 0;   /* emergency interrupt polling */
148 TUNABLE_INT("kern.emergency_intr_enable", &emergency_intr_enable);
149 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_enable, CTLTYPE_INT | CTLFLAG_RW,
150         0, 0, sysctl_emergency_enable, "I", "Emergency Interrupt Poll Enable");
151
152 static int emergency_intr_freq = 10;    /* emergency polling frequency */
153 TUNABLE_INT("kern.emergency_intr_freq", &emergency_intr_freq);
154 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_freq, CTLTYPE_INT | CTLFLAG_RW,
155         0, 0, sysctl_emergency_freq, "I", "Emergency Interrupt Poll Frequency");
156
157 /*
158  * Sysctl support routines
159  */
160 static int
161 sysctl_emergency_enable(SYSCTL_HANDLER_ARGS)
162 {
163         int error, enabled, cpuid, freq;
164
165         enabled = emergency_intr_enable;
166         error = sysctl_handle_int(oidp, &enabled, 0, req);
167         if (error || req->newptr == NULL)
168                 return error;
169         emergency_intr_enable = enabled;
170         if (emergency_intr_enable)
171                 freq = emergency_intr_freq;
172         else
173                 freq = 1;
174
175         for (cpuid = 0; cpuid < ncpus; ++cpuid)
176                 systimer_adjust_periodic(&emergency_intr_timer[cpuid], freq);
177         return 0;
178 }
179
180 static int
181 sysctl_emergency_freq(SYSCTL_HANDLER_ARGS)
182 {
183         int error, phz, cpuid, freq;
184
185         phz = emergency_intr_freq;
186         error = sysctl_handle_int(oidp, &phz, 0, req);
187         if (error || req->newptr == NULL)
188                 return error;
189         if (phz <= 0)
190                 return EINVAL;
191         else if (phz > EMERGENCY_INTR_POLLING_FREQ_MAX)
192                 phz = EMERGENCY_INTR_POLLING_FREQ_MAX;
193
194         emergency_intr_freq = phz;
195         if (emergency_intr_enable)
196                 freq = emergency_intr_freq;
197         else
198                 freq = 1;
199
200         for (cpuid = 0; cpuid < ncpus; ++cpuid)
201                 systimer_adjust_periodic(&emergency_intr_timer[cpuid], freq);
202         return 0;
203 }
204
205 /*
206  * Register an SWI or INTerrupt handler.
207  */
208 void *
209 register_swi(int intr, inthand2_t *handler, void *arg, const char *name,
210                 struct lwkt_serialize *serializer, int cpuid)
211 {
212     if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
213         panic("register_swi: bad intr %d", intr);
214
215     if (cpuid < 0)
216         cpuid = intr % ncpus;
217     return(register_int(intr, handler, arg, name, serializer, 0, cpuid));
218 }
219
220 void *
221 register_swi_mp(int intr, inthand2_t *handler, void *arg, const char *name,
222                 struct lwkt_serialize *serializer, int cpuid)
223 {
224     if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
225         panic("register_swi: bad intr %d", intr);
226
227     if (cpuid < 0)
228         cpuid = intr % ncpus;
229     return(register_int(intr, handler, arg, name, serializer,
230         INTR_MPSAFE, cpuid));
231 }
232
233 void *
234 register_int(int intr, inthand2_t *handler, void *arg, const char *name,
235                 struct lwkt_serialize *serializer, int intr_flags, int cpuid)
236 {
237     struct intr_info *info;
238     struct intrec **list;
239     intrec_t rec;
240     int orig_cpuid;
241
242     KKASSERT(cpuid >= 0 && cpuid < ncpus);
243
244     if (intr < 0 || intr >= MAX_INTS)
245         panic("register_int: bad intr %d", intr);
246     if (name == NULL)
247         name = "???";
248     info = &intr_info_ary[cpuid][intr];
249
250     /*
251      * Construct an interrupt handler record
252      */
253     rec = kmalloc(sizeof(struct intrec), M_DEVBUF, M_INTWAIT);
254     rec->name = kmalloc(strlen(name) + 1, M_DEVBUF, M_INTWAIT);
255     strcpy(rec->name, name);
256
257     rec->info = info;
258     rec->handler = handler;
259     rec->argument = arg;
260     rec->intr = intr;
261     rec->intr_flags = intr_flags;
262     rec->next = NULL;
263     rec->serializer = serializer;
264
265     int_moveto_destcpu(&orig_cpuid, cpuid);
266
267     /*
268      * Create an emergency polling thread and set up a systimer to wake
269      * it up.
270      */
271     if (emergency_intr_thread[cpuid].td_kstack == NULL) {
272         lwkt_create(ithread_emergency, NULL, NULL,
273                     &emergency_intr_thread[cpuid],
274                     TDF_NOSTART | TDF_INTTHREAD, cpuid, "ithreadE %d",
275                     cpuid);
276         systimer_init_periodic_nq(&emergency_intr_timer[cpuid],
277                     emergency_intr_timer_callback,
278                     &emergency_intr_thread[cpuid],
279                     (emergency_intr_enable ? emergency_intr_freq : 1));
280     }
281
282     /*
283      * Create an interrupt thread if necessary, leave it in an unscheduled
284      * state.
285      */
286     if (info->i_state == ISTATE_NOTHREAD) {
287         info->i_state = ISTATE_NORMAL;
288         info->i_thread = kmalloc(sizeof(struct thread), M_DEVBUF,
289             M_INTWAIT | M_ZERO);
290         lwkt_create(ithread_handler, (void *)(intptr_t)intr, NULL,
291                     info->i_thread, TDF_NOSTART | TDF_INTTHREAD, cpuid,
292                     "ithread%d %d", intr, cpuid);
293         if (intr >= FIRST_SOFTINT)
294             lwkt_setpri(info->i_thread, TDPRI_SOFT_NORM);
295         else
296             lwkt_setpri(info->i_thread, TDPRI_INT_MED);
297         info->i_thread->td_preemptable = lwkt_preempt;
298     }
299
300     list = &info->i_reclist;
301
302     /*
303      * Keep track of how many fast and slow interrupts we have.
304      * Set i_mplock_required if any handler in the chain requires
305      * the MP lock to operate.
306      */
307     if ((intr_flags & INTR_MPSAFE) == 0)
308         info->i_mplock_required = 1;
309     if (intr_flags & INTR_CLOCK)
310         ++info->i_fast;
311     else
312         ++info->i_slow;
313
314     /*
315      * Enable random number generation keying off of this interrupt.
316      */
317     if ((intr_flags & INTR_NOENTROPY) == 0 && info->i_random.sc_enabled == 0) {
318         info->i_random.sc_enabled = 1;
319         info->i_random.sc_intr = intr;
320     }
321
322     /*
323      * Add the record to the interrupt list.
324      */
325     crit_enter();
326     while (*list != NULL)
327         list = &(*list)->next;
328     *list = rec;
329     crit_exit();
330
331     /*
332      * Update max_installed_hard_intr to make the emergency intr poll
333      * a bit more efficient.
334      */
335     if (intr < FIRST_SOFTINT) {
336         if (max_installed_hard_intr[cpuid] <= intr)
337             max_installed_hard_intr[cpuid] = intr + 1;
338     }
339
340     if (intr >= FIRST_SOFTINT)
341         swi_info_ary[intr - FIRST_SOFTINT] = info;
342
343     /*
344      * Setup the machine level interrupt vector
345      */
346     if (intr < FIRST_SOFTINT && info->i_slow + info->i_fast == 1)
347         machintr_intr_setup(intr, intr_flags);
348
349     int_moveto_origcpu(orig_cpuid, cpuid);
350
351     return(rec);
352 }
353
354 void
355 unregister_swi(void *id, int intr, int cpuid)
356 {
357     if (cpuid < 0)
358         cpuid = intr % ncpus;
359
360     unregister_int(id, cpuid);
361 }
362
363 void
364 unregister_int(void *id, int cpuid)
365 {
366     struct intr_info *info;
367     struct intrec **list;
368     intrec_t rec;
369     int intr, orig_cpuid;
370
371     KKASSERT(cpuid >= 0 && cpuid < ncpus);
372
373     intr = ((intrec_t)id)->intr;
374
375     if (intr < 0 || intr >= MAX_INTS)
376         panic("register_int: bad intr %d", intr);
377
378     info = &intr_info_ary[cpuid][intr];
379
380     int_moveto_destcpu(&orig_cpuid, cpuid);
381
382     /*
383      * Remove the interrupt descriptor, adjust the descriptor count,
384      * and teardown the machine level vector if this was the last interrupt.
385      */
386     crit_enter();
387     list = &info->i_reclist;
388     while ((rec = *list) != NULL) {
389         if (rec == id)
390             break;
391         list = &rec->next;
392     }
393     if (rec) {
394         intrec_t rec0;
395
396         *list = rec->next;
397         if (rec->intr_flags & INTR_CLOCK)
398             --info->i_fast;
399         else
400             --info->i_slow;
401         if (intr < FIRST_SOFTINT && info->i_fast + info->i_slow == 0)
402             machintr_intr_teardown(intr);
403
404         /*
405          * Clear i_mplock_required if no handlers in the chain require the
406          * MP lock.
407          */
408         for (rec0 = info->i_reclist; rec0; rec0 = rec0->next) {
409             if ((rec0->intr_flags & INTR_MPSAFE) == 0)
410                 break;
411         }
412         if (rec0 == NULL)
413             info->i_mplock_required = 0;
414     }
415
416     if (intr >= FIRST_SOFTINT && info->i_reclist == NULL)
417         swi_info_ary[intr - FIRST_SOFTINT] = NULL;
418
419     crit_exit();
420
421     int_moveto_origcpu(orig_cpuid, cpuid);
422
423     /*
424      * Free the record.
425      */
426     if (rec != NULL) {
427         kfree(rec->name, M_DEVBUF);
428         kfree(rec, M_DEVBUF);
429     } else {
430         kprintf("warning: unregister_int: int %d handler for %s not found\n",
431                 intr, ((intrec_t)id)->name);
432     }
433 }
434
435 long
436 get_interrupt_counter(int intr, int cpuid)
437 {
438     struct intr_info *info;
439
440     KKASSERT(cpuid >= 0 && cpuid < ncpus);
441
442     if (intr < 0 || intr >= MAX_INTS)
443         panic("register_int: bad intr %d", intr);
444     info = &intr_info_ary[cpuid][intr];
445     return(info->i_count);
446 }
447
448 void
449 register_randintr(int intr)
450 {
451     struct intr_info *info;
452     int cpuid;
453
454     if (intr < 0 || intr >= MAX_INTS)
455         panic("register_randintr: bad intr %d", intr);
456
457     for (cpuid = 0; cpuid < ncpus; ++cpuid) {
458         info = &intr_info_ary[cpuid][intr];
459         info->i_random.sc_intr = intr;
460         info->i_random.sc_enabled = 1;
461     }
462 }
463
464 void
465 unregister_randintr(int intr)
466 {
467     struct intr_info *info;
468     int cpuid;
469
470     if (intr < 0 || intr >= MAX_INTS)
471         panic("register_swi: bad intr %d", intr);
472
473     for (cpuid = 0; cpuid < ncpus; ++cpuid) {
474         info = &intr_info_ary[cpuid][intr];
475         info->i_random.sc_enabled = -1;
476     }
477 }
478
479 int
480 next_registered_randintr(int intr)
481 {
482     struct intr_info *info;
483
484     if (intr < 0 || intr >= MAX_INTS)
485         panic("register_swi: bad intr %d", intr);
486
487     while (intr < MAX_INTS) {
488         int cpuid;
489
490         for (cpuid = 0; cpuid < ncpus; ++cpuid) {
491             info = &intr_info_ary[cpuid][intr];
492             if (info->i_random.sc_enabled > 0)
493                 return intr;
494         }
495         ++intr;
496     }
497     return intr;
498 }
499
500 /*
501  * Dispatch an interrupt.  If there's nothing to do we have a stray
502  * interrupt and can just return, leaving the interrupt masked.
503  *
504  * We need to schedule the interrupt and set its i_running bit.  If
505  * we are not on the interrupt thread's cpu we have to send a message
506  * to the correct cpu that will issue the desired action (interlocking
507  * with the interrupt thread's critical section).  We do NOT attempt to
508  * reschedule interrupts whos i_running bit is already set because
509  * this would prematurely wakeup a livelock-limited interrupt thread.
510  *
511  * i_running is only tested/set on the same cpu as the interrupt thread.
512  *
513  * We are NOT in a critical section, which will allow the scheduled
514  * interrupt to preempt us.  The MP lock might *NOT* be held here.
515  */
516 static void
517 sched_ithd_remote(void *arg)
518 {
519     sched_ithd_intern(arg);
520 }
521
522 static void
523 sched_ithd_intern(struct intr_info *info)
524 {
525     ++info->i_count;
526     if (info->i_state != ISTATE_NOTHREAD) {
527         if (info->i_reclist == NULL) {
528             report_stray_interrupt(info, "sched_ithd");
529         } else {
530             if (info->i_thread->td_gd == mycpu) {
531                 if (info->i_running == 0) {
532                     info->i_running = 1;
533                     if (info->i_state != ISTATE_LIVELOCKED)
534                         lwkt_schedule(info->i_thread); /* MIGHT PREEMPT */
535                 }
536             } else {
537                 lwkt_send_ipiq(info->i_thread->td_gd, sched_ithd_remote, info);
538             }
539         }
540     } else {
541         report_stray_interrupt(info, "sched_ithd");
542     }
543 }
544
545 void
546 sched_ithd_soft(int intr)
547 {
548         struct intr_info *info;
549
550         KKASSERT(intr >= FIRST_SOFTINT && intr < MAX_INTS);
551
552         info = swi_info_ary[intr - FIRST_SOFTINT];
553         if (info != NULL) {
554                 sched_ithd_intern(info);
555         } else {
556                 kprintf("unregistered softint %d got scheduled on cpu%d\n",
557                     intr, mycpuid);
558         }
559 }
560
561 void
562 sched_ithd_hard(int intr)
563 {
564         KKASSERT(intr >= 0 && intr < MAX_HARDINTS);
565         sched_ithd_intern(&intr_info_ary[mycpuid][intr]);
566 }
567
568 #ifdef _KERNEL_VIRTUAL
569
570 void
571 sched_ithd_hard_virtual(int intr)
572 {
573         KKASSERT(intr >= 0 && intr < MAX_HARDINTS);
574         sched_ithd_intern(&intr_info_ary[0][intr]);
575 }
576
577 void *
578 register_int_virtual(int intr, inthand2_t *handler, void *arg, const char *name,
579     struct lwkt_serialize *serializer, int intr_flags)
580 {
581         return register_int(intr, handler, arg, name, serializer, intr_flags, 0);
582 }
583
584 void
585 unregister_int_virtual(void *id)
586 {
587         unregister_int(id, 0);
588 }
589
590 #endif  /* _KERN_VIRTUAL */
591
592 static void
593 report_stray_interrupt(struct intr_info *info, const char *func)
594 {
595         ++info->i_straycount;
596         if (info->i_straycount < 10) {
597                 if (info->i_errorticks == ticks)
598                         return;
599                 info->i_errorticks = ticks;
600                 kprintf("%s: stray interrupt %d on cpu%d\n",
601                     func, info->i_intr, mycpuid);
602         } else if (info->i_straycount == 10) {
603                 kprintf("%s: %ld stray interrupts %d on cpu%d - "
604                         "there will be no further reports\n", func,
605                         info->i_straycount, info->i_intr, mycpuid);
606         }
607 }
608
609 /*
610  * This is run from a periodic SYSTIMER (and thus must be MP safe, the BGL
611  * might not be held).
612  */
613 static void
614 ithread_livelock_wakeup(systimer_t st, int in_ipi __unused,
615     struct intrframe *frame __unused)
616 {
617     struct intr_info *info;
618
619     info = &intr_info_ary[mycpuid][(int)(intptr_t)st->data];
620     if (info->i_state != ISTATE_NOTHREAD)
621         lwkt_schedule(info->i_thread);
622 }
623
624 /*
625  * Schedule ithread within fast intr handler
626  *
627  * XXX Protect sched_ithd_hard() call with gd_intr_nesting_level?
628  * Interrupts aren't enabled, but still...
629  */
630 static __inline void
631 ithread_fast_sched(int intr, thread_t td)
632 {
633     ++td->td_nest_count;
634
635     /*
636      * We are already in critical section, exit it now to
637      * allow preemption.
638      */
639     crit_exit_quick(td);
640     sched_ithd_hard(intr);
641     crit_enter_quick(td);
642
643     --td->td_nest_count;
644 }
645
646 /*
647  * This function is called directly from the ICU or APIC vector code assembly
648  * to process an interrupt.  The critical section and interrupt deferral
649  * checks have already been done but the function is entered WITHOUT
650  * a critical section held.  The BGL may or may not be held.
651  *
652  * Must return non-zero if we do not want the vector code to re-enable
653  * the interrupt (which we don't if we have to schedule the interrupt)
654  */
655 int ithread_fast_handler(struct intrframe *frame);
656
657 int
658 ithread_fast_handler(struct intrframe *frame)
659 {
660     int intr;
661     struct intr_info *info;
662     struct intrec **list;
663     int must_schedule;
664     int got_mplock;
665     TD_INVARIANTS_DECLARE;
666     intrec_t rec, nrec;
667     globaldata_t gd;
668     thread_t td;
669
670     intr = frame->if_vec;
671     gd = mycpu;
672     td = curthread;
673
674     /* We must be in critical section. */
675     KKASSERT(td->td_critcount);
676
677     info = &intr_info_ary[mycpuid][intr];
678
679     /*
680      * If we are not processing any FAST interrupts, just schedule the thing.
681      */
682     if (info->i_fast == 0) {
683         ++gd->gd_cnt.v_intr;
684         ithread_fast_sched(intr, td);
685         return(1);
686     }
687
688     /*
689      * This should not normally occur since interrupts ought to be 
690      * masked if the ithread has been scheduled or is running.
691      */
692     if (info->i_running)
693         return(1);
694
695     /*
696      * Bump the interrupt nesting level to process any FAST interrupts.
697      * Obtain the MP lock as necessary.  If the MP lock cannot be obtained,
698      * schedule the interrupt thread to deal with the issue instead.
699      *
700      * To reduce overhead, just leave the MP lock held once it has been
701      * obtained.
702      */
703     ++gd->gd_intr_nesting_level;
704     ++gd->gd_cnt.v_intr;
705     must_schedule = info->i_slow;
706     got_mplock = 0;
707
708     TD_INVARIANTS_GET(td);
709     list = &info->i_reclist;
710
711     for (rec = *list; rec; rec = nrec) {
712         /* rec may be invalid after call */
713         nrec = rec->next;
714
715         if (rec->intr_flags & INTR_CLOCK) {
716             if ((rec->intr_flags & INTR_MPSAFE) == 0 && got_mplock == 0) {
717                 if (try_mplock() == 0) {
718                     /* Couldn't get the MP lock; just schedule it. */
719                     must_schedule = 1;
720                     break;
721                 }
722                 got_mplock = 1;
723             }
724             if (rec->serializer) {
725                 must_schedule += lwkt_serialize_handler_try(
726                                         rec->serializer, rec->handler,
727                                         rec->argument, frame);
728             } else {
729                 rec->handler(rec->argument, frame);
730             }
731             TD_INVARIANTS_TEST(td, rec->name);
732         }
733     }
734
735     /*
736      * Cleanup
737      */
738     --gd->gd_intr_nesting_level;
739     if (got_mplock)
740         rel_mplock();
741
742     /*
743      * If we had a problem, or mixed fast and slow interrupt handlers are
744      * registered, schedule the ithread to catch the missed records (it
745      * will just re-run all of them).  A return value of 0 indicates that
746      * all handlers have been run and the interrupt can be re-enabled, and
747      * a non-zero return indicates that the interrupt thread controls
748      * re-enablement.
749      */
750     if (must_schedule > 0)
751         ithread_fast_sched(intr, td);
752     else if (must_schedule == 0)
753         ++info->i_count;
754     return(must_schedule);
755 }
756
757 /*
758  * Interrupt threads run this as their main loop.
759  *
760  * The handler begins execution outside a critical section and no MP lock.
761  *
762  * The i_running state starts at 0.  When an interrupt occurs, the hardware
763  * interrupt is disabled and sched_ithd_hard().  The HW interrupt remains
764  * disabled until all routines have run.  We then call machintr_intr_enable()
765  * to reenable the HW interrupt and deschedule us until the next interrupt. 
766  *
767  * We are responsible for atomically checking i_running.  i_running for our
768  * irq is only set in the context of our cpu, so a critical section is a
769  * sufficient interlock.
770  */
771 #define LIVELOCK_TIMEFRAME(freq)        ((freq) >> 2)   /* 1/4 second */
772
773 static void
774 ithread_handler(void *arg)
775 {
776     struct intr_info *info;
777     int use_limit;
778     __uint32_t lseconds;
779     int intr, cpuid = mycpuid;
780     int mpheld;
781     struct intrec **list;
782     intrec_t rec, nrec;
783     globaldata_t gd;
784     struct systimer ill_timer;  /* enforced freq. timer */
785     u_int ill_count;            /* interrupt livelock counter */
786     TD_INVARIANTS_DECLARE;
787
788     ill_count = 0;
789     intr = (int)(intptr_t)arg;
790     info = &intr_info_ary[cpuid][intr];
791     list = &info->i_reclist;
792
793     /*
794      * The loop must be entered with one critical section held.  The thread
795      * does not hold the mplock on startup.
796      */
797     gd = mycpu;
798     lseconds = gd->gd_time_seconds;
799     crit_enter_gd(gd);
800     mpheld = 0;
801
802     for (;;) {
803         /*
804          * The chain is only considered MPSAFE if all its interrupt handlers
805          * are MPSAFE.  However, if intr_mpsafe has been turned off we
806          * always operate with the BGL.
807          */
808         if (info->i_mplock_required != mpheld) {
809             if (info->i_mplock_required) {
810                 KKASSERT(mpheld == 0);
811                 get_mplock();
812                 mpheld = 1;
813             } else {
814                 KKASSERT(mpheld != 0);
815                 rel_mplock();
816                 mpheld = 0;
817             }
818         }
819
820         TD_INVARIANTS_GET(gd->gd_curthread);
821
822         /*
823          * If an interrupt is pending, clear i_running and execute the
824          * handlers.  Note that certain types of interrupts can re-trigger
825          * and set i_running again.
826          *
827          * Each handler is run in a critical section.  Note that we run both
828          * FAST and SLOW designated service routines.
829          */
830         if (info->i_running) {
831             ++ill_count;
832             info->i_running = 0;
833
834             if (*list == NULL)
835                 report_stray_interrupt(info, "ithread_handler");
836
837             for (rec = *list; rec; rec = nrec) {
838                 /* rec may be invalid after call */
839                 nrec = rec->next;
840                 if (rec->serializer) {
841                     lwkt_serialize_handler_call(rec->serializer, rec->handler,
842                                                 rec->argument, NULL);
843                 } else {
844                     rec->handler(rec->argument, NULL);
845                 }
846                 TD_INVARIANTS_TEST(gd->gd_curthread, rec->name);
847             }
848         }
849
850         /*
851          * This is our interrupt hook to add rate randomness to the random
852          * number generator.
853          */
854         if (info->i_random.sc_enabled > 0)
855             add_interrupt_randomness(intr);
856
857         /*
858          * Unmask the interrupt to allow it to trigger again.  This only
859          * applies to certain types of interrupts (typ level interrupts).
860          * This can result in the interrupt retriggering, but the retrigger
861          * will not be processed until we cycle our critical section.
862          *
863          * Only unmask interrupts while handlers are installed.  It is
864          * possible to hit a situation where no handlers are installed
865          * due to a device driver livelocking and then tearing down its
866          * interrupt on close (the parallel bus being a good example).
867          */
868         if (intr < FIRST_SOFTINT && *list)
869             machintr_intr_enable(intr);
870
871         /*
872          * Do a quick exit/enter to catch any higher-priority interrupt
873          * sources, such as the statclock, so thread time accounting
874          * will still work.  This may also cause an interrupt to re-trigger.
875          */
876         crit_exit_gd(gd);
877         crit_enter_gd(gd);
878
879         /*
880          * LIVELOCK STATE MACHINE
881          */
882         switch(info->i_state) {
883         case ISTATE_NORMAL:
884             /*
885              * Reset the count each second.
886              */
887             if (lseconds != gd->gd_time_seconds) {
888                 lseconds = gd->gd_time_seconds;
889                 ill_count = 0;
890             }
891
892             /*
893              * If we did not exceed the frequency limit, we are done.  
894              * If the interrupt has not retriggered we deschedule ourselves.
895              */
896             if (ill_count <= livelock_limit) {
897                 if (info->i_running == 0) {
898                     lwkt_deschedule_self(gd->gd_curthread);
899                     lwkt_switch();
900                 }
901                 break;
902             }
903
904             /*
905              * Otherwise we are livelocked.  Set up a periodic systimer
906              * to wake the thread up at the limit frequency.
907              */
908             kprintf("intr %d on cpu%d at %d/%d hz, livelocked limit engaged!\n",
909                     intr, cpuid, ill_count, livelock_limit);
910             info->i_state = ISTATE_LIVELOCKED;
911             if ((use_limit = livelock_limit) < 100)
912                 use_limit = 100;
913             else if (use_limit > 500000)
914                 use_limit = 500000;
915             systimer_init_periodic_nq(&ill_timer, ithread_livelock_wakeup,
916                                       (void *)(intptr_t)intr, use_limit);
917             /* fall through */
918         case ISTATE_LIVELOCKED:
919             /*
920              * Wait for our periodic timer to go off.  Since the interrupt
921              * has re-armed it can still set i_running, but it will not
922              * reschedule us while we are in a livelocked state.
923              */
924             lwkt_deschedule_self(gd->gd_curthread);
925             lwkt_switch();
926
927             /*
928              * Check once a second to see if the livelock condition no
929              * longer applies.
930              */
931             if (lseconds != gd->gd_time_seconds) {
932                 lseconds = gd->gd_time_seconds;
933                 if (ill_count < livelock_lowater) {
934                     info->i_state = ISTATE_NORMAL;
935                     systimer_del(&ill_timer);
936                     kprintf("intr %d on cpu%d at %d/%d hz, livelock removed\n",
937                             intr, cpuid, ill_count, livelock_lowater);
938                 } else if (livelock_debug == intr ||
939                            (bootverbose && cold)) {
940                     kprintf("intr %d on cpu%d at %d/%d hz, in livelock\n",
941                             intr, cpuid, ill_count, livelock_lowater);
942                 }
943                 ill_count = 0;
944             }
945             break;
946         }
947     }
948     /* NOT REACHED */
949 }
950
951 /*
952  * Emergency interrupt polling thread.  The thread begins execution
953  * outside a critical section with the BGL held.
954  *
955  * If emergency interrupt polling is enabled, this thread will 
956  * execute all system interrupts not marked INTR_NOPOLL at the
957  * specified polling frequency.
958  *
959  * WARNING!  This thread runs *ALL* interrupt service routines that
960  * are not marked INTR_NOPOLL, which basically means everything except
961  * the 8254 clock interrupt and the ATA interrupt.  It has very high
962  * overhead and should only be used in situations where the machine
963  * cannot otherwise be made to work.  Due to the severe performance
964  * degredation, it should not be enabled on production machines.
965  */
966 static void
967 ithread_emergency(void *arg __unused)
968 {
969     globaldata_t gd = mycpu;
970     struct intr_info *info;
971     intrec_t rec, nrec;
972     int intr, cpuid = mycpuid;
973     TD_INVARIANTS_DECLARE;
974
975     get_mplock();
976     crit_enter_gd(gd);
977     TD_INVARIANTS_GET(gd->gd_curthread);
978
979     for (;;) {
980         for (intr = 0; intr < max_installed_hard_intr[cpuid]; ++intr) {
981             info = &intr_info_ary[cpuid][intr];
982             for (rec = info->i_reclist; rec; rec = nrec) {
983                 /* rec may be invalid after call */
984                 nrec = rec->next;
985                 if ((rec->intr_flags & INTR_NOPOLL) == 0) {
986                     if (rec->serializer) {
987                         lwkt_serialize_handler_try(rec->serializer,
988                                                 rec->handler, rec->argument, NULL);
989                     } else {
990                         rec->handler(rec->argument, NULL);
991                     }
992                     TD_INVARIANTS_TEST(gd->gd_curthread, rec->name);
993                 }
994             }
995         }
996         lwkt_deschedule_self(gd->gd_curthread);
997         lwkt_switch();
998     }
999     /* NOT REACHED */
1000 }
1001
1002 /*
1003  * Systimer callback - schedule the emergency interrupt poll thread
1004  *                     if emergency polling is enabled.
1005  */
1006 static
1007 void
1008 emergency_intr_timer_callback(systimer_t info, int in_ipi __unused,
1009     struct intrframe *frame __unused)
1010 {
1011     if (emergency_intr_enable)
1012         lwkt_schedule(info->data);
1013 }
1014
1015 /* 
1016  * Sysctls used by systat and others: hw.intrnames and hw.intrcnt.
1017  * The data for this machine dependent, and the declarations are in machine
1018  * dependent code.  The layout of intrnames and intrcnt however is machine
1019  * independent.
1020  *
1021  * We do not know the length of intrcnt and intrnames at compile time, so
1022  * calculate things at run time.
1023  */
1024
1025 static int
1026 sysctl_intrnames(SYSCTL_HANDLER_ARGS)
1027 {
1028     struct intr_info *info;
1029     intrec_t rec;
1030     int error = 0;
1031     int len;
1032     int intr, cpuid;
1033     char buf[64];
1034
1035     for (cpuid = 0; cpuid < ncpus; ++cpuid) {
1036         for (intr = 0; error == 0 && intr < MAX_INTS; ++intr) {
1037             info = &intr_info_ary[cpuid][intr];
1038
1039             len = 0;
1040             buf[0] = 0;
1041             for (rec = info->i_reclist; rec; rec = rec->next) {
1042                 ksnprintf(buf + len, sizeof(buf) - len, "%s%s",
1043                     (len ? "/" : ""), rec->name);
1044                 len += strlen(buf + len);
1045             }
1046             if (len == 0) {
1047                 ksnprintf(buf, sizeof(buf), "irq%d", intr);
1048                 len = strlen(buf);
1049             }
1050             error = SYSCTL_OUT(req, buf, len + 1);
1051         }
1052     }
1053     return (error);
1054 }
1055
1056 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD,
1057         NULL, 0, sysctl_intrnames, "", "Interrupt Names");
1058
1059 static int
1060 sysctl_intrcnt_all(SYSCTL_HANDLER_ARGS)
1061 {
1062     struct intr_info *info;
1063     int error = 0;
1064     int intr, cpuid;
1065
1066     for (cpuid = 0; cpuid < ncpus; ++cpuid) {
1067         for (intr = 0; intr < MAX_INTS; ++intr) {
1068             info = &intr_info_ary[cpuid][intr];
1069
1070             error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
1071             if (error)
1072                 goto failed;
1073         }
1074     }
1075 failed:
1076     return(error);
1077 }
1078
1079 SYSCTL_PROC(_hw, OID_AUTO, intrcnt_all, CTLTYPE_OPAQUE | CTLFLAG_RD,
1080         NULL, 0, sysctl_intrcnt_all, "", "Interrupt Counts");
1081
1082 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD,
1083         NULL, 0, sysctl_intrcnt_all, "", "Interrupt Counts");
1084
1085 static void
1086 int_moveto_destcpu(int *orig_cpuid0, int cpuid)
1087 {
1088     int orig_cpuid = mycpuid;
1089
1090     if (cpuid != orig_cpuid)
1091         lwkt_migratecpu(cpuid);
1092
1093     *orig_cpuid0 = orig_cpuid;
1094 }
1095
1096 static void
1097 int_moveto_origcpu(int orig_cpuid, int cpuid)
1098 {
1099     if (cpuid != orig_cpuid)
1100         lwkt_migratecpu(orig_cpuid);
1101 }
1102
1103 static void
1104 intr_init(void *dummy __unused)
1105 {
1106         int cpuid;
1107
1108         kprintf("Initialize MI interrupts\n");
1109
1110         for (cpuid = 0; cpuid < ncpus; ++cpuid) {
1111                 int intr;
1112
1113                 for (intr = 0; intr < MAX_INTS; ++intr) {
1114                         struct intr_info *info = &intr_info_ary[cpuid][intr];
1115
1116                         info->i_cpuid = cpuid;
1117                         info->i_intr = intr;
1118                 }
1119         }
1120 }
1121 SYSINIT(intr_init, SI_BOOT2_FINISH_PIC, SI_ORDER_ANY, intr_init, NULL);