Initial import from FreeBSD RELENG_4:
[dragonfly.git] / sys / crypto / rijndael / rijndael-alg-fst.c
1 /*      $FreeBSD: src/sys/crypto/rijndael/rijndael-alg-fst.c,v 1.3.2.1 2001/07/03 11:01:35 ume Exp $    */
2 /*      $KAME: rijndael-alg-fst.c,v 1.7 2001/05/27 00:23:23 itojun Exp $        */
3
4 /*
5  * rijndael-alg-fst.c   v2.3   April '2000
6  *
7  * Optimised ANSI C code
8  *
9  * authors: v1.0: Antoon Bosselaers
10  *          v2.0: Vincent Rijmen
11  *          v2.3: Paulo Barreto
12  *
13  * This code is placed in the public domain.
14  */
15
16 #include <sys/cdefs.h>
17 #include <sys/types.h>
18 #ifdef _KERNEL
19 #include <sys/systm.h>
20 #else
21 #include <string.h>
22 #endif
23 #include <crypto/rijndael/rijndael-alg-fst.h>
24 #include <crypto/rijndael/rijndael_local.h>
25
26 #include <crypto/rijndael/boxes-fst.dat>
27
28 int rijndaelKeySched(word8 k[MAXKC][4], word8 W[MAXROUNDS+1][4][4], int ROUNDS) {
29         /* Calculate the necessary round keys
30          * The number of calculations depends on keyBits and blockBits
31          */ 
32         int j, r, t, rconpointer = 0;
33         union {
34                 word8   x8[MAXKC][4];
35                 word32  x32[MAXKC];
36         } xtk;
37 #define tk      xtk.x8
38         int KC = ROUNDS - 6;
39
40         for (j = KC-1; j >= 0; j--) {
41                 *((word32*)tk[j]) = *((word32*)k[j]);
42         }
43         r = 0;
44         t = 0;
45         /* copy values into round key array */
46         for (j = 0; (j < KC) && (r < ROUNDS + 1); ) {
47                 for (; (j < KC) && (t < 4); j++, t++) {
48                         *((word32*)W[r][t]) = *((word32*)tk[j]);
49                 }
50                 if (t == 4) {
51                         r++;
52                         t = 0;
53                 }
54         }
55                 
56         while (r < ROUNDS + 1) { /* while not enough round key material calculated */
57                 /* calculate new values */
58                 tk[0][0] ^= S[tk[KC-1][1]];
59                 tk[0][1] ^= S[tk[KC-1][2]];
60                 tk[0][2] ^= S[tk[KC-1][3]];
61                 tk[0][3] ^= S[tk[KC-1][0]];
62                 tk[0][0] ^= rcon[rconpointer++];
63
64                 if (KC != 8) {
65                         for (j = 1; j < KC; j++) {
66                                 *((word32*)tk[j]) ^= *((word32*)tk[j-1]);
67                         }
68                 } else {
69                         for (j = 1; j < KC/2; j++) {
70                                 *((word32*)tk[j]) ^= *((word32*)tk[j-1]);
71                         }
72                         tk[KC/2][0] ^= S[tk[KC/2 - 1][0]];
73                         tk[KC/2][1] ^= S[tk[KC/2 - 1][1]];
74                         tk[KC/2][2] ^= S[tk[KC/2 - 1][2]];
75                         tk[KC/2][3] ^= S[tk[KC/2 - 1][3]];
76                         for (j = KC/2 + 1; j < KC; j++) {
77                                 *((word32*)tk[j]) ^= *((word32*)tk[j-1]);
78                         }
79                 }
80                 /* copy values into round key array */
81                 for (j = 0; (j < KC) && (r < ROUNDS + 1); ) {
82                         for (; (j < KC) && (t < 4); j++, t++) {
83                                 *((word32*)W[r][t]) = *((word32*)tk[j]);
84                         }
85                         if (t == 4) {
86                                 r++;
87                                 t = 0;
88                         }
89                 }
90         }               
91         return 0;
92 #undef tk
93 }
94
95 int rijndaelKeyEncToDec(word8 W[MAXROUNDS+1][4][4], int ROUNDS) {
96         int r;
97         word8 *w;
98
99         for (r = 1; r < ROUNDS; r++) {
100                 w = W[r][0];
101                 *((word32*)w) =
102                           *((const word32*)U1[w[0]])
103                         ^ *((const word32*)U2[w[1]])
104                         ^ *((const word32*)U3[w[2]])
105                         ^ *((const word32*)U4[w[3]]);
106
107                 w = W[r][1];
108                 *((word32*)w) =
109                           *((const word32*)U1[w[0]])
110                         ^ *((const word32*)U2[w[1]])
111                         ^ *((const word32*)U3[w[2]])
112                         ^ *((const word32*)U4[w[3]]);
113
114                 w = W[r][2];
115                 *((word32*)w) =
116                           *((const word32*)U1[w[0]])
117                         ^ *((const word32*)U2[w[1]])
118                         ^ *((const word32*)U3[w[2]])
119                         ^ *((const word32*)U4[w[3]]);
120
121                 w = W[r][3];
122                 *((word32*)w) =
123                           *((const word32*)U1[w[0]])
124                         ^ *((const word32*)U2[w[1]])
125                         ^ *((const word32*)U3[w[2]])
126                         ^ *((const word32*)U4[w[3]]);
127         }
128         return 0;
129 }       
130
131 /**
132  * Encrypt a single block. 
133  */
134 int rijndaelEncrypt(word8 in[16], word8 out[16], word8 rk[MAXROUNDS+1][4][4], int ROUNDS) {
135         int r;
136         union {
137                 word8   x8[16];
138                 word32  x32[4];
139         } xa, xb;
140 #define a       xa.x8
141 #define b       xb.x8
142         union {
143                 word8   x8[4][4];
144                 word32  x32[4];
145         } xtemp;
146 #define temp    xtemp.x8
147
148     memcpy(a, in, sizeof a);
149
150     *((word32*)temp[0]) = *((word32*)(a   )) ^ *((word32*)rk[0][0]);
151     *((word32*)temp[1]) = *((word32*)(a+ 4)) ^ *((word32*)rk[0][1]);
152     *((word32*)temp[2]) = *((word32*)(a+ 8)) ^ *((word32*)rk[0][2]);
153     *((word32*)temp[3]) = *((word32*)(a+12)) ^ *((word32*)rk[0][3]);
154     *((word32*)(b    )) = *((const word32*)T1[temp[0][0]])
155                                         ^ *((const word32*)T2[temp[1][1]])
156                                         ^ *((const word32*)T3[temp[2][2]]) 
157                                         ^ *((const word32*)T4[temp[3][3]]);
158     *((word32*)(b + 4)) = *((const word32*)T1[temp[1][0]])
159                                         ^ *((const word32*)T2[temp[2][1]])
160                                         ^ *((const word32*)T3[temp[3][2]]) 
161                                         ^ *((const word32*)T4[temp[0][3]]);
162     *((word32*)(b + 8)) = *((const word32*)T1[temp[2][0]])
163                                         ^ *((const word32*)T2[temp[3][1]])
164                                         ^ *((const word32*)T3[temp[0][2]]) 
165                                         ^ *((const word32*)T4[temp[1][3]]);
166     *((word32*)(b +12)) = *((const word32*)T1[temp[3][0]])
167                                         ^ *((const word32*)T2[temp[0][1]])
168                                         ^ *((const word32*)T3[temp[1][2]]) 
169                                         ^ *((const word32*)T4[temp[2][3]]);
170         for (r = 1; r < ROUNDS-1; r++) {
171                 *((word32*)temp[0]) = *((word32*)(b   )) ^ *((word32*)rk[r][0]);
172                 *((word32*)temp[1]) = *((word32*)(b+ 4)) ^ *((word32*)rk[r][1]);
173                 *((word32*)temp[2]) = *((word32*)(b+ 8)) ^ *((word32*)rk[r][2]);
174                 *((word32*)temp[3]) = *((word32*)(b+12)) ^ *((word32*)rk[r][3]);
175
176                 *((word32*)(b    )) = *((const word32*)T1[temp[0][0]])
177                                         ^ *((const word32*)T2[temp[1][1]])
178                                         ^ *((const word32*)T3[temp[2][2]]) 
179                                         ^ *((const word32*)T4[temp[3][3]]);
180                 *((word32*)(b + 4)) = *((const word32*)T1[temp[1][0]])
181                                         ^ *((const word32*)T2[temp[2][1]])
182                                         ^ *((const word32*)T3[temp[3][2]]) 
183                                         ^ *((const word32*)T4[temp[0][3]]);
184                 *((word32*)(b + 8)) = *((const word32*)T1[temp[2][0]])
185                                         ^ *((const word32*)T2[temp[3][1]])
186                                         ^ *((const word32*)T3[temp[0][2]]) 
187                                         ^ *((const word32*)T4[temp[1][3]]);
188                 *((word32*)(b +12)) = *((const word32*)T1[temp[3][0]])
189                                         ^ *((const word32*)T2[temp[0][1]])
190                                         ^ *((const word32*)T3[temp[1][2]]) 
191                                         ^ *((const word32*)T4[temp[2][3]]);
192         }
193         /* last round is special */   
194         *((word32*)temp[0]) = *((word32*)(b   )) ^ *((word32*)rk[ROUNDS-1][0]);
195         *((word32*)temp[1]) = *((word32*)(b+ 4)) ^ *((word32*)rk[ROUNDS-1][1]);
196         *((word32*)temp[2]) = *((word32*)(b+ 8)) ^ *((word32*)rk[ROUNDS-1][2]);
197         *((word32*)temp[3]) = *((word32*)(b+12)) ^ *((word32*)rk[ROUNDS-1][3]);
198         b[ 0] = T1[temp[0][0]][1];
199         b[ 1] = T1[temp[1][1]][1];
200         b[ 2] = T1[temp[2][2]][1];
201         b[ 3] = T1[temp[3][3]][1];
202         b[ 4] = T1[temp[1][0]][1];
203         b[ 5] = T1[temp[2][1]][1];
204         b[ 6] = T1[temp[3][2]][1];
205         b[ 7] = T1[temp[0][3]][1];
206         b[ 8] = T1[temp[2][0]][1];
207         b[ 9] = T1[temp[3][1]][1];
208         b[10] = T1[temp[0][2]][1];
209         b[11] = T1[temp[1][3]][1];
210         b[12] = T1[temp[3][0]][1];
211         b[13] = T1[temp[0][1]][1];
212         b[14] = T1[temp[1][2]][1];
213         b[15] = T1[temp[2][3]][1];
214         *((word32*)(b   )) ^= *((word32*)rk[ROUNDS][0]);
215         *((word32*)(b+ 4)) ^= *((word32*)rk[ROUNDS][1]);
216         *((word32*)(b+ 8)) ^= *((word32*)rk[ROUNDS][2]);
217         *((word32*)(b+12)) ^= *((word32*)rk[ROUNDS][3]);
218
219         memcpy(out, b, sizeof b /* XXX out */);
220
221         return 0;
222 #undef a
223 #undef b
224 #undef temp
225 }
226
227 #ifdef INTERMEDIATE_VALUE_KAT
228 /**
229  * Encrypt only a certain number of rounds.
230  * Only used in the Intermediate Value Known Answer Test.
231  */
232 int rijndaelEncryptRound(word8 a[4][4], word8 rk[MAXROUNDS+1][4][4], int ROUNDS, int rounds) {
233         int r;
234         word8 temp[4][4];
235
236         /* make number of rounds sane */
237         if (rounds > ROUNDS) {
238                 rounds = ROUNDS;
239         }
240
241         *((word32*)a[0]) = *((word32*)a[0]) ^ *((word32*)rk[0][0]);
242         *((word32*)a[1]) = *((word32*)a[1]) ^ *((word32*)rk[0][1]);
243         *((word32*)a[2]) = *((word32*)a[2]) ^ *((word32*)rk[0][2]);
244         *((word32*)a[3]) = *((word32*)a[3]) ^ *((word32*)rk[0][3]);
245
246         for (r = 1; (r <= rounds) && (r < ROUNDS); r++) {
247                 *((word32*)temp[0]) = *((word32*)T1[a[0][0]])
248            ^ *((word32*)T2[a[1][1]])
249            ^ *((word32*)T3[a[2][2]]) 
250            ^ *((word32*)T4[a[3][3]]);
251                 *((word32*)temp[1]) = *((word32*)T1[a[1][0]])
252            ^ *((word32*)T2[a[2][1]])
253            ^ *((word32*)T3[a[3][2]]) 
254            ^ *((word32*)T4[a[0][3]]);
255                 *((word32*)temp[2]) = *((word32*)T1[a[2][0]])
256            ^ *((word32*)T2[a[3][1]])
257            ^ *((word32*)T3[a[0][2]]) 
258            ^ *((word32*)T4[a[1][3]]);
259                 *((word32*)temp[3]) = *((word32*)T1[a[3][0]])
260            ^ *((word32*)T2[a[0][1]])
261            ^ *((word32*)T3[a[1][2]]) 
262            ^ *((word32*)T4[a[2][3]]);
263                 *((word32*)a[0]) = *((word32*)temp[0]) ^ *((word32*)rk[r][0]);
264                 *((word32*)a[1]) = *((word32*)temp[1]) ^ *((word32*)rk[r][1]);
265                 *((word32*)a[2]) = *((word32*)temp[2]) ^ *((word32*)rk[r][2]);
266                 *((word32*)a[3]) = *((word32*)temp[3]) ^ *((word32*)rk[r][3]);
267         }
268         if (rounds == ROUNDS) {
269                 /* last round is special */   
270                 temp[0][0] = T1[a[0][0]][1];
271                 temp[0][1] = T1[a[1][1]][1];
272                 temp[0][2] = T1[a[2][2]][1]; 
273                 temp[0][3] = T1[a[3][3]][1];
274                 temp[1][0] = T1[a[1][0]][1];
275                 temp[1][1] = T1[a[2][1]][1];
276                 temp[1][2] = T1[a[3][2]][1]; 
277                 temp[1][3] = T1[a[0][3]][1];
278                 temp[2][0] = T1[a[2][0]][1];
279                 temp[2][1] = T1[a[3][1]][1];
280                 temp[2][2] = T1[a[0][2]][1]; 
281                 temp[2][3] = T1[a[1][3]][1];
282                 temp[3][0] = T1[a[3][0]][1];
283                 temp[3][1] = T1[a[0][1]][1];
284                 temp[3][2] = T1[a[1][2]][1]; 
285                 temp[3][3] = T1[a[2][3]][1];
286                 *((word32*)a[0]) = *((word32*)temp[0]) ^ *((word32*)rk[ROUNDS][0]);
287                 *((word32*)a[1]) = *((word32*)temp[1]) ^ *((word32*)rk[ROUNDS][1]);
288                 *((word32*)a[2]) = *((word32*)temp[2]) ^ *((word32*)rk[ROUNDS][2]);
289                 *((word32*)a[3]) = *((word32*)temp[3]) ^ *((word32*)rk[ROUNDS][3]);
290         }
291
292         return 0;
293 }   
294 #endif /* INTERMEDIATE_VALUE_KAT */
295
296 /**
297  * Decrypt a single block.
298  */
299 int rijndaelDecrypt(word8 in[16], word8 out[16], word8 rk[MAXROUNDS+1][4][4], int ROUNDS) {
300         int r;
301         union {
302                 word8   x8[16];
303                 word32  x32[4];
304         } xa, xb;
305 #define a       xa.x8
306 #define b       xb.x8
307         union {
308                 word8   x8[4][4];
309                 word32  x32[4];
310         } xtemp;
311 #define temp    xtemp.x8
312         
313     memcpy(a, in, sizeof a);
314
315     *((word32*)temp[0]) = *((word32*)(a   )) ^ *((word32*)rk[ROUNDS][0]);
316     *((word32*)temp[1]) = *((word32*)(a+ 4)) ^ *((word32*)rk[ROUNDS][1]);
317     *((word32*)temp[2]) = *((word32*)(a+ 8)) ^ *((word32*)rk[ROUNDS][2]);
318     *((word32*)temp[3]) = *((word32*)(a+12)) ^ *((word32*)rk[ROUNDS][3]);
319
320     *((word32*)(b   )) = *((const word32*)T5[temp[0][0]])
321            ^ *((const word32*)T6[temp[3][1]])
322            ^ *((const word32*)T7[temp[2][2]]) 
323            ^ *((const word32*)T8[temp[1][3]]);
324         *((word32*)(b+ 4)) = *((const word32*)T5[temp[1][0]])
325            ^ *((const word32*)T6[temp[0][1]])
326            ^ *((const word32*)T7[temp[3][2]]) 
327            ^ *((const word32*)T8[temp[2][3]]);
328         *((word32*)(b+ 8)) = *((const word32*)T5[temp[2][0]])
329            ^ *((const word32*)T6[temp[1][1]])
330            ^ *((const word32*)T7[temp[0][2]]) 
331            ^ *((const word32*)T8[temp[3][3]]);
332         *((word32*)(b+12)) = *((const word32*)T5[temp[3][0]])
333            ^ *((const word32*)T6[temp[2][1]])
334            ^ *((const word32*)T7[temp[1][2]]) 
335            ^ *((const word32*)T8[temp[0][3]]);
336         for (r = ROUNDS-1; r > 1; r--) {
337                 *((word32*)temp[0]) = *((word32*)(b   )) ^ *((word32*)rk[r][0]);
338                 *((word32*)temp[1]) = *((word32*)(b+ 4)) ^ *((word32*)rk[r][1]);
339                 *((word32*)temp[2]) = *((word32*)(b+ 8)) ^ *((word32*)rk[r][2]);
340                 *((word32*)temp[3]) = *((word32*)(b+12)) ^ *((word32*)rk[r][3]);
341                 *((word32*)(b   )) = *((const word32*)T5[temp[0][0]])
342            ^ *((const word32*)T6[temp[3][1]])
343            ^ *((const word32*)T7[temp[2][2]]) 
344            ^ *((const word32*)T8[temp[1][3]]);
345                 *((word32*)(b+ 4)) = *((const word32*)T5[temp[1][0]])
346            ^ *((const word32*)T6[temp[0][1]])
347            ^ *((const word32*)T7[temp[3][2]]) 
348            ^ *((const word32*)T8[temp[2][3]]);
349                 *((word32*)(b+ 8)) = *((const word32*)T5[temp[2][0]])
350            ^ *((const word32*)T6[temp[1][1]])
351            ^ *((const word32*)T7[temp[0][2]]) 
352            ^ *((const word32*)T8[temp[3][3]]);
353                 *((word32*)(b+12)) = *((const word32*)T5[temp[3][0]])
354            ^ *((const word32*)T6[temp[2][1]])
355            ^ *((const word32*)T7[temp[1][2]]) 
356            ^ *((const word32*)T8[temp[0][3]]);
357         }
358         /* last round is special */   
359         *((word32*)temp[0]) = *((word32*)(b   )) ^ *((word32*)rk[1][0]);
360         *((word32*)temp[1]) = *((word32*)(b+ 4)) ^ *((word32*)rk[1][1]);
361         *((word32*)temp[2]) = *((word32*)(b+ 8)) ^ *((word32*)rk[1][2]);
362         *((word32*)temp[3]) = *((word32*)(b+12)) ^ *((word32*)rk[1][3]);
363         b[ 0] = S5[temp[0][0]];
364         b[ 1] = S5[temp[3][1]];
365         b[ 2] = S5[temp[2][2]];
366         b[ 3] = S5[temp[1][3]];
367         b[ 4] = S5[temp[1][0]];
368         b[ 5] = S5[temp[0][1]];
369         b[ 6] = S5[temp[3][2]];
370         b[ 7] = S5[temp[2][3]];
371         b[ 8] = S5[temp[2][0]];
372         b[ 9] = S5[temp[1][1]];
373         b[10] = S5[temp[0][2]];
374         b[11] = S5[temp[3][3]];
375         b[12] = S5[temp[3][0]];
376         b[13] = S5[temp[2][1]];
377         b[14] = S5[temp[1][2]];
378         b[15] = S5[temp[0][3]];
379         *((word32*)(b   )) ^= *((word32*)rk[0][0]);
380         *((word32*)(b+ 4)) ^= *((word32*)rk[0][1]);
381         *((word32*)(b+ 8)) ^= *((word32*)rk[0][2]);
382         *((word32*)(b+12)) ^= *((word32*)rk[0][3]);
383
384         memcpy(out, b, sizeof b /* XXX out */);
385
386         return 0;
387 #undef a
388 #undef b
389 #undef temp
390 }
391
392
393 #ifdef INTERMEDIATE_VALUE_KAT
394 /**
395  * Decrypt only a certain number of rounds.
396  * Only used in the Intermediate Value Known Answer Test.
397  * Operations rearranged such that the intermediate values
398  * of decryption correspond with the intermediate values
399  * of encryption.
400  */
401 int rijndaelDecryptRound(word8 a[4][4], word8 rk[MAXROUNDS+1][4][4], int ROUNDS, int rounds) {
402         int r, i;
403         word8 temp[4], shift;
404
405         /* make number of rounds sane */
406         if (rounds > ROUNDS) {
407                 rounds = ROUNDS;
408         }
409     /* first round is special: */
410         *(word32 *)a[0] ^= *(word32 *)rk[ROUNDS][0];
411         *(word32 *)a[1] ^= *(word32 *)rk[ROUNDS][1];
412         *(word32 *)a[2] ^= *(word32 *)rk[ROUNDS][2];
413         *(word32 *)a[3] ^= *(word32 *)rk[ROUNDS][3];
414         for (i = 0; i < 4; i++) {
415                 a[i][0] = Si[a[i][0]];
416                 a[i][1] = Si[a[i][1]];
417                 a[i][2] = Si[a[i][2]];
418                 a[i][3] = Si[a[i][3]];
419         }
420         for (i = 1; i < 4; i++) {
421                 shift = (4 - i) & 3;
422                 temp[0] = a[(0 + shift) & 3][i];
423                 temp[1] = a[(1 + shift) & 3][i];
424                 temp[2] = a[(2 + shift) & 3][i];
425                 temp[3] = a[(3 + shift) & 3][i];
426                 a[0][i] = temp[0];
427                 a[1][i] = temp[1];
428                 a[2][i] = temp[2];
429                 a[3][i] = temp[3];
430         }
431         /* ROUNDS-1 ordinary rounds */
432         for (r = ROUNDS-1; r > rounds; r--) {
433                 *(word32 *)a[0] ^= *(word32 *)rk[r][0];
434                 *(word32 *)a[1] ^= *(word32 *)rk[r][1];
435                 *(word32 *)a[2] ^= *(word32 *)rk[r][2];
436                 *(word32 *)a[3] ^= *(word32 *)rk[r][3];
437
438                 *((word32*)a[0]) =
439                           *((word32*)U1[a[0][0]])
440                         ^ *((word32*)U2[a[0][1]])
441                         ^ *((word32*)U3[a[0][2]])
442                         ^ *((word32*)U4[a[0][3]]);
443
444                 *((word32*)a[1]) =
445                           *((word32*)U1[a[1][0]])
446                         ^ *((word32*)U2[a[1][1]])
447                         ^ *((word32*)U3[a[1][2]])
448                         ^ *((word32*)U4[a[1][3]]);
449
450                 *((word32*)a[2]) =
451                           *((word32*)U1[a[2][0]])
452                         ^ *((word32*)U2[a[2][1]])
453                         ^ *((word32*)U3[a[2][2]])
454                         ^ *((word32*)U4[a[2][3]]);
455
456                 *((word32*)a[3]) =
457                           *((word32*)U1[a[3][0]])
458                         ^ *((word32*)U2[a[3][1]])
459                         ^ *((word32*)U3[a[3][2]])
460                         ^ *((word32*)U4[a[3][3]]);
461                 for (i = 0; i < 4; i++) {
462                         a[i][0] = Si[a[i][0]];
463                         a[i][1] = Si[a[i][1]];
464                         a[i][2] = Si[a[i][2]];
465                         a[i][3] = Si[a[i][3]];
466                 }
467                 for (i = 1; i < 4; i++) {
468                         shift = (4 - i) & 3;
469                         temp[0] = a[(0 + shift) & 3][i];
470                         temp[1] = a[(1 + shift) & 3][i];
471                         temp[2] = a[(2 + shift) & 3][i];
472                         temp[3] = a[(3 + shift) & 3][i];
473                         a[0][i] = temp[0];
474                         a[1][i] = temp[1];
475                         a[2][i] = temp[2];
476                         a[3][i] = temp[3];
477                 }
478         }
479         if (rounds == 0) {
480                 /* End with the extra key addition */   
481                 *(word32 *)a[0] ^= *(word32 *)rk[0][0];
482                 *(word32 *)a[1] ^= *(word32 *)rk[0][1];
483                 *(word32 *)a[2] ^= *(word32 *)rk[0][2];
484                 *(word32 *)a[3] ^= *(word32 *)rk[0][3];
485         }    
486         return 0;
487 }
488 #endif /* INTERMEDIATE_VALUE_KAT */