c55009fa5e33be1ca6954d89be33ef61fe7ddaf3
[dragonfly.git] / lib / libdmsg / msg_lnk.c
1 /*
2  * Copyright (c) 2012-2014 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 /*
35  * LNK_SPAN PROTOCOL SUPPORT FUNCTIONS - Please see sys/dmsg.h for an
36  * involved explanation of the protocol.
37  */
38
39 #include "dmsg_local.h"
40
41 /*
42  * Maximum spanning tree distance.  This has the practical effect of
43  * stopping tail-chasing closed loops when a feeder span is lost.
44  */
45 #define DMSG_SPAN_MAXDIST       16
46
47 /*
48  * RED-BLACK TREE DEFINITIONS
49  *
50  * We need to track:
51  *
52  * (1) shared fsid's (a cluster).
53  * (2) unique fsid's (a node in a cluster) <--- LNK_SPAN transactions.
54  *
55  * We need to aggegate all active LNK_SPANs, aggregate, and create our own
56  * outgoing LNK_SPAN transactions on each of our connections representing
57  * the aggregated state.
58  *
59  * h2span_conn          - list of iocom connections who wish to receive SPAN
60  *                        propagation from other connections.  Might contain
61  *                        a filter string.  Only iocom's with an open
62  *                        LNK_CONN transactions are applicable for SPAN
63  *                        propagation.
64  *
65  * h2span_relay         - List of links relayed (via SPAN).  Essentially
66  *                        each relay structure represents a LNK_SPAN
67  *                        transaction that we initiated, verses h2span_link
68  *                        which is a LNK_SPAN transaction that we received.
69  *
70  * --
71  *
72  * h2span_cluster       - Organizes the shared fsid's.  One structure for
73  *                        each cluster.
74  *
75  * h2span_node          - Organizes the nodes in a cluster.  One structure
76  *                        for each unique {cluster,node}, aka {fsid, pfs_fsid}.
77  *
78  * h2span_link          - Organizes all incoming and outgoing LNK_SPAN message
79  *                        transactions related to a node.
80  *
81  *                        One h2span_link structure for each incoming LNK_SPAN
82  *                        transaction.  Links selected for propagation back
83  *                        out are also where the outgoing LNK_SPAN messages
84  *                        are indexed into (so we can propagate changes).
85  *
86  *                        The h2span_link's use a red-black tree to sort the
87  *                        distance hop metric for the incoming LNK_SPAN.  We
88  *                        then select the top N for outgoing.  When the
89  *                        topology changes the top N may also change and cause
90  *                        new outgoing LNK_SPAN transactions to be opened
91  *                        and less desireable ones to be closed, causing
92  *                        transactional aborts within the message flow in
93  *                        the process.
94  *
95  * Also note            - All outgoing LNK_SPAN message transactions are also
96  *                        entered into a red-black tree for use by the routing
97  *                        function.  This is handled by msg.c in the state
98  *                        code, not here.
99  */
100
101 struct h2span_link;
102 struct h2span_relay;
103 TAILQ_HEAD(h2span_conn_queue, h2span_conn);
104 TAILQ_HEAD(h2span_relay_queue, h2span_relay);
105
106 RB_HEAD(h2span_cluster_tree, h2span_cluster);
107 RB_HEAD(h2span_node_tree, h2span_node);
108 RB_HEAD(h2span_link_tree, h2span_link);
109 RB_HEAD(h2span_relay_tree, h2span_relay);
110 uint32_t DMsgRNSS;
111
112 /*
113  * Received LNK_CONN transaction enables SPAN protocol over connection.
114  * (may contain filter).  Typically one for each mount and several may
115  * share the same media.
116  */
117 struct h2span_conn {
118         TAILQ_ENTRY(h2span_conn) entry;
119         struct h2span_relay_tree tree;
120         dmsg_state_t *state;
121         dmsg_lnk_conn_t lnk_conn;
122 };
123
124 /*
125  * All received LNK_SPANs are organized by cluster (pfs_clid),
126  * node (pfs_fsid), and link (received LNK_SPAN transaction).
127  */
128 struct h2span_cluster {
129         RB_ENTRY(h2span_cluster) rbnode;
130         struct h2span_node_tree tree;
131         uuid_t  pfs_clid;               /* shared fsid */
132         uint8_t peer_type;
133         char    cl_label[128];          /* cluster label (typ PEER_BLOCK) */
134         int     refs;                   /* prevents destruction */
135 };
136
137 struct h2span_node {
138         RB_ENTRY(h2span_node) rbnode;
139         struct h2span_link_tree tree;
140         struct h2span_cluster *cls;
141         uint8_t pfs_type;
142         uuid_t  pfs_fsid;               /* unique fsid */
143         char    fs_label[128];          /* fs label (typ PEER_HAMMER2) */
144         void    *opaque;
145 };
146
147 struct h2span_link {
148         RB_ENTRY(h2span_link) rbnode;
149         dmsg_state_t    *state;         /* state<->link */
150         struct h2span_node *node;       /* related node */
151         struct h2span_relay_queue relayq; /* relay out */
152         dmsg_lnk_span_t lnk_span;
153 };
154
155 /*
156  * Any LNK_SPAN transactions we receive which are relayed out other
157  * connections utilize this structure to track the LNK_SPAN transactions
158  * we initiate (relay out) on other connections.  We only relay out
159  * LNK_SPANs on connections we have an open CONN transaction for.
160  *
161  * The relay structure points to the outgoing LNK_SPAN trans (out_state)
162  * and to the incoming LNK_SPAN transaction (in_state).  The relay
163  * structure holds refs on the related states.
164  *
165  * In many respects this is the core of the protocol... actually figuring
166  * out what LNK_SPANs to relay.  The spanid used for relaying is the
167  * address of the 'state' structure, which is why h2span_relay has to
168  * be entered into a RB-TREE based at h2span_conn (so we can look
169  * up the spanid to validate it).
170  */
171 struct h2span_relay {
172         TAILQ_ENTRY(h2span_relay) entry;        /* from link */
173         RB_ENTRY(h2span_relay) rbnode;          /* from h2span_conn */
174         struct h2span_conn      *conn;          /* related CONN transaction */
175         dmsg_state_t            *source_rt;     /* h2span_link state */
176         dmsg_state_t            *target_rt;     /* h2span_relay state */
177 };
178
179 typedef struct h2span_conn h2span_conn_t;
180 typedef struct h2span_cluster h2span_cluster_t;
181 typedef struct h2span_node h2span_node_t;
182 typedef struct h2span_link h2span_link_t;
183 typedef struct h2span_relay h2span_relay_t;
184
185 #define dmsg_termstr(array)     _dmsg_termstr((array), sizeof(array))
186
187 static h2span_relay_t *dmsg_generate_relay(h2span_conn_t *conn,
188                                         h2span_link_t *slink);
189 static uint32_t dmsg_rnss(void);
190
191 static __inline
192 void
193 _dmsg_termstr(char *base, size_t size)
194 {
195         base[size-1] = 0;
196 }
197
198 /*
199  * Cluster peer_type, uuid, AND label must match for a match
200  */
201 static
202 int
203 h2span_cluster_cmp(h2span_cluster_t *cls1, h2span_cluster_t *cls2)
204 {
205         int r;
206
207         if (cls1->peer_type < cls2->peer_type)
208                 return(-1);
209         if (cls1->peer_type > cls2->peer_type)
210                 return(1);
211         r = uuid_compare(&cls1->pfs_clid, &cls2->pfs_clid, NULL);
212         if (r == 0)
213                 r = strcmp(cls1->cl_label, cls2->cl_label);
214
215         return r;
216 }
217
218 /*
219  * Match against fs_label/pfs_fsid.  Together these two items represent a
220  * unique node.  In most cases the primary differentiator is pfs_fsid but
221  * we also string-match fs_label.
222  */
223 static
224 int
225 h2span_node_cmp(h2span_node_t *node1, h2span_node_t *node2)
226 {
227         int r;
228
229         r = strcmp(node1->fs_label, node2->fs_label);
230         if (r == 0)
231                 r = uuid_compare(&node1->pfs_fsid, &node2->pfs_fsid, NULL);
232         return (r);
233 }
234
235 /*
236  * Sort/subsort must match h2span_relay_cmp() under any given node
237  * to make the aggregation algorithm easier, so the best links are
238  * in the same sorted order as the best relays.
239  *
240  * NOTE: We cannot use link*->state->msgid because this msgid is created
241  *       by each remote host and thus might wind up being the same.
242  */
243 static
244 int
245 h2span_link_cmp(h2span_link_t *link1, h2span_link_t *link2)
246 {
247         if (link1->lnk_span.dist < link2->lnk_span.dist)
248                 return(-1);
249         if (link1->lnk_span.dist > link2->lnk_span.dist)
250                 return(1);
251         if (link1->lnk_span.rnss < link2->lnk_span.rnss)
252                 return(-1);
253         if (link1->lnk_span.rnss > link2->lnk_span.rnss)
254                 return(1);
255 #if 1
256         if ((uintptr_t)link1->state < (uintptr_t)link2->state)
257                 return(-1);
258         if ((uintptr_t)link1->state > (uintptr_t)link2->state)
259                 return(1);
260 #else
261         if (link1->state->msgid < link2->state->msgid)
262                 return(-1);
263         if (link1->state->msgid > link2->state->msgid)
264                 return(1);
265 #endif
266         return(0);
267 }
268
269 /*
270  * Relay entries are sorted by node, subsorted by distance and link
271  * address (so we can match up the conn->tree relay topology with
272  * a node's link topology).
273  */
274 static
275 int
276 h2span_relay_cmp(h2span_relay_t *relay1, h2span_relay_t *relay2)
277 {
278         h2span_link_t *link1 = relay1->source_rt->any.link;
279         h2span_link_t *link2 = relay2->source_rt->any.link;
280
281         if ((intptr_t)link1->node < (intptr_t)link2->node)
282                 return(-1);
283         if ((intptr_t)link1->node > (intptr_t)link2->node)
284                 return(1);
285         if (link1->lnk_span.dist < link2->lnk_span.dist)
286                 return(-1);
287         if (link1->lnk_span.dist > link2->lnk_span.dist)
288                 return(1);
289         if (link1->lnk_span.rnss < link2->lnk_span.rnss)
290                 return(-1);
291         if (link1->lnk_span.rnss > link2->lnk_span.rnss)
292                 return(1);
293 #if 1
294         if ((uintptr_t)link1->state < (uintptr_t)link2->state)
295                 return(-1);
296         if ((uintptr_t)link1->state > (uintptr_t)link2->state)
297                 return(1);
298 #else
299         if (link1->state->msgid < link2->state->msgid)
300                 return(-1);
301         if (link1->state->msgid > link2->state->msgid)
302                 return(1);
303 #endif
304         return(0);
305 }
306
307 RB_PROTOTYPE_STATIC(h2span_cluster_tree, h2span_cluster,
308              rbnode, h2span_cluster_cmp);
309 RB_PROTOTYPE_STATIC(h2span_node_tree, h2span_node,
310              rbnode, h2span_node_cmp);
311 RB_PROTOTYPE_STATIC(h2span_link_tree, h2span_link,
312              rbnode, h2span_link_cmp);
313 RB_PROTOTYPE_STATIC(h2span_relay_tree, h2span_relay,
314              rbnode, h2span_relay_cmp);
315
316 RB_GENERATE_STATIC(h2span_cluster_tree, h2span_cluster,
317              rbnode, h2span_cluster_cmp);
318 RB_GENERATE_STATIC(h2span_node_tree, h2span_node,
319              rbnode, h2span_node_cmp);
320 RB_GENERATE_STATIC(h2span_link_tree, h2span_link,
321              rbnode, h2span_link_cmp);
322 RB_GENERATE_STATIC(h2span_relay_tree, h2span_relay,
323              rbnode, h2span_relay_cmp);
324
325 /*
326  * Global mutex protects cluster_tree lookups, connq, mediaq.
327  */
328 static pthread_mutex_t cluster_mtx;
329 static struct h2span_cluster_tree cluster_tree = RB_INITIALIZER(cluster_tree);
330 static struct h2span_conn_queue connq = TAILQ_HEAD_INITIALIZER(connq);
331 static struct dmsg_media_queue mediaq = TAILQ_HEAD_INITIALIZER(mediaq);
332
333 static void dmsg_lnk_span(dmsg_msg_t *msg);
334 static void dmsg_lnk_conn(dmsg_msg_t *msg);
335 static void dmsg_lnk_relay(dmsg_msg_t *msg);
336 static void dmsg_relay_scan(h2span_conn_t *conn, h2span_node_t *node);
337 static void dmsg_relay_delete(h2span_relay_t *relay);
338
339 void
340 dmsg_msg_lnk_signal(dmsg_iocom_t *iocom __unused)
341 {
342         pthread_mutex_lock(&cluster_mtx);
343         dmsg_relay_scan(NULL, NULL);
344         pthread_mutex_unlock(&cluster_mtx);
345 }
346
347 /*
348  * DMSG_PROTO_LNK - Generic DMSG_PROTO_LNK.
349  *            (incoming iocom lock not held)
350  *
351  * This function is typically called for one-way and opening-transactions
352  * since state->func is assigned after that, but it will also be called
353  * if no state->func is assigned on transaction-open.
354  */
355 void
356 dmsg_msg_lnk(dmsg_msg_t *msg)
357 {
358         dmsg_iocom_t *iocom = msg->state->iocom;
359
360         switch(msg->tcmd & DMSGF_BASECMDMASK) {
361         case DMSG_LNK_CONN:
362                 dmsg_lnk_conn(msg);
363                 break;
364         case DMSG_LNK_SPAN:
365                 dmsg_lnk_span(msg);
366                 break;
367         default:
368                 iocom->usrmsg_callback(msg, 1);
369                 /* state invalid after reply */
370                 break;
371         }
372 }
373
374 /*
375  * LNK_CONN - iocom identify message reception.
376  *            (incoming iocom lock not held)
377  *
378  * Remote node identifies itself to us, sets up a SPAN filter, and gives us
379  * the ok to start transmitting SPANs.
380  */
381 void
382 dmsg_lnk_conn(dmsg_msg_t *msg)
383 {
384         dmsg_state_t *state = msg->state;
385         dmsg_iocom_t *iocom = state->iocom;
386         dmsg_media_t *media;
387         h2span_conn_t *conn;
388         h2span_relay_t *relay;
389         char *alloc = NULL;
390
391         pthread_mutex_lock(&cluster_mtx);
392
393         fprintf(stderr,
394                 "dmsg_lnk_conn: msg %p cmd %08x state %p "
395                 "txcmd %08x rxcmd %08x\n",
396                 msg, msg->any.head.cmd, state,
397                 state->txcmd, state->rxcmd);
398
399         switch(msg->any.head.cmd & DMSGF_TRANSMASK) {
400         case DMSG_LNK_CONN | DMSGF_CREATE:
401         case DMSG_LNK_CONN | DMSGF_CREATE | DMSGF_DELETE:
402                 /*
403                  * On transaction start we allocate a new h2span_conn and
404                  * acknowledge the request, leaving the transaction open.
405                  * We then relay priority-selected SPANs.
406                  */
407                 fprintf(stderr, "LNK_CONN(%08x): %s/%s/%s\n",
408                         (uint32_t)msg->any.head.msgid,
409                         dmsg_uuid_to_str(&msg->any.lnk_conn.pfs_clid,
410                                             &alloc),
411                         msg->any.lnk_conn.cl_label,
412                         msg->any.lnk_conn.fs_label);
413                 free(alloc);
414
415                 conn = dmsg_alloc(sizeof(*conn));
416                 assert(state->iocom->conn == NULL);
417
418                 RB_INIT(&conn->tree);
419                 state->iocom->conn = conn;      /* XXX only one */
420                 state->iocom->conn_msgid = state->msgid;
421                 conn->state = state;
422                 state->func = dmsg_lnk_conn;
423                 state->any.conn = conn;
424                 TAILQ_INSERT_TAIL(&connq, conn, entry);
425                 conn->lnk_conn = msg->any.lnk_conn;
426
427                 /*
428                  * Set up media
429                  */
430                 TAILQ_FOREACH(media, &mediaq, entry) {
431                         if (uuid_compare(&msg->any.lnk_conn.mediaid,
432                                          &media->mediaid, NULL) == 0) {
433                                 break;
434                         }
435                 }
436                 if (media == NULL) {
437                         media = dmsg_alloc(sizeof(*media));
438                         media->mediaid = msg->any.lnk_conn.mediaid;
439                         TAILQ_INSERT_TAIL(&mediaq, media, entry);
440                 }
441                 state->media = media;
442                 ++media->refs;
443
444                 if ((msg->any.head.cmd & DMSGF_DELETE) == 0) {
445                         iocom->usrmsg_callback(msg, 0);
446                         dmsg_msg_result(msg, 0);
447                         dmsg_iocom_signal(iocom);
448                         break;
449                 }
450                 /* FALL THROUGH */
451         case DMSG_LNK_CONN | DMSGF_DELETE:
452         case DMSG_LNK_ERROR | DMSGF_DELETE:
453                 /*
454                  * On transaction terminate we clean out our h2span_conn
455                  * and acknowledge the request, closing the transaction.
456                  */
457                 fprintf(stderr, "LNK_CONN: Terminated\n");
458                 conn = state->any.conn;
459                 assert(conn);
460
461                 /*
462                  * Adjust media refs
463                  *
464                  * Callback will clean out media config / user-opaque state
465                  */
466                 media = state->media;
467                 --media->refs;
468                 if (media->refs == 0) {
469                         fprintf(stderr, "Media shutdown\n");
470                         TAILQ_REMOVE(&mediaq, media, entry);
471                         pthread_mutex_unlock(&cluster_mtx);
472                         iocom->usrmsg_callback(msg, 0);
473                         pthread_mutex_lock(&cluster_mtx);
474                         dmsg_free(media);
475                 }
476                 state->media = NULL;
477
478                 /*
479                  * Clean out all relays.  This requires terminating each
480                  * relay transaction.
481                  */
482                 while ((relay = RB_ROOT(&conn->tree)) != NULL) {
483                         dmsg_relay_delete(relay);
484                 }
485
486                 /*
487                  * Clean out conn
488                  */
489                 conn->state = NULL;
490                 msg->state->any.conn = NULL;
491                 msg->state->iocom->conn = NULL;
492                 TAILQ_REMOVE(&connq, conn, entry);
493                 dmsg_free(conn);
494
495                 dmsg_msg_reply(msg, 0);
496                 /* state invalid after reply */
497                 break;
498         default:
499                 iocom->usrmsg_callback(msg, 1);
500 #if 0
501                 if (msg->any.head.cmd & DMSGF_DELETE)
502                         goto deleteconn;
503                 dmsg_msg_reply(msg, DMSG_ERR_NOSUPP);
504 #endif
505                 break;
506         }
507         pthread_mutex_unlock(&cluster_mtx);
508 }
509
510 /*
511  * LNK_SPAN - Spanning tree protocol message reception
512  *            (incoming iocom lock not held)
513  *
514  * Receive a spanning tree transactional message, creating or destroying
515  * a SPAN and propagating it to other iocoms.
516  */
517 void
518 dmsg_lnk_span(dmsg_msg_t *msg)
519 {
520         dmsg_state_t *state = msg->state;
521         dmsg_iocom_t *iocom = state->iocom;
522         h2span_cluster_t dummy_cls;
523         h2span_node_t dummy_node;
524         h2span_cluster_t *cls;
525         h2span_node_t *node;
526         h2span_link_t *slink;
527         h2span_relay_t *relay;
528         char *alloc = NULL;
529
530         /*
531          * Ignore reply to LNK_SPAN.  The reply is expected and will commands
532          * to flow in both directions on the open transaction.  This will also
533          * ignore DMSGF_REPLY|DMSGF_DELETE messages.  Since we take no action
534          * if the other end unexpectedly closes their side of the transaction,
535          * we can ignore that too.
536          */
537         if (msg->any.head.cmd & DMSGF_REPLY) {
538                 printf("Ignore reply to LNK_SPAN\n");
539                 return;
540         }
541
542         pthread_mutex_lock(&cluster_mtx);
543
544         /*
545          * On transaction start we initialize the tracking infrastructure
546          */
547         if (msg->any.head.cmd & DMSGF_CREATE) {
548                 assert(state->func == NULL);
549                 state->func = dmsg_lnk_span;
550
551                 dmsg_termstr(msg->any.lnk_span.cl_label);
552                 dmsg_termstr(msg->any.lnk_span.fs_label);
553
554                 /*
555                  * Find the cluster
556                  */
557                 dummy_cls.pfs_clid = msg->any.lnk_span.pfs_clid;
558                 dummy_cls.peer_type = msg->any.lnk_span.peer_type;
559                 bcopy(msg->any.lnk_span.cl_label,
560                       dummy_cls.cl_label,
561                       sizeof(dummy_cls.cl_label));
562                 cls = RB_FIND(h2span_cluster_tree, &cluster_tree, &dummy_cls);
563                 if (cls == NULL) {
564                         cls = dmsg_alloc(sizeof(*cls));
565                         cls->pfs_clid = msg->any.lnk_span.pfs_clid;
566                         cls->peer_type = msg->any.lnk_span.peer_type;
567                         bcopy(msg->any.lnk_span.cl_label,
568                               cls->cl_label,
569                               sizeof(cls->cl_label));
570                         RB_INIT(&cls->tree);
571                         RB_INSERT(h2span_cluster_tree, &cluster_tree, cls);
572                 }
573
574                 /*
575                  * Find the node
576                  */
577                 dummy_node.pfs_fsid = msg->any.lnk_span.pfs_fsid;
578                 bcopy(msg->any.lnk_span.fs_label, dummy_node.fs_label,
579                       sizeof(dummy_node.fs_label));
580                 node = RB_FIND(h2span_node_tree, &cls->tree, &dummy_node);
581                 if (node == NULL) {
582                         node = dmsg_alloc(sizeof(*node));
583                         node->pfs_fsid = msg->any.lnk_span.pfs_fsid;
584                         node->pfs_type = msg->any.lnk_span.pfs_type;
585                         bcopy(msg->any.lnk_span.fs_label,
586                               node->fs_label,
587                               sizeof(node->fs_label));
588                         node->cls = cls;
589                         RB_INIT(&node->tree);
590                         RB_INSERT(h2span_node_tree, &cls->tree, node);
591                 }
592
593                 /*
594                  * Create the link
595                  *
596                  * NOTE: Sub-transactions on the incoming SPAN can be used
597                  *       to talk to the originator.  We should not set-up
598                  *       state->relay for incoming SPANs since our sub-trans
599                  *       is running on the same interface (i.e. no actual
600                  *       relaying need be done).
601                  *
602                  * NOTE: Later on when we relay the SPAN out the outgoing
603                  *       SPAN state will be set up to relay back to this
604                  *       state.
605                  *
606                  * NOTE: It is possible for SPAN targets to send one-way
607                  *       messages to the originator but it is not possible
608                  *       for the originator to (currently) broadcast one-way
609                  *       messages to all of its SPAN targets.  The protocol
610                  *       allows such a feature to be added in the future.
611                  */
612                 assert(state->any.link == NULL);
613                 slink = dmsg_alloc(sizeof(*slink));
614                 TAILQ_INIT(&slink->relayq);
615                 slink->node = node;
616                 slink->state = state;
617                 state->any.link = slink;
618                 slink->lnk_span = msg->any.lnk_span;
619
620                 RB_INSERT(h2span_link_tree, &node->tree, slink);
621
622                 fprintf(stderr,
623                         "LNK_SPAN(thr %p): %p %s cl=%s fs=%s dist=%d\n",
624                         iocom,
625                         slink,
626                         dmsg_uuid_to_str(&msg->any.lnk_span.pfs_clid, &alloc),
627                         msg->any.lnk_span.cl_label,
628                         msg->any.lnk_span.fs_label,
629                         msg->any.lnk_span.dist);
630                 free(alloc);
631 #if 0
632                 dmsg_relay_scan(NULL, node);
633 #endif
634                 /*
635                  * Ack the open, which will issue a CREATE on our side, and
636                  * leave the transaction open.  Necessary to allow the
637                  * transaction to be used as a virtual circuit.
638                  */
639                 dmsg_state_result(state, 0);
640                 dmsg_iocom_signal(iocom);
641         }
642
643         /*
644          * On transaction terminate we remove the tracking infrastructure.
645          */
646         if (msg->any.head.cmd & DMSGF_DELETE) {
647                 slink = state->any.link;
648                 assert(slink != NULL);
649                 node = slink->node;
650                 cls = node->cls;
651
652                 fprintf(stderr, "LNK_DELE(thr %p): %p %s cl=%s fs=%s\n",
653                         iocom,
654                         slink,
655                         dmsg_uuid_to_str(&cls->pfs_clid, &alloc),
656                         cls->cl_label,
657                         node->fs_label);
658                 free(alloc);
659
660                 /*
661                  * Clean out all relays.  This requires terminating each
662                  * relay transaction.
663                  */
664                 while ((relay = TAILQ_FIRST(&slink->relayq)) != NULL) {
665                         dmsg_relay_delete(relay);
666                 }
667
668                 /*
669                  * Clean out the topology
670                  */
671                 RB_REMOVE(h2span_link_tree, &node->tree, slink);
672                 if (RB_EMPTY(&node->tree)) {
673                         RB_REMOVE(h2span_node_tree, &cls->tree, node);
674                         if (RB_EMPTY(&cls->tree) && cls->refs == 0) {
675                                 RB_REMOVE(h2span_cluster_tree,
676                                           &cluster_tree, cls);
677                                 dmsg_free(cls);
678                         }
679                         node->cls = NULL;
680                         dmsg_free(node);
681                         node = NULL;
682                 }
683                 state->any.link = NULL;
684                 slink->state = NULL;
685                 slink->node = NULL;
686                 dmsg_free(slink);
687
688                 /*
689                  * We have to terminate the transaction
690                  */
691                 dmsg_state_reply(state, 0);
692                 /* state invalid after reply */
693
694                 /*
695                  * If the node still exists issue any required updates.  If
696                  * it doesn't then all related relays have already been
697                  * removed and there's nothing left to do.
698                  */
699 #if 0
700                 if (node)
701                         dmsg_relay_scan(NULL, node);
702 #endif
703                 if (node)
704                         dmsg_iocom_signal(iocom);
705         }
706
707         pthread_mutex_unlock(&cluster_mtx);
708 }
709
710 /*
711  * Update relay transactions for SPANs.
712  *
713  * Called with cluster_mtx held.
714  */
715 static void dmsg_relay_scan_specific(h2span_node_t *node,
716                                         h2span_conn_t *conn);
717
718 static void
719 dmsg_relay_scan(h2span_conn_t *conn, h2span_node_t *node)
720 {
721         h2span_cluster_t *cls;
722
723         if (node) {
724                 /*
725                  * Iterate specific node
726                  */
727                 TAILQ_FOREACH(conn, &connq, entry)
728                         dmsg_relay_scan_specific(node, conn);
729         } else {
730                 /*
731                  * Full iteration.
732                  *
733                  * Iterate cluster ids, nodes, and either a specific connection
734                  * or all connections.
735                  */
736                 RB_FOREACH(cls, h2span_cluster_tree, &cluster_tree) {
737                         /*
738                          * Iterate node ids
739                          */
740                         RB_FOREACH(node, h2span_node_tree, &cls->tree) {
741                                 /*
742                                  * Synchronize the node's link (received SPANs)
743                                  * with each connection's relays.
744                                  */
745                                 if (conn) {
746                                         dmsg_relay_scan_specific(node, conn);
747                                 } else {
748                                         TAILQ_FOREACH(conn, &connq, entry) {
749                                             dmsg_relay_scan_specific(node,
750                                                                         conn);
751                                         }
752                                         assert(conn == NULL);
753                                 }
754                         }
755                 }
756         }
757 }
758
759 /*
760  * Update the relay'd SPANs for this (node, conn).
761  *
762  * Iterate links and adjust relays to match.  We only propagate the top link
763  * for now (XXX we want to propagate the top two).
764  *
765  * The dmsg_relay_scan_cmp() function locates the first relay element
766  * for any given node.  The relay elements will be sub-sorted by dist.
767  */
768 struct relay_scan_info {
769         h2span_node_t *node;
770         h2span_relay_t *relay;
771 };
772
773 static int
774 dmsg_relay_scan_cmp(h2span_relay_t *relay, void *arg)
775 {
776         struct relay_scan_info *info = arg;
777
778         if ((intptr_t)relay->source_rt->any.link->node < (intptr_t)info->node)
779                 return(-1);
780         if ((intptr_t)relay->source_rt->any.link->node > (intptr_t)info->node)
781                 return(1);
782         return(0);
783 }
784
785 static int
786 dmsg_relay_scan_callback(h2span_relay_t *relay, void *arg)
787 {
788         struct relay_scan_info *info = arg;
789
790         info->relay = relay;
791         return(-1);
792 }
793
794 static void
795 dmsg_relay_scan_specific(h2span_node_t *node, h2span_conn_t *conn)
796 {
797         struct relay_scan_info info;
798         h2span_relay_t *relay;
799         h2span_relay_t *next_relay;
800         h2span_link_t *slink;
801         dmsg_lnk_conn_t *lconn;
802         dmsg_lnk_span_t *lspan;
803         int count;
804         int maxcount = 2;
805 #ifdef REQUIRE_SYMMETRICAL
806         uint32_t lastdist = DMSG_SPAN_MAXDIST;
807         uint32_t lastrnss = 0;
808 #endif
809
810         info.node = node;
811         info.relay = NULL;
812
813         /*
814          * Locate the first related relay for the node on this connection.
815          * relay will be NULL if there were none.
816          */
817         RB_SCAN(h2span_relay_tree, &conn->tree,
818                 dmsg_relay_scan_cmp, dmsg_relay_scan_callback, &info);
819         relay = info.relay;
820         info.relay = NULL;
821         if (relay)
822                 assert(relay->source_rt->any.link->node == node);
823
824         if (DMsgDebugOpt > 8)
825                 fprintf(stderr, "relay scan for connection %p\n", conn);
826
827         /*
828          * Iterate the node's links (received SPANs) in distance order,
829          * lowest (best) dist first.
830          *
831          * PROPAGATE THE BEST LINKS OVER THE SPECIFIED CONNECTION.
832          *
833          * Track relays while iterating the best links and construct
834          * missing relays when necessary.
835          *
836          * (If some prior better link was removed it would have also
837          *  removed the relay, so the relay can only match exactly or
838          *  be worse).
839          */
840         count = 0;
841         RB_FOREACH(slink, h2span_link_tree, &node->tree) {
842                 /*
843                  * Increment count of successful relays.  This isn't
844                  * quite accurate if we break out but nothing after
845                  * the loop uses (count).
846                  *
847                  * If count exceeds the maximum number of relays we desire
848                  * we normally want to break out.  However, in order to
849                  * guarantee a symmetric path we have to continue if both
850                  * (dist) and (rnss) continue to match.  Otherwise the SPAN
851                  * propagation in the reverse direction may choose different
852                  * routes and we will not have a symmetric path.
853                  *
854                  * NOTE: Spanning tree does not have to be symmetrical so
855                  *       this code is not currently enabled.
856                  */
857                 if (++count >= maxcount) {
858 #ifdef REQUIRE_SYMMETRICAL
859                         if (lastdist != slink->lnk_span.dist ||
860                             lastrnss != slink->lnk_span.rnss) {
861                                 break;
862                         }
863 #else
864                         break;
865 #endif
866                         /* go beyond the nominal maximum desired relays */
867                 }
868
869                 /*
870                  * Match, relay already in-place, get the next
871                  * relay to match against the next slink.
872                  */
873                 if (relay && relay->source_rt->any.link == slink) {
874                         relay = RB_NEXT(h2span_relay_tree, &conn->tree, relay);
875                         continue;
876                 }
877
878                 /*
879                  * We might want this SLINK, if it passes our filters.
880                  *
881                  * The spanning tree can cause closed loops so we have
882                  * to limit slink->dist.
883                  */
884                 if (slink->lnk_span.dist > DMSG_SPAN_MAXDIST)
885                         break;
886
887                 /*
888                  * Don't bother transmitting a LNK_SPAN out the same
889                  * connection it came in on.  Trivial optimization.
890                  */
891                 if (slink->state->iocom == conn->state->iocom)
892                         break;
893
894                 /*
895                  * NOTE ON FILTERS: The protocol spec allows non-requested
896                  * SPANs to be transmitted, the other end is expected to
897                  * leave their transactions open but otherwise ignore them.
898                  *
899                  * Don't bother transmitting if the remote connection
900                  * is not accepting this SPAN's peer_type.
901                  *
902                  * pfs_mask is typically used so pure clients can filter
903                  * out receiving SPANs for other pure clients.
904                  */
905                 lspan = &slink->lnk_span;
906                 lconn = &conn->lnk_conn;
907                 if (((1LLU << lspan->peer_type) & lconn->peer_mask) == 0)
908                         break;
909                 if (((1LLU << lspan->pfs_type) & lconn->pfs_mask) == 0)
910                         break;
911
912                 /*
913                  * Do not give pure clients visibility to other pure clients
914                  */
915                 if (lconn->pfs_type == DMSG_PFSTYPE_CLIENT &&
916                     lspan->pfs_type == DMSG_PFSTYPE_CLIENT) {
917                         break;
918                 }
919
920                 /*
921                  * Connection filter, if cluster uuid is not NULL it must
922                  * match the span cluster uuid.  Only applies when the
923                  * peer_type matches.
924                  */
925                 if (lspan->peer_type == lconn->peer_type &&
926                     !uuid_is_nil(&lconn->pfs_clid, NULL) &&
927                     uuid_compare(&slink->node->cls->pfs_clid,
928                                  &lconn->pfs_clid, NULL)) {
929                         break;
930                 }
931
932                 /*
933                  * Connection filter, if cluster label is not empty it must
934                  * match the span cluster label.  Only applies when the
935                  * peer_type matches.
936                  */
937                 if (lspan->peer_type == lconn->peer_type &&
938                     lconn->cl_label[0] &&
939                     strcmp(lconn->cl_label, slink->node->cls->cl_label)) {
940                         break;
941                 }
942
943                 /*
944                  * NOTE! pfs_fsid differentiates nodes within the same cluster
945                  *       so we obviously don't want to match those.  Similarly
946                  *       for fs_label.
947                  */
948
949                 /*
950                  * Ok, we've accepted this SPAN for relaying.
951                  */
952                 assert(relay == NULL ||
953                        relay->source_rt->any.link->node != slink->node ||
954                        relay->source_rt->any.link->lnk_span.dist >=
955                         slink->lnk_span.dist);
956                 relay = dmsg_generate_relay(conn, slink);
957 #ifdef REQUIRE_SYMMETRICAL
958                 lastdist = slink->lnk_span.dist;
959                 lastrnss = slink->lnk_span.rnss;
960 #endif
961
962                 /*
963                  * Match (created new relay), get the next relay to
964                  * match against the next slink.
965                  */
966                 relay = RB_NEXT(h2span_relay_tree, &conn->tree, relay);
967         }
968
969         /*
970          * Any remaining relay's belonging to this connection which match
971          * the node are in excess of the current aggregate spanning state
972          * and should be removed.
973          */
974         while (relay && relay->source_rt->any.link->node == node) {
975                 next_relay = RB_NEXT(h2span_relay_tree, &conn->tree, relay);
976                 fprintf(stderr, "RELAY DELETE FROM EXTRAS\n");
977                 dmsg_relay_delete(relay);
978                 relay = next_relay;
979         }
980 }
981
982 /*
983  * Find the slink associated with the msgid and return its state,
984  * so the caller can issue a transaction.
985  */
986 dmsg_state_t *
987 dmsg_findspan(const char *label)
988 {
989         dmsg_state_t *state;
990         h2span_cluster_t *cls;
991         h2span_node_t *node;
992         h2span_link_t *slink;
993         uint64_t msgid = strtoull(label, NULL, 16);
994
995         pthread_mutex_lock(&cluster_mtx);
996
997         state = NULL;
998         RB_FOREACH(cls, h2span_cluster_tree, &cluster_tree) {
999                 RB_FOREACH(node, h2span_node_tree, &cls->tree) {
1000                         RB_FOREACH(slink, h2span_link_tree, &node->tree) {
1001                                 if (slink->state->msgid == msgid) {
1002                                         state = slink->state;
1003                                         goto done;
1004                                 }
1005                         }
1006                 }
1007         }
1008 done:
1009         pthread_mutex_unlock(&cluster_mtx);
1010
1011         fprintf(stderr, "findspan: %p\n", state);
1012
1013         return state;
1014 }
1015
1016
1017 /*
1018  * Helper function to generate missing relay on target connection.
1019  *
1020  * cluster_mtx must be held
1021  */
1022 static
1023 h2span_relay_t *
1024 dmsg_generate_relay(h2span_conn_t *conn, h2span_link_t *slink)
1025 {
1026         h2span_relay_t *relay;
1027         dmsg_msg_t *msg;
1028
1029         relay = dmsg_alloc(sizeof(*relay));
1030         relay->conn = conn;
1031         relay->source_rt = slink->state;
1032         /* relay->source_rt->any.link = slink; */
1033
1034         /*
1035          * NOTE: relay->target_rt->any.relay set to relay by alloc.
1036          *
1037          * NOTE: LNK_SPAN is transmitted as a top-level transaction.
1038          */
1039         msg = dmsg_msg_alloc(&conn->state->iocom->state0,
1040                              0, DMSG_LNK_SPAN | DMSGF_CREATE,
1041                              dmsg_lnk_relay, relay);
1042         relay->target_rt = msg->state;
1043
1044         msg->any.lnk_span = slink->lnk_span;
1045         msg->any.lnk_span.dist = slink->lnk_span.dist + 1;
1046         msg->any.lnk_span.rnss = slink->lnk_span.rnss + dmsg_rnss();
1047
1048         RB_INSERT(h2span_relay_tree, &conn->tree, relay);
1049         TAILQ_INSERT_TAIL(&slink->relayq, relay, entry);
1050
1051         /*
1052          * Seed the relay so new sub-transactions received on the outgoing
1053          * SPAN circuit are relayed back to the originator.
1054          */
1055         msg->state->relay = relay->source_rt;
1056         dmsg_state_hold(msg->state->relay);
1057
1058         dmsg_msg_write(msg);
1059
1060         return (relay);
1061 }
1062
1063 /*
1064  * Messages received on relay SPANs.  These are open transactions so it is
1065  * in fact possible for the other end to close the transaction.
1066  *
1067  * XXX MPRACE on state structure
1068  */
1069 static void
1070 dmsg_lnk_relay(dmsg_msg_t *msg)
1071 {
1072         dmsg_state_t *state = msg->state;
1073         h2span_relay_t *relay;
1074
1075         assert(msg->any.head.cmd & DMSGF_REPLY);
1076
1077         if (msg->any.head.cmd & DMSGF_DELETE) {
1078                 pthread_mutex_lock(&cluster_mtx);
1079                 fprintf(stderr, "RELAY DELETE FROM LNK_RELAY MSG\n");
1080                 if ((relay = state->any.relay) != NULL) {
1081                         dmsg_relay_delete(relay);
1082                 } else {
1083                         dmsg_state_reply(state, 0);
1084                 }
1085                 pthread_mutex_unlock(&cluster_mtx);
1086         }
1087 }
1088
1089 /*
1090  * cluster_mtx held by caller
1091  */
1092 static
1093 void
1094 dmsg_relay_delete(h2span_relay_t *relay)
1095 {
1096         fprintf(stderr,
1097                 "RELAY DELETE %p RELAY %p ON CLS=%p NODE=%p "
1098                 "DIST=%d FD %d STATE %p\n",
1099                 relay->source_rt->any.link,
1100                 relay,
1101                 relay->source_rt->any.link->node->cls,
1102                 relay->source_rt->any.link->node,
1103                 relay->source_rt->any.link->lnk_span.dist,
1104                 relay->conn->state->iocom->sock_fd,
1105                 relay->target_rt);
1106
1107         RB_REMOVE(h2span_relay_tree, &relay->conn->tree, relay);
1108         TAILQ_REMOVE(&relay->source_rt->any.link->relayq, relay, entry);
1109
1110         if (relay->target_rt) {
1111                 relay->target_rt->any.relay = NULL;
1112                 dmsg_state_reply(relay->target_rt, 0);
1113                 /* state invalid after reply */
1114                 relay->target_rt = NULL;
1115         }
1116
1117         /*
1118          * NOTE: relay->source_rt->refs is held by the relay SPAN
1119          *       state, not by this relay structure.
1120          */
1121         relay->conn = NULL;
1122         relay->source_rt = NULL;
1123         dmsg_free(relay);
1124 }
1125
1126 /************************************************************************
1127  *                      ROUTER AND MESSAGING HANDLES                    *
1128  ************************************************************************
1129  *
1130  * Basically the idea here is to provide a stable data structure which
1131  * can be localized to the caller for higher level protocols to work with.
1132  * Depends on the context, these dmsg_handle's can be pooled by use-case
1133  * and remain persistent through a client (or mount point's) life.
1134  */
1135
1136 #if 0
1137 /*
1138  * Obtain a stable handle on a cluster given its uuid.  This ties directly
1139  * into the global cluster topology, creating the structure if necessary
1140  * (even if the uuid does not exist or does not exist yet), and preventing
1141  * the structure from getting ripped out from under us while we hold a
1142  * pointer to it.
1143  */
1144 h2span_cluster_t *
1145 dmsg_cluster_get(uuid_t *pfs_clid)
1146 {
1147         h2span_cluster_t dummy_cls;
1148         h2span_cluster_t *cls;
1149
1150         dummy_cls.pfs_clid = *pfs_clid;
1151         pthread_mutex_lock(&cluster_mtx);
1152         cls = RB_FIND(h2span_cluster_tree, &cluster_tree, &dummy_cls);
1153         if (cls)
1154                 ++cls->refs;
1155         pthread_mutex_unlock(&cluster_mtx);
1156         return (cls);
1157 }
1158
1159 void
1160 dmsg_cluster_put(h2span_cluster_t *cls)
1161 {
1162         pthread_mutex_lock(&cluster_mtx);
1163         assert(cls->refs > 0);
1164         --cls->refs;
1165         if (RB_EMPTY(&cls->tree) && cls->refs == 0) {
1166                 RB_REMOVE(h2span_cluster_tree,
1167                           &cluster_tree, cls);
1168                 dmsg_free(cls);
1169         }
1170         pthread_mutex_unlock(&cluster_mtx);
1171 }
1172
1173 /*
1174  * Obtain a stable handle to a specific cluster node given its uuid.
1175  * This handle does NOT lock in the route to the node and is typically
1176  * used as part of the dmsg_handle_*() API to obtain a set of
1177  * stable nodes.
1178  */
1179 h2span_node_t *
1180 dmsg_node_get(h2span_cluster_t *cls, uuid_t *pfs_fsid)
1181 {
1182 }
1183
1184 #endif
1185
1186 /*
1187  * Dumps the spanning tree
1188  *
1189  * DEBUG ONLY
1190  */
1191 void
1192 dmsg_shell_tree(dmsg_iocom_t *iocom, char *cmdbuf __unused)
1193 {
1194         h2span_cluster_t *cls;
1195         h2span_node_t *node;
1196         h2span_link_t *slink;
1197         h2span_relay_t *relay;
1198         char *uustr = NULL;
1199
1200         pthread_mutex_lock(&cluster_mtx);
1201         RB_FOREACH(cls, h2span_cluster_tree, &cluster_tree) {
1202                 dmsg_printf(iocom, "Cluster %s %s (%s)\n",
1203                                   dmsg_peer_type_to_str(cls->peer_type),
1204                                   dmsg_uuid_to_str(&cls->pfs_clid, &uustr),
1205                                   cls->cl_label);
1206                 RB_FOREACH(node, h2span_node_tree, &cls->tree) {
1207                         dmsg_printf(iocom, "    Node %02x %s (%s)\n",
1208                                 node->pfs_type,
1209                                 dmsg_uuid_to_str(&node->pfs_fsid, &uustr),
1210                                 node->fs_label);
1211                         RB_FOREACH(slink, h2span_link_tree, &node->tree) {
1212                                 dmsg_printf(iocom,
1213                                             "\tSLink msgid %016jx "
1214                                             "dist=%d via %d\n",
1215                                             (intmax_t)slink->state->msgid,
1216                                             slink->lnk_span.dist,
1217                                             slink->state->iocom->sock_fd);
1218                                 TAILQ_FOREACH(relay, &slink->relayq, entry) {
1219                                         dmsg_printf(iocom,
1220                                             "\t    Relay-out msgid %016jx "
1221                                             "via %d\n",
1222                                             (intmax_t)relay->target_rt->msgid,
1223                                             relay->target_rt->iocom->sock_fd);
1224                                 }
1225                         }
1226                 }
1227         }
1228         pthread_mutex_unlock(&cluster_mtx);
1229         if (uustr)
1230                 free(uustr);
1231 #if 0
1232         TAILQ_FOREACH(conn, &connq, entry) {
1233         }
1234 #endif
1235 }
1236
1237 /*
1238  * DEBUG ONLY
1239  *
1240  * Locate the state representing an incoming LNK_SPAN given its msgid.
1241  */
1242 int
1243 dmsg_debug_findspan(uint64_t msgid, dmsg_state_t **statep)
1244 {
1245         h2span_cluster_t *cls;
1246         h2span_node_t *node;
1247         h2span_link_t *slink;
1248
1249         pthread_mutex_lock(&cluster_mtx);
1250         RB_FOREACH(cls, h2span_cluster_tree, &cluster_tree) {
1251                 RB_FOREACH(node, h2span_node_tree, &cls->tree) {
1252                         RB_FOREACH(slink, h2span_link_tree, &node->tree) {
1253                                 if (slink->state->msgid == msgid) {
1254                                         *statep = slink->state;
1255                                         goto found;
1256                                 }
1257                         }
1258                 }
1259         }
1260         pthread_mutex_unlock(&cluster_mtx);
1261         *statep = NULL;
1262         return(ENOENT);
1263 found:
1264         pthread_mutex_unlock(&cluster_mtx);
1265         return(0);
1266 }
1267
1268 /*
1269  * Random number sub-sort value to add to SPAN rnss fields on relay.
1270  * This allows us to differentiate spans with the same <dist> field
1271  * for relaying purposes.  We must normally limit the number of relays
1272  * for any given SPAN origination but we must also guarantee that a
1273  * symmetric reverse path exists, so we use the rnss field as a sub-sort
1274  * (since there can be thousands or millions if we only match on <dist>),
1275  * and if there STILL too many spans we go past the limit.
1276  */
1277 static
1278 uint32_t
1279 dmsg_rnss(void)
1280 {
1281         if (DMsgRNSS == 0) {
1282                 pthread_mutex_lock(&cluster_mtx);
1283                 while (DMsgRNSS == 0) {
1284                         srandomdev();
1285                         DMsgRNSS = random();
1286                 }
1287                 pthread_mutex_unlock(&cluster_mtx);
1288         }
1289         return(DMsgRNSS);
1290 }