f8e3ada3f2e75b92684c993b252553a7fc9c261c
[dragonfly.git] / sys / opencrypto / crypto.c
1 /*      $FreeBSD: src/sys/opencrypto/crypto.c,v 1.28 2007/10/20 23:23:22 julian Exp $   */
2 /*-
3  * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25
26 /*
27  * Cryptographic Subsystem.
28  *
29  * This code is derived from the Openbsd Cryptographic Framework (OCF)
30  * that has the copyright shown below.  Very little of the original
31  * code remains.
32  */
33
34 /*-
35  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
36  *
37  * This code was written by Angelos D. Keromytis in Athens, Greece, in
38  * February 2000. Network Security Technologies Inc. (NSTI) kindly
39  * supported the development of this code.
40  *
41  * Copyright (c) 2000, 2001 Angelos D. Keromytis
42  *
43  * Permission to use, copy, and modify this software with or without fee
44  * is hereby granted, provided that this entire notice is included in
45  * all source code copies of any software which is or includes a copy or
46  * modification of this software.
47  *
48  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52  * PURPOSE.
53  */
54
55 #define CRYPTO_TIMING                           /* enable timing support */
56
57 #include "opt_ddb.h"
58
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/eventhandler.h>
62 #include <sys/kernel.h>
63 #include <sys/kthread.h>
64 #include <sys/lock.h>
65 #include <sys/module.h>
66 #include <sys/malloc.h>
67 #include <sys/proc.h>
68 #include <sys/sysctl.h>
69 #include <sys/objcache.h>
70
71 #include <sys/thread2.h>
72 #include <sys/mplock2.h>
73
74 #include <ddb/ddb.h>
75
76 #include <opencrypto/cryptodev.h>
77 #include <opencrypto/xform.h>                   /* XXX for M_XDATA */
78
79 #include <sys/kobj.h>
80 #include <sys/bus.h>
81 #include "cryptodev_if.h"
82
83 /*
84  * Crypto drivers register themselves by allocating a slot in the
85  * crypto_drivers table with crypto_get_driverid() and then registering
86  * each algorithm they support with crypto_register() and crypto_kregister().
87  */
88 static  struct lock crypto_drivers_lock;        /* lock on driver table */
89 #define CRYPTO_DRIVER_LOCK()    lockmgr(&crypto_drivers_lock, LK_EXCLUSIVE)
90 #define CRYPTO_DRIVER_UNLOCK()  lockmgr(&crypto_drivers_lock, LK_RELEASE)
91 #define CRYPTO_DRIVER_ASSERT()  KKASSERT(lockstatus(&crypto_drivers_lock, curthread) != 0)
92
93 /*
94  * Crypto device/driver capabilities structure.
95  *
96  * Synchronization:
97  * (d) - protected by CRYPTO_DRIVER_LOCK()
98  * (q) - protected by CRYPTO_Q_LOCK()
99  * Not tagged fields are read-only.
100  */
101 struct cryptocap {
102         device_t        cc_dev;                 /* (d) device/driver */
103         u_int32_t       cc_sessions;            /* (d) # of sessions */
104         u_int32_t       cc_koperations;         /* (d) # os asym operations */
105         /*
106          * Largest possible operator length (in bits) for each type of
107          * encryption algorithm. XXX not used
108          */
109         u_int16_t       cc_max_op_len[CRYPTO_ALGORITHM_MAX + 1];
110         u_int8_t        cc_alg[CRYPTO_ALGORITHM_MAX + 1];
111         u_int8_t        cc_kalg[CRK_ALGORITHM_MAX + 1];
112
113         int             cc_flags;               /* (d) flags */
114 #define CRYPTOCAP_F_CLEANUP     0x80000000      /* needs resource cleanup */
115         int             cc_qblocked;            /* (q) symmetric q blocked */
116         int             cc_kqblocked;           /* (q) asymmetric q blocked */
117 };
118 static  struct cryptocap *crypto_drivers = NULL;
119 static  int crypto_drivers_num = 0;
120
121 typedef struct crypto_tdinfo {
122         TAILQ_HEAD(,cryptop)    crp_q;          /* request queues */
123         TAILQ_HEAD(,cryptkop)   crp_kq;
124         thread_t                crp_td;
125         struct lock             crp_lock;
126         int                     crp_sleep;
127 } *crypto_tdinfo_t;
128
129 /*
130  * There are two queues for crypto requests; one for symmetric (e.g.
131  * cipher) operations and one for asymmetric (e.g. MOD) operations.
132  * See below for how synchronization is handled.
133  * A single lock is used to lock access to both queues.  We could
134  * have one per-queue but having one simplifies handling of block/unblock
135  * operations.
136  */
137 static  struct crypto_tdinfo tdinfo_array[MAXCPU];
138
139 #define CRYPTO_Q_LOCK(tdinfo)   lockmgr(&tdinfo->crp_lock, LK_EXCLUSIVE)
140 #define CRYPTO_Q_UNLOCK(tdinfo) lockmgr(&tdinfo->crp_lock, LK_RELEASE)
141
142 /*
143  * There are two queues for processing completed crypto requests; one
144  * for the symmetric and one for the asymmetric ops.  We only need one
145  * but have two to avoid type futzing (cryptop vs. cryptkop).  A single
146  * lock is used to lock access to both queues.  Note that this lock
147  * must be separate from the lock on request queues to insure driver
148  * callbacks don't generate lock order reversals.
149  */
150 static  TAILQ_HEAD(,cryptop) crp_ret_q;         /* callback queues */
151 static  TAILQ_HEAD(,cryptkop) crp_ret_kq;
152 static  struct lock crypto_ret_q_lock;
153 #define CRYPTO_RETQ_LOCK()      lockmgr(&crypto_ret_q_lock, LK_EXCLUSIVE)
154 #define CRYPTO_RETQ_UNLOCK()    lockmgr(&crypto_ret_q_lock, LK_RELEASE)
155 #define CRYPTO_RETQ_EMPTY()     (TAILQ_EMPTY(&crp_ret_q) && TAILQ_EMPTY(&crp_ret_kq))
156
157 /*
158  * Crypto op and desciptor data structures are allocated
159  * from separate object caches.
160  */
161 static struct objcache *cryptop_oc, *cryptodesc_oc;
162
163 static MALLOC_DEFINE(M_CRYPTO_OP, "crypto op", "crypto op");
164 static MALLOC_DEFINE(M_CRYPTO_DESC, "crypto desc", "crypto desc");
165
166 int     crypto_userasymcrypto = 1;      /* userland may do asym crypto reqs */
167 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW,
168            &crypto_userasymcrypto, 0,
169            "Enable/disable user-mode access to asymmetric crypto support");
170 int     crypto_devallowsoft = 0;        /* only use hardware crypto for asym */
171 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
172            &crypto_devallowsoft, 0,
173            "Enable/disable use of software asym crypto support");
174 int     crypto_altdispatch = 0;         /* dispatch to alternative cpu */
175 SYSCTL_INT(_kern, OID_AUTO, cryptoaltdispatch, CTLFLAG_RW,
176            &crypto_altdispatch, 0,
177            "Do not queue crypto op on current cpu");
178
179 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
180
181 static  void crypto_proc(void *dummy);
182 static  void crypto_ret_proc(void *dummy);
183 static  struct thread *cryptoretthread;
184 static  void crypto_destroy(void);
185 static  int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
186 static  int crypto_kinvoke(struct cryptkop *krp, int flags);
187
188 static struct cryptostats cryptostats;
189 SYSCTL_STRUCT(_kern, OID_AUTO, crypto_stats, CTLFLAG_RW, &cryptostats,
190             cryptostats, "Crypto system statistics");
191
192 #ifdef CRYPTO_TIMING
193 static  int crypto_timing = 0;
194 SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW,
195            &crypto_timing, 0, "Enable/disable crypto timing support");
196 #endif
197
198 static int
199 crypto_init(void)
200 {
201         crypto_tdinfo_t tdinfo;
202         int error;
203         int n;
204
205         lockinit(&crypto_drivers_lock, "crypto driver table", 0, LK_CANRECURSE);
206
207         TAILQ_INIT(&crp_ret_q);
208         TAILQ_INIT(&crp_ret_kq);
209         lockinit(&crypto_ret_q_lock, "crypto return queues", 0, LK_CANRECURSE);
210
211         cryptop_oc = objcache_create_simple(M_CRYPTO_OP, sizeof(struct cryptop));
212         cryptodesc_oc = objcache_create_simple(M_CRYPTO_DESC,
213                                 sizeof(struct cryptodesc));
214         if (cryptodesc_oc == NULL || cryptop_oc == NULL) {
215                 kprintf("crypto_init: cannot setup crypto caches\n");
216                 error = ENOMEM;
217                 goto bad;
218         }
219
220         crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
221         crypto_drivers = kmalloc(crypto_drivers_num * sizeof(struct cryptocap),
222                                  M_CRYPTO_DATA, M_WAITOK | M_ZERO);
223
224         for (n = 0; n < ncpus; ++n) {
225                 tdinfo = &tdinfo_array[n];
226                 TAILQ_INIT(&tdinfo->crp_q);
227                 TAILQ_INIT(&tdinfo->crp_kq);
228                 lockinit(&tdinfo->crp_lock, "crypto op queues",
229                          0, LK_CANRECURSE);
230                 kthread_create_cpu(crypto_proc, tdinfo, &tdinfo->crp_td,
231                                    n, "crypto %d", n);
232         }
233         kthread_create(crypto_ret_proc, NULL,
234                        &cryptoretthread, "crypto returns");
235         return 0;
236 bad:
237         crypto_destroy();
238         return error;
239 }
240
241 /*
242  * Signal a crypto thread to terminate.  We use the driver
243  * table lock to synchronize the sleep/wakeups so that we
244  * are sure the threads have terminated before we release
245  * the data structures they use.  See crypto_finis below
246  * for the other half of this song-and-dance.
247  */
248 static void
249 crypto_terminate(struct thread **tp, void *q)
250 {
251         struct thread *t;
252
253         KKASSERT(lockstatus(&crypto_drivers_lock, curthread) != 0);
254         t = *tp;
255         *tp = NULL;
256         if (t) {
257                 kprintf("crypto_terminate: start\n");
258                 wakeup_one(q);
259                 crit_enter();
260                 tsleep_interlock(t, 0);
261                 CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */
262                 crit_exit();
263                 tsleep(t, PINTERLOCKED, "crypto_destroy", 0);
264                 CRYPTO_DRIVER_LOCK();
265                 kprintf("crypto_terminate: end\n");
266         }
267 }
268
269 static void
270 crypto_destroy(void)
271 {
272         crypto_tdinfo_t tdinfo;
273         int n;
274
275         /*
276          * Terminate any crypto threads.
277          */
278         CRYPTO_DRIVER_LOCK();
279         for (n = 0; n < ncpus; ++n) {
280                 tdinfo = &tdinfo_array[n];
281                 crypto_terminate(&tdinfo->crp_td, &tdinfo->crp_q);
282                 lockuninit(&tdinfo->crp_lock);
283         }
284         crypto_terminate(&cryptoretthread, &crp_ret_q);
285         CRYPTO_DRIVER_UNLOCK();
286
287         /* XXX flush queues??? */
288
289         /*
290          * Reclaim dynamically allocated resources.
291          */
292         if (crypto_drivers != NULL)
293                 kfree(crypto_drivers, M_CRYPTO_DATA);
294
295         if (cryptodesc_oc != NULL)
296                 objcache_destroy(cryptodesc_oc);
297         if (cryptop_oc != NULL)
298                 objcache_destroy(cryptop_oc);
299         lockuninit(&crypto_ret_q_lock);
300         lockuninit(&crypto_drivers_lock);
301 }
302
303 static struct cryptocap *
304 crypto_checkdriver(u_int32_t hid)
305 {
306         if (crypto_drivers == NULL)
307                 return NULL;
308         return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
309 }
310
311 /*
312  * Compare a driver's list of supported algorithms against another
313  * list; return non-zero if all algorithms are supported.
314  */
315 static int
316 driver_suitable(const struct cryptocap *cap, const struct cryptoini *cri)
317 {
318         const struct cryptoini *cr;
319
320         /* See if all the algorithms are supported. */
321         for (cr = cri; cr; cr = cr->cri_next)
322                 if (cap->cc_alg[cr->cri_alg] == 0)
323                         return 0;
324         return 1;
325 }
326
327 /*
328  * Select a driver for a new session that supports the specified
329  * algorithms and, optionally, is constrained according to the flags.
330  * The algorithm we use here is pretty stupid; just use the
331  * first driver that supports all the algorithms we need. If there
332  * are multiple drivers we choose the driver with the fewest active
333  * sessions.  We prefer hardware-backed drivers to software ones.
334  *
335  * XXX We need more smarts here (in real life too, but that's
336  * XXX another story altogether).
337  */
338 static struct cryptocap *
339 crypto_select_driver(const struct cryptoini *cri, int flags)
340 {
341         struct cryptocap *cap, *best;
342         int match, hid;
343
344         CRYPTO_DRIVER_ASSERT();
345
346         /*
347          * Look first for hardware crypto devices if permitted.
348          */
349         if (flags & CRYPTOCAP_F_HARDWARE)
350                 match = CRYPTOCAP_F_HARDWARE;
351         else
352                 match = CRYPTOCAP_F_SOFTWARE;
353         best = NULL;
354 again:
355         for (hid = 0; hid < crypto_drivers_num; hid++) {
356                 cap = &crypto_drivers[hid];
357                 /*
358                  * If it's not initialized, is in the process of
359                  * going away, or is not appropriate (hardware
360                  * or software based on match), then skip.
361                  */
362                 if (cap->cc_dev == NULL ||
363                     (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
364                     (cap->cc_flags & match) == 0)
365                         continue;
366
367                 /* verify all the algorithms are supported. */
368                 if (driver_suitable(cap, cri)) {
369                         if (best == NULL ||
370                             cap->cc_sessions < best->cc_sessions)
371                                 best = cap;
372                 }
373         }
374         if (best != NULL)
375                 return best;
376         if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
377                 /* sort of an Algol 68-style for loop */
378                 match = CRYPTOCAP_F_SOFTWARE;
379                 goto again;
380         }
381         return best;
382 }
383
384 /*
385  * Create a new session.  The crid argument specifies a crypto
386  * driver to use or constraints on a driver to select (hardware
387  * only, software only, either).  Whatever driver is selected
388  * must be capable of the requested crypto algorithms.
389  */
390 int
391 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int crid)
392 {
393         struct cryptocap *cap;
394         u_int32_t hid, lid;
395         int err;
396
397         CRYPTO_DRIVER_LOCK();
398         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
399                 /*
400                  * Use specified driver; verify it is capable.
401                  */
402                 cap = crypto_checkdriver(crid);
403                 if (cap != NULL && !driver_suitable(cap, cri))
404                         cap = NULL;
405         } else {
406                 /*
407                  * No requested driver; select based on crid flags.
408                  */
409                 cap = crypto_select_driver(cri, crid);
410                 /*
411                  * if NULL then can't do everything in one session.
412                  * XXX Fix this. We need to inject a "virtual" session
413                  * XXX layer right about here.
414                  */
415         }
416         if (cap != NULL) {
417                 /* Call the driver initialization routine. */
418                 hid = cap - crypto_drivers;
419                 lid = hid;              /* Pass the driver ID. */
420                 err = CRYPTODEV_NEWSESSION(cap->cc_dev, &lid, cri);
421                 if (err == 0) {
422                         (*sid) = (cap->cc_flags & 0xff000000)
423                                | (hid & 0x00ffffff);
424                         (*sid) <<= 32;
425                         (*sid) |= (lid & 0xffffffff);
426                         cap->cc_sessions++;
427                 }
428         } else
429                 err = EINVAL;
430         CRYPTO_DRIVER_UNLOCK();
431         return err;
432 }
433
434 static void
435 crypto_remove(struct cryptocap *cap)
436 {
437
438         KKASSERT(lockstatus(&crypto_drivers_lock, curthread) != 0);
439         if (cap->cc_sessions == 0 && cap->cc_koperations == 0)
440                 bzero(cap, sizeof(*cap));
441 }
442
443 /*
444  * Delete an existing session (or a reserved session on an unregistered
445  * driver).
446  */
447 int
448 crypto_freesession(u_int64_t sid)
449 {
450         struct cryptocap *cap;
451         u_int32_t hid;
452         int err;
453
454         CRYPTO_DRIVER_LOCK();
455
456         if (crypto_drivers == NULL) {
457                 err = EINVAL;
458                 goto done;
459         }
460
461         /* Determine two IDs. */
462         hid = CRYPTO_SESID2HID(sid);
463
464         if (hid >= crypto_drivers_num) {
465                 err = ENOENT;
466                 goto done;
467         }
468         cap = &crypto_drivers[hid];
469
470         if (cap->cc_sessions)
471                 cap->cc_sessions--;
472
473         /* Call the driver cleanup routine, if available. */
474         err = CRYPTODEV_FREESESSION(cap->cc_dev, sid);
475
476         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
477                 crypto_remove(cap);
478
479 done:
480         CRYPTO_DRIVER_UNLOCK();
481         return err;
482 }
483
484 /*
485  * Return an unused driver id.  Used by drivers prior to registering
486  * support for the algorithms they handle.
487  */
488 int32_t
489 crypto_get_driverid(device_t dev, int flags)
490 {
491         struct cryptocap *newdrv;
492         int i;
493
494         if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
495                 kprintf("%s: no flags specified when registering driver\n",
496                     device_get_nameunit(dev));
497                 return -1;
498         }
499
500         CRYPTO_DRIVER_LOCK();
501
502         for (i = 0; i < crypto_drivers_num; i++) {
503                 if (crypto_drivers[i].cc_dev == NULL &&
504                     (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
505                         break;
506                 }
507         }
508
509         /* Out of entries, allocate some more. */
510         if (i == crypto_drivers_num) {
511                 /* Be careful about wrap-around. */
512                 if (2 * crypto_drivers_num <= crypto_drivers_num) {
513                         CRYPTO_DRIVER_UNLOCK();
514                         kprintf("crypto: driver count wraparound!\n");
515                         return -1;
516                 }
517
518                 newdrv = kmalloc(2 * crypto_drivers_num *
519                                  sizeof(struct cryptocap),
520                                  M_CRYPTO_DATA, M_WAITOK|M_ZERO);
521
522                 bcopy(crypto_drivers, newdrv,
523                     crypto_drivers_num * sizeof(struct cryptocap));
524
525                 crypto_drivers_num *= 2;
526
527                 kfree(crypto_drivers, M_CRYPTO_DATA);
528                 crypto_drivers = newdrv;
529         }
530
531         /* NB: state is zero'd on free */
532         crypto_drivers[i].cc_sessions = 1;      /* Mark */
533         crypto_drivers[i].cc_dev = dev;
534         crypto_drivers[i].cc_flags = flags;
535         if (bootverbose)
536                 kprintf("crypto: assign %s driver id %u, flags %u\n",
537                     device_get_nameunit(dev), i, flags);
538
539         CRYPTO_DRIVER_UNLOCK();
540
541         return i;
542 }
543
544 /*
545  * Lookup a driver by name.  We match against the full device
546  * name and unit, and against just the name.  The latter gives
547  * us a simple widlcarding by device name.  On success return the
548  * driver/hardware identifier; otherwise return -1.
549  */
550 int
551 crypto_find_driver(const char *match)
552 {
553         int i, len = strlen(match);
554
555         CRYPTO_DRIVER_LOCK();
556         for (i = 0; i < crypto_drivers_num; i++) {
557                 device_t dev = crypto_drivers[i].cc_dev;
558                 if (dev == NULL ||
559                     (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP))
560                         continue;
561                 if (strncmp(match, device_get_nameunit(dev), len) == 0 ||
562                     strncmp(match, device_get_name(dev), len) == 0)
563                         break;
564         }
565         CRYPTO_DRIVER_UNLOCK();
566         return i < crypto_drivers_num ? i : -1;
567 }
568
569 /*
570  * Return the device_t for the specified driver or NULL
571  * if the driver identifier is invalid.
572  */
573 device_t
574 crypto_find_device_byhid(int hid)
575 {
576         struct cryptocap *cap = crypto_checkdriver(hid);
577         return cap != NULL ? cap->cc_dev : NULL;
578 }
579
580 /*
581  * Return the device/driver capabilities.
582  */
583 int
584 crypto_getcaps(int hid)
585 {
586         struct cryptocap *cap = crypto_checkdriver(hid);
587         return cap != NULL ? cap->cc_flags : 0;
588 }
589
590 /*
591  * Register support for a key-related algorithm.  This routine
592  * is called once for each algorithm supported a driver.
593  */
594 int
595 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags)
596 {
597         struct cryptocap *cap;
598         int err;
599
600         CRYPTO_DRIVER_LOCK();
601
602         cap = crypto_checkdriver(driverid);
603         if (cap != NULL &&
604             (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
605                 /*
606                  * XXX Do some performance testing to determine placing.
607                  * XXX We probably need an auxiliary data structure that
608                  * XXX describes relative performances.
609                  */
610
611                 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
612                 if (bootverbose)
613                         kprintf("crypto: %s registers key alg %u flags %u\n"
614                                 , device_get_nameunit(cap->cc_dev)
615                                 , kalg
616                                 , flags
617                         );
618
619                 err = 0;
620         } else
621                 err = EINVAL;
622
623         CRYPTO_DRIVER_UNLOCK();
624         return err;
625 }
626
627 /*
628  * Register support for a non-key-related algorithm.  This routine
629  * is called once for each such algorithm supported by a driver.
630  */
631 int
632 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
633                 u_int32_t flags)
634 {
635         struct cryptocap *cap;
636         int err;
637
638         CRYPTO_DRIVER_LOCK();
639
640         cap = crypto_checkdriver(driverid);
641         /* NB: algorithms are in the range [1..max] */
642         if (cap != NULL &&
643             (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
644                 /*
645                  * XXX Do some performance testing to determine placing.
646                  * XXX We probably need an auxiliary data structure that
647                  * XXX describes relative performances.
648                  */
649
650                 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
651                 cap->cc_max_op_len[alg] = maxoplen;
652                 if (bootverbose)
653                         kprintf("crypto: %s registers alg %u flags %u maxoplen %u\n"
654                                 , device_get_nameunit(cap->cc_dev)
655                                 , alg
656                                 , flags
657                                 , maxoplen
658                         );
659                 cap->cc_sessions = 0;           /* Unmark */
660                 err = 0;
661         } else
662                 err = EINVAL;
663
664         CRYPTO_DRIVER_UNLOCK();
665         return err;
666 }
667
668 static void
669 driver_finis(struct cryptocap *cap)
670 {
671         u_int32_t ses, kops;
672
673         CRYPTO_DRIVER_ASSERT();
674
675         ses = cap->cc_sessions;
676         kops = cap->cc_koperations;
677         bzero(cap, sizeof(*cap));
678         if (ses != 0 || kops != 0) {
679                 /*
680                  * If there are pending sessions,
681                  * just mark as invalid.
682                  */
683                 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
684                 cap->cc_sessions = ses;
685                 cap->cc_koperations = kops;
686         }
687 }
688
689 /*
690  * Unregister a crypto driver. If there are pending sessions using it,
691  * leave enough information around so that subsequent calls using those
692  * sessions will correctly detect the driver has been unregistered and
693  * reroute requests.
694  */
695 int
696 crypto_unregister(u_int32_t driverid, int alg)
697 {
698         struct cryptocap *cap;
699         int i, err;
700
701         CRYPTO_DRIVER_LOCK();
702         cap = crypto_checkdriver(driverid);
703         if (cap != NULL &&
704             (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
705             cap->cc_alg[alg] != 0) {
706                 cap->cc_alg[alg] = 0;
707                 cap->cc_max_op_len[alg] = 0;
708
709                 /* Was this the last algorithm ? */
710                 for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++) {
711                         if (cap->cc_alg[i] != 0)
712                                 break;
713                 }
714
715                 if (i == CRYPTO_ALGORITHM_MAX + 1)
716                         driver_finis(cap);
717                 err = 0;
718         } else {
719                 err = EINVAL;
720         }
721         CRYPTO_DRIVER_UNLOCK();
722
723         return err;
724 }
725
726 /*
727  * Unregister all algorithms associated with a crypto driver.
728  * If there are pending sessions using it, leave enough information
729  * around so that subsequent calls using those sessions will
730  * correctly detect the driver has been unregistered and reroute
731  * requests.
732  */
733 int
734 crypto_unregister_all(u_int32_t driverid)
735 {
736         struct cryptocap *cap;
737         int err;
738
739         CRYPTO_DRIVER_LOCK();
740         cap = crypto_checkdriver(driverid);
741         if (cap != NULL) {
742                 driver_finis(cap);
743                 err = 0;
744         } else {
745                 err = EINVAL;
746         }
747         CRYPTO_DRIVER_UNLOCK();
748
749         return err;
750 }
751
752 /*
753  * Clear blockage on a driver.  The what parameter indicates whether
754  * the driver is now ready for cryptop's and/or cryptokop's.
755  */
756 int
757 crypto_unblock(u_int32_t driverid, int what)
758 {
759         crypto_tdinfo_t tdinfo;
760         struct cryptocap *cap;
761         int err;
762         int n;
763
764         CRYPTO_DRIVER_LOCK();
765         cap = crypto_checkdriver(driverid);
766         if (cap != NULL) {
767                 if (what & CRYPTO_SYMQ)
768                         cap->cc_qblocked = 0;
769                 if (what & CRYPTO_ASYMQ)
770                         cap->cc_kqblocked = 0;
771                 for (n = 0; n < ncpus; ++n) {
772                         tdinfo = &tdinfo_array[n];
773                         CRYPTO_Q_LOCK(tdinfo);
774                         if (tdinfo[n].crp_sleep)
775                                 wakeup_one(&tdinfo->crp_q);
776                         CRYPTO_Q_UNLOCK(tdinfo);
777                 }
778                 err = 0;
779         } else {
780                 err = EINVAL;
781         }
782         CRYPTO_DRIVER_UNLOCK();
783
784         return err;
785 }
786
787 static volatile int dispatch_rover;
788
789 /*
790  * Add a crypto request to a queue, to be processed by the kernel thread.
791  */
792 int
793 crypto_dispatch(struct cryptop *crp)
794 {
795         crypto_tdinfo_t tdinfo;
796         struct cryptocap *cap;
797         u_int32_t hid;
798         int result;
799         int n;
800
801         cryptostats.cs_ops++;
802
803 #ifdef CRYPTO_TIMING
804         if (crypto_timing)
805                 nanouptime(&crp->crp_tstamp);
806 #endif
807
808         hid = CRYPTO_SESID2HID(crp->crp_sid);
809
810         /*
811          * Dispatch the crypto op directly to the driver if the caller
812          * marked the request to be processed immediately or this is
813          * a synchronous callback chain occuring from within a crypto
814          * processing thread.
815          *
816          * Fall through to queueing the driver is blocked.
817          */
818         if ((crp->crp_flags & CRYPTO_F_BATCH) == 0 ||
819             curthread->td_type == TD_TYPE_CRYPTO) {
820                 cap = crypto_checkdriver(hid);
821                 /* Driver cannot disappeared when there is an active session. */
822                 KASSERT(cap != NULL, ("%s: Driver disappeared.", __func__));
823                 if (!cap->cc_qblocked) {
824                         result = crypto_invoke(cap, crp, 0);
825                         if (result != ERESTART)
826                                 return (result);
827                         /*
828                          * The driver ran out of resources, put the request on
829                          * the queue.
830                          */
831                 }
832         }
833
834         /*
835          * Dispatch to a cpu for action if possible.  Dispatch to a different
836          * cpu than the current cpu.
837          */
838         if (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SMP) {
839                 n = atomic_fetchadd_int(&dispatch_rover, 1) & 255;
840                 if (crypto_altdispatch && mycpu->gd_cpuid == n)
841                         ++n;
842                 n = n % ncpus;
843         } else {
844                 n = 0;
845         }
846         tdinfo = &tdinfo_array[n];
847
848         CRYPTO_Q_LOCK(tdinfo);
849         TAILQ_INSERT_TAIL(&tdinfo->crp_q, crp, crp_next);
850         if (tdinfo->crp_sleep)
851                 wakeup_one(&tdinfo->crp_q);
852         CRYPTO_Q_UNLOCK(tdinfo);
853         return 0;
854 }
855
856 /*
857  * Add an asymetric crypto request to a queue,
858  * to be processed by the kernel thread.
859  */
860 int
861 crypto_kdispatch(struct cryptkop *krp)
862 {
863         crypto_tdinfo_t tdinfo;
864         int error;
865         int n;
866
867         cryptostats.cs_kops++;
868
869 #if 0
870         /* not sure how to test F_SMP here */
871         n = atomic_fetchadd_int(&dispatch_rover, 1) & 255;
872         n = n % ncpus;
873 #endif
874         n = 0;
875         tdinfo = &tdinfo_array[n];
876
877         error = crypto_kinvoke(krp, krp->krp_crid);
878
879         if (error == ERESTART) {
880                 CRYPTO_Q_LOCK(tdinfo);
881                 TAILQ_INSERT_TAIL(&tdinfo->crp_kq, krp, krp_next);
882                 if (tdinfo->crp_sleep)
883                         wakeup_one(&tdinfo->crp_q);
884                 CRYPTO_Q_UNLOCK(tdinfo);
885                 error = 0;
886         }
887         return error;
888 }
889
890 /*
891  * Verify a driver is suitable for the specified operation.
892  */
893 static __inline int
894 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
895 {
896         return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
897 }
898
899 /*
900  * Select a driver for an asym operation.  The driver must
901  * support the necessary algorithm.  The caller can constrain
902  * which device is selected with the flags parameter.  The
903  * algorithm we use here is pretty stupid; just use the first
904  * driver that supports the algorithms we need. If there are
905  * multiple suitable drivers we choose the driver with the
906  * fewest active operations.  We prefer hardware-backed
907  * drivers to software ones when either may be used.
908  */
909 static struct cryptocap *
910 crypto_select_kdriver(const struct cryptkop *krp, int flags)
911 {
912         struct cryptocap *cap, *best, *blocked;
913         int match, hid;
914
915         CRYPTO_DRIVER_ASSERT();
916
917         /*
918          * Look first for hardware crypto devices if permitted.
919          */
920         if (flags & CRYPTOCAP_F_HARDWARE)
921                 match = CRYPTOCAP_F_HARDWARE;
922         else
923                 match = CRYPTOCAP_F_SOFTWARE;
924         best = NULL;
925         blocked = NULL;
926 again:
927         for (hid = 0; hid < crypto_drivers_num; hid++) {
928                 cap = &crypto_drivers[hid];
929                 /*
930                  * If it's not initialized, is in the process of
931                  * going away, or is not appropriate (hardware
932                  * or software based on match), then skip.
933                  */
934                 if (cap->cc_dev == NULL ||
935                     (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
936                     (cap->cc_flags & match) == 0)
937                         continue;
938
939                 /* verify all the algorithms are supported. */
940                 if (kdriver_suitable(cap, krp)) {
941                         if (best == NULL ||
942                             cap->cc_koperations < best->cc_koperations)
943                                 best = cap;
944                 }
945         }
946         if (best != NULL)
947                 return best;
948         if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
949                 /* sort of an Algol 68-style for loop */
950                 match = CRYPTOCAP_F_SOFTWARE;
951                 goto again;
952         }
953         return best;
954 }
955
956 /*
957  * Dispatch an assymetric crypto request.
958  */
959 static int
960 crypto_kinvoke(struct cryptkop *krp, int crid)
961 {
962         struct cryptocap *cap = NULL;
963         int error;
964
965         KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
966         KASSERT(krp->krp_callback != NULL,
967             ("%s: krp->crp_callback == NULL", __func__));
968
969         CRYPTO_DRIVER_LOCK();
970         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
971                 cap = crypto_checkdriver(crid);
972                 if (cap != NULL) {
973                         /*
974                          * Driver present, it must support the necessary
975                          * algorithm and, if s/w drivers are excluded,
976                          * it must be registered as hardware-backed.
977                          */
978                         if (!kdriver_suitable(cap, krp) ||
979                             (!crypto_devallowsoft &&
980                              (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
981                                 cap = NULL;
982                 }
983         } else {
984                 /*
985                  * No requested driver; select based on crid flags.
986                  */
987                 if (!crypto_devallowsoft)       /* NB: disallow s/w drivers */
988                         crid &= ~CRYPTOCAP_F_SOFTWARE;
989                 cap = crypto_select_kdriver(krp, crid);
990         }
991         if (cap != NULL && !cap->cc_kqblocked) {
992                 krp->krp_hid = cap - crypto_drivers;
993                 cap->cc_koperations++;
994                 CRYPTO_DRIVER_UNLOCK();
995                 error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
996                 CRYPTO_DRIVER_LOCK();
997                 if (error == ERESTART) {
998                         cap->cc_koperations--;
999                         CRYPTO_DRIVER_UNLOCK();
1000                         return (error);
1001                 }
1002         } else {
1003                 /*
1004                  * NB: cap is !NULL if device is blocked; in
1005                  *     that case return ERESTART so the operation
1006                  *     is resubmitted if possible.
1007                  */
1008                 error = (cap == NULL) ? ENODEV : ERESTART;
1009         }
1010         CRYPTO_DRIVER_UNLOCK();
1011
1012         if (error) {
1013                 krp->krp_status = error;
1014                 crypto_kdone(krp);
1015         }
1016         return 0;
1017 }
1018
1019 #ifdef CRYPTO_TIMING
1020 static void
1021 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
1022 {
1023         struct timespec now, t;
1024
1025         nanouptime(&now);
1026         t.tv_sec = now.tv_sec - tv->tv_sec;
1027         t.tv_nsec = now.tv_nsec - tv->tv_nsec;
1028         if (t.tv_nsec < 0) {
1029                 t.tv_sec--;
1030                 t.tv_nsec += 1000000000;
1031         }
1032         timespecadd(&ts->acc, &t);
1033         if (timespeccmp(&t, &ts->min, <))
1034                 ts->min = t;
1035         if (timespeccmp(&t, &ts->max, >))
1036                 ts->max = t;
1037         ts->count++;
1038
1039         *tv = now;
1040 }
1041 #endif
1042
1043 /*
1044  * Dispatch a crypto request to the appropriate crypto devices.
1045  */
1046 static int
1047 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1048 {
1049
1050         KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1051         KASSERT(crp->crp_callback != NULL,
1052             ("%s: crp->crp_callback == NULL", __func__));
1053         KASSERT(crp->crp_desc != NULL, ("%s: crp->crp_desc == NULL", __func__));
1054
1055 #ifdef CRYPTO_TIMING
1056         if (crypto_timing)
1057                 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
1058 #endif
1059         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1060                 struct cryptodesc *crd;
1061                 u_int64_t nid;
1062
1063                 /*
1064                  * Driver has unregistered; migrate the session and return
1065                  * an error to the caller so they'll resubmit the op.
1066                  *
1067                  * XXX: What if there are more already queued requests for this
1068                  *      session?
1069                  */
1070                 crypto_freesession(crp->crp_sid);
1071
1072                 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
1073                         crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
1074
1075                 /* XXX propagate flags from initial session? */
1076                 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI),
1077                     CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1078                         crp->crp_sid = nid;
1079
1080                 crp->crp_etype = EAGAIN;
1081                 crypto_done(crp);
1082                 return 0;
1083         } else {
1084                 /*
1085                  * Invoke the driver to process the request.
1086                  */
1087                 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1088         }
1089 }
1090
1091 /*
1092  * Release a set of crypto descriptors.
1093  */
1094 void
1095 crypto_freereq(struct cryptop *crp)
1096 {
1097         struct cryptodesc *crd;
1098 #ifdef DIAGNOSTIC
1099         crypto_tdinfo_t tdinfo;
1100         struct cryptop *crp2;
1101         int n;
1102 #endif
1103
1104         if (crp == NULL)
1105                 return;
1106
1107 #ifdef DIAGNOSTIC
1108         for (n = 0; n < ncpus; ++n) {
1109                 tdinfo = &tdinfo_array[n];
1110
1111                 CRYPTO_Q_LOCK(tdinfo);
1112                 TAILQ_FOREACH(crp2, &tdinfo->crp_q, crp_next) {
1113                         KASSERT(crp2 != crp,
1114                             ("Freeing cryptop from the crypto queue (%p).",
1115                             crp));
1116                 }
1117                 CRYPTO_Q_UNLOCK(tdinfo);
1118         }
1119         CRYPTO_RETQ_LOCK();
1120         TAILQ_FOREACH(crp2, &crp_ret_q, crp_next) {
1121                 KASSERT(crp2 != crp,
1122                     ("Freeing cryptop from the return queue (%p).",
1123                     crp));
1124         }
1125         CRYPTO_RETQ_UNLOCK();
1126 #endif
1127
1128         while ((crd = crp->crp_desc) != NULL) {
1129                 crp->crp_desc = crd->crd_next;
1130                 objcache_put(cryptodesc_oc, crd);
1131         }
1132         objcache_put(cryptop_oc, crp);
1133 }
1134
1135 /*
1136  * Acquire a set of crypto descriptors.
1137  */
1138 struct cryptop *
1139 crypto_getreq(int num)
1140 {
1141         struct cryptodesc *crd;
1142         struct cryptop *crp;
1143
1144         crp = objcache_get(cryptop_oc, M_WAITOK);
1145         if (crp != NULL) {
1146                 bzero(crp, sizeof (*crp));
1147                 while (num--) {
1148                         crd = objcache_get(cryptodesc_oc, M_WAITOK);
1149                         if (crd == NULL) {
1150                                 crypto_freereq(crp);
1151                                 return NULL;
1152                         }
1153                         bzero(crd, sizeof (*crd));
1154
1155                         crd->crd_next = crp->crp_desc;
1156                         crp->crp_desc = crd;
1157                 }
1158         }
1159         return crp;
1160 }
1161
1162 /*
1163  * Invoke the callback on behalf of the driver.
1164  */
1165 void
1166 crypto_done(struct cryptop *crp)
1167 {
1168         KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1169                 ("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1170         crp->crp_flags |= CRYPTO_F_DONE;
1171         if (crp->crp_etype != 0)
1172                 cryptostats.cs_errs++;
1173 #ifdef CRYPTO_TIMING
1174         if (crypto_timing)
1175                 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1176 #endif
1177         /*
1178          * CBIMM means unconditionally do the callback immediately;
1179          * CBIFSYNC means do the callback immediately only if the
1180          * operation was done synchronously.  Both are used to avoid
1181          * doing extraneous context switches; the latter is mostly
1182          * used with the software crypto driver.
1183          */
1184         if ((crp->crp_flags & CRYPTO_F_CBIMM) ||
1185             ((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
1186              (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC))) {
1187                 /*
1188                  * Do the callback directly.  This is ok when the
1189                  * callback routine does very little (e.g. the
1190                  * /dev/crypto callback method just does a wakeup).
1191                  */
1192 #ifdef CRYPTO_TIMING
1193                 if (crypto_timing) {
1194                         /*
1195                          * NB: We must copy the timestamp before
1196                          * doing the callback as the cryptop is
1197                          * likely to be reclaimed.
1198                          */
1199                         struct timespec t = crp->crp_tstamp;
1200                         crypto_tstat(&cryptostats.cs_cb, &t);
1201                         crp->crp_callback(crp);
1202                         crypto_tstat(&cryptostats.cs_finis, &t);
1203                 } else
1204 #endif
1205                         crp->crp_callback(crp);
1206         } else {
1207                 /*
1208                  * Normal case; queue the callback for the thread.
1209                  */
1210                 CRYPTO_RETQ_LOCK();
1211                 if (CRYPTO_RETQ_EMPTY())
1212                         wakeup_one(&crp_ret_q); /* shared wait channel */
1213                 TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1214                 CRYPTO_RETQ_UNLOCK();
1215         }
1216 }
1217
1218 /*
1219  * Invoke the callback on behalf of the driver.
1220  */
1221 void
1222 crypto_kdone(struct cryptkop *krp)
1223 {
1224         struct cryptocap *cap;
1225
1226         if (krp->krp_status != 0)
1227                 cryptostats.cs_kerrs++;
1228         CRYPTO_DRIVER_LOCK();
1229         /* XXX: What if driver is loaded in the meantime? */
1230         if (krp->krp_hid < crypto_drivers_num) {
1231                 cap = &crypto_drivers[krp->krp_hid];
1232                 cap->cc_koperations--;
1233                 KASSERT(cap->cc_koperations >= 0, ("cc_koperations < 0"));
1234                 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
1235                         crypto_remove(cap);
1236         }
1237         CRYPTO_DRIVER_UNLOCK();
1238         CRYPTO_RETQ_LOCK();
1239         if (CRYPTO_RETQ_EMPTY())
1240                 wakeup_one(&crp_ret_q);         /* shared wait channel */
1241         TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1242         CRYPTO_RETQ_UNLOCK();
1243 }
1244
1245 int
1246 crypto_getfeat(int *featp)
1247 {
1248         int hid, kalg, feat = 0;
1249
1250         CRYPTO_DRIVER_LOCK();
1251         for (hid = 0; hid < crypto_drivers_num; hid++) {
1252                 const struct cryptocap *cap = &crypto_drivers[hid];
1253
1254                 if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1255                     !crypto_devallowsoft) {
1256                         continue;
1257                 }
1258                 for (kalg = 0; kalg <= CRK_ALGORITHM_MAX; kalg++)
1259                         if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
1260                                 feat |=  1 << kalg;
1261         }
1262         CRYPTO_DRIVER_UNLOCK();
1263         *featp = feat;
1264         return (0);
1265 }
1266
1267 /*
1268  * Terminate a thread at module unload.  The process that
1269  * initiated this is waiting for us to signal that we're gone;
1270  * wake it up and exit.  We use the driver table lock to insure
1271  * we don't do the wakeup before they're waiting.  There is no
1272  * race here because the waiter sleeps on the proc lock for the
1273  * thread so it gets notified at the right time because of an
1274  * extra wakeup that's done in exit1().
1275  */
1276 static void
1277 crypto_finis(void *chan)
1278 {
1279         CRYPTO_DRIVER_LOCK();
1280         wakeup_one(chan);
1281         CRYPTO_DRIVER_UNLOCK();
1282         kthread_exit();
1283 }
1284
1285 /*
1286  * Crypto thread, dispatches crypto requests.
1287  *
1288  * MPSAFE
1289  */
1290 static void
1291 crypto_proc(void *arg)
1292 {
1293         crypto_tdinfo_t tdinfo = arg;
1294         struct cryptop *crp, *submit;
1295         struct cryptkop *krp;
1296         struct cryptocap *cap;
1297         u_int32_t hid;
1298         int result, hint;
1299
1300         CRYPTO_Q_LOCK(tdinfo);
1301
1302         curthread->td_type = TD_TYPE_CRYPTO;
1303
1304         for (;;) {
1305                 /*
1306                  * Find the first element in the queue that can be
1307                  * processed and look-ahead to see if multiple ops
1308                  * are ready for the same driver.
1309                  */
1310                 submit = NULL;
1311                 hint = 0;
1312                 TAILQ_FOREACH(crp, &tdinfo->crp_q, crp_next) {
1313                         hid = CRYPTO_SESID2HID(crp->crp_sid);
1314                         cap = crypto_checkdriver(hid);
1315                         /*
1316                          * Driver cannot disappeared when there is an active
1317                          * session.
1318                          */
1319                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1320                             __func__, __LINE__));
1321                         if (cap == NULL || cap->cc_dev == NULL) {
1322                                 /* Op needs to be migrated, process it. */
1323                                 if (submit == NULL)
1324                                         submit = crp;
1325                                 break;
1326                         }
1327                         if (!cap->cc_qblocked) {
1328                                 if (submit != NULL) {
1329                                         /*
1330                                          * We stop on finding another op,
1331                                          * regardless whether its for the same
1332                                          * driver or not.  We could keep
1333                                          * searching the queue but it might be
1334                                          * better to just use a per-driver
1335                                          * queue instead.
1336                                          */
1337                                         if (CRYPTO_SESID2HID(submit->crp_sid) == hid)
1338                                                 hint = CRYPTO_HINT_MORE;
1339                                         break;
1340                                 } else {
1341                                         submit = crp;
1342                                         if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1343                                                 break;
1344                                         /* keep scanning for more are q'd */
1345                                 }
1346                         }
1347                 }
1348                 if (submit != NULL) {
1349                         TAILQ_REMOVE(&tdinfo->crp_q, submit, crp_next);
1350                         hid = CRYPTO_SESID2HID(submit->crp_sid);
1351                         cap = crypto_checkdriver(hid);
1352                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1353                             __func__, __LINE__));
1354
1355                         CRYPTO_Q_UNLOCK(tdinfo);
1356                         result = crypto_invoke(cap, submit, hint);
1357                         CRYPTO_Q_LOCK(tdinfo);
1358
1359                         if (result == ERESTART) {
1360                                 /*
1361                                  * The driver ran out of resources, mark the
1362                                  * driver ``blocked'' for cryptop's and put
1363                                  * the request back in the queue.  It would
1364                                  * best to put the request back where we got
1365                                  * it but that's hard so for now we put it
1366                                  * at the front.  This should be ok; putting
1367                                  * it at the end does not work.
1368                                  */
1369                                 /* XXX validate sid again? */
1370                                 crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1371                                 TAILQ_INSERT_HEAD(&tdinfo->crp_q,
1372                                                   submit, crp_next);
1373                                 cryptostats.cs_blocks++;
1374                         }
1375                 }
1376
1377                 /* As above, but for key ops */
1378                 TAILQ_FOREACH(krp, &tdinfo->crp_kq, krp_next) {
1379                         cap = crypto_checkdriver(krp->krp_hid);
1380                         if (cap == NULL || cap->cc_dev == NULL) {
1381                                 /*
1382                                  * Operation needs to be migrated, invalidate
1383                                  * the assigned device so it will reselect a
1384                                  * new one below.  Propagate the original
1385                                  * crid selection flags if supplied.
1386                                  */
1387                                 krp->krp_hid = krp->krp_crid &
1388                                     (CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE);
1389                                 if (krp->krp_hid == 0)
1390                                         krp->krp_hid =
1391                                     CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE;
1392                                 break;
1393                         }
1394                         if (!cap->cc_kqblocked)
1395                                 break;
1396                 }
1397                 if (krp != NULL) {
1398                         TAILQ_REMOVE(&tdinfo->crp_kq, krp, krp_next);
1399
1400                         CRYPTO_Q_UNLOCK(tdinfo);
1401                         result = crypto_kinvoke(krp, krp->krp_hid);
1402                         CRYPTO_Q_LOCK(tdinfo);
1403
1404                         if (result == ERESTART) {
1405                                 /*
1406                                  * The driver ran out of resources, mark the
1407                                  * driver ``blocked'' for cryptkop's and put
1408                                  * the request back in the queue.  It would
1409                                  * best to put the request back where we got
1410                                  * it but that's hard so for now we put it
1411                                  * at the front.  This should be ok; putting
1412                                  * it at the end does not work.
1413                                  */
1414                                 /* XXX validate sid again? */
1415                                 crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1416                                 TAILQ_INSERT_HEAD(&tdinfo->crp_kq,
1417                                                   krp, krp_next);
1418                                 cryptostats.cs_kblocks++;
1419                         }
1420                 }
1421
1422                 if (submit == NULL && krp == NULL) {
1423                         /*
1424                          * Nothing more to be processed.  Sleep until we're
1425                          * woken because there are more ops to process.
1426                          * This happens either by submission or by a driver
1427                          * becoming unblocked and notifying us through
1428                          * crypto_unblock.  Note that when we wakeup we
1429                          * start processing each queue again from the
1430                          * front. It's not clear that it's important to
1431                          * preserve this ordering since ops may finish
1432                          * out of order if dispatched to different devices
1433                          * and some become blocked while others do not.
1434                          */
1435                         tdinfo->crp_sleep = 1;
1436                         lksleep (&tdinfo->crp_q, &tdinfo->crp_lock,
1437                                  0, "crypto_wait", 0);
1438                         tdinfo->crp_sleep = 0;
1439                         if (tdinfo->crp_td == NULL)
1440                                 break;
1441                         cryptostats.cs_intrs++;
1442                 }
1443         }
1444         CRYPTO_Q_UNLOCK(tdinfo);
1445
1446         crypto_finis(&tdinfo->crp_q);
1447 }
1448
1449 /*
1450  * Crypto returns thread, does callbacks for processed crypto requests.
1451  * Callbacks are done here, rather than in the crypto drivers, because
1452  * callbacks typically are expensive and would slow interrupt handling.
1453  *
1454  * MPSAFE
1455  */
1456 static void
1457 crypto_ret_proc(void *dummy __unused)
1458 {
1459         struct cryptop *crpt;
1460         struct cryptkop *krpt;
1461
1462         get_mplock();
1463         CRYPTO_RETQ_LOCK();
1464         for (;;) {
1465                 /* Harvest return q's for completed ops */
1466                 crpt = TAILQ_FIRST(&crp_ret_q);
1467                 if (crpt != NULL)
1468                         TAILQ_REMOVE(&crp_ret_q, crpt, crp_next);
1469
1470                 krpt = TAILQ_FIRST(&crp_ret_kq);
1471                 if (krpt != NULL)
1472                         TAILQ_REMOVE(&crp_ret_kq, krpt, krp_next);
1473
1474                 if (crpt != NULL || krpt != NULL) {
1475                         CRYPTO_RETQ_UNLOCK();
1476                         /*
1477                          * Run callbacks unlocked.
1478                          */
1479                         if (crpt != NULL) {
1480 #ifdef CRYPTO_TIMING
1481                                 if (crypto_timing) {
1482                                         /*
1483                                          * NB: We must copy the timestamp before
1484                                          * doing the callback as the cryptop is
1485                                          * likely to be reclaimed.
1486                                          */
1487                                         struct timespec t = crpt->crp_tstamp;
1488                                         crypto_tstat(&cryptostats.cs_cb, &t);
1489                                         crpt->crp_callback(crpt);
1490                                         crypto_tstat(&cryptostats.cs_finis, &t);
1491                                 } else
1492 #endif
1493                                         crpt->crp_callback(crpt);
1494                         }
1495                         if (krpt != NULL)
1496                                 krpt->krp_callback(krpt);
1497                         CRYPTO_RETQ_LOCK();
1498                 } else {
1499                         /*
1500                          * Nothing more to be processed.  Sleep until we're
1501                          * woken because there are more returns to process.
1502                          */
1503                         lksleep (&crp_ret_q, &crypto_ret_q_lock,
1504                                  0, "crypto_ret_wait", 0);
1505                         if (cryptoretthread == NULL)
1506                                 break;
1507                         cryptostats.cs_rets++;
1508                 }
1509         }
1510         CRYPTO_RETQ_UNLOCK();
1511
1512         crypto_finis(&crp_ret_q);
1513 }
1514
1515 #ifdef DDB
1516 static void
1517 db_show_drivers(void)
1518 {
1519         int hid;
1520
1521         db_printf("%12s %4s %4s %8s %2s %2s\n"
1522                 , "Device"
1523                 , "Ses"
1524                 , "Kops"
1525                 , "Flags"
1526                 , "QB"
1527                 , "KB"
1528         );
1529         for (hid = 0; hid < crypto_drivers_num; hid++) {
1530                 const struct cryptocap *cap = &crypto_drivers[hid];
1531                 if (cap->cc_dev == NULL)
1532                         continue;
1533                 db_printf("%-12s %4u %4u %08x %2u %2u\n"
1534                     , device_get_nameunit(cap->cc_dev)
1535                     , cap->cc_sessions
1536                     , cap->cc_koperations
1537                     , cap->cc_flags
1538                     , cap->cc_qblocked
1539                     , cap->cc_kqblocked
1540                 );
1541         }
1542 }
1543
1544 DB_SHOW_COMMAND(crypto, db_show_crypto)
1545 {
1546         crypto_tdinfo_t tdinfo;
1547         struct cryptop *crp;
1548         int n;
1549
1550         db_show_drivers();
1551         db_printf("\n");
1552
1553         db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
1554             "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
1555             "Desc", "Callback");
1556
1557         for (n = 0; n < ncpus; ++n) {
1558                 tdinfo = &tdinfo_array[n];
1559
1560                 TAILQ_FOREACH(crp, &tdinfo->crp_q, crp_next) {
1561                         db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n"
1562                             , (int) CRYPTO_SESID2HID(crp->crp_sid)
1563                             , (int) CRYPTO_SESID2CAPS(crp->crp_sid)
1564                             , crp->crp_ilen, crp->crp_olen
1565                             , crp->crp_etype
1566                             , crp->crp_flags
1567                             , crp->crp_desc
1568                             , crp->crp_callback
1569                         );
1570                 }
1571         }
1572         if (!TAILQ_EMPTY(&crp_ret_q)) {
1573                 db_printf("\n%4s %4s %4s %8s\n",
1574                     "HID", "Etype", "Flags", "Callback");
1575                 TAILQ_FOREACH(crp, &crp_ret_q, crp_next) {
1576                         db_printf("%4u %4u %04x %8p\n"
1577                             , (int) CRYPTO_SESID2HID(crp->crp_sid)
1578                             , crp->crp_etype
1579                             , crp->crp_flags
1580                             , crp->crp_callback
1581                         );
1582                 }
1583         }
1584 }
1585
1586 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
1587 {
1588         crypto_tdinfo_t tdinfo;
1589         struct cryptkop *krp;
1590         int n;
1591
1592         db_show_drivers();
1593         db_printf("\n");
1594
1595         db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
1596             "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
1597
1598         for (n = 0; n < ncpus; ++n) {
1599                 tdinfo = &tdinfo_array[n];
1600
1601                 TAILQ_FOREACH(krp, &tdinfo->crp_kq, krp_next) {
1602                         db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
1603                             , krp->krp_op
1604                             , krp->krp_status
1605                             , krp->krp_iparams, krp->krp_oparams
1606                             , krp->krp_crid, krp->krp_hid
1607                             , krp->krp_callback
1608                         );
1609                 }
1610         }
1611         if (!TAILQ_EMPTY(&crp_ret_q)) {
1612                 db_printf("%4s %5s %8s %4s %8s\n",
1613                     "Op", "Status", "CRID", "HID", "Callback");
1614                 TAILQ_FOREACH(krp, &crp_ret_kq, krp_next) {
1615                         db_printf("%4u %5u %08x %4u %8p\n"
1616                             , krp->krp_op
1617                             , krp->krp_status
1618                             , krp->krp_crid, krp->krp_hid
1619                             , krp->krp_callback
1620                         );
1621                 }
1622         }
1623 }
1624 #endif
1625
1626 int crypto_modevent(module_t mod, int type, void *unused);
1627
1628 /*
1629  * Initialization code, both for static and dynamic loading.
1630  * Note this is not invoked with the usual MODULE_DECLARE
1631  * mechanism but instead is listed as a dependency by the
1632  * cryptosoft driver.  This guarantees proper ordering of
1633  * calls on module load/unload.
1634  */
1635 int
1636 crypto_modevent(module_t mod, int type, void *unused)
1637 {
1638         int error = EINVAL;
1639
1640         switch (type) {
1641         case MOD_LOAD:
1642                 error = crypto_init();
1643                 if (error == 0 && bootverbose)
1644                         kprintf("crypto: <crypto core>\n");
1645                 break;
1646         case MOD_UNLOAD:
1647                 /*XXX disallow if active sessions */
1648                 error = 0;
1649                 crypto_destroy();
1650                 return 0;
1651         }
1652         return error;
1653 }
1654 MODULE_VERSION(crypto, 1);
1655 MODULE_DEPEND(crypto, zlib, 1, 1, 1);