libevtr: add support for string literals
[games.git] / lib / libevtr / evtr.c
1 /*
2  * Copyright (c) 2009, 2010 Aggelos Economopoulos.  All rights reserved.
3  * 
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in
12  *    the documentation and/or other materials provided with the
13  *    distribution.
14  * 3. Neither the name of The DragonFly Project nor the names of its
15  *    contributors may be used to endorse or promote products derived
16  *    from this software without specific, prior written permission.
17  * 
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
21  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
22  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
27  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
28  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31
32 #include <assert.h>
33 #include <ctype.h>
34 #include <err.h>
35 #include <errno.h>
36 #include <limits.h>
37 #include <stdarg.h>
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <string.h>
41 #include <sys/queue.h>
42 #include <sys/stat.h>
43 #include <sys/tree.h>
44
45
46 #include "evtr.h"
47 #include "internal.h"
48
49 unsigned evtr_debug;
50
51 static
52 void
53 printd_set_flags(const char *str, unsigned int *flags)
54 {
55         /*
56          * This is suboptimal as we don't detect
57          * invalid flags.
58          */
59         for (; *str; ++str) {
60                 if ('A' == *str) {
61                         *flags = -1;
62                         return;
63                 }
64                 if (!islower(*str))
65                         err(2, "invalid debug flag %c\n", *str);
66                 *flags |= 1 << (*str - 'a');
67         }
68 }
69
70
71 enum {
72         MAX_EVHDR_SIZE = PATH_MAX + 200,
73         /* string namespaces */
74         EVTR_NS_PATH = 0x1,
75         EVTR_NS_FUNC,
76         EVTR_NS_DSTR,
77         EVTR_NS_MAX,
78         NR_BUCKETS = 1021,      /* prime */
79         REC_ALIGN = 8,
80         REC_BOUNDARY = 1 << 14,
81         FILTF_ID = 0x10,
82         EVTRF_WR = 0x1,         /* open for writing */
83         EVTRQF_PENDING = 0x1,
84 };
85
86 typedef uint16_t fileid_t;
87 typedef uint16_t funcid_t;
88 typedef uint16_t fmtid_t;
89
90 struct trace_event_header {
91         uint8_t type;
92         uint64_t ts;    /* XXX: this should only be part of probe */
93 } __attribute__((packed));
94
95 struct probe_event_header {
96         struct trace_event_header eh;
97         /*
98          * For these fields, 0 implies "not available"
99          */
100         fileid_t file;
101         funcid_t caller1;
102         funcid_t caller2;
103         funcid_t func;
104         uint16_t line;
105         fmtid_t fmt;
106         uint16_t datalen;
107         uint8_t cpu;    /* -1 if n/a */
108 } __attribute__((packed));
109
110 struct string_event_header {
111         struct trace_event_header eh;
112         uint16_t ns;
113         uint32_t id;
114         uint16_t len;
115 } __attribute__((packed));
116
117 struct fmt_event_header {
118         struct trace_event_header eh;
119         uint16_t id;
120         uint8_t subsys_len;
121         uint8_t fmt_len;
122 } __attribute__((packed));
123
124 struct cpuinfo_event_header {
125         double freq;
126         uint8_t cpu;
127 } __attribute__((packed));
128
129 struct hashentry {
130         uintptr_t key;
131         uintptr_t val;
132         struct hashentry *next;
133 };
134
135 struct hashtab {
136         struct hashentry *buckets[NR_BUCKETS];
137         uintptr_t (*hashfunc)(uintptr_t);
138         uintptr_t (*cmpfunc)(uintptr_t, uintptr_t);
139 };
140
141 struct symtab {
142         struct hashtab tab;
143 };
144
145 struct event_fmt {
146         const char *subsys;
147         const char *fmt;
148 };
149
150 struct event_filter_unresolved {
151         TAILQ_ENTRY(event_filter_unresolved) link;
152         evtr_filter_t filt;
153 };
154
155 struct id_map {
156         RB_ENTRY(id_map) rb_node;
157         int id;
158         const void *data;
159 };
160
161 RB_HEAD(id_tree, id_map);
162 struct string_map {
163         struct id_tree root;
164 };
165
166 struct fmt_map {
167         struct id_tree root;
168 };
169
170 RB_HEAD(thread_tree, evtr_thread);
171
172 struct thread_map {
173         struct thread_tree root;
174 };
175
176 struct event_callback {
177         void (*cb)(evtr_event_t, void *data);
178         void *data;     /* this field must be malloc()ed */
179 };
180
181 struct cpu {
182         struct evtr_thread *td; /* currently executing thread */
183         double freq;
184 };
185
186 struct evtr {
187         FILE *f;
188         int flags;
189         int err;
190         const char *errmsg;
191         off_t bytes;
192         union {
193                 /*
194                  * When writing, we keep track of the strings we've
195                  * already dumped so we only dump them once.
196                  * Paths, function names etc belong to different
197                  * namespaces.
198                  */
199                 struct hashtab_str *strings[EVTR_NS_MAX - 1];
200                 /*
201                  * When reading, we build a map from id to string.
202                  * Every id must be defined at the point of use.
203                  */
204                 struct string_map maps[EVTR_NS_MAX - 1];
205         };
206         union {
207                 /* same as above, but for subsys+fmt pairs */
208                 struct fmt_map fmtmap;
209                 struct hashtab_str *fmts;
210         };
211         struct thread_map threads;
212         struct cpu *cpus;
213         int ncpus;
214 };
215
216 struct evtr_query {
217         evtr_t evtr;
218         off_t off;
219         evtr_filter_t filt;
220         int nfilt;
221         int nmatched;
222         int ntried;
223         void *buf;
224         int bufsize;
225         struct symtab *symtab;
226         int ncbs;
227         struct event_callback **cbs;
228         /*
229          * Filters that have a format specified and we
230          * need to resolve that to an fmtid
231          */
232         TAILQ_HEAD(, event_filter_unresolved) unresolved_filtq;
233         int err;
234         const char *errmsg;
235         int flags;
236         struct evtr_event pending_event;
237 };
238
239 void
240 evtr_set_debug(const char *str)
241 {
242         printd_set_flags(str, &evtr_debug);
243 }
244
245 static int id_map_cmp(struct id_map *, struct id_map *);
246 RB_PROTOTYPE2(id_tree, id_map, rb_node, id_map_cmp, int);
247 RB_GENERATE2(id_tree, id_map, rb_node, id_map_cmp, int, id);
248
249 static int thread_cmp(struct evtr_thread *, struct evtr_thread *);
250 RB_PROTOTYPE2(thread_tree, evtr_thread, rb_node, thread_cmp, void *);
251 RB_GENERATE2(thread_tree, evtr_thread, rb_node, thread_cmp, void *, id);
252
253 static inline
254 void
255 validate_string(const char *str)
256 {
257         if (!(evtr_debug & MISC))
258                 return;
259         for (; *str; ++str)
260                 assert(isprint(*str));
261 }
262
263 static
264 void
265 id_tree_free(struct id_tree *root)
266 {
267         struct id_map *v, *n;
268
269         for (v = RB_MIN(id_tree, root); v; v = n) {
270                 n = RB_NEXT(id_tree, root, v);
271                 RB_REMOVE(id_tree, root, v);
272         }
273 }
274
275 static
276 int
277 evtr_register_callback(evtr_query_t q, void (*fn)(evtr_event_t, void *), void *d)
278 {
279         struct event_callback *cb;
280         void *cbs;
281
282         if (!(cb = malloc(sizeof(*cb)))) {
283                 q->err = ENOMEM;
284                 return !0;
285         }
286         cb->cb = fn;
287         cb->data = d;
288         if (!(cbs = realloc(q->cbs, (++q->ncbs) * sizeof(cb)))) {
289                 --q->ncbs;
290                 free(cb);
291                 q->err = ENOMEM;
292                 return !0;
293         }
294         q->cbs = cbs;
295         q->cbs[q->ncbs - 1] = cb;
296         return 0;
297 }
298
299 static
300 void
301 evtr_deregister_callbacks(evtr_query_t q)
302 {
303         int i;
304
305         for (i = 0; i < q->ncbs; ++i) {
306                 free(q->cbs[i]);
307         }
308         free(q->cbs);
309         q->cbs = NULL;
310 }
311
312 static
313 void
314 evtr_run_callbacks(evtr_event_t ev, evtr_query_t q)
315 {
316         struct event_callback *cb;
317         int i;
318
319         for (i = 0; i < q->ncbs; ++i) {
320                 cb = q->cbs[i];
321                 cb->cb(ev, cb->data);
322         }
323 }
324
325 static
326 struct cpu *
327 evtr_cpu(evtr_t evtr, int c)
328 {
329         if ((c < 0) || (c >= evtr->ncpus))
330                 return NULL;
331         return &evtr->cpus[c];
332 }
333
334 static
335 int
336 parse_format_data(evtr_event_t ev, const char *fmt, ...) __attribute__((format (scanf, 2, 3)));
337 static
338 int
339 parse_format_data(evtr_event_t ev, const char *fmt, ...)
340 {
341         va_list ap;
342         char buf[2048];
343
344         if (strcmp(fmt, ev->fmt))
345                 return 0;
346         vsnprintf(buf, sizeof(buf), fmt, __DECONST(void *, ev->fmtdata));
347         printd(MISC, "string is: %s\n", buf);
348         va_start(ap, fmt);
349         return vsscanf(buf, fmt, ap);
350 }
351
352 static
353 void
354 evtr_deregister_filters(evtr_query_t q, evtr_filter_t filt, int nfilt)
355 {
356         struct event_filter_unresolved *u, *tmp;
357         int i;
358         TAILQ_FOREACH_MUTABLE(u, &q->unresolved_filtq, link, tmp) {
359                 for (i = 0; i < nfilt; ++i) {
360                         if (u->filt == &filt[i]) {
361                                 TAILQ_REMOVE(&q->unresolved_filtq, u, link);
362                         }
363                 }
364         }
365 }
366
367 static
368 int
369 evtr_filter_register(evtr_query_t q, evtr_filter_t filt)
370 {
371         struct event_filter_unresolved *res;
372
373         if (!(res = malloc(sizeof(*res)))) {
374                 q->err = ENOMEM;
375                 return !0;
376         }
377         res->filt = filt;
378         TAILQ_INSERT_TAIL(&q->unresolved_filtq, res, link);
379         return 0;
380 }
381
382 static
383 int
384 evtr_query_needs_parsing(evtr_query_t q)
385 {
386         int i;
387
388         for (i = 0; i < q->nfilt; ++i)
389                 if (q->filt[i].ev_type == EVTR_TYPE_STMT)
390                         return !0;
391         return 0;
392 }
393
394 void
395 evtr_event_data(evtr_event_t ev, char *buf, size_t len)
396 {
397         /*
398          * XXX: we implicitly trust the format string.
399          * We shouldn't.
400          */
401         if (ev->fmtdatalen) {
402                 vsnprintf(buf, len, ev->fmt, __DECONST(void *, ev->fmtdata));
403         } else {
404                 strlcpy(buf, ev->fmt, len);
405         }
406 }
407
408 int
409 evtr_error(evtr_t evtr)
410 {
411         return evtr->err || (evtr->errmsg != NULL);
412 }
413
414 const char *
415 evtr_errmsg(evtr_t evtr)
416 {
417         return evtr->errmsg ? evtr->errmsg : strerror(evtr->err);
418 }
419
420 int
421 evtr_query_error(evtr_query_t q)
422 {
423         return q->err || (q->errmsg != NULL) || evtr_error(q->evtr);
424 }
425
426 const char *
427 evtr_query_errmsg(evtr_query_t q)
428 {
429         return q->errmsg ? q->errmsg :
430                 (q->err ? strerror(q->err) :
431                  (evtr_errmsg(q->evtr)));
432 }
433
434 static
435 int
436 id_map_cmp(struct id_map *a, struct id_map *b)
437 {
438         return a->id - b->id;
439 }
440
441 static
442 int
443 thread_cmp(struct evtr_thread *a, struct evtr_thread *b)
444 {
445         ptrdiff_t d;
446         d =  a->id - b->id;
447         if (d < 0)
448                 return -1;
449         if (!d)
450                 return 0;
451         return 1;
452 }
453
454 #define DEFINE_MAP_FIND(prefix, type)           \
455         static                                  \
456         type                            \
457         prefix ## _map_find(struct id_tree *tree, int id)\
458         {                                                \
459                 struct id_map *sid;                      \
460                                                         \
461                 sid = id_tree_RB_LOOKUP(tree, id);      \
462                 return sid ? sid->data : NULL;          \
463         }
464
465 DEFINE_MAP_FIND(string, const char *)
466 DEFINE_MAP_FIND(fmt, const struct event_fmt *)
467
468 static
469 struct evtr_thread *
470 thread_map_find(struct thread_map *map, void *id)
471 {
472         return thread_tree_RB_LOOKUP(&map->root, id);
473 }
474
475 #define DEFINE_MAP_INSERT(prefix, type, _cmp, _dup)     \
476         static                                  \
477         int                                                             \
478         prefix ## _map_insert(struct id_tree *tree, type data, int id) \
479         {                                                               \
480         struct id_map *sid, *osid;                                      \
481                                                                         \
482         sid = malloc(sizeof(*sid));                                     \
483         if (!sid) {                                                     \
484                 return ENOMEM;                                          \
485         }                                                               \
486         sid->id = id;                                                   \
487         sid->data = data;                                               \
488         if ((osid = id_tree_RB_INSERT(tree, sid))) {                    \
489                 free(sid);                                              \
490                 if (_cmp((type)osid->data, data)) {                     \
491                         return EEXIST;                                  \
492                 }                                                       \
493                 printd(DS, "mapping already exists, skipping\n");               \
494                 /* we're OK with redefinitions of an id to the same string */ \
495                 return 0;                                               \
496         }                                                               \
497         /* only do the strdup if we're inserting a new string */        \
498         sid->data = _dup(data);         /* XXX: oom */                  \
499         return 0;                                                       \
500 }
501
502 static
503 void
504 thread_map_insert(struct thread_map *map, struct evtr_thread *td)
505 {
506         struct evtr_thread *otd;
507
508         if ((otd = thread_tree_RB_INSERT(&map->root, td))) {
509                 /*
510                  * Thread addresses might be reused, we're
511                  * ok with that.
512                  * DANGER, Will Robinson: this means the user
513                  * of the API needs to copy event->td if they
514                  * want it to remain stable.
515                  */
516                 free((void *)otd->comm);
517                 otd->comm = td->comm;
518                 free(td);
519         }
520 }
521
522 static
523 int
524 event_fmt_cmp(const struct event_fmt *a, const struct event_fmt *b)
525 {
526         int ret = 0;
527
528         if (a->subsys) {
529                 if (b->subsys) {
530                         ret = strcmp(a->subsys, b->subsys);
531                 } else {
532                         ret = strcmp(a->subsys, "");
533                 }
534         } else if (b->subsys) {
535                         ret = strcmp("", b->subsys);
536         }
537         if (ret)
538                 return ret;
539         return strcmp(a->fmt, b->fmt);
540 }
541
542 static
543 struct event_fmt *
544 event_fmt_dup(const struct event_fmt *o)
545 {
546         struct event_fmt *n;
547
548         if (!(n = malloc(sizeof(*n)))) {
549                 return n;
550         }
551         memcpy(n, o, sizeof(*n));
552         return n;
553 }
554
555 DEFINE_MAP_INSERT(string, const char *, strcmp, strdup)
556 DEFINE_MAP_INSERT(fmt, const struct event_fmt *, event_fmt_cmp, event_fmt_dup)
557
558 int
559 hash_find(const struct hashtab *tab, uintptr_t key, uintptr_t *val)
560 {
561         struct hashentry *ent;
562
563         for(ent = tab->buckets[tab->hashfunc(key)];
564             ent && tab->cmpfunc(ent->key, key);
565             ent = ent->next);
566
567         if (!ent)
568                 return !0;
569         *val = ent->val;
570         return 0;
571 }
572
573 struct hashentry *
574 hash_insert(struct hashtab *tab, uintptr_t key, uintptr_t val)
575 {
576         struct hashentry *ent;
577         int hsh;
578
579         if (!(ent = malloc(sizeof(*ent)))) {
580                 fprintf(stderr, "out of memory\n");
581                 return NULL;
582         }
583         hsh = tab->hashfunc(key);
584         ent->next = tab->buckets[hsh];
585         ent->key = key;
586         ent->val = val;
587         tab->buckets[hsh] = ent;
588         return ent;
589 }
590
591 static
592 uintptr_t
593 cmpfunc_pointer(uintptr_t a, uintptr_t b)
594 {
595         return b - a;
596 }
597
598 static
599 uintptr_t
600 hashfunc_pointer(uintptr_t p)
601 {
602         return p % NR_BUCKETS;
603 }
604
605 struct hashtab *
606 hash_new(void)
607 {
608         struct hashtab *tab;
609         if (!(tab = calloc(sizeof(struct hashtab), 1)))
610                 return tab;
611         tab->hashfunc = &hashfunc_pointer;
612         tab->cmpfunc = &cmpfunc_pointer;
613         return tab;
614 }
615
616 struct hashtab_str {    /* string -> id map */
617         struct hashtab tab;
618         uint16_t id;
619 };
620
621 static
622 uintptr_t
623 hashfunc_string(uintptr_t p)
624 {
625         const char *str = (char *)p;
626         unsigned long hash = 5381;
627         int c;
628
629         while ((c = *str++))
630             hash = ((hash << 5) + hash) + c; /* hash * 33 + c */
631         return hash  % NR_BUCKETS;
632 }
633
634 static
635 uintptr_t
636 cmpfunc_string(uintptr_t a, uintptr_t b)
637 {
638         return strcmp((char *)a, (char *)b);
639 }
640
641
642 static
643 struct hashtab_str *
644 strhash_new(void)
645 {
646         struct hashtab_str *strtab;
647         if (!(strtab = calloc(sizeof(struct hashtab_str), 1)))
648                 return strtab;
649         strtab->tab.hashfunc = &hashfunc_string;
650         strtab->tab.cmpfunc = &cmpfunc_string;
651         return strtab;
652 }
653
654 static
655 void
656 strhash_destroy(struct hashtab_str *strtab)
657 {
658         free(strtab);
659 }
660
661 static
662 int
663 strhash_find(struct hashtab_str *strtab, const char *str, uint16_t *id)
664 {
665         uintptr_t val;
666
667         if (hash_find(&strtab->tab, (uintptr_t)str, &val))
668                 return !0;
669         *id = (uint16_t)val;
670         return 0;
671 }
672
673 static
674 int
675 strhash_insert(struct hashtab_str *strtab, const char *str, uint16_t *id)
676 {
677         uintptr_t val;
678
679         val = ++strtab->id;
680         if (strtab->id == 0) {
681                 fprintf(stderr, "too many strings\n");
682                 return ERANGE;
683         }
684         str = strdup(str);
685         if (!str) {
686                 fprintf(stderr, "out of memory\n");
687                 --strtab->id;
688                 return ENOMEM;
689         }
690         hash_insert(&strtab->tab, (uintptr_t)str, (uintptr_t)val);
691         *id = strtab->id;
692         return 0;
693 }
694
695 struct symtab *
696 symtab_new(void)
697 {
698         struct symtab *symtab;
699         if (!(symtab = calloc(sizeof(struct symtab), 1)))
700                 return symtab;
701         symtab->tab.hashfunc = &hashfunc_string;
702         symtab->tab.cmpfunc = &cmpfunc_string;
703         return symtab;
704 }
705
706 void
707 symtab_destroy(struct symtab *symtab)
708 {
709         free(symtab);
710 }
711
712 struct evtr_variable *
713 symtab_find(const struct symtab *symtab, const char *str)
714 {
715         uintptr_t val;
716
717         if (hash_find(&symtab->tab, (uintptr_t)str, &val))
718                 return NULL;
719         return (struct evtr_variable *)val;
720 }
721
722 int
723 symtab_insert(struct symtab *symtab, const char *name,
724                struct evtr_variable *var)
725 {
726         name = strdup(name);
727         if (!name) {
728                 fprintf(stderr, "out of memory\n");
729                 return ENOMEM;
730         }
731         hash_insert(&symtab->tab, (uintptr_t)name, (uintptr_t)var);
732         return 0;
733 }
734
735 static
736 int
737 evtr_filter_match(evtr_query_t q, evtr_filter_t f, evtr_event_t ev)
738 {
739         if ((f->cpu != -1) && (f->cpu != ev->cpu))
740                 return 0;
741
742         assert(!(f->flags & FILTF_ID));
743         if (ev->type != f->ev_type)
744                 return 0;
745         if (ev->type == EVTR_TYPE_PROBE) {
746                 if (f->fmt && strcmp(ev->fmt, f->fmt))
747                         return 0;
748         } else if (ev->type == EVTR_TYPE_STMT) {
749                 struct evtr_variable *var;
750                 /* resolve var */
751                 /* XXX: no need to do that *every* time */
752                 parse_var(f->var, q->symtab, &var);
753                 if (var != ev->stmt.var)
754                         return 0;
755         }
756         return !0;
757 }
758
759 static
760 int
761 evtr_match_filters(struct evtr_query *q, evtr_event_t ev)
762 {
763         int i;
764
765         /* no filters means we're interested in all events */
766         if (!q->nfilt)
767                 return !0;
768         ++q->ntried;
769         for (i = 0; i < q->nfilt; ++i) {
770                 if (evtr_filter_match(q, &q->filt[i], ev)) {
771                         ++q->nmatched;
772                         return !0;
773                 }
774         }
775         return 0;
776 }
777
778 static
779 void
780 parse_callback(evtr_event_t ev, void *d)
781 {
782         evtr_query_t q = (evtr_query_t)d;
783         if (ev->type != EVTR_TYPE_PROBE)
784                 return;
785         if (!ev->fmt || (ev->fmt[0] != '#'))
786                 return;
787         /*
788          * Copy the event to ->pending_event, then call
789          * the parser to convert it into a synthesized
790          * EVTR_TYPE_STMT event.
791          */
792         memcpy(&q->pending_event, ev, sizeof(ev));
793         parse_string(&q->pending_event, q->symtab, &ev->fmt[1]);
794         if (!evtr_match_filters(q, &q->pending_event))
795                 return;
796         /*
797          * This will cause us to return ->pending_event next time
798          * we're called.
799          */
800         q->flags |= EVTRQF_PENDING;
801 }
802
803 static
804 void
805 thread_creation_callback(evtr_event_t ev, void *d)
806 {
807         evtr_query_t q = (evtr_query_t)d;
808         evtr_t evtr = q->evtr;
809         struct evtr_thread *td;
810         void *ktd;
811         char buf[20];
812
813         if (parse_format_data(ev, "new_td %p %s", &ktd, buf) != 2) {
814                 return;
815         }
816         buf[19] = '\0';
817
818         if (!(td = malloc(sizeof(*td)))) {
819                 q->err = ENOMEM;
820                 return;
821         }
822         td->id = ktd;
823         td->userdata = NULL;
824         if (!(td->comm = strdup(buf))) {
825                 free(td);
826                 q->err = ENOMEM;
827                 return;
828         }
829         printd(DS, "inserting new thread %p: %s\n", td->id, td->comm);
830         thread_map_insert(&evtr->threads, td);
831 }
832
833 static
834 void
835 thread_switch_callback(evtr_event_t ev, void *d)
836 {
837         evtr_t evtr = ((evtr_query_t)d)->evtr;
838         struct evtr_thread *tdp, *tdn;
839         void *ktdp, *ktdn;
840         struct cpu *cpu;
841         static struct evtr_event tdcr;
842         static char *fmt = "new_td %p %s";
843         char tidstr[40];
844         char fmtdata[sizeof(void *) + sizeof(char *)];
845
846         cpu = evtr_cpu(evtr, ev->cpu);
847         if (!cpu) {
848                 printw("invalid cpu %d\n", ev->cpu);
849                 return;
850         }
851         if (parse_format_data(ev, "sw  %p > %p", &ktdp, &ktdn) != 2) {
852                 return;
853         }
854         tdp = thread_map_find(&evtr->threads, ktdp);
855         if (!tdp) {
856                 printd(DS, "switching from unknown thread %p\n", ktdp);
857         }
858         tdn = thread_map_find(&evtr->threads, ktdn);
859         if (!tdn) {
860                 /*
861                  * Fake a thread creation event for threads we
862                  * haven't seen before.
863                  */
864                 tdcr.type = EVTR_TYPE_PROBE;
865                 tdcr.ts = ev->ts;
866                 tdcr.file = NULL;
867                 tdcr.func = NULL;
868                 tdcr.line = 0;
869                 tdcr.fmt = fmt;
870                 tdcr.fmtdata = &fmtdata;
871                 tdcr.fmtdatalen = sizeof(fmtdata);
872                 tdcr.cpu = ev->cpu;
873                 tdcr.td = NULL;
874                 snprintf(tidstr, sizeof(tidstr), "%p", ktdn);
875                 ((void **)fmtdata)[0] = ktdn;
876                 ((char **)fmtdata)[1] = &tidstr[0];
877                 thread_creation_callback(&tdcr, d);
878
879                 tdn = thread_map_find(&evtr->threads, ktdn);
880                 assert(tdn != NULL);
881                 printd(DS, "switching to unknown thread %p\n", ktdn);
882                 cpu->td = tdn;
883                 return;
884         }
885         printd(DS, "cpu %d: switching to thread %p\n", ev->cpu, ktdn);
886         cpu->td = tdn;
887 }
888
889 static
890 void
891 assert_foff_in_sync(evtr_t evtr)
892 {
893         off_t off;
894
895         /*
896          * We keep our own offset because we
897          * might want to support mmap()
898          */
899         off = ftello(evtr->f);
900         if (evtr->bytes != off) {
901                 fprintf(stderr, "bytes %jd, off %jd\n", evtr->bytes, off);
902                 abort();
903         }
904 }
905
906 static
907 int
908 evtr_write(evtr_t evtr, const void *buf, size_t bytes)
909 {
910         assert_foff_in_sync(evtr);
911         if (fwrite(buf, bytes, 1, evtr->f) != 1) {
912                 evtr->err = errno;
913                 evtr->errmsg = strerror(errno);
914                 return !0;
915         }
916         evtr->bytes += bytes;
917         assert_foff_in_sync(evtr);
918         return 0;
919 }
920
921 /*
922  * Called after dumping a record to make sure the next
923  * record is REC_ALIGN aligned. This does not make much sense,
924  * as we shouldn't be using packed structs anyway.
925  */
926 static
927 int
928 evtr_dump_pad(evtr_t evtr)
929 {
930         size_t pad;
931         static char buf[REC_ALIGN];
932
933         pad = REC_ALIGN - (evtr->bytes % REC_ALIGN);
934         if (pad > 0) {
935                 return evtr_write(evtr, buf, pad);
936         }
937         return 0;
938 }
939
940 /*
941  * We make sure that there is a new record every REC_BOUNDARY
942  * bytes, this costs next to nothing in space and allows for
943  * fast seeking.
944  */
945 static
946 int
947 evtr_dump_avoid_boundary(evtr_t evtr, size_t bytes)
948 {
949         unsigned pad, i;
950         static char buf[256];
951
952         pad = REC_BOUNDARY - (evtr->bytes % REC_BOUNDARY);
953         /* if adding @bytes would cause us to cross a boundary... */
954         if (bytes > pad) {
955                 /* then pad to the boundary */
956                 for (i = 0; i < (pad / sizeof(buf)); ++i) {
957                         if (evtr_write(evtr, buf, sizeof(buf))) {
958                                 return !0;
959                         }
960                 }
961                 i = pad % sizeof(buf);
962                 if (i) {
963                         if (evtr_write(evtr, buf, i)) {
964                                 return !0;
965                         }
966                 }
967         }
968         return 0;
969 }
970
971 static
972 int
973 evtr_dump_fmt(evtr_t evtr, uint64_t ts, const evtr_event_t ev)
974 {
975         struct fmt_event_header fmt;
976         uint16_t id;
977         int err;
978         char *subsys = "", buf[1024];
979
980         if (strlcpy(buf, subsys, sizeof(buf)) >= sizeof(buf)) {
981                 evtr->errmsg = "name of subsystem is too large";
982                 evtr->err = ERANGE;
983                 return 0;
984         }
985         if (strlcat(buf, ev->fmt, sizeof(buf)) >= sizeof(buf)) {
986                 evtr->errmsg = "fmt + name of subsystem is too large";
987                 evtr->err = ERANGE;
988                 return 0;
989         }
990
991         if (!strhash_find(evtr->fmts, buf, &id)) {
992                 return id;
993         }
994         if ((err = strhash_insert(evtr->fmts, buf, &id))) {
995                 evtr->err = err;
996                 return 0;
997         }
998
999         fmt.eh.type = EVTR_TYPE_FMT;
1000         fmt.eh.ts = ts;
1001         fmt.subsys_len = strlen(subsys);
1002         fmt.fmt_len = strlen(ev->fmt);
1003         fmt.id = id;
1004         if (evtr_dump_avoid_boundary(evtr, sizeof(fmt) + fmt.subsys_len +
1005                                      fmt.fmt_len))
1006                 return 0;
1007         if (evtr_write(evtr, &fmt, sizeof(fmt)))
1008                 return 0;
1009         if (evtr_write(evtr, subsys, fmt.subsys_len))
1010                 return 0;
1011         if (evtr_write(evtr, ev->fmt, fmt.fmt_len))
1012                 return 0;
1013         if (evtr_dump_pad(evtr))
1014                 return 0;
1015         return fmt.id;
1016 }
1017
1018 /*
1019  * Replace string pointers or string ids in fmtdata
1020  */ 
1021 static
1022 int
1023 mangle_string_ptrs(const char *fmt, uint8_t *fmtdata,
1024                    const char *(*replace)(void *, const char *), void *ctx)
1025 {
1026         const char *f, *p;
1027         size_t skipsize, intsz;
1028         int ret = 0;
1029
1030         for (f = fmt; f[0] != '\0'; ++f) {
1031                 if (f[0] != '%')
1032                         continue;
1033                 ++f;
1034                 skipsize = 0;
1035                 for (p = f; p[0]; ++p) {
1036                         int again = 0;
1037                         /*
1038                          * Eat flags. Notice this will accept duplicate
1039                          * flags.
1040                          */
1041                         switch (p[0]) {
1042                         case '#':
1043                         case '0':
1044                         case '-':
1045                         case ' ':
1046                         case '+':
1047                         case '\'':
1048                                 again = !0;
1049                                 break;
1050                         }
1051                         if (!again)
1052                                 break;
1053                 }
1054                 /* Eat minimum field width, if any */
1055                 for (; isdigit(p[0]); ++p)
1056                         ;
1057                 if (p[0] == '.')
1058                         ++p;
1059                 /* Eat precision, if any */
1060                 for (; isdigit(p[0]); ++p)
1061                         ;
1062                 intsz = 0;
1063                 switch (p[0]) {
1064                 case 'l':
1065                         if (p[1] == 'l') {
1066                                 ++p;
1067                                 intsz = sizeof(long long);
1068                         } else {
1069                                 intsz = sizeof(long);
1070                         }
1071                         break;
1072                 case 'j':
1073                         intsz = sizeof(intmax_t);
1074                         break;
1075                 case 't':
1076                         intsz = sizeof(ptrdiff_t);
1077                         break;
1078                 case 'z':
1079                         intsz = sizeof(size_t);
1080                         break;
1081                 default:
1082                         break;
1083                 }
1084                 if (intsz != 0)
1085                         ++p;
1086                 else
1087                         intsz = sizeof(int);
1088
1089                 switch (p[0]) {
1090                 case 'd':
1091                 case 'i':
1092                 case 'o':
1093                 case 'u':
1094                 case 'x':
1095                 case 'X':
1096                 case 'c':
1097                         skipsize = intsz;
1098                         break;
1099                 case 'p':
1100                         skipsize = sizeof(void *);
1101                         break;
1102                 case 'f':
1103                         if (p[-1] == 'l')
1104                                 skipsize = sizeof(double);
1105                         else
1106                                 skipsize = sizeof(float);
1107                         break;
1108                 case 's':
1109                         ((const char **)fmtdata)[0] =
1110                                 replace(ctx, ((char **)fmtdata)[0]);
1111                         skipsize = sizeof(char *);
1112                         ++ret;
1113                         break;
1114                 default:
1115                         fprintf(stderr, "Unknown conversion specifier %c "
1116                                 "in fmt starting with %s", p[0], f - 1);
1117                         return -1;
1118                 }
1119                 fmtdata += skipsize;
1120         }
1121         return ret;
1122 }
1123
1124 /* XXX: do we really want the timestamp? */
1125 static
1126 int
1127 evtr_dump_string(evtr_t evtr, uint64_t ts, const char *str, int ns)
1128 {
1129         struct string_event_header s;
1130         int err;
1131         uint16_t id;
1132
1133         assert((0 <= ns) && (ns < EVTR_NS_MAX));
1134         if (!strhash_find(evtr->strings[ns], str, &id)) {
1135                 return id;
1136         }
1137         if ((err = strhash_insert(evtr->strings[ns], str, &id))) {
1138                 evtr->err = err;
1139                 return 0;
1140         }
1141
1142         printd(DS, "hash_insert %s ns %d id %d\n", str, ns, id);
1143         s.eh.type = EVTR_TYPE_STR;
1144         s.eh.ts = ts;
1145         s.ns = ns;
1146         s.id = id;
1147         s.len = strnlen(str, PATH_MAX);
1148
1149         if (evtr_dump_avoid_boundary(evtr, sizeof(s) + s.len))
1150                 return 0;
1151         if (evtr_write(evtr, &s, sizeof(s)))
1152                 return 0;
1153         if (evtr_write(evtr, str, s.len))
1154                 return 0;
1155         if (evtr_dump_pad(evtr))
1156                 return 0;
1157         return s.id;
1158 }
1159
1160 struct replace_ctx {
1161         evtr_t evtr;
1162         uint64_t ts;
1163 };
1164
1165 static
1166 const char *
1167 replace_strptr(void *_ctx, const char *s)
1168 {
1169         struct replace_ctx *ctx = _ctx;
1170         return (const char *)(uintptr_t)evtr_dump_string(ctx->evtr, ctx->ts, s,
1171                                                          EVTR_NS_DSTR);
1172 }
1173
1174 static
1175 const char *
1176 replace_strid(void *_ctx, const char *s)
1177 {
1178         struct replace_ctx *ctx = _ctx;
1179         const char *ret;
1180
1181         ret = string_map_find(&ctx->evtr->maps[EVTR_NS_DSTR - 1].root,
1182                               (int)(uintptr_t)s);
1183         if (!ret) {
1184                 fprintf(stderr, "Unknown id for data string\n");
1185                 ctx->evtr->errmsg = "unknown id for data string";
1186                 ctx->evtr->err = !0;
1187         }
1188         validate_string(ret);
1189         printd(DS, "replacing strid %d (ns %d) with string '%s' (or int %#x)\n",
1190                (int)(uintptr_t)s, EVTR_NS_DSTR, ret ? ret : "NULL", (int)(uintptr_t)ret);
1191         return ret;
1192 }
1193
1194 static
1195 int
1196 evtr_dump_probe(evtr_t evtr, evtr_event_t ev)
1197 {
1198         struct probe_event_header kev;
1199         char buf[1024];
1200
1201         memset(&kev, '\0', sizeof(kev));
1202         kev.eh.type = ev->type;
1203         kev.eh.ts = ev->ts;
1204         kev.line = ev->line;
1205         kev.cpu = ev->cpu;
1206         if (ev->file) {
1207                 kev.file = evtr_dump_string(evtr, kev.eh.ts, ev->file,
1208                                             EVTR_NS_PATH);
1209         }
1210         if (ev->func) {
1211                 kev.func = evtr_dump_string(evtr, kev.eh.ts, ev->func,
1212                                             EVTR_NS_FUNC);
1213         }
1214         if (ev->fmt) {
1215                 kev.fmt = evtr_dump_fmt(evtr, kev.eh.ts, ev);
1216         }
1217         if (ev->fmtdata) {
1218                 struct replace_ctx replctx = {
1219                         .evtr = evtr,
1220                         .ts = ev->ts,
1221                 };
1222                 assert(ev->fmtdatalen <= (int)sizeof(buf));
1223                 kev.datalen = ev->fmtdatalen;
1224                 /*
1225                  * Replace all string pointers with string ids before dumping
1226                  * the data.
1227                  */
1228                 memcpy(buf, ev->fmtdata, ev->fmtdatalen);
1229                 if (mangle_string_ptrs(ev->fmt, buf,
1230                                        replace_strptr, &replctx) < 0)
1231                         return !0;
1232                 if (evtr->err)
1233                         return evtr->err;
1234         }
1235         if (evtr_dump_avoid_boundary(evtr, sizeof(kev) + ev->fmtdatalen))
1236                 return !0;
1237         if (evtr_write(evtr, &kev, sizeof(kev)))
1238                 return !0;
1239         if (evtr_write(evtr, buf, ev->fmtdatalen))
1240                 return !0;
1241         if (evtr_dump_pad(evtr))
1242                 return !0;
1243         return 0;
1244 }
1245
1246 static
1247 int
1248 evtr_dump_sysinfo(evtr_t evtr, evtr_event_t ev)
1249 {
1250         uint8_t type = EVTR_TYPE_SYSINFO;
1251         uint16_t ncpus = ev->ncpus;
1252
1253         if (ncpus <= 0) {
1254                 evtr->errmsg = "invalid number of cpus";
1255                 return !0;
1256         }
1257         if (evtr_dump_avoid_boundary(evtr, sizeof(type) + sizeof(ncpus)))
1258                 return !0;
1259         if (evtr_write(evtr, &type, sizeof(type))) {
1260                 return !0;
1261         }
1262         if (evtr_write(evtr, &ncpus, sizeof(ncpus))) {
1263                 return !0;
1264         }
1265         if (evtr_dump_pad(evtr))
1266                 return !0;
1267         return 0;
1268 }
1269 static
1270 int
1271 evtr_dump_cpuinfo(evtr_t evtr, evtr_event_t ev)
1272 {
1273         struct cpuinfo_event_header ci;
1274         uint8_t type;
1275
1276         if (evtr_dump_avoid_boundary(evtr, sizeof(type) + sizeof(ci)))
1277                 return !0;
1278         type = EVTR_TYPE_CPUINFO;
1279         if (evtr_write(evtr, &type, sizeof(type))) {
1280                 return !0;
1281         }
1282         ci.cpu = ev->cpu;
1283         ci.freq = ev->cpuinfo.freq;
1284         if (evtr_dump_avoid_boundary(evtr, sizeof(ci)))
1285                 return !0;
1286         if (evtr_write(evtr, &ci, sizeof(ci))) {
1287                 return !0;
1288         }
1289         if (evtr_dump_pad(evtr))
1290                 return !0;
1291         return 0;
1292 }
1293
1294 int
1295 evtr_rewind(evtr_t evtr)
1296 {
1297         assert((evtr->flags & EVTRF_WR) == 0);
1298         evtr->bytes = 0;
1299         if (fseek(evtr->f, 0, SEEK_SET)) {
1300                 evtr->err = errno;
1301                 return !0;
1302         }
1303         return 0;
1304 }
1305
1306 int
1307 evtr_dump_event(evtr_t evtr, evtr_event_t ev)
1308 {
1309         switch (ev->type) {
1310         case EVTR_TYPE_PROBE:
1311                 return evtr_dump_probe(evtr, ev);
1312         case EVTR_TYPE_SYSINFO:
1313                 return evtr_dump_sysinfo(evtr, ev);
1314         case EVTR_TYPE_CPUINFO:
1315                 return evtr_dump_cpuinfo(evtr, ev);
1316         }
1317         evtr->errmsg = "unknown event type";
1318         return !0;
1319 }
1320
1321 static
1322 evtr_t
1323 evtr_alloc(FILE *f)
1324 {
1325         evtr_t evtr;
1326         if (!(evtr = malloc(sizeof(*evtr)))) {
1327                 return NULL;
1328         }
1329
1330         evtr->f = f;
1331         evtr->err = 0;
1332         evtr->errmsg = NULL;
1333         evtr->bytes = 0;
1334         return evtr;
1335 }
1336
1337 static int evtr_next_event(evtr_t, evtr_event_t);
1338
1339 evtr_t
1340 evtr_open_read(FILE *f)
1341 {
1342         evtr_t evtr;
1343         struct evtr_event ev;
1344         int i;
1345
1346         if (!(evtr = evtr_alloc(f))) {
1347                 return NULL;
1348         }
1349         evtr->flags = 0;
1350         for (i = 0; i < (EVTR_NS_MAX - 1); ++i) {
1351                 RB_INIT(&evtr->maps[i].root);
1352         }
1353         RB_INIT(&evtr->fmtmap.root);
1354         RB_INIT(&evtr->threads.root);
1355         evtr->cpus = NULL;
1356         evtr->ncpus = 0;
1357         /*
1358          * Load the first event so we can pick up any
1359          * sysinfo entries.
1360          */
1361         if (evtr_next_event(evtr, &ev)) {
1362                 goto free_evtr;
1363         }
1364         if (evtr_rewind(evtr))
1365                 goto free_evtr;
1366         return evtr;
1367 free_evtr:
1368         free(evtr);
1369         return NULL;
1370 }
1371
1372 evtr_t
1373 evtr_open_write(FILE *f)
1374 {
1375         evtr_t evtr;
1376         int i, j;
1377
1378         if (!(evtr = evtr_alloc(f))) {
1379                 return NULL;
1380         }
1381
1382         evtr->flags = EVTRF_WR;
1383         if (!(evtr->fmts = strhash_new()))
1384                 goto free_evtr;
1385         for (i = 0; i < EVTR_NS_MAX; ++i) {
1386                 evtr->strings[i] = strhash_new();
1387                 if (!evtr->strings[i]) {
1388                         for (j = 0; j < i; ++j) {
1389                                 strhash_destroy(evtr->strings[j]);
1390                         }
1391                         goto free_fmts;
1392                 }
1393         }
1394
1395         return evtr;
1396 free_fmts:
1397         strhash_destroy(evtr->fmts);
1398 free_evtr:
1399         free(evtr);
1400         return NULL;
1401 }
1402
1403 static
1404 void
1405 hashtab_destroy(struct hashtab *h)
1406 {
1407         struct hashentry *ent, *next;
1408         int i;
1409         for (i = 0; i < NR_BUCKETS; ++i) {
1410                 for (ent = h->buckets[i]; ent; ent = next) {
1411                         next = ent->next;
1412                         free(ent);
1413                 }
1414         }
1415         free(h);
1416 }
1417
1418 void
1419 evtr_close(evtr_t evtr)
1420 {
1421         int i;
1422
1423         if (evtr->flags & EVTRF_WR) {
1424                 hashtab_destroy(&evtr->fmts->tab);
1425                 for (i = 0; i < EVTR_NS_MAX; ++i)
1426                         hashtab_destroy(&evtr->strings[i]->tab);
1427         } else {
1428                 id_tree_free(&evtr->fmtmap.root);
1429                 for (i = 0; i < EVTR_NS_MAX - 1; ++i) {
1430                         id_tree_free(&evtr->maps[i].root);
1431                 }
1432         }
1433         free(evtr);
1434 }
1435
1436 static
1437 int
1438 evtr_read(evtr_t evtr, void *buf, size_t size)
1439 {
1440         assert(size > 0);
1441         assert_foff_in_sync(evtr);
1442         printd(IO, "evtr_read at %#jx, %zd bytes\n", evtr->bytes, size);
1443         if (fread(buf, size, 1, evtr->f) != 1) {
1444                 if (feof(evtr->f)) {
1445                         evtr->errmsg = "incomplete record";
1446                 } else {
1447                         evtr->errmsg = strerror(errno);
1448                 }
1449                 return !0;
1450         }
1451         evtr->bytes += size;
1452         assert_foff_in_sync(evtr);
1453         return 0;
1454 }
1455
1456 static
1457 int
1458 evtr_load_fmt(evtr_query_t q, char *buf)
1459 {
1460         evtr_t evtr = q->evtr;
1461         struct fmt_event_header *evh = (struct fmt_event_header *)buf;
1462         struct event_fmt *fmt;
1463         char *subsys = NULL, *fmtstr;
1464
1465         if (!(fmt = malloc(sizeof(*fmt)))) {
1466                 evtr->err = errno;
1467                 return !0;
1468         }
1469         if (evtr_read(evtr, buf + sizeof(struct trace_event_header),
1470                       sizeof(*evh) - sizeof(evh->eh))) {
1471                 goto free_fmt;
1472         }
1473         assert(!evh->subsys_len);
1474         if (evh->subsys_len) {
1475                 if (!(subsys = malloc(evh->subsys_len))) {
1476                         evtr->err = errno;
1477                         goto free_fmt;
1478                 }
1479                 if (evtr_read(evtr, subsys, evh->subsys_len)) {
1480                         goto free_subsys;
1481                 }
1482                 fmt->subsys = subsys;
1483         } else {
1484                 fmt->subsys = "";
1485         }
1486         if (!(fmtstr = malloc(evh->fmt_len + 1))) {
1487                 evtr->err = errno;
1488                 goto free_subsys;
1489         }
1490         if (evtr_read(evtr, fmtstr, evh->fmt_len)) {
1491                 goto free_fmtstr;
1492         }
1493         fmtstr[evh->fmt_len] = '\0';
1494         fmt->fmt = fmtstr;
1495
1496         printd(DS, "fmt_map_insert (%d, %s)\n", evh->id, fmt->fmt);
1497         evtr->err = fmt_map_insert(&evtr->fmtmap.root, fmt, evh->id);
1498         switch (evtr->err) {
1499         case ENOMEM:
1500                 evtr->errmsg = "out of memory";
1501                 break;
1502         case EEXIST:
1503                 evtr->errmsg = "redefinition of an id to a "
1504                         "different format (corrupt input)";
1505                 break;
1506         default:
1507                 ;
1508         }
1509         return evtr->err;
1510
1511 free_fmtstr:
1512         free(fmtstr);
1513 free_subsys:
1514         if (subsys)
1515                 free(subsys);
1516 free_fmt:
1517         free(fmt);
1518         return !0;
1519 }
1520
1521 static
1522 int
1523 evtr_load_string(evtr_t evtr, char *buf)
1524 {
1525         char sbuf[PATH_MAX + 1];
1526         struct string_event_header *evh = (struct string_event_header *)buf;
1527
1528         if (evtr_read(evtr, buf + sizeof(struct trace_event_header),
1529                       sizeof(*evh) - sizeof(evh->eh))) {
1530                 return !0;
1531         }
1532         if (evh->len > PATH_MAX) {
1533                 evtr->errmsg = "string too large (corrupt input)";
1534                 return !0;
1535         }
1536         if (evh->len && evtr_read(evtr, sbuf, evh->len)) {
1537                 return !0;
1538         }
1539         sbuf[evh->len] = 0;
1540         if (evh->ns >= EVTR_NS_MAX) {
1541                 evtr->errmsg = "invalid namespace (corrupt input)";
1542                 return !0;
1543         }
1544         validate_string(sbuf);
1545         printd(DS, "evtr_load_string:ns %d id %d : \"%s\"\n", evh->ns, evh->id,
1546                sbuf);
1547         evtr->err = string_map_insert(&evtr->maps[evh->ns - 1].root, sbuf, evh->id);
1548         switch (evtr->err) {
1549         case ENOMEM:
1550                 evtr->errmsg = "out of memory";
1551                 break;
1552         case EEXIST:
1553                 evtr->errmsg = "redefinition of an id to a "
1554                         "different string (corrupt input)";
1555                 break;
1556         default:
1557                 ;
1558         }
1559         return 0;
1560 }
1561
1562 static
1563 int
1564 evtr_skip(evtr_t evtr, off_t bytes)
1565 {
1566         if (fseek(evtr->f, bytes, SEEK_CUR)) {
1567                 evtr->err = errno;
1568                 evtr->errmsg = strerror(errno);
1569                 return !0;
1570         }
1571         evtr->bytes += bytes;
1572         return 0;
1573 }
1574
1575 /*
1576  * Make sure q->buf is at least len bytes
1577  */
1578 static
1579 int
1580 evtr_query_reserve_buf(struct evtr_query *q, int len)
1581 {
1582         void *tmp;
1583
1584         if (q->bufsize >= len)
1585                 return 0;
1586         if (!(tmp = realloc(q->buf, len)))
1587                 return !0;
1588         q->buf = tmp;
1589         q->bufsize = len;
1590         return 0;
1591 }
1592
1593 static
1594 int
1595 evtr_load_probe(evtr_t evtr, evtr_event_t ev, char *buf, struct evtr_query *q)
1596 {
1597         struct probe_event_header *evh = (struct probe_event_header *)buf;
1598         struct cpu *cpu;
1599
1600         if (evtr_read(evtr, buf + sizeof(struct trace_event_header),
1601                       sizeof(*evh) - sizeof(evh->eh)))
1602                 return !0;
1603         memset(ev, '\0', sizeof(*ev));
1604         ev->ts = evh->eh.ts;
1605         ev->type = EVTR_TYPE_PROBE;
1606         ev->line = evh->line;
1607         ev->cpu = evh->cpu;
1608         if ((cpu = evtr_cpu(evtr, evh->cpu))) {
1609                 ev->td = cpu->td;
1610         } else {
1611                 ev->td = NULL;
1612         }
1613         if (evh->file) {
1614                 ev->file = string_map_find(
1615                         &evtr->maps[EVTR_NS_PATH - 1].root,
1616                         evh->file);
1617                 if (!ev->file) {
1618                         evtr->errmsg = "unknown id for file path";
1619                         evtr->err = !0;
1620                         ev->file = "<unknown>";
1621                 } else {
1622                         validate_string(ev->file);
1623                 }
1624         } else {
1625                 ev->file = "<unknown>";
1626         }
1627         if (evh->fmt) {
1628                 const struct event_fmt *fmt;
1629                 if (!(fmt = fmt_map_find(&evtr->fmtmap.root, evh->fmt))) {
1630                         evtr->errmsg = "unknown id for event fmt";
1631                         evtr->err = !0;
1632                         ev->fmt = NULL;
1633                 } else {
1634                         ev->fmt = fmt->fmt;
1635                         validate_string(fmt->fmt);
1636                 }
1637         }
1638         if (evh->datalen) {
1639                 if (evtr_query_reserve_buf(q, evh->datalen + 1)) {
1640                         evtr->err = ENOMEM;
1641                 } else if (!evtr_read(evtr, q->buf, evh->datalen)) {
1642                         struct replace_ctx replctx = {
1643                                 .evtr = evtr,
1644                                 .ts = ev->ts,
1645                         };
1646                         assert(ev->fmt);
1647
1648                         ev->fmtdata = q->buf;
1649                         /*
1650                          * If the format specifies any string pointers, there
1651                          * is a string id stored in the fmtdata. Look it up
1652                          * and replace it with a string pointer before
1653                          * returning it to the user.
1654                          */
1655                         if (mangle_string_ptrs(ev->fmt, __DECONST(uint8_t *,
1656                                                                   ev->fmtdata),
1657                                                replace_strid, &replctx) < 0)
1658                                 return evtr->err;
1659                         if (evtr->err)
1660                                 return evtr->err;
1661                         ((char *)ev->fmtdata)[evh->datalen] = '\0';
1662                         ev->fmtdatalen = evh->datalen;
1663                 }
1664         }
1665         evtr_run_callbacks(ev, q);
1666         return evtr->err;
1667 }
1668
1669 static
1670 int
1671 evtr_skip_to_record(evtr_t evtr)
1672 {
1673         int skip;
1674         
1675         skip = REC_ALIGN - (evtr->bytes % REC_ALIGN);
1676         if (skip > 0) {
1677                 if (fseek(evtr->f, skip, SEEK_CUR)) {
1678                         evtr->err = errno;
1679                         evtr->errmsg = strerror(errno);
1680                         return !0;
1681                 }
1682                 evtr->bytes += skip;
1683         }
1684         return 0;
1685 }
1686
1687 static
1688 int
1689 evtr_load_sysinfo(evtr_t evtr)
1690 {
1691         uint16_t ncpus;
1692         int i;
1693
1694         if (evtr_read(evtr, &ncpus, sizeof(ncpus))) {
1695                 return !0;
1696         }
1697         if (evtr->cpus)
1698                 return 0;
1699         evtr->cpus = malloc(ncpus * sizeof(struct cpu));
1700         if (!evtr->cpus) {
1701                 evtr->err = ENOMEM;
1702                 return !0;
1703         }
1704         evtr->ncpus = ncpus;
1705         for (i = 0; i < ncpus; ++i) {
1706                 evtr->cpus[i].td = NULL;
1707                 evtr->cpus[i].freq = -1.0;
1708         }
1709         return 0;
1710 }
1711
1712 static
1713 int
1714 evtr_load_cpuinfo(evtr_t evtr)
1715 {
1716         struct cpuinfo_event_header cih;
1717         struct cpu *cpu;
1718
1719         if (evtr_read(evtr, &cih, sizeof(cih))) {
1720                 return !0;
1721         }
1722         if (cih.freq < 0.0) {
1723                 evtr->errmsg = "cpu freq is negative";
1724                 evtr->err = EINVAL;
1725                 return !0;
1726         }
1727         /*
1728          * Notice that freq is merely a multiplier with
1729          * which we convert a timestamp to seconds; if
1730          * ts is not in cycles, freq is not the frequency.
1731          */
1732         if (!(cpu = evtr_cpu(evtr, cih.cpu))) {
1733                 evtr->errmsg = "freq for invalid cpu";
1734                 evtr->err = EINVAL;
1735                 return !0;
1736         }
1737         cpu->freq = cih.freq;
1738         return 0;
1739 }
1740
1741 static
1742 int
1743 _evtr_next_event(evtr_t evtr, evtr_event_t ev, struct evtr_query *q)
1744 {
1745         char buf[MAX_EVHDR_SIZE];
1746         int ret, err, ntried, nmatched;
1747         struct trace_event_header *evhdr = (struct trace_event_header *)buf;
1748
1749         for (ret = 0; !ret;) {
1750                 if (q->flags & EVTRQF_PENDING) {
1751                         q->off = evtr->bytes;
1752                         memcpy(ev, &q->pending_event, sizeof(*ev));
1753                         q->flags &= ~EVTRQF_PENDING;
1754                         return 0;
1755                 }
1756                 if (evtr_read(evtr, &evhdr->type, 1)) {
1757                         if (feof(evtr->f)) {
1758                                 evtr->errmsg = NULL;
1759                                 evtr->err = 0;
1760                                 return -1;
1761                         }
1762                         return !0;
1763                 }
1764                 /*
1765                  * skip pad records -- this will only happen if there's a
1766                  * variable sized record close to the boundary
1767                  */
1768                 if (evhdr->type == EVTR_TYPE_PAD) {
1769                         evtr_skip_to_record(evtr);
1770                         continue;
1771                 }
1772                 if (evhdr->type == EVTR_TYPE_SYSINFO) {
1773                         evtr_load_sysinfo(evtr);
1774                         continue;
1775                 } else if (evhdr->type == EVTR_TYPE_CPUINFO) {
1776                         evtr_load_cpuinfo(evtr);
1777                         continue;
1778                 }
1779                 if (evtr_read(evtr, buf + 1, sizeof(*evhdr) - 1))
1780                         return feof(evtr->f) ? -1 : !0;
1781                 switch (evhdr->type) {
1782                 case EVTR_TYPE_PROBE:
1783                         ntried = q->ntried;
1784                         nmatched = q->nmatched;
1785                         if ((err = evtr_load_probe(evtr, ev, buf, q))) {
1786                                 if (err == -1) {
1787                                         /* no match */
1788                                         ret = 0;
1789                                 } else {
1790                                         return !0;
1791                                 }
1792                         } else {
1793                                 ret = !0;
1794                         }
1795                         break;
1796                 case EVTR_TYPE_STR:
1797                         if (evtr_load_string(evtr, buf)) {
1798                                 return !0;
1799                         }
1800                         break;
1801                 case EVTR_TYPE_FMT:
1802                         if (evtr_load_fmt(q, buf)) {
1803                                 return !0;
1804                         }
1805                         break;
1806                 default:
1807                         evtr->err = !0;
1808                         evtr->errmsg = "unknown event type (corrupt input?)";
1809                         return !0;
1810                 }
1811                 evtr_skip_to_record(evtr);
1812                 if (ret) {
1813                         if (!evtr_match_filters(q, ev)) {
1814                                 ret = 0;
1815                                 continue;
1816                         }
1817                         q->off = evtr->bytes;
1818                         return 0;
1819                 }
1820         }
1821         /* can't get here */
1822         return !0;
1823 }
1824
1825 static
1826 int
1827 evtr_next_event(evtr_t evtr, evtr_event_t ev)
1828 {
1829         struct evtr_query *q;
1830         int ret;
1831
1832         if (!(q = evtr_query_init(evtr, NULL, 0))) {
1833                 evtr->err = ENOMEM;
1834                 return !0;
1835         }
1836         ret = _evtr_next_event(evtr, ev, q);
1837         evtr_query_destroy(q);
1838         return ret;
1839 }
1840
1841 int
1842 evtr_last_event(evtr_t evtr, evtr_event_t ev)
1843 {
1844         struct stat st;
1845         int fd;
1846         off_t last_boundary;
1847
1848         if (evtr_error(evtr))
1849                 return !0;
1850
1851         fd = fileno(evtr->f);
1852         if (fstat(fd, &st))
1853                 return !0;
1854         /*
1855          * This skips pseudo records, so we can't provide
1856          * an event with all fields filled in this way.
1857          * It's doable, just needs some care. TBD.
1858          */
1859         if (0 && (st.st_mode & S_IFREG)) {
1860                 /*
1861                  * Skip to last boundary, that's the closest to the EOF
1862                  * location that we are sure contains a header so we can
1863                  * pick up the stream.
1864                  */
1865                 last_boundary = (st.st_size / REC_BOUNDARY) * REC_BOUNDARY;
1866                 /* XXX: ->bytes should be in query */
1867                 assert(evtr->bytes == 0);
1868                 evtr_skip(evtr, last_boundary);
1869         }
1870
1871
1872         /*
1873          * If we can't seek, we need to go through the whole file.
1874          * Since you can't seek back, this is pretty useless unless
1875          * you really are interested only in the last event.
1876          */
1877         while (!evtr_next_event(evtr, ev))
1878                 ;
1879         if (evtr_error(evtr))
1880                 return !0;
1881         evtr_rewind(evtr);
1882         return 0;
1883 }
1884
1885 struct evtr_query *
1886 evtr_query_init(evtr_t evtr, evtr_filter_t filt, int nfilt)
1887 {
1888         struct evtr_query *q;
1889         int i;
1890
1891         if (!(q = malloc(sizeof(*q)))) {
1892                 return q;
1893         }
1894         q->bufsize = 2;
1895         if (!(q->buf = malloc(q->bufsize))) {
1896                 goto free_q;
1897         }
1898         if (!(q->symtab = symtab_new()))
1899                 goto free_buf;
1900         q->evtr = evtr;
1901         q->off = 0;
1902         q->filt = filt;
1903         q->nfilt = nfilt;
1904         TAILQ_INIT(&q->unresolved_filtq);
1905         q->nmatched = 0;
1906         q->cbs = NULL;
1907         q->ncbs = 0;
1908         q->flags = 0;
1909         memset(&q->pending_event, '\0', sizeof(q->pending_event));
1910         if (evtr_register_callback(q, &thread_creation_callback, q)) {
1911                 goto free_symtab;
1912         }
1913         if (evtr_register_callback(q, &thread_switch_callback, q)) {
1914                 goto free_cbs;
1915         }
1916         if (evtr_query_needs_parsing(q) &&
1917             evtr_register_callback(q, &parse_callback, q)) {
1918                 goto free_cbs;
1919         }
1920
1921         for (i = 0; i < nfilt; ++i) {
1922                 filt[i].flags = 0;
1923                 if (filt[i].fmt == NULL)
1924                         continue;
1925                 if (evtr_filter_register(q, &filt[i])) {
1926                         evtr_deregister_filters(q, filt, i);
1927                         goto free_symtab;
1928                 }
1929         }
1930
1931         return q;
1932 free_cbs:
1933         evtr_deregister_callbacks(q);
1934 free_symtab:
1935         symtab_destroy(q->symtab);
1936 free_buf:
1937         free(q->buf);
1938 free_q:
1939         free(q);
1940         return NULL;
1941 }
1942
1943 void
1944 evtr_query_destroy(struct evtr_query *q)
1945 {
1946         evtr_deregister_filters(q, q->filt, q->nfilt);
1947                 
1948         free(q->buf);
1949         free(q);
1950 }
1951
1952 int
1953 evtr_query_next(struct evtr_query *q, evtr_event_t ev)
1954 {
1955         if (evtr_query_error(q))
1956                 return !0;
1957         /* we may support that in the future */
1958         if (q->off != q->evtr->bytes) {
1959                 q->errmsg = "evtr/query offset mismatch";
1960                 return !0;
1961         }
1962         return _evtr_next_event(q->evtr, ev, q);
1963 }
1964
1965 int
1966 evtr_ncpus(evtr_t evtr)
1967 {
1968         return evtr->ncpus;
1969 }
1970
1971 int
1972 evtr_cpufreqs(evtr_t evtr, double *freqs)
1973 {
1974         int i;
1975
1976         if (!freqs)
1977                 return EINVAL;
1978         for (i = 0; i < evtr->ncpus; ++i) {
1979                 freqs[i] = evtr->cpus[i].freq;
1980         }
1981         return 0;
1982 }