igb: Use extended interrupt mode whenever possible
[games.git] / sys / dev / netif / igb / if_igb.c
1 /*
2  * Copyright (c) 2001-2011, Intel Corporation 
3  * All rights reserved.
4  * 
5  * Redistribution and use in source and binary forms, with or without 
6  * modification, are permitted provided that the following conditions are met:
7  * 
8  *  1. Redistributions of source code must retain the above copyright notice, 
9  *     this list of conditions and the following disclaimer.
10  * 
11  *  2. Redistributions in binary form must reproduce the above copyright 
12  *     notice, this list of conditions and the following disclaimer in the 
13  *     documentation and/or other materials provided with the distribution.
14  * 
15  *  3. Neither the name of the Intel Corporation nor the names of its 
16  *     contributors may be used to endorse or promote products derived from 
17  *     this software without specific prior written permission.
18  * 
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31
32 #include "opt_polling.h"
33
34 #include <sys/param.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/interrupt.h>
38 #include <sys/kernel.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/proc.h>
42 #include <sys/rman.h>
43 #include <sys/serialize.h>
44 #include <sys/serialize2.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/sysctl.h>
48 #include <sys/systm.h>
49
50 #include <net/bpf.h>
51 #include <net/ethernet.h>
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/ifq_var.h>
57 #include <net/toeplitz.h>
58 #include <net/toeplitz2.h>
59 #include <net/vlan/if_vlan_var.h>
60 #include <net/vlan/if_vlan_ether.h>
61 #include <net/if_poll.h>
62
63 #include <netinet/in_systm.h>
64 #include <netinet/in.h>
65 #include <netinet/ip.h>
66 #include <netinet/tcp.h>
67 #include <netinet/udp.h>
68
69 #include <bus/pci/pcivar.h>
70 #include <bus/pci/pcireg.h>
71
72 #include <dev/netif/ig_hal/e1000_api.h>
73 #include <dev/netif/ig_hal/e1000_82575.h>
74 #include <dev/netif/igb/if_igb.h>
75
76 #define IGB_NAME        "Intel(R) PRO/1000 "
77 #define IGB_DEVICE(id)  \
78         { IGB_VENDOR_ID, E1000_DEV_ID_##id, IGB_NAME #id }
79 #define IGB_DEVICE_NULL { 0, 0, NULL }
80
81 static struct igb_device {
82         uint16_t        vid;
83         uint16_t        did;
84         const char      *desc;
85 } igb_devices[] = {
86         IGB_DEVICE(82575EB_COPPER),
87         IGB_DEVICE(82575EB_FIBER_SERDES),
88         IGB_DEVICE(82575GB_QUAD_COPPER),
89         IGB_DEVICE(82576),
90         IGB_DEVICE(82576_NS),
91         IGB_DEVICE(82576_NS_SERDES),
92         IGB_DEVICE(82576_FIBER),
93         IGB_DEVICE(82576_SERDES),
94         IGB_DEVICE(82576_SERDES_QUAD),
95         IGB_DEVICE(82576_QUAD_COPPER),
96         IGB_DEVICE(82576_QUAD_COPPER_ET2),
97         IGB_DEVICE(82576_VF),
98         IGB_DEVICE(82580_COPPER),
99         IGB_DEVICE(82580_FIBER),
100         IGB_DEVICE(82580_SERDES),
101         IGB_DEVICE(82580_SGMII),
102         IGB_DEVICE(82580_COPPER_DUAL),
103         IGB_DEVICE(82580_QUAD_FIBER),
104         IGB_DEVICE(DH89XXCC_SERDES),
105         IGB_DEVICE(DH89XXCC_SGMII),
106         IGB_DEVICE(DH89XXCC_SFP),
107         IGB_DEVICE(DH89XXCC_BACKPLANE),
108         IGB_DEVICE(I350_COPPER),
109         IGB_DEVICE(I350_FIBER),
110         IGB_DEVICE(I350_SERDES),
111         IGB_DEVICE(I350_SGMII),
112         IGB_DEVICE(I350_VF),
113
114         /* required last entry */
115         IGB_DEVICE_NULL
116 };
117
118 static int      igb_probe(device_t);
119 static int      igb_attach(device_t);
120 static int      igb_detach(device_t);
121 static int      igb_shutdown(device_t);
122 static int      igb_suspend(device_t);
123 static int      igb_resume(device_t);
124
125 static boolean_t igb_is_valid_ether_addr(const uint8_t *);
126 static void     igb_setup_ifp(struct igb_softc *);
127 static int      igb_txctx_pullup(struct igb_tx_ring *, struct mbuf **);
128 static boolean_t igb_txctx(struct igb_tx_ring *, struct mbuf *);
129 static void     igb_add_sysctl(struct igb_softc *);
130 static int      igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS);
131 static int      igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
132
133 static void     igb_vf_init_stats(struct igb_softc *);
134 static void     igb_reset(struct igb_softc *);
135 static void     igb_update_stats_counters(struct igb_softc *);
136 static void     igb_update_vf_stats_counters(struct igb_softc *);
137 static void     igb_update_link_status(struct igb_softc *);
138 static void     igb_init_tx_unit(struct igb_softc *);
139 static void     igb_init_rx_unit(struct igb_softc *);
140
141 static void     igb_set_vlan(struct igb_softc *);
142 static void     igb_set_multi(struct igb_softc *);
143 static void     igb_set_promisc(struct igb_softc *);
144 static void     igb_disable_promisc(struct igb_softc *);
145
146 static int      igb_dma_alloc(struct igb_softc *);
147 static void     igb_dma_free(struct igb_softc *);
148 static int      igb_create_tx_ring(struct igb_tx_ring *);
149 static int      igb_create_rx_ring(struct igb_rx_ring *);
150 static void     igb_free_tx_ring(struct igb_tx_ring *);
151 static void     igb_free_rx_ring(struct igb_rx_ring *);
152 static void     igb_destroy_tx_ring(struct igb_tx_ring *, int);
153 static void     igb_destroy_rx_ring(struct igb_rx_ring *, int);
154 static void     igb_init_tx_ring(struct igb_tx_ring *);
155 static int      igb_init_rx_ring(struct igb_rx_ring *);
156 static int      igb_newbuf(struct igb_rx_ring *, int, boolean_t);
157 static int      igb_encap(struct igb_tx_ring *, struct mbuf **);
158
159 static void     igb_stop(struct igb_softc *);
160 static void     igb_init(void *);
161 static int      igb_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
162 static void     igb_media_status(struct ifnet *, struct ifmediareq *);
163 static int      igb_media_change(struct ifnet *);
164 static void     igb_timer(void *);
165 static void     igb_watchdog(struct ifnet *);
166 static void     igb_start(struct ifnet *);
167 #ifdef DEVICE_POLLING
168 static void     igb_poll(struct ifnet *, enum poll_cmd, int);
169 #endif
170
171 static void     igb_intr(void *);
172 static void     igb_shared_intr(void *);
173 static void     igb_rxeof(struct igb_rx_ring *, int);
174 static void     igb_txeof(struct igb_tx_ring *);
175 static void     igb_set_eitr(struct igb_softc *);
176 static void     igb_enable_intr(struct igb_softc *);
177 static void     igb_disable_intr(struct igb_softc *);
178 static void     igb_init_unshared_intr(struct igb_softc *);
179 static void     igb_init_intr(struct igb_softc *);
180 static int      igb_setup_intr(struct igb_softc *);
181 static void     igb_setup_tx_intr(struct igb_tx_ring *);
182 static void     igb_setup_rx_intr(struct igb_rx_ring *);
183
184 /* Management and WOL Support */
185 static void     igb_get_mgmt(struct igb_softc *);
186 static void     igb_rel_mgmt(struct igb_softc *);
187 static void     igb_get_hw_control(struct igb_softc *);
188 static void     igb_rel_hw_control(struct igb_softc *);
189 static void     igb_enable_wol(device_t);
190
191 static device_method_t igb_methods[] = {
192         /* Device interface */
193         DEVMETHOD(device_probe,         igb_probe),
194         DEVMETHOD(device_attach,        igb_attach),
195         DEVMETHOD(device_detach,        igb_detach),
196         DEVMETHOD(device_shutdown,      igb_shutdown),
197         DEVMETHOD(device_suspend,       igb_suspend),
198         DEVMETHOD(device_resume,        igb_resume),
199         { 0, 0 }
200 };
201
202 static driver_t igb_driver = {
203         "igb",
204         igb_methods,
205         sizeof(struct igb_softc),
206 };
207
208 static devclass_t igb_devclass;
209
210 DECLARE_DUMMY_MODULE(if_igb);
211 MODULE_DEPEND(igb, ig_hal, 1, 1, 1);
212 DRIVER_MODULE(if_igb, pci, igb_driver, igb_devclass, NULL, NULL);
213
214 static int      igb_rxd = IGB_DEFAULT_RXD;
215 static int      igb_txd = IGB_DEFAULT_TXD;
216 static int      igb_msi_enable = 1;
217 static int      igb_msix_enable = 1;
218 static int      igb_eee_disabled = 1;   /* Energy Efficient Ethernet */
219 static int      igb_fc_setting = e1000_fc_full;
220
221 /*
222  * DMA Coalescing, only for i350 - default to off,
223  * this feature is for power savings
224  */
225 static int      igb_dma_coalesce = 0;
226
227 TUNABLE_INT("hw.igb.rxd", &igb_rxd);
228 TUNABLE_INT("hw.igb.txd", &igb_txd);
229 TUNABLE_INT("hw.igb.msi.enable", &igb_msi_enable);
230 TUNABLE_INT("hw.igb.msix.enable", &igb_msix_enable);
231 TUNABLE_INT("hw.igb.fc_setting", &igb_fc_setting);
232
233 /* i350 specific */
234 TUNABLE_INT("hw.igb.eee_disabled", &igb_eee_disabled);
235 TUNABLE_INT("hw.igb.dma_coalesce", &igb_dma_coalesce);
236
237 static __inline void
238 igb_rxcsum(uint32_t staterr, struct mbuf *mp)
239 {
240         /* Ignore Checksum bit is set */
241         if (staterr & E1000_RXD_STAT_IXSM)
242                 return;
243
244         if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
245             E1000_RXD_STAT_IPCS)
246                 mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
247
248         if (staterr & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) {
249                 if ((staterr & E1000_RXDEXT_STATERR_TCPE) == 0) {
250                         mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
251                             CSUM_PSEUDO_HDR | CSUM_FRAG_NOT_CHECKED;
252                         mp->m_pkthdr.csum_data = htons(0xffff);
253                 }
254         }
255 }
256
257 static int
258 igb_probe(device_t dev)
259 {
260         const struct igb_device *d;
261         uint16_t vid, did;
262
263         vid = pci_get_vendor(dev);
264         did = pci_get_device(dev);
265
266         for (d = igb_devices; d->desc != NULL; ++d) {
267                 if (vid == d->vid && did == d->did) {
268                         device_set_desc(dev, d->desc);
269                         return 0;
270                 }
271         }
272         return ENXIO;
273 }
274
275 static int
276 igb_attach(device_t dev)
277 {
278         struct igb_softc *sc = device_get_softc(dev);
279         uint16_t eeprom_data;
280         u_int intr_flags;
281         int error = 0;
282
283 #ifdef notyet
284         /* SYSCTL stuff */
285         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
286             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
287             OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
288             igb_sysctl_nvm_info, "I", "NVM Information");
289
290         SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
291             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
292             OID_AUTO, "enable_aim", CTLTYPE_INT|CTLFLAG_RW,
293             &igb_enable_aim, 1, "Interrupt Moderation");
294
295         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
296             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
297             OID_AUTO, "flow_control", CTLTYPE_INT|CTLFLAG_RW,
298             adapter, 0, igb_set_flowcntl, "I", "Flow Control");
299 #endif
300
301         callout_init_mp(&sc->timer);
302
303         sc->dev = sc->osdep.dev = dev;
304
305         /*
306          * Determine hardware and mac type
307          */
308         sc->hw.vendor_id = pci_get_vendor(dev);
309         sc->hw.device_id = pci_get_device(dev);
310         sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
311         sc->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2);
312         sc->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
313
314         if (e1000_set_mac_type(&sc->hw))
315                 return ENXIO;
316
317         /* Are we a VF device? */
318         if (sc->hw.mac.type == e1000_vfadapt ||
319             sc->hw.mac.type == e1000_vfadapt_i350)
320                 sc->vf_ifp = 1;
321         else
322                 sc->vf_ifp = 0;
323
324         /* Enable bus mastering */
325         pci_enable_busmaster(dev);
326
327         /*
328          * Allocate IO memory
329          */
330         sc->mem_rid = PCIR_BAR(0);
331         sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
332             RF_ACTIVE);
333         if (sc->mem_res == NULL) {
334                 device_printf(dev, "Unable to allocate bus resource: memory\n");
335                 error = ENXIO;
336                 goto failed;
337         }
338         sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->mem_res);
339         sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->mem_res);
340
341         sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
342
343         /*
344          * Allocate interrupt
345          */
346         sc->intr_type = pci_alloc_1intr(dev, igb_msi_enable,
347             &sc->intr_rid, &intr_flags);
348
349         sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
350             intr_flags);
351         if (sc->intr_res == NULL) {
352                 device_printf(dev, "Unable to allocate bus resource: "
353                     "interrupt\n");
354                 error = ENXIO;
355                 goto failed;
356         }
357
358         /* Save PCI command register for Shared Code */
359         sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
360         sc->hw.back = &sc->osdep;
361
362         sc->num_queues = 1; /* Defaults for Legacy or MSI */
363         sc->intr_rate = IGB_INTR_RATE;
364
365         /* Do Shared Code initialization */
366         if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
367                 device_printf(dev, "Setup of Shared code failed\n");
368                 error = ENXIO;
369                 goto failed;
370         }
371
372         e1000_get_bus_info(&sc->hw);
373
374         sc->hw.mac.autoneg = DO_AUTO_NEG;
375         sc->hw.phy.autoneg_wait_to_complete = FALSE;
376         sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
377
378         /* Copper options */
379         if (sc->hw.phy.media_type == e1000_media_type_copper) {
380                 sc->hw.phy.mdix = AUTO_ALL_MODES;
381                 sc->hw.phy.disable_polarity_correction = FALSE;
382                 sc->hw.phy.ms_type = IGB_MASTER_SLAVE;
383         }
384
385         /* Set the frame limits assuming  standard ethernet sized frames. */
386         sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
387         sc->min_frame_size = ETHER_MIN_LEN;
388
389         /* Allocate RX/TX rings' busdma(9) stuffs */
390         error = igb_dma_alloc(sc);
391         if (error)
392                 goto failed;
393
394         /* Allocate the appropriate stats memory */
395         if (sc->vf_ifp) {
396                 sc->stats = kmalloc(sizeof(struct e1000_vf_stats), M_DEVBUF,
397                     M_WAITOK | M_ZERO);
398                 igb_vf_init_stats(sc);
399         } else {
400                 sc->stats = kmalloc(sizeof(struct e1000_hw_stats), M_DEVBUF,
401                     M_WAITOK | M_ZERO);
402         }
403
404         /* Allocate multicast array memory. */
405         sc->mta = kmalloc(ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
406             M_DEVBUF, M_WAITOK);
407
408         /* Some adapter-specific advanced features */
409         if (sc->hw.mac.type >= e1000_i350) {
410 #ifdef notyet
411                 igb_set_sysctl_value(adapter, "dma_coalesce",
412                     "configure dma coalesce",
413                     &adapter->dma_coalesce, igb_dma_coalesce);
414                 igb_set_sysctl_value(adapter, "eee_disabled",
415                     "enable Energy Efficient Ethernet",
416                     &adapter->hw.dev_spec._82575.eee_disable,
417                     igb_eee_disabled);
418 #else
419                 sc->dma_coalesce = igb_dma_coalesce;
420                 sc->hw.dev_spec._82575.eee_disable = igb_eee_disabled;
421 #endif
422                 e1000_set_eee_i350(&sc->hw);
423         }
424
425         /*
426          * Start from a known state, this is important in reading the nvm and
427          * mac from that.
428          */
429         e1000_reset_hw(&sc->hw);
430
431         /* Make sure we have a good EEPROM before we read from it */
432         if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
433                 /*
434                  * Some PCI-E parts fail the first check due to
435                  * the link being in sleep state, call it again,
436                  * if it fails a second time its a real issue.
437                  */
438                 if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
439                         device_printf(dev,
440                             "The EEPROM Checksum Is Not Valid\n");
441                         error = EIO;
442                         goto failed;
443                 }
444         }
445
446         /* Copy the permanent MAC address out of the EEPROM */
447         if (e1000_read_mac_addr(&sc->hw) < 0) {
448                 device_printf(dev, "EEPROM read error while reading MAC"
449                     " address\n");
450                 error = EIO;
451                 goto failed;
452         }
453         if (!igb_is_valid_ether_addr(sc->hw.mac.addr)) {
454                 device_printf(dev, "Invalid MAC address\n");
455                 error = EIO;
456                 goto failed;
457         }
458
459 #ifdef notyet
460         /* 
461         ** Configure Interrupts
462         */
463         if ((adapter->msix > 1) && (igb_enable_msix))
464                 error = igb_allocate_msix(adapter);
465         else /* MSI or Legacy */
466                 error = igb_allocate_legacy(adapter);
467         if (error)
468                 goto err_late;
469 #endif
470
471         /* Setup OS specific network interface */
472         igb_setup_ifp(sc);
473
474         /* Add sysctl tree, must after igb_setup_ifp() */
475         igb_add_sysctl(sc);
476
477         /* Now get a good starting state */
478         igb_reset(sc);
479
480         /* Initialize statistics */
481         igb_update_stats_counters(sc);
482
483         sc->hw.mac.get_link_status = 1;
484         igb_update_link_status(sc);
485
486         /* Indicate SOL/IDER usage */
487         if (e1000_check_reset_block(&sc->hw)) {
488                 device_printf(dev,
489                     "PHY reset is blocked due to SOL/IDER session.\n");
490         }
491
492         /* Determine if we have to control management hardware */
493         sc->has_manage = e1000_enable_mng_pass_thru(&sc->hw);
494
495         /*
496          * Setup Wake-on-Lan
497          */
498         /* APME bit in EEPROM is mapped to WUC.APME */
499         eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC) & E1000_WUC_APME;
500         if (eeprom_data)
501                 sc->wol = E1000_WUFC_MAG;
502         /* XXX disable WOL */
503         sc->wol = 0; 
504
505 #ifdef notyet
506         /* Register for VLAN events */
507         adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
508              igb_register_vlan, adapter, EVENTHANDLER_PRI_FIRST);
509         adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
510              igb_unregister_vlan, adapter, EVENTHANDLER_PRI_FIRST);
511 #endif
512
513 #ifdef notyet
514         igb_add_hw_stats(adapter);
515 #endif
516
517         error = igb_setup_intr(sc);
518         if (error) {
519                 ether_ifdetach(&sc->arpcom.ac_if);
520                 goto failed;
521         }
522         return 0;
523
524 failed:
525         igb_detach(dev);
526         return error;
527 }
528
529 static int
530 igb_detach(device_t dev)
531 {
532         struct igb_softc *sc = device_get_softc(dev);
533
534         if (device_is_attached(dev)) {
535                 struct ifnet *ifp = &sc->arpcom.ac_if;
536
537                 ifnet_serialize_all(ifp);
538
539                 igb_stop(sc);
540
541                 e1000_phy_hw_reset(&sc->hw);
542
543                 /* Give control back to firmware */
544                 igb_rel_mgmt(sc);
545                 igb_rel_hw_control(sc);
546
547                 if (sc->wol) {
548                         E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
549                         E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
550                         igb_enable_wol(dev);
551                 }
552
553                 bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
554
555                 ifnet_deserialize_all(ifp);
556
557                 ether_ifdetach(ifp);
558         } else if (sc->mem_res != NULL) {
559                 igb_rel_hw_control(sc);
560         }
561         bus_generic_detach(dev);
562
563         if (sc->intr_res != NULL) {
564                 bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
565                     sc->intr_res);
566         }
567         if (sc->intr_type == PCI_INTR_TYPE_MSI)
568                 pci_release_msi(dev);
569
570         if (sc->mem_res != NULL) {
571                 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid,
572                     sc->mem_res);
573         }
574
575         igb_dma_free(sc);
576
577         if (sc->mta != NULL)
578                 kfree(sc->mta, M_DEVBUF);
579         if (sc->stats != NULL)
580                 kfree(sc->stats, M_DEVBUF);
581
582         if (sc->sysctl_tree != NULL)
583                 sysctl_ctx_free(&sc->sysctl_ctx);
584
585         return 0;
586 }
587
588 static int
589 igb_shutdown(device_t dev)
590 {
591         return igb_suspend(dev);
592 }
593
594 static int
595 igb_suspend(device_t dev)
596 {
597         struct igb_softc *sc = device_get_softc(dev);
598         struct ifnet *ifp = &sc->arpcom.ac_if;
599
600         ifnet_serialize_all(ifp);
601
602         igb_stop(sc);
603
604         igb_rel_mgmt(sc);
605         igb_rel_hw_control(sc);
606
607         if (sc->wol) {
608                 E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
609                 E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
610                 igb_enable_wol(dev);
611         }
612
613         ifnet_deserialize_all(ifp);
614
615         return bus_generic_suspend(dev);
616 }
617
618 static int
619 igb_resume(device_t dev)
620 {
621         struct igb_softc *sc = device_get_softc(dev);
622         struct ifnet *ifp = &sc->arpcom.ac_if;
623
624         ifnet_serialize_all(ifp);
625
626         igb_init(sc);
627         igb_get_mgmt(sc);
628
629         if_devstart(ifp);
630
631         ifnet_deserialize_all(ifp);
632
633         return bus_generic_resume(dev);
634 }
635
636 static int
637 igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
638 {
639         struct igb_softc *sc = ifp->if_softc;
640         struct ifreq *ifr = (struct ifreq *)data;
641         int max_frame_size, mask, reinit;
642         int error = 0;
643
644         ASSERT_IFNET_SERIALIZED_ALL(ifp);
645
646         switch (command) {
647         case SIOCSIFMTU:
648                 max_frame_size = 9234;
649                 if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
650                     ETHER_CRC_LEN) {
651                         error = EINVAL;
652                         break;
653                 }
654
655                 ifp->if_mtu = ifr->ifr_mtu;
656                 sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
657                     ETHER_CRC_LEN;
658
659                 if (ifp->if_flags & IFF_RUNNING)
660                         igb_init(sc);
661                 break;
662
663         case SIOCSIFFLAGS:
664                 if (ifp->if_flags & IFF_UP) {
665                         if (ifp->if_flags & IFF_RUNNING) {
666                                 if ((ifp->if_flags ^ sc->if_flags) &
667                                     (IFF_PROMISC | IFF_ALLMULTI)) {
668                                         igb_disable_promisc(sc);
669                                         igb_set_promisc(sc);
670                                 }
671                         } else {
672                                 igb_init(sc);
673                         }
674                 } else if (ifp->if_flags & IFF_RUNNING) {
675                         igb_stop(sc);
676                 }
677                 sc->if_flags = ifp->if_flags;
678                 break;
679
680         case SIOCADDMULTI:
681         case SIOCDELMULTI:
682                 if (ifp->if_flags & IFF_RUNNING) {
683                         igb_disable_intr(sc);
684                         igb_set_multi(sc);
685 #ifdef DEVICE_POLLING
686                         if (!(ifp->if_flags & IFF_POLLING))
687 #endif
688                                 igb_enable_intr(sc);
689                 }
690                 break;
691
692         case SIOCSIFMEDIA:
693                 /*
694                  * As the speed/duplex settings are being
695                  * changed, we need toreset the PHY.
696                  */
697                 sc->hw.phy.reset_disable = FALSE;
698
699                 /* Check SOL/IDER usage */
700                 if (e1000_check_reset_block(&sc->hw)) {
701                         if_printf(ifp, "Media change is "
702                             "blocked due to SOL/IDER session.\n");
703                         break;
704                 }
705                 /* FALL THROUGH */
706
707         case SIOCGIFMEDIA:
708                 error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
709                 break;
710
711         case SIOCSIFCAP:
712                 reinit = 0;
713                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
714                 if (mask & IFCAP_HWCSUM) {
715                         ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
716                         reinit = 1;
717                 }
718                 if (mask & IFCAP_VLAN_HWTAGGING) {
719                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
720                         reinit = 1;
721                 }
722                 if (reinit && (ifp->if_flags & IFF_RUNNING))
723                         igb_init(sc);
724                 break;
725
726         default:
727                 error = ether_ioctl(ifp, command, data);
728                 break;
729         }
730         return error;
731 }
732
733 static void
734 igb_init(void *xsc)
735 {
736         struct igb_softc *sc = xsc;
737         struct ifnet *ifp = &sc->arpcom.ac_if;
738         int i;
739
740         ASSERT_IFNET_SERIALIZED_ALL(ifp);
741
742         igb_stop(sc);
743
744         /* Get the latest mac address, User can use a LAA */
745         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
746
747         /* Put the address into the Receive Address Array */
748         e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
749
750         igb_reset(sc);
751         igb_update_link_status(sc);
752
753         E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
754
755         /* Set hardware offload abilities */
756         if (ifp->if_capenable & IFCAP_TXCSUM)
757                 ifp->if_hwassist = IGB_CSUM_FEATURES;
758         else
759                 ifp->if_hwassist = 0;
760
761         /* Configure for OS presence */
762         igb_get_mgmt(sc);
763
764         /* Prepare transmit descriptors and buffers */
765         for (i = 0; i < sc->num_queues; ++i)
766                 igb_init_tx_ring(&sc->tx_rings[i]);
767         igb_init_tx_unit(sc);
768
769         /* Setup Multicast table */
770         igb_set_multi(sc);
771
772 #if 0
773         /*
774          * Figure out the desired mbuf pool
775          * for doing jumbo/packetsplit
776          */
777         if (adapter->max_frame_size <= 2048)
778                 adapter->rx_mbuf_sz = MCLBYTES;
779         else if (adapter->max_frame_size <= 4096)
780                 adapter->rx_mbuf_sz = MJUMPAGESIZE;
781         else
782                 adapter->rx_mbuf_sz = MJUM9BYTES;
783 #else
784         sc->rx_mbuf_sz = MCLBYTES;
785 #endif
786
787         /* Initialize interrupt */
788         igb_init_intr(sc);
789
790         /* Prepare receive descriptors and buffers */
791         for (i = 0; i < sc->num_queues; ++i) {
792                 int error;
793
794                 error = igb_init_rx_ring(&sc->rx_rings[i]);
795                 if (error) {
796                         if_printf(ifp, "Could not setup receive structures\n");
797                         igb_stop(sc);
798                         return;
799                 }
800         }
801         igb_init_rx_unit(sc);
802
803         /* Enable VLAN support */
804         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
805                 igb_set_vlan(sc);
806
807         /* Don't lose promiscuous settings */
808         igb_set_promisc(sc);
809
810         ifp->if_flags |= IFF_RUNNING;
811         ifp->if_flags &= ~IFF_OACTIVE;
812
813         callout_reset(&sc->timer, hz, igb_timer, sc);
814         e1000_clear_hw_cntrs_base_generic(&sc->hw);
815
816 #if 0
817         if (adapter->msix > 1) /* Set up queue routing */
818                 igb_configure_queues(adapter);
819 #endif
820
821         /* this clears any pending interrupts */
822         E1000_READ_REG(&sc->hw, E1000_ICR);
823 #ifdef DEVICE_POLLING
824         /*
825          * Only enable interrupts if we are not polling, make sure
826          * they are off otherwise.
827          */
828         if (ifp->if_flags & IFF_POLLING)
829                 igb_disable_intr(sc);
830         else
831 #endif /* DEVICE_POLLING */
832         {
833                 igb_enable_intr(sc);
834                 E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
835         }
836
837         /* Set Energy Efficient Ethernet */
838         e1000_set_eee_i350(&sc->hw);
839
840         /* Don't reset the phy next time init gets called */
841         sc->hw.phy.reset_disable = TRUE;
842 }
843
844 static void
845 igb_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
846 {
847         struct igb_softc *sc = ifp->if_softc;
848         u_char fiber_type = IFM_1000_SX;
849
850         ASSERT_IFNET_SERIALIZED_ALL(ifp);
851
852         igb_update_link_status(sc);
853
854         ifmr->ifm_status = IFM_AVALID;
855         ifmr->ifm_active = IFM_ETHER;
856
857         if (!sc->link_active)
858                 return;
859
860         ifmr->ifm_status |= IFM_ACTIVE;
861
862         if (sc->hw.phy.media_type == e1000_media_type_fiber ||
863             sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
864                 ifmr->ifm_active |= fiber_type | IFM_FDX;
865         } else {
866                 switch (sc->link_speed) {
867                 case 10:
868                         ifmr->ifm_active |= IFM_10_T;
869                         break;
870
871                 case 100:
872                         ifmr->ifm_active |= IFM_100_TX;
873                         break;
874
875                 case 1000:
876                         ifmr->ifm_active |= IFM_1000_T;
877                         break;
878                 }
879                 if (sc->link_duplex == FULL_DUPLEX)
880                         ifmr->ifm_active |= IFM_FDX;
881                 else
882                         ifmr->ifm_active |= IFM_HDX;
883         }
884 }
885
886 static int
887 igb_media_change(struct ifnet *ifp)
888 {
889         struct igb_softc *sc = ifp->if_softc;
890         struct ifmedia *ifm = &sc->media;
891
892         ASSERT_IFNET_SERIALIZED_ALL(ifp);
893
894         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
895                 return EINVAL;
896
897         switch (IFM_SUBTYPE(ifm->ifm_media)) {
898         case IFM_AUTO:
899                 sc->hw.mac.autoneg = DO_AUTO_NEG;
900                 sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
901                 break;
902
903         case IFM_1000_LX:
904         case IFM_1000_SX:
905         case IFM_1000_T:
906                 sc->hw.mac.autoneg = DO_AUTO_NEG;
907                 sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
908                 break;
909
910         case IFM_100_TX:
911                 sc->hw.mac.autoneg = FALSE;
912                 sc->hw.phy.autoneg_advertised = 0;
913                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
914                         sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
915                 else
916                         sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
917                 break;
918
919         case IFM_10_T:
920                 sc->hw.mac.autoneg = FALSE;
921                 sc->hw.phy.autoneg_advertised = 0;
922                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
923                         sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
924                 else
925                         sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
926                 break;
927
928         default:
929                 if_printf(ifp, "Unsupported media type\n");
930                 break;
931         }
932
933         igb_init(sc);
934
935         return 0;
936 }
937
938 static void
939 igb_set_promisc(struct igb_softc *sc)
940 {
941         struct ifnet *ifp = &sc->arpcom.ac_if;
942         struct e1000_hw *hw = &sc->hw;
943         uint32_t reg;
944
945         if (sc->vf_ifp) {
946                 e1000_promisc_set_vf(hw, e1000_promisc_enabled);
947                 return;
948         }
949
950         reg = E1000_READ_REG(hw, E1000_RCTL);
951         if (ifp->if_flags & IFF_PROMISC) {
952                 reg |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
953                 E1000_WRITE_REG(hw, E1000_RCTL, reg);
954         } else if (ifp->if_flags & IFF_ALLMULTI) {
955                 reg |= E1000_RCTL_MPE;
956                 reg &= ~E1000_RCTL_UPE;
957                 E1000_WRITE_REG(hw, E1000_RCTL, reg);
958         }
959 }
960
961 static void
962 igb_disable_promisc(struct igb_softc *sc)
963 {
964         struct e1000_hw *hw = &sc->hw;
965         uint32_t reg;
966
967         if (sc->vf_ifp) {
968                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
969                 return;
970         }
971         reg = E1000_READ_REG(hw, E1000_RCTL);
972         reg &= ~E1000_RCTL_UPE;
973         reg &= ~E1000_RCTL_MPE;
974         E1000_WRITE_REG(hw, E1000_RCTL, reg);
975 }
976
977 static void
978 igb_set_multi(struct igb_softc *sc)
979 {
980         struct ifnet *ifp = &sc->arpcom.ac_if;
981         struct ifmultiaddr *ifma;
982         uint32_t reg_rctl = 0;
983         uint8_t *mta;
984         int mcnt = 0;
985
986         mta = sc->mta;
987         bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
988
989         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
990                 if (ifma->ifma_addr->sa_family != AF_LINK)
991                         continue;
992
993                 if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
994                         break;
995
996                 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
997                     &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
998                 mcnt++;
999         }
1000
1001         if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1002                 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1003                 reg_rctl |= E1000_RCTL_MPE;
1004                 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1005         } else {
1006                 e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1007         }
1008 }
1009
1010 static void
1011 igb_timer(void *xsc)
1012 {
1013         struct igb_softc *sc = xsc;
1014         struct ifnet *ifp = &sc->arpcom.ac_if;
1015
1016         ifnet_serialize_all(ifp);
1017
1018         igb_update_link_status(sc);
1019         igb_update_stats_counters(sc);
1020
1021         callout_reset(&sc->timer, hz, igb_timer, sc);
1022
1023         ifnet_deserialize_all(ifp);
1024 }
1025
1026 static void
1027 igb_update_link_status(struct igb_softc *sc)
1028 {
1029         struct ifnet *ifp = &sc->arpcom.ac_if;
1030         struct e1000_hw *hw = &sc->hw;
1031         uint32_t link_check, thstat, ctrl;
1032
1033         link_check = thstat = ctrl = 0;
1034
1035         /* Get the cached link value or read for real */
1036         switch (hw->phy.media_type) {
1037         case e1000_media_type_copper:
1038                 if (hw->mac.get_link_status) {
1039                         /* Do the work to read phy */
1040                         e1000_check_for_link(hw);
1041                         link_check = !hw->mac.get_link_status;
1042                 } else {
1043                         link_check = TRUE;
1044                 }
1045                 break;
1046
1047         case e1000_media_type_fiber:
1048                 e1000_check_for_link(hw);
1049                 link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1050                 break;
1051
1052         case e1000_media_type_internal_serdes:
1053                 e1000_check_for_link(hw);
1054                 link_check = hw->mac.serdes_has_link;
1055                 break;
1056
1057         /* VF device is type_unknown */
1058         case e1000_media_type_unknown:
1059                 e1000_check_for_link(hw);
1060                 link_check = !hw->mac.get_link_status;
1061                 /* Fall thru */
1062         default:
1063                 break;
1064         }
1065
1066         /* Check for thermal downshift or shutdown */
1067         if (hw->mac.type == e1000_i350) {
1068                 thstat = E1000_READ_REG(hw, E1000_THSTAT);
1069                 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1070         }
1071
1072         /* Now we check if a transition has happened */
1073         if (link_check && sc->link_active == 0) {
1074                 e1000_get_speed_and_duplex(hw, 
1075                     &sc->link_speed, &sc->link_duplex);
1076                 if (bootverbose) {
1077                         if_printf(ifp, "Link is up %d Mbps %s\n",
1078                             sc->link_speed,
1079                             sc->link_duplex == FULL_DUPLEX ?
1080                             "Full Duplex" : "Half Duplex");
1081                 }
1082                 sc->link_active = 1;
1083
1084                 ifp->if_baudrate = sc->link_speed * 1000000;
1085                 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1086                     (thstat & E1000_THSTAT_LINK_THROTTLE))
1087                         if_printf(ifp, "Link: thermal downshift\n");
1088                 /* This can sleep */
1089                 ifp->if_link_state = LINK_STATE_UP;
1090                 if_link_state_change(ifp);
1091         } else if (!link_check && sc->link_active == 1) {
1092                 ifp->if_baudrate = sc->link_speed = 0;
1093                 sc->link_duplex = 0;
1094                 if (bootverbose)
1095                         if_printf(ifp, "Link is Down\n");
1096                 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1097                     (thstat & E1000_THSTAT_PWR_DOWN))
1098                         if_printf(ifp, "Link: thermal shutdown\n");
1099                 sc->link_active = 0;
1100                 /* This can sleep */
1101                 ifp->if_link_state = LINK_STATE_DOWN;
1102                 if_link_state_change(ifp);
1103         }
1104 }
1105
1106 static void
1107 igb_stop(struct igb_softc *sc)
1108 {
1109         struct ifnet *ifp = &sc->arpcom.ac_if;
1110         int i;
1111
1112         ASSERT_IFNET_SERIALIZED_ALL(ifp);
1113
1114         igb_disable_intr(sc);
1115
1116         callout_stop(&sc->timer);
1117
1118         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1119         ifp->if_timer = 0;
1120
1121         e1000_reset_hw(&sc->hw);
1122         E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1123
1124         e1000_led_off(&sc->hw);
1125         e1000_cleanup_led(&sc->hw);
1126
1127         for (i = 0; i < sc->num_queues; ++i)
1128                 igb_free_tx_ring(&sc->tx_rings[i]);
1129         for (i = 0; i < sc->num_queues; ++i)
1130                 igb_free_rx_ring(&sc->rx_rings[i]);
1131 }
1132
1133 static void
1134 igb_reset(struct igb_softc *sc)
1135 {
1136         struct ifnet *ifp = &sc->arpcom.ac_if;
1137         struct e1000_hw *hw = &sc->hw;
1138         struct e1000_fc_info *fc = &hw->fc;
1139         uint32_t pba = 0;
1140         uint16_t hwm;
1141
1142         /* Let the firmware know the OS is in control */
1143         igb_get_hw_control(sc);
1144
1145         /*
1146          * Packet Buffer Allocation (PBA)
1147          * Writing PBA sets the receive portion of the buffer
1148          * the remainder is used for the transmit buffer.
1149          */
1150         switch (hw->mac.type) {
1151         case e1000_82575:
1152                 pba = E1000_PBA_32K;
1153                 break;
1154
1155         case e1000_82576:
1156         case e1000_vfadapt:
1157                 pba = E1000_READ_REG(hw, E1000_RXPBS);
1158                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1159                 break;
1160
1161         case e1000_82580:
1162         case e1000_i350:
1163         case e1000_vfadapt_i350:
1164                 pba = E1000_READ_REG(hw, E1000_RXPBS);
1165                 pba = e1000_rxpbs_adjust_82580(pba);
1166                 break;
1167                 /* XXX pba = E1000_PBA_35K; */
1168
1169         default:
1170                 break;
1171         }
1172
1173         /* Special needs in case of Jumbo frames */
1174         if (hw->mac.type == e1000_82575 && ifp->if_mtu > ETHERMTU) {
1175                 uint32_t tx_space, min_tx, min_rx;
1176
1177                 pba = E1000_READ_REG(hw, E1000_PBA);
1178                 tx_space = pba >> 16;
1179                 pba &= 0xffff;
1180
1181                 min_tx = (sc->max_frame_size +
1182                     sizeof(struct e1000_tx_desc) - ETHER_CRC_LEN) * 2;
1183                 min_tx = roundup2(min_tx, 1024);
1184                 min_tx >>= 10;
1185                 min_rx = sc->max_frame_size;
1186                 min_rx = roundup2(min_rx, 1024);
1187                 min_rx >>= 10;
1188                 if (tx_space < min_tx && (min_tx - tx_space) < pba) {
1189                         pba = pba - (min_tx - tx_space);
1190                         /*
1191                          * if short on rx space, rx wins
1192                          * and must trump tx adjustment
1193                          */
1194                         if (pba < min_rx)
1195                                 pba = min_rx;
1196                 }
1197                 E1000_WRITE_REG(hw, E1000_PBA, pba);
1198         }
1199
1200         /*
1201          * These parameters control the automatic generation (Tx) and
1202          * response (Rx) to Ethernet PAUSE frames.
1203          * - High water mark should allow for at least two frames to be
1204          *   received after sending an XOFF.
1205          * - Low water mark works best when it is very near the high water mark.
1206          *   This allows the receiver to restart by sending XON when it has
1207          *   drained a bit.
1208          */
1209         hwm = min(((pba << 10) * 9 / 10),
1210             ((pba << 10) - 2 * sc->max_frame_size));
1211
1212         if (hw->mac.type < e1000_82576) {
1213                 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1214                 fc->low_water = fc->high_water - 8;
1215         } else {
1216                 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1217                 fc->low_water = fc->high_water - 16;
1218         }
1219         fc->pause_time = IGB_FC_PAUSE_TIME;
1220         fc->send_xon = TRUE;
1221
1222         /* Issue a global reset */
1223         e1000_reset_hw(hw);
1224         E1000_WRITE_REG(hw, E1000_WUC, 0);
1225
1226         if (e1000_init_hw(hw) < 0)
1227                 if_printf(ifp, "Hardware Initialization Failed\n");
1228
1229         /* Setup DMA Coalescing */
1230         if (hw->mac.type == e1000_i350 && sc->dma_coalesce) {
1231                 uint32_t reg;
1232
1233                 hwm = (pba - 4) << 10;
1234                 reg = ((pba - 6) << E1000_DMACR_DMACTHR_SHIFT)
1235                     & E1000_DMACR_DMACTHR_MASK;
1236
1237                 /* transition to L0x or L1 if available..*/
1238                 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
1239
1240                 /* timer = +-1000 usec in 32usec intervals */
1241                 reg |= (1000 >> 5);
1242                 E1000_WRITE_REG(hw, E1000_DMACR, reg);
1243
1244                 /* No lower threshold */
1245                 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
1246
1247                 /* set hwm to PBA -  2 * max frame size */
1248                 E1000_WRITE_REG(hw, E1000_FCRTC, hwm);
1249
1250                 /* Set the interval before transition */
1251                 reg = E1000_READ_REG(hw, E1000_DMCTLX);
1252                 reg |= 0x800000FF; /* 255 usec */
1253                 E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
1254
1255                 /* free space in tx packet buffer to wake from DMA coal */
1256                 E1000_WRITE_REG(hw, E1000_DMCTXTH,
1257                     (20480 - (2 * sc->max_frame_size)) >> 6);
1258
1259                 /* make low power state decision controlled by DMA coal */
1260                 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
1261                 E1000_WRITE_REG(hw, E1000_PCIEMISC,
1262                     reg | E1000_PCIEMISC_LX_DECISION);
1263                 if_printf(ifp, "DMA Coalescing enabled\n");
1264         }
1265
1266         E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1267         e1000_get_phy_info(hw);
1268         e1000_check_for_link(hw);
1269 }
1270
1271 static void
1272 igb_setup_ifp(struct igb_softc *sc)
1273 {
1274         struct ifnet *ifp = &sc->arpcom.ac_if;
1275
1276         if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
1277         ifp->if_softc = sc;
1278         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1279         ifp->if_init =  igb_init;
1280         ifp->if_ioctl = igb_ioctl;
1281         ifp->if_start = igb_start;
1282 #ifdef DEVICE_POLLING
1283         ifp->if_poll = igb_poll;
1284 #endif
1285         ifp->if_watchdog = igb_watchdog;
1286
1287         ifq_set_maxlen(&ifp->if_snd, sc->num_tx_desc - 1);
1288         ifq_set_ready(&ifp->if_snd);
1289
1290         ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1291
1292         ifp->if_capabilities =
1293             IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
1294         ifp->if_capenable = ifp->if_capabilities;
1295         ifp->if_hwassist = IGB_CSUM_FEATURES;
1296
1297         /*
1298          * Tell the upper layer(s) we support long frames
1299          */
1300         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1301
1302         /*
1303          * Specify the media types supported by this adapter and register
1304          * callbacks to update media and link information
1305          */
1306         ifmedia_init(&sc->media, IFM_IMASK, igb_media_change, igb_media_status);
1307         if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1308             sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1309                 ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1310                     0, NULL);
1311                 ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1312         } else {
1313                 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1314                 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1315                     0, NULL);
1316                 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1317                 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1318                     0, NULL);
1319                 if (sc->hw.phy.type != e1000_phy_ife) {
1320                         ifmedia_add(&sc->media,
1321                             IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1322                         ifmedia_add(&sc->media,
1323                             IFM_ETHER | IFM_1000_T, 0, NULL);
1324                 }
1325         }
1326         ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1327         ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1328 }
1329
1330 static void
1331 igb_add_sysctl(struct igb_softc *sc)
1332 {
1333         sysctl_ctx_init(&sc->sysctl_ctx);
1334         sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1335             SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
1336             device_get_nameunit(sc->dev), CTLFLAG_RD, 0, "");
1337         if (sc->sysctl_tree == NULL) {
1338                 device_printf(sc->dev, "can't add sysctl node\n");
1339                 return;
1340         }
1341
1342         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1343             OID_AUTO, "rxd", CTLFLAG_RD, &sc->num_rx_desc, 0, NULL);
1344         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1345             OID_AUTO, "txd", CTLFLAG_RD, &sc->num_tx_desc, 0, NULL);
1346
1347         SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1348             OID_AUTO, "intr_rate", CTLTYPE_INT | CTLFLAG_RW,
1349             sc, 0, igb_sysctl_intr_rate, "I", "interrupt rate");
1350
1351         SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1352             OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1353             sc, 0, igb_sysctl_tx_intr_nsegs, "I",
1354             "# segments per TX interrupt");
1355 }
1356
1357 static int
1358 igb_dma_alloc(struct igb_softc *sc)
1359 {
1360         int error, i;
1361
1362         /* First allocate the top level queue structs */
1363         sc->queues = kmalloc(sizeof(struct igb_queue) * sc->num_queues,
1364             M_DEVBUF, M_WAITOK | M_ZERO);
1365
1366         /*
1367          * Create top level busdma tag
1368          */
1369         error = bus_dma_tag_create(NULL, 1, 0,
1370             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1371             BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1372             &sc->parent_tag);
1373         if (error) {
1374                 device_printf(sc->dev, "could not create top level DMA tag\n");
1375                 return error;
1376         }
1377
1378         /*
1379          * Allocate TX descriptor rings and buffers
1380          */
1381         sc->tx_rings = kmalloc(sizeof(struct igb_tx_ring) * sc->num_queues,
1382             M_DEVBUF, M_WAITOK | M_ZERO);
1383         for (i = 0; i < sc->num_queues; ++i) {
1384                 struct igb_tx_ring *txr = &sc->tx_rings[i];
1385
1386                 /* Set up some basics */
1387                 txr->sc = sc;
1388                 txr->me = i;
1389
1390                 error = igb_create_tx_ring(txr);
1391                 if (error)
1392                         return error;
1393         }
1394
1395         /*
1396          * Allocate RX descriptor rings and buffers
1397          */ 
1398         sc->rx_rings = kmalloc(sizeof(struct igb_rx_ring) * sc->num_queues,
1399             M_DEVBUF, M_WAITOK | M_ZERO);
1400         for (i = 0; i < sc->num_queues; ++i) {
1401                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
1402
1403                 /* Set up some basics */
1404                 rxr->sc = sc;
1405                 rxr->me = i;
1406
1407                 error = igb_create_rx_ring(rxr);
1408                 if (error)
1409                         return error;
1410         }
1411
1412         /*
1413          * Finally set up the queue holding structs
1414          */
1415         for (i = 0; i < sc->num_queues; i++) {
1416                 struct igb_queue *que = &sc->queues[i];
1417
1418                 que->sc = sc;
1419                 que->txr = &sc->tx_rings[i];
1420                 que->rxr = &sc->rx_rings[i];
1421         }
1422         return 0;
1423 }
1424
1425 static void
1426 igb_dma_free(struct igb_softc *sc)
1427 {
1428         int i;
1429
1430         if (sc->queues != NULL)
1431                 kfree(sc->queues, M_DEVBUF);
1432
1433         if (sc->tx_rings != NULL) {
1434                 for (i = 0; i < sc->num_queues; ++i)
1435                         igb_destroy_tx_ring(&sc->tx_rings[i], sc->num_tx_desc);
1436                 kfree(sc->tx_rings, M_DEVBUF);
1437         }
1438
1439         if (sc->rx_rings != NULL) {
1440                 for (i = 0; i < sc->num_queues; ++i)
1441                         igb_destroy_rx_ring(&sc->rx_rings[i], sc->num_rx_desc);
1442                 kfree(sc->rx_rings, M_DEVBUF);
1443         }
1444 }
1445
1446 static int
1447 igb_create_tx_ring(struct igb_tx_ring *txr)
1448 {
1449         int tsize, error, i;
1450
1451         /*
1452          * Validate number of transmit descriptors. It must not exceed
1453          * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
1454          */
1455         if (((igb_txd * sizeof(struct e1000_tx_desc)) % IGB_DBA_ALIGN) != 0 ||
1456             (igb_txd > IGB_MAX_TXD) || (igb_txd < IGB_MIN_TXD)) {
1457                 device_printf(txr->sc->dev,
1458                     "Using %d TX descriptors instead of %d!\n",
1459                     IGB_DEFAULT_TXD, igb_txd);
1460                 txr->sc->num_tx_desc = IGB_DEFAULT_TXD;
1461         } else {
1462                 txr->sc->num_tx_desc = igb_txd;
1463         }
1464
1465         /*
1466          * Allocate TX descriptor ring
1467          */
1468         tsize = roundup2(txr->sc->num_tx_desc * sizeof(union e1000_adv_tx_desc),
1469             IGB_DBA_ALIGN);
1470         txr->txdma.dma_vaddr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1471             IGB_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1472             &txr->txdma.dma_tag, &txr->txdma.dma_map, &txr->txdma.dma_paddr);
1473         if (txr->txdma.dma_vaddr == NULL) {
1474                 device_printf(txr->sc->dev,
1475                     "Unable to allocate TX Descriptor memory\n");
1476                 return ENOMEM;
1477         }
1478         txr->tx_base = txr->txdma.dma_vaddr;
1479         bzero(txr->tx_base, tsize);
1480
1481         txr->tx_buf = kmalloc(sizeof(struct igb_tx_buf) * txr->sc->num_tx_desc,
1482             M_DEVBUF, M_WAITOK | M_ZERO);
1483
1484         /*
1485          * Allocate TX head write-back buffer
1486          */
1487         txr->tx_hdr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1488             __VM_CACHELINE_SIZE, __VM_CACHELINE_SIZE, BUS_DMA_WAITOK,
1489             &txr->tx_hdr_dtag, &txr->tx_hdr_dmap, &txr->tx_hdr_paddr);
1490         if (txr->tx_hdr == NULL) {
1491                 device_printf(txr->sc->dev,
1492                     "Unable to allocate TX head write-back buffer\n");
1493                 return ENOMEM;
1494         }
1495
1496         /*
1497          * Create DMA tag for TX buffers
1498          */
1499         error = bus_dma_tag_create(txr->sc->parent_tag,
1500             1, 0,               /* alignment, bounds */
1501             BUS_SPACE_MAXADDR,  /* lowaddr */
1502             BUS_SPACE_MAXADDR,  /* highaddr */
1503             NULL, NULL,         /* filter, filterarg */
1504             IGB_TSO_SIZE,       /* maxsize */
1505             IGB_MAX_SCATTER,    /* nsegments */
1506             PAGE_SIZE,          /* maxsegsize */
1507             BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
1508             BUS_DMA_ONEBPAGE,   /* flags */
1509             &txr->tx_tag);
1510         if (error) {
1511                 device_printf(txr->sc->dev, "Unable to allocate TX DMA tag\n");
1512                 kfree(txr->tx_buf, M_DEVBUF);
1513                 txr->tx_buf = NULL;
1514                 return error;
1515         }
1516
1517         /*
1518          * Create DMA maps for TX buffers
1519          */
1520         for (i = 0; i < txr->sc->num_tx_desc; ++i) {
1521                 struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1522
1523                 error = bus_dmamap_create(txr->tx_tag,
1524                     BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE, &txbuf->map);
1525                 if (error) {
1526                         device_printf(txr->sc->dev,
1527                             "Unable to create TX DMA map\n");
1528                         igb_destroy_tx_ring(txr, i);
1529                         return error;
1530                 }
1531         }
1532
1533         /*
1534          * Initialize various watermark
1535          */
1536         txr->spare_desc = IGB_TX_SPARE;
1537         txr->intr_nsegs = txr->sc->num_tx_desc / 16;
1538         txr->oact_hi_desc = txr->sc->num_tx_desc / 2;
1539         txr->oact_lo_desc = txr->sc->num_tx_desc / 8;
1540         if (txr->oact_lo_desc > IGB_TX_OACTIVE_MAX)
1541                 txr->oact_lo_desc = IGB_TX_OACTIVE_MAX;
1542         if (txr->oact_lo_desc < txr->spare_desc + IGB_TX_RESERVED)
1543                 txr->oact_lo_desc = txr->spare_desc + IGB_TX_RESERVED;
1544
1545         return 0;
1546 }
1547
1548 static void
1549 igb_free_tx_ring(struct igb_tx_ring *txr)
1550 {
1551         int i;
1552
1553         for (i = 0; i < txr->sc->num_tx_desc; ++i) {
1554                 struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1555
1556                 if (txbuf->m_head != NULL) {
1557                         bus_dmamap_unload(txr->tx_tag, txbuf->map);
1558                         m_freem(txbuf->m_head);
1559                         txbuf->m_head = NULL;
1560                 }
1561         }
1562 }
1563
1564 static void
1565 igb_destroy_tx_ring(struct igb_tx_ring *txr, int ndesc)
1566 {
1567         int i;
1568
1569         if (txr->txdma.dma_vaddr != NULL) {
1570                 bus_dmamap_unload(txr->txdma.dma_tag, txr->txdma.dma_map);
1571                 bus_dmamem_free(txr->txdma.dma_tag, txr->txdma.dma_vaddr,
1572                     txr->txdma.dma_map);
1573                 bus_dma_tag_destroy(txr->txdma.dma_tag);
1574                 txr->txdma.dma_vaddr = NULL;
1575         }
1576
1577         if (txr->tx_hdr != NULL) {
1578                 bus_dmamap_unload(txr->tx_hdr_dtag, txr->tx_hdr_dmap);
1579                 bus_dmamem_free(txr->tx_hdr_dtag, txr->tx_hdr,
1580                     txr->tx_hdr_dmap);
1581                 bus_dma_tag_destroy(txr->tx_hdr_dtag);
1582                 txr->tx_hdr = NULL;
1583         }
1584
1585         if (txr->tx_buf == NULL)
1586                 return;
1587
1588         for (i = 0; i < ndesc; ++i) {
1589                 struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1590
1591                 KKASSERT(txbuf->m_head == NULL);
1592                 bus_dmamap_destroy(txr->tx_tag, txbuf->map);
1593         }
1594         bus_dma_tag_destroy(txr->tx_tag);
1595
1596         kfree(txr->tx_buf, M_DEVBUF);
1597         txr->tx_buf = NULL;
1598 }
1599
1600 static void
1601 igb_init_tx_ring(struct igb_tx_ring *txr)
1602 {
1603         /* Clear the old descriptor contents */
1604         bzero(txr->tx_base,
1605             sizeof(union e1000_adv_tx_desc) * txr->sc->num_tx_desc);
1606
1607         /* Clear TX head write-back buffer */
1608         *(txr->tx_hdr) = 0;
1609
1610         /* Reset indices */
1611         txr->next_avail_desc = 0;
1612         txr->next_to_clean = 0;
1613         txr->tx_nsegs = 0;
1614
1615         /* Set number of descriptors available */
1616         txr->tx_avail = txr->sc->num_tx_desc;
1617 }
1618
1619 static void
1620 igb_init_tx_unit(struct igb_softc *sc)
1621 {
1622         struct e1000_hw *hw = &sc->hw;
1623         uint32_t tctl;
1624         int i;
1625
1626         /* Setup the Tx Descriptor Rings */
1627         for (i = 0; i < sc->num_queues; ++i) {
1628                 struct igb_tx_ring *txr = &sc->tx_rings[i];
1629                 uint64_t bus_addr = txr->txdma.dma_paddr;
1630                 uint64_t hdr_paddr = txr->tx_hdr_paddr;
1631                 uint32_t txdctl = 0;
1632                 uint32_t dca_txctrl;
1633
1634                 E1000_WRITE_REG(hw, E1000_TDLEN(i),
1635                     sc->num_tx_desc * sizeof(struct e1000_tx_desc));
1636                 E1000_WRITE_REG(hw, E1000_TDBAH(i),
1637                     (uint32_t)(bus_addr >> 32));
1638                 E1000_WRITE_REG(hw, E1000_TDBAL(i),
1639                     (uint32_t)bus_addr);
1640
1641                 /* Setup the HW Tx Head and Tail descriptor pointers */
1642                 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
1643                 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
1644
1645                 txdctl |= IGB_TX_PTHRESH;
1646                 txdctl |= IGB_TX_HTHRESH << 8;
1647                 txdctl |= IGB_TX_WTHRESH << 16;
1648                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1649                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
1650
1651                 dca_txctrl = E1000_READ_REG(hw, E1000_DCA_TXCTRL(i));
1652                 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1653                 E1000_WRITE_REG(hw, E1000_DCA_TXCTRL(i), dca_txctrl);
1654
1655                 E1000_WRITE_REG(hw, E1000_TDWBAH(i),
1656                     (uint32_t)(hdr_paddr >> 32));
1657                 E1000_WRITE_REG(hw, E1000_TDWBAL(i),
1658                     ((uint32_t)hdr_paddr) | E1000_TX_HEAD_WB_ENABLE);
1659         }
1660
1661         if (sc->vf_ifp)
1662                 return;
1663
1664         e1000_config_collision_dist(hw);
1665
1666         /* Program the Transmit Control Register */
1667         tctl = E1000_READ_REG(hw, E1000_TCTL);
1668         tctl &= ~E1000_TCTL_CT;
1669         tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
1670             (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
1671
1672         /* This write will effectively turn on the transmit unit. */
1673         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1674 }
1675
1676 static boolean_t
1677 igb_txctx(struct igb_tx_ring *txr, struct mbuf *mp)
1678 {
1679         struct e1000_adv_tx_context_desc *TXD;
1680         struct igb_tx_buf *txbuf;
1681         uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
1682         struct ether_vlan_header *eh;
1683         struct ip *ip = NULL;
1684         int ehdrlen, ctxd, ip_hlen = 0;
1685         uint16_t etype, vlantag = 0;
1686         boolean_t offload = TRUE;
1687
1688         if ((mp->m_pkthdr.csum_flags & IGB_CSUM_FEATURES) == 0)
1689                 offload = FALSE;
1690
1691         vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
1692         ctxd = txr->next_avail_desc;
1693         txbuf = &txr->tx_buf[ctxd];
1694         TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
1695
1696         /*
1697          * In advanced descriptors the vlan tag must 
1698          * be placed into the context descriptor, thus
1699          * we need to be here just for that setup.
1700          */
1701         if (mp->m_flags & M_VLANTAG) {
1702                 vlantag = htole16(mp->m_pkthdr.ether_vlantag);
1703                 vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
1704         } else if (!offload) {
1705                 return FALSE;
1706         }
1707
1708         /*
1709          * Determine where frame payload starts.
1710          * Jump over vlan headers if already present,
1711          * helpful for QinQ too.
1712          */
1713         KASSERT(mp->m_len >= ETHER_HDR_LEN,
1714             ("igb_txctx_pullup is not called (eh)?\n"));
1715         eh = mtod(mp, struct ether_vlan_header *);
1716         if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
1717                 KASSERT(mp->m_len >= ETHER_HDR_LEN + EVL_ENCAPLEN,
1718                     ("igb_txctx_pullup is not called (evh)?\n"));
1719                 etype = ntohs(eh->evl_proto);
1720                 ehdrlen = ETHER_HDR_LEN + EVL_ENCAPLEN;
1721         } else {
1722                 etype = ntohs(eh->evl_encap_proto);
1723                 ehdrlen = ETHER_HDR_LEN;
1724         }
1725
1726         /* Set the ether header length */
1727         vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
1728
1729         switch (etype) {
1730         case ETHERTYPE_IP:
1731                 KASSERT(mp->m_len >= ehdrlen + IGB_IPVHL_SIZE,
1732                     ("igb_txctx_pullup is not called (eh+ip_vhl)?\n"));
1733
1734                 /* NOTE: We could only safely access ip.ip_vhl part */
1735                 ip = (struct ip *)(mp->m_data + ehdrlen);
1736                 ip_hlen = ip->ip_hl << 2;
1737
1738                 if (mp->m_pkthdr.csum_flags & CSUM_IP)
1739                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
1740                 break;
1741
1742 #ifdef notyet
1743         case ETHERTYPE_IPV6:
1744                 ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
1745                 ip_hlen = sizeof(struct ip6_hdr);
1746                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV6;
1747                 break;
1748 #endif
1749
1750         default:
1751                 offload = FALSE;
1752                 break;
1753         }
1754
1755         vlan_macip_lens |= ip_hlen;
1756         type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1757
1758         if (mp->m_pkthdr.csum_flags & CSUM_TCP)
1759                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
1760         else if (mp->m_pkthdr.csum_flags & CSUM_UDP)
1761                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
1762
1763         /* 82575 needs the queue index added */
1764         if (txr->sc->hw.mac.type == e1000_82575)
1765                 mss_l4len_idx = txr->me << 4;
1766
1767         /* Now copy bits into descriptor */
1768         TXD->vlan_macip_lens = htole32(vlan_macip_lens);
1769         TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
1770         TXD->seqnum_seed = htole32(0);
1771         TXD->mss_l4len_idx = htole32(mss_l4len_idx);
1772
1773         txbuf->m_head = NULL;
1774
1775         /* We've consumed the first desc, adjust counters */
1776         if (++ctxd == txr->sc->num_tx_desc)
1777                 ctxd = 0;
1778         txr->next_avail_desc = ctxd;
1779         --txr->tx_avail;
1780
1781         return offload;
1782 }
1783
1784 static void
1785 igb_txeof(struct igb_tx_ring *txr)
1786 {
1787         struct ifnet *ifp = &txr->sc->arpcom.ac_if;
1788         int first, hdr, avail;
1789
1790         if (txr->tx_avail == txr->sc->num_tx_desc)
1791                 return;
1792
1793         first = txr->next_to_clean;
1794         hdr = *(txr->tx_hdr);
1795
1796         if (first == hdr)
1797                 return;
1798
1799         avail = txr->tx_avail;
1800         while (first != hdr) {
1801                 struct igb_tx_buf *txbuf = &txr->tx_buf[first];
1802
1803                 ++avail;
1804                 if (txbuf->m_head) {
1805                         bus_dmamap_unload(txr->tx_tag, txbuf->map);
1806                         m_freem(txbuf->m_head);
1807                         txbuf->m_head = NULL;
1808                         ++ifp->if_opackets;
1809                 }
1810                 if (++first == txr->sc->num_tx_desc)
1811                         first = 0;
1812         }
1813         txr->next_to_clean = first;
1814         txr->tx_avail = avail;
1815
1816         /*
1817          * If we have a minimum free, clear IFF_OACTIVE
1818          * to tell the stack that it is OK to send packets.
1819          */
1820         if (IGB_IS_NOT_OACTIVE(txr)) {
1821                 ifp->if_flags &= ~IFF_OACTIVE;
1822
1823                 /*
1824                  * We have enough TX descriptors, turn off
1825                  * the watchdog.  We allow small amount of
1826                  * packets (roughly intr_nsegs) pending on
1827                  * the transmit ring.
1828                  */
1829                 ifp->if_timer = 0;
1830         }
1831 }
1832
1833 static int
1834 igb_create_rx_ring(struct igb_rx_ring *rxr)
1835 {
1836         int rsize, i, error;
1837
1838         /*
1839          * Validate number of receive descriptors. It must not exceed
1840          * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
1841          */
1842         if (((igb_rxd * sizeof(struct e1000_rx_desc)) % IGB_DBA_ALIGN) != 0 ||
1843             (igb_rxd > IGB_MAX_RXD) || (igb_rxd < IGB_MIN_RXD)) {
1844                 device_printf(rxr->sc->dev,
1845                     "Using %d RX descriptors instead of %d!\n",
1846                     IGB_DEFAULT_RXD, igb_rxd);
1847                 rxr->sc->num_rx_desc = IGB_DEFAULT_RXD;
1848         } else {
1849                 rxr->sc->num_rx_desc = igb_rxd;
1850         }
1851
1852         /*
1853          * Allocate RX descriptor ring
1854          */
1855         rsize = roundup2(rxr->sc->num_rx_desc * sizeof(union e1000_adv_rx_desc),
1856             IGB_DBA_ALIGN);
1857         rxr->rxdma.dma_vaddr = bus_dmamem_coherent_any(rxr->sc->parent_tag,
1858             IGB_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
1859             &rxr->rxdma.dma_tag, &rxr->rxdma.dma_map,
1860             &rxr->rxdma.dma_paddr);
1861         if (rxr->rxdma.dma_vaddr == NULL) {
1862                 device_printf(rxr->sc->dev,
1863                     "Unable to allocate RxDescriptor memory\n");
1864                 return ENOMEM;
1865         }
1866         rxr->rx_base = rxr->rxdma.dma_vaddr;
1867         bzero(rxr->rx_base, rsize);
1868
1869         rxr->rx_buf = kmalloc(sizeof(struct igb_rx_buf) * rxr->sc->num_rx_desc,
1870             M_DEVBUF, M_WAITOK | M_ZERO);
1871
1872         /*
1873          * Create DMA tag for RX buffers
1874          */
1875         error = bus_dma_tag_create(rxr->sc->parent_tag,
1876             1, 0,               /* alignment, bounds */
1877             BUS_SPACE_MAXADDR,  /* lowaddr */
1878             BUS_SPACE_MAXADDR,  /* highaddr */
1879             NULL, NULL,         /* filter, filterarg */
1880             MCLBYTES,           /* maxsize */
1881             1,                  /* nsegments */
1882             MCLBYTES,           /* maxsegsize */
1883             BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
1884             &rxr->rx_tag);
1885         if (error) {
1886                 device_printf(rxr->sc->dev,
1887                     "Unable to create RX payload DMA tag\n");
1888                 kfree(rxr->rx_buf, M_DEVBUF);
1889                 rxr->rx_buf = NULL;
1890                 return error;
1891         }
1892
1893         /*
1894          * Create spare DMA map for RX buffers
1895          */
1896         error = bus_dmamap_create(rxr->rx_tag, BUS_DMA_WAITOK,
1897             &rxr->rx_sparemap);
1898         if (error) {
1899                 device_printf(rxr->sc->dev,
1900                     "Unable to create spare RX DMA maps\n");
1901                 bus_dma_tag_destroy(rxr->rx_tag);
1902                 kfree(rxr->rx_buf, M_DEVBUF);
1903                 rxr->rx_buf = NULL;
1904                 return error;
1905         }
1906
1907         /*
1908          * Create DMA maps for RX buffers
1909          */
1910         for (i = 0; i < rxr->sc->num_rx_desc; i++) {
1911                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
1912
1913                 error = bus_dmamap_create(rxr->rx_tag,
1914                     BUS_DMA_WAITOK, &rxbuf->map);
1915                 if (error) {
1916                         device_printf(rxr->sc->dev,
1917                             "Unable to create RX DMA maps\n");
1918                         igb_destroy_rx_ring(rxr, i);
1919                         return error;
1920                 }
1921         }
1922         return 0;
1923 }
1924
1925 static void
1926 igb_free_rx_ring(struct igb_rx_ring *rxr)
1927 {
1928         int i;
1929
1930         for (i = 0; i < rxr->sc->num_rx_desc; ++i) {
1931                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
1932
1933                 if (rxbuf->m_head != NULL) {
1934                         bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
1935                         m_freem(rxbuf->m_head);
1936                         rxbuf->m_head = NULL;
1937                 }
1938         }
1939
1940         if (rxr->fmp != NULL)
1941                 m_freem(rxr->fmp);
1942         rxr->fmp = NULL;
1943         rxr->lmp = NULL;
1944 }
1945
1946 static void
1947 igb_destroy_rx_ring(struct igb_rx_ring *rxr, int ndesc)
1948 {
1949         int i;
1950
1951         if (rxr->rxdma.dma_vaddr != NULL) {
1952                 bus_dmamap_unload(rxr->rxdma.dma_tag, rxr->rxdma.dma_map);
1953                 bus_dmamem_free(rxr->rxdma.dma_tag, rxr->rxdma.dma_vaddr,
1954                     rxr->rxdma.dma_map);
1955                 bus_dma_tag_destroy(rxr->rxdma.dma_tag);
1956                 rxr->rxdma.dma_vaddr = NULL;
1957         }
1958
1959         if (rxr->rx_buf == NULL)
1960                 return;
1961
1962         for (i = 0; i < ndesc; ++i) {
1963                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
1964
1965                 KKASSERT(rxbuf->m_head == NULL);
1966                 bus_dmamap_destroy(rxr->rx_tag, rxbuf->map);
1967         }
1968         bus_dmamap_destroy(rxr->rx_tag, rxr->rx_sparemap);
1969         bus_dma_tag_destroy(rxr->rx_tag);
1970
1971         kfree(rxr->rx_buf, M_DEVBUF);
1972         rxr->rx_buf = NULL;
1973 }
1974
1975 static void
1976 igb_setup_rxdesc(union e1000_adv_rx_desc *rxd, const struct igb_rx_buf *rxbuf)
1977 {
1978         rxd->read.pkt_addr = htole64(rxbuf->paddr);
1979         rxd->wb.upper.status_error = 0;
1980 }
1981
1982 static int
1983 igb_newbuf(struct igb_rx_ring *rxr, int i, boolean_t wait)
1984 {
1985         struct mbuf *m;
1986         bus_dma_segment_t seg;
1987         bus_dmamap_t map;
1988         struct igb_rx_buf *rxbuf;
1989         int error, nseg;
1990
1991         m = m_getcl(wait ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
1992         if (m == NULL) {
1993                 if (wait) {
1994                         if_printf(&rxr->sc->arpcom.ac_if,
1995                             "Unable to allocate RX mbuf\n");
1996                 }
1997                 return ENOBUFS;
1998         }
1999         m->m_len = m->m_pkthdr.len = MCLBYTES;
2000
2001         if (rxr->sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2002                 m_adj(m, ETHER_ALIGN);
2003
2004         error = bus_dmamap_load_mbuf_segment(rxr->rx_tag,
2005             rxr->rx_sparemap, m, &seg, 1, &nseg, BUS_DMA_NOWAIT);
2006         if (error) {
2007                 m_freem(m);
2008                 if (wait) {
2009                         if_printf(&rxr->sc->arpcom.ac_if,
2010                             "Unable to load RX mbuf\n");
2011                 }
2012                 return error;
2013         }
2014
2015         rxbuf = &rxr->rx_buf[i];
2016         if (rxbuf->m_head != NULL)
2017                 bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2018
2019         map = rxbuf->map;
2020         rxbuf->map = rxr->rx_sparemap;
2021         rxr->rx_sparemap = map;
2022
2023         rxbuf->m_head = m;
2024         rxbuf->paddr = seg.ds_addr;
2025
2026         igb_setup_rxdesc(&rxr->rx_base[i], rxbuf);
2027         return 0;
2028 }
2029
2030 static int
2031 igb_init_rx_ring(struct igb_rx_ring *rxr)
2032 {
2033         int i;
2034
2035         /* Clear the ring contents */
2036         bzero(rxr->rx_base,
2037             rxr->sc->num_rx_desc * sizeof(union e1000_adv_rx_desc));
2038
2039         /* Now replenish the ring mbufs */
2040         for (i = 0; i < rxr->sc->num_rx_desc; ++i) {
2041                 int error;
2042
2043                 error = igb_newbuf(rxr, i, TRUE);
2044                 if (error)
2045                         return error;
2046         }
2047
2048         /* Setup our descriptor indices */
2049         rxr->next_to_check = 0;
2050
2051         rxr->fmp = NULL;
2052         rxr->lmp = NULL;
2053         rxr->discard = FALSE;
2054
2055         return 0;
2056 }
2057
2058 static void
2059 igb_init_rx_unit(struct igb_softc *sc)
2060 {
2061         struct ifnet *ifp = &sc->arpcom.ac_if;
2062         struct e1000_hw *hw = &sc->hw;
2063         uint32_t rctl, rxcsum, srrctl = 0;
2064         int i;
2065
2066         /*
2067          * Make sure receives are disabled while setting
2068          * up the descriptor ring
2069          */
2070         rctl = E1000_READ_REG(hw, E1000_RCTL);
2071         E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2072
2073 #if 0
2074         /*
2075         ** Set up for header split
2076         */
2077         if (igb_header_split) {
2078                 /* Use a standard mbuf for the header */
2079                 srrctl |= IGB_HDR_BUF << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2080                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2081         } else
2082 #endif
2083                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2084
2085         /*
2086         ** Set up for jumbo frames
2087         */
2088         if (ifp->if_mtu > ETHERMTU) {
2089                 rctl |= E1000_RCTL_LPE;
2090 #if 0
2091                 if (adapter->rx_mbuf_sz == MJUMPAGESIZE) {
2092                         srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2093                         rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
2094                 } else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) {
2095                         srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2096                         rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
2097                 }
2098                 /* Set maximum packet len */
2099                 psize = adapter->max_frame_size;
2100                 /* are we on a vlan? */
2101                 if (adapter->ifp->if_vlantrunk != NULL)
2102                         psize += VLAN_TAG_SIZE;
2103                 E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
2104 #else
2105                 srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2106                 rctl |= E1000_RCTL_SZ_2048;
2107 #endif
2108         } else {
2109                 rctl &= ~E1000_RCTL_LPE;
2110                 srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2111                 rctl |= E1000_RCTL_SZ_2048;
2112         }
2113
2114         /* Setup the Base and Length of the Rx Descriptor Rings */
2115         for (i = 0; i < sc->num_queues; ++i) {
2116                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
2117                 uint64_t bus_addr = rxr->rxdma.dma_paddr;
2118                 uint32_t rxdctl;
2119
2120                 E1000_WRITE_REG(hw, E1000_RDLEN(i),
2121                     sc->num_rx_desc * sizeof(struct e1000_rx_desc));
2122                 E1000_WRITE_REG(hw, E1000_RDBAH(i),
2123                     (uint32_t)(bus_addr >> 32));
2124                 E1000_WRITE_REG(hw, E1000_RDBAL(i),
2125                     (uint32_t)bus_addr);
2126                 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2127                 /* Enable this Queue */
2128                 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2129                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2130                 rxdctl &= 0xFFF00000;
2131                 rxdctl |= IGB_RX_PTHRESH;
2132                 rxdctl |= IGB_RX_HTHRESH << 8;
2133                 rxdctl |= IGB_RX_WTHRESH << 16;
2134                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2135         }
2136
2137         /*
2138          * Setup for RX MultiQueue
2139          */
2140         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2141 #if 0
2142         if (adapter->num_queues >1) {
2143                 u32 random[10], mrqc, shift = 0;
2144                 union igb_reta {
2145                         u32 dword;
2146                         u8  bytes[4];
2147                 } reta;
2148
2149                 arc4rand(&random, sizeof(random), 0);
2150                 if (adapter->hw.mac.type == e1000_82575)
2151                         shift = 6;
2152                 /* Warning FM follows */
2153                 for (int i = 0; i < 128; i++) {
2154                         reta.bytes[i & 3] =
2155                             (i % adapter->num_queues) << shift;
2156                         if ((i & 3) == 3)
2157                                 E1000_WRITE_REG(hw,
2158                                     E1000_RETA(i >> 2), reta.dword);
2159                 }
2160                 /* Now fill in hash table */
2161                 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2162                 for (int i = 0; i < 10; i++)
2163                         E1000_WRITE_REG_ARRAY(hw,
2164                             E1000_RSSRK(0), i, random[i]);
2165
2166                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2167                     E1000_MRQC_RSS_FIELD_IPV4_TCP);
2168                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2169                     E1000_MRQC_RSS_FIELD_IPV6_TCP);
2170                 mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
2171                     E1000_MRQC_RSS_FIELD_IPV6_UDP);
2172                 mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2173                     E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2174
2175                 E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2176
2177                 /*
2178                 ** NOTE: Receive Full-Packet Checksum Offload 
2179                 ** is mutually exclusive with Multiqueue. However
2180                 ** this is not the same as TCP/IP checksums which
2181                 ** still work.
2182                 */
2183                 rxcsum |= E1000_RXCSUM_PCSD;
2184         } else
2185 #endif
2186         {
2187                 /* Non RSS setup */
2188                 if (ifp->if_capenable & IFCAP_RXCSUM)
2189                         rxcsum |= E1000_RXCSUM_IPPCSE;
2190                 else
2191                         rxcsum &= ~E1000_RXCSUM_TUOFL;
2192         }
2193         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2194
2195         /* Setup the Receive Control Register */
2196         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2197         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2198             E1000_RCTL_RDMTS_HALF |
2199             (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2200         /* Strip CRC bytes. */
2201         rctl |= E1000_RCTL_SECRC;
2202         /* Make sure VLAN Filters are off */
2203         rctl &= ~E1000_RCTL_VFE;
2204         /* Don't store bad packets */
2205         rctl &= ~E1000_RCTL_SBP;
2206
2207         /* Enable Receives */
2208         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2209
2210         /*
2211          * Setup the HW Rx Head and Tail Descriptor Pointers
2212          *   - needs to be after enable
2213          */
2214         for (i = 0; i < sc->num_queues; ++i) {
2215                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
2216
2217                 E1000_WRITE_REG(hw, E1000_RDH(i), rxr->next_to_check);
2218                 E1000_WRITE_REG(hw, E1000_RDT(i), rxr->sc->num_rx_desc - 1);
2219         }
2220 }
2221
2222 static void
2223 igb_rxeof(struct igb_rx_ring *rxr, int count)
2224 {
2225         struct ifnet *ifp = &rxr->sc->arpcom.ac_if;
2226         union e1000_adv_rx_desc *cur;
2227         uint32_t staterr;
2228         int i;
2229
2230         i = rxr->next_to_check;
2231         cur = &rxr->rx_base[i];
2232         staterr = le32toh(cur->wb.upper.status_error);
2233
2234         if ((staterr & E1000_RXD_STAT_DD) == 0)
2235                 return;
2236
2237         while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2238                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2239                 struct mbuf *m = NULL;
2240                 boolean_t eop;
2241
2242                 eop = (staterr & E1000_RXD_STAT_EOP) ? TRUE : FALSE;
2243                 if (eop)
2244                         --count;
2245
2246                 if ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) == 0 &&
2247                     !rxr->discard) {
2248                         struct mbuf *mp = rxbuf->m_head;
2249                         uint16_t vlan;
2250                         int len;
2251
2252                         len = le16toh(cur->wb.upper.length);
2253                         if (rxr->sc->hw.mac.type == e1000_i350 &&
2254                             (staterr & E1000_RXDEXT_STATERR_LB))
2255                                 vlan = be16toh(cur->wb.upper.vlan);
2256                         else
2257                                 vlan = le16toh(cur->wb.upper.vlan);
2258
2259                         bus_dmamap_sync(rxr->rx_tag, rxbuf->map,
2260                             BUS_DMASYNC_POSTREAD);
2261
2262                         if (igb_newbuf(rxr, i, FALSE) != 0) {
2263                                 ifp->if_iqdrops++;
2264                                 goto discard;
2265                         }
2266
2267                         mp->m_len = len;
2268                         if (rxr->fmp == NULL) {
2269                                 mp->m_pkthdr.len = len;
2270                                 rxr->fmp = mp;
2271                                 rxr->lmp = mp;
2272                         } else {
2273                                 rxr->lmp->m_next = mp;
2274                                 rxr->lmp = rxr->lmp->m_next;
2275                                 rxr->fmp->m_pkthdr.len += len;
2276                         }
2277
2278                         if (eop) {
2279                                 m = rxr->fmp;
2280                                 rxr->fmp = NULL;
2281                                 rxr->lmp = NULL;
2282
2283                                 m->m_pkthdr.rcvif = ifp;
2284                                 ifp->if_ipackets++;
2285
2286                                 if (ifp->if_capenable & IFCAP_RXCSUM)
2287                                         igb_rxcsum(staterr, m);
2288
2289                                 if (staterr & E1000_RXD_STAT_VP) {
2290                                         m->m_pkthdr.ether_vlantag = vlan;
2291                                         m->m_flags |= M_VLANTAG;
2292                                 }
2293
2294 #if 0
2295                                 if (ifp->if_capenable & IFCAP_RSS) {
2296                                         pi = emx_rssinfo(m, &pi0, mrq,
2297                                                          rss_hash, staterr);
2298                                 }
2299 #endif
2300                         }
2301                 } else {
2302                         ifp->if_ierrors++;
2303 discard:
2304                         igb_setup_rxdesc(cur, rxbuf);
2305                         if (!eop)
2306                                 rxr->discard = TRUE;
2307                         else
2308                                 rxr->discard = FALSE;
2309                         if (rxr->fmp != NULL) {
2310                                 m_freem(rxr->fmp);
2311                                 rxr->fmp = NULL;
2312                                 rxr->lmp = NULL;
2313                         }
2314                         m = NULL;
2315                 }
2316
2317                 if (m != NULL)
2318                         ether_input_pkt(ifp, m, NULL);
2319
2320                 /* Advance our pointers to the next descriptor. */
2321                 if (++i == rxr->sc->num_rx_desc)
2322                         i = 0;
2323
2324                 cur = &rxr->rx_base[i];
2325                 staterr = le32toh(cur->wb.upper.status_error);
2326         }
2327         rxr->next_to_check = i;
2328
2329         if (--i < 0)
2330                 i = rxr->sc->num_rx_desc - 1;
2331         E1000_WRITE_REG(&rxr->sc->hw, E1000_RDT(rxr->me), i);
2332 }
2333
2334
2335 static void
2336 igb_set_vlan(struct igb_softc *sc)
2337 {
2338         struct e1000_hw *hw = &sc->hw;
2339         uint32_t reg;
2340 #if 0
2341         struct ifnet *ifp = sc->arpcom.ac_if;
2342 #endif
2343
2344         if (sc->vf_ifp) {
2345                 e1000_rlpml_set_vf(hw, sc->max_frame_size + VLAN_TAG_SIZE);
2346                 return;
2347         }
2348
2349         reg = E1000_READ_REG(hw, E1000_CTRL);
2350         reg |= E1000_CTRL_VME;
2351         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2352
2353 #if 0
2354         /* Enable the Filter Table */
2355         if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) {
2356                 reg = E1000_READ_REG(hw, E1000_RCTL);
2357                 reg &= ~E1000_RCTL_CFIEN;
2358                 reg |= E1000_RCTL_VFE;
2359                 E1000_WRITE_REG(hw, E1000_RCTL, reg);
2360         }
2361 #endif
2362
2363         /* Update the frame size */
2364         E1000_WRITE_REG(&sc->hw, E1000_RLPML,
2365             sc->max_frame_size + VLAN_TAG_SIZE);
2366
2367 #if 0
2368         /* Don't bother with table if no vlans */
2369         if ((adapter->num_vlans == 0) ||
2370             ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0))
2371                 return;
2372         /*
2373         ** A soft reset zero's out the VFTA, so
2374         ** we need to repopulate it now.
2375         */
2376         for (int i = 0; i < IGB_VFTA_SIZE; i++)
2377                 if (adapter->shadow_vfta[i] != 0) {
2378                         if (adapter->vf_ifp)
2379                                 e1000_vfta_set_vf(hw,
2380                                     adapter->shadow_vfta[i], TRUE);
2381                         else
2382                                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
2383                                  i, adapter->shadow_vfta[i]);
2384                 }
2385 #endif
2386 }
2387
2388 static void
2389 igb_enable_intr(struct igb_softc *sc)
2390 {
2391         lwkt_serialize_handler_enable(sc->arpcom.ac_if.if_serializer);
2392
2393         if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2394                 /* XXX MSI-X should use sc->intr_mask */
2395                 E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2396                 E1000_WRITE_REG(&sc->hw, E1000_EIAM, sc->intr_mask);
2397                 E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
2398                 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
2399         } else {
2400                 E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
2401         }
2402         E1000_WRITE_FLUSH(&sc->hw);
2403 }
2404
2405 static void
2406 igb_disable_intr(struct igb_softc *sc)
2407 {
2408         if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2409                 E1000_WRITE_REG(&sc->hw, E1000_EIMC, 0xffffffff);
2410                 E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2411         }
2412         E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2413         E1000_WRITE_FLUSH(&sc->hw);
2414
2415         lwkt_serialize_handler_disable(sc->arpcom.ac_if.if_serializer);
2416 }
2417
2418 /*
2419  * Bit of a misnomer, what this really means is
2420  * to enable OS management of the system... aka
2421  * to disable special hardware management features 
2422  */
2423 static void
2424 igb_get_mgmt(struct igb_softc *sc)
2425 {
2426         if (sc->has_manage) {
2427                 int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2428                 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2429
2430                 /* disable hardware interception of ARP */
2431                 manc &= ~E1000_MANC_ARP_EN;
2432
2433                 /* enable receiving management packets to the host */
2434                 manc |= E1000_MANC_EN_MNG2HOST;
2435                 manc2h |= 1 << 5; /* Mng Port 623 */
2436                 manc2h |= 1 << 6; /* Mng Port 664 */
2437                 E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
2438                 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2439         }
2440 }
2441
2442 /*
2443  * Give control back to hardware management controller
2444  * if there is one.
2445  */
2446 static void
2447 igb_rel_mgmt(struct igb_softc *sc)
2448 {
2449         if (sc->has_manage) {
2450                 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2451
2452                 /* Re-enable hardware interception of ARP */
2453                 manc |= E1000_MANC_ARP_EN;
2454                 manc &= ~E1000_MANC_EN_MNG2HOST;
2455
2456                 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2457         }
2458 }
2459
2460 /*
2461  * Sets CTRL_EXT:DRV_LOAD bit.
2462  *
2463  * For ASF and Pass Through versions of f/w this means that
2464  * the driver is loaded. 
2465  */
2466 static void
2467 igb_get_hw_control(struct igb_softc *sc)
2468 {
2469         uint32_t ctrl_ext;
2470
2471         if (sc->vf_ifp)
2472                 return;
2473
2474         /* Let firmware know the driver has taken over */
2475         ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2476         E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2477             ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2478 }
2479
2480 /*
2481  * Resets CTRL_EXT:DRV_LOAD bit.
2482  *
2483  * For ASF and Pass Through versions of f/w this means that the
2484  * driver is no longer loaded.
2485  */
2486 static void
2487 igb_rel_hw_control(struct igb_softc *sc)
2488 {
2489         uint32_t ctrl_ext;
2490
2491         if (sc->vf_ifp)
2492                 return;
2493
2494         /* Let firmware taken over control of h/w */
2495         ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2496         E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2497             ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2498 }
2499
2500 static int
2501 igb_is_valid_ether_addr(const uint8_t *addr)
2502 {
2503         uint8_t zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
2504
2505         if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
2506                 return FALSE;
2507         return TRUE;
2508 }
2509
2510 /*
2511  * Enable PCI Wake On Lan capability
2512  */
2513 static void
2514 igb_enable_wol(device_t dev)
2515 {
2516         uint16_t cap, status;
2517         uint8_t id;
2518
2519         /* First find the capabilities pointer*/
2520         cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
2521
2522         /* Read the PM Capabilities */
2523         id = pci_read_config(dev, cap, 1);
2524         if (id != PCIY_PMG)     /* Something wrong */
2525                 return;
2526
2527         /*
2528          * OK, we have the power capabilities,
2529          * so now get the status register
2530          */
2531         cap += PCIR_POWER_STATUS;
2532         status = pci_read_config(dev, cap, 2);
2533         status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2534         pci_write_config(dev, cap, status, 2);
2535 }
2536
2537 static void
2538 igb_update_stats_counters(struct igb_softc *sc)
2539 {
2540         struct e1000_hw *hw = &sc->hw;
2541         struct e1000_hw_stats *stats;
2542         struct ifnet *ifp = &sc->arpcom.ac_if;
2543
2544         /* 
2545          * The virtual function adapter has only a
2546          * small controlled set of stats, do only 
2547          * those and return.
2548          */
2549         if (sc->vf_ifp) {
2550                 igb_update_vf_stats_counters(sc);
2551                 return;
2552         }
2553         stats = sc->stats;
2554
2555         if (sc->hw.phy.media_type == e1000_media_type_copper ||
2556             (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
2557                 stats->symerrs +=
2558                     E1000_READ_REG(hw,E1000_SYMERRS);
2559                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
2560         }
2561
2562         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
2563         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
2564         stats->scc += E1000_READ_REG(hw, E1000_SCC);
2565         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
2566
2567         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
2568         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
2569         stats->colc += E1000_READ_REG(hw, E1000_COLC);
2570         stats->dc += E1000_READ_REG(hw, E1000_DC);
2571         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
2572         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
2573         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
2574
2575         /*
2576          * For watchdog management we need to know if we have been
2577          * paused during the last interval, so capture that here.
2578          */ 
2579         sc->pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
2580         stats->xoffrxc += sc->pause_frames;
2581         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
2582         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
2583         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
2584         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
2585         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
2586         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
2587         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
2588         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
2589         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
2590         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
2591         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
2592         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
2593
2594         /* For the 64-bit byte counters the low dword must be read first. */
2595         /* Both registers clear on the read of the high dword */
2596
2597         stats->gorc += E1000_READ_REG(hw, E1000_GORCL) +
2598             ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
2599         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL) +
2600             ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
2601
2602         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
2603         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
2604         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
2605         stats->roc += E1000_READ_REG(hw, E1000_ROC);
2606         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
2607
2608         stats->tor += E1000_READ_REG(hw, E1000_TORH);
2609         stats->tot += E1000_READ_REG(hw, E1000_TOTH);
2610
2611         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
2612         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
2613         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
2614         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
2615         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
2616         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
2617         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
2618         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
2619         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
2620         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
2621
2622         /* Interrupt Counts */
2623
2624         stats->iac += E1000_READ_REG(hw, E1000_IAC);
2625         stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
2626         stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
2627         stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
2628         stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
2629         stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
2630         stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
2631         stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
2632         stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
2633
2634         /* Host to Card Statistics */
2635
2636         stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
2637         stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
2638         stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
2639         stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
2640         stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
2641         stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
2642         stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
2643         stats->hgorc += (E1000_READ_REG(hw, E1000_HGORCL) +
2644             ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32));
2645         stats->hgotc += (E1000_READ_REG(hw, E1000_HGOTCL) +
2646             ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32));
2647         stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
2648         stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
2649         stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
2650
2651         stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
2652         stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
2653         stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
2654         stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
2655         stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
2656         stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
2657
2658         ifp->if_collisions = stats->colc;
2659
2660         /* Rx Errors */
2661         ifp->if_ierrors = stats->rxerrc + stats->crcerrs + stats->algnerrc +
2662             stats->ruc + stats->roc + stats->mpc + stats->cexterr;
2663
2664         /* Tx Errors */
2665         ifp->if_oerrors = stats->ecol + stats->latecol + sc->watchdog_events;
2666
2667         /* Driver specific counters */
2668         sc->device_control = E1000_READ_REG(hw, E1000_CTRL);
2669         sc->rx_control = E1000_READ_REG(hw, E1000_RCTL);
2670         sc->int_mask = E1000_READ_REG(hw, E1000_IMS);
2671         sc->eint_mask = E1000_READ_REG(hw, E1000_EIMS);
2672         sc->packet_buf_alloc_tx =
2673             ((E1000_READ_REG(hw, E1000_PBA) & 0xffff0000) >> 16);
2674         sc->packet_buf_alloc_rx =
2675             (E1000_READ_REG(hw, E1000_PBA) & 0xffff);
2676 }
2677
2678 static void
2679 igb_vf_init_stats(struct igb_softc *sc)
2680 {
2681         struct e1000_hw *hw = &sc->hw;
2682         struct e1000_vf_stats *stats;
2683
2684         stats = sc->stats;
2685         stats->last_gprc = E1000_READ_REG(hw, E1000_VFGPRC);
2686         stats->last_gorc = E1000_READ_REG(hw, E1000_VFGORC);
2687         stats->last_gptc = E1000_READ_REG(hw, E1000_VFGPTC);
2688         stats->last_gotc = E1000_READ_REG(hw, E1000_VFGOTC);
2689         stats->last_mprc = E1000_READ_REG(hw, E1000_VFMPRC);
2690 }
2691  
2692 static void
2693 igb_update_vf_stats_counters(struct igb_softc *sc)
2694 {
2695         struct e1000_hw *hw = &sc->hw;
2696         struct e1000_vf_stats *stats;
2697
2698         if (sc->link_speed == 0)
2699                 return;
2700
2701         stats = sc->stats;
2702         UPDATE_VF_REG(E1000_VFGPRC, stats->last_gprc, stats->gprc);
2703         UPDATE_VF_REG(E1000_VFGORC, stats->last_gorc, stats->gorc);
2704         UPDATE_VF_REG(E1000_VFGPTC, stats->last_gptc, stats->gptc);
2705         UPDATE_VF_REG(E1000_VFGOTC, stats->last_gotc, stats->gotc);
2706         UPDATE_VF_REG(E1000_VFMPRC, stats->last_mprc, stats->mprc);
2707 }
2708
2709 #ifdef DEVICE_POLLING
2710
2711 static void
2712 igb_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2713 {
2714         struct igb_softc *sc = ifp->if_softc;
2715         uint32_t reg_icr;
2716
2717         ASSERT_SERIALIZED(ifp->if_serializer);
2718
2719         switch (cmd) {
2720         case POLL_REGISTER:
2721                 igb_disable_intr(sc);
2722                 break;
2723
2724         case POLL_DEREGISTER:
2725                 igb_enable_intr(sc);
2726                 break;
2727
2728         case POLL_AND_CHECK_STATUS:
2729                 reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
2730                 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
2731                         sc->hw.mac.get_link_status = 1;
2732                         igb_update_link_status(sc);
2733                 }
2734                 /* FALL THROUGH */
2735         case POLL_ONLY:
2736                 if (ifp->if_flags & IFF_RUNNING) {
2737                         igb_rxeof(sc->queues[0].rxr, count);
2738
2739                         igb_txeof(sc->queues[0].txr);
2740                         if (!ifq_is_empty(&ifp->if_snd))
2741                                 if_devstart(ifp);
2742                 }
2743                 break;
2744         }
2745 }
2746
2747 #endif /* DEVICE_POLLING */
2748
2749 static void
2750 igb_intr(void *xsc)
2751 {
2752         struct igb_softc *sc = xsc;
2753         struct ifnet *ifp = &sc->arpcom.ac_if;
2754         uint32_t eicr;
2755
2756         ASSERT_IFNET_SERIALIZED_ALL(ifp);
2757
2758         eicr = E1000_READ_REG(&sc->hw, E1000_EICR);
2759
2760         if (eicr == 0)
2761                 return;
2762
2763         if (ifp->if_flags & IFF_RUNNING) {
2764                 if (eicr & sc->rx_rings[0].rx_intr_mask)
2765                         igb_rxeof(&sc->rx_rings[0], -1);
2766
2767                 if (eicr & sc->tx_rings[0].tx_intr_mask) {
2768                         igb_txeof(&sc->tx_rings[0]);
2769                         if (!ifq_is_empty(&ifp->if_snd))
2770                                 if_devstart(ifp);
2771                 }
2772         }
2773
2774         if (eicr & E1000_EICR_OTHER) {
2775                 uint32_t icr = E1000_READ_REG(&sc->hw, E1000_ICR);
2776
2777                 /* Link status change */
2778                 if (icr & E1000_ICR_LSC) {
2779                         sc->hw.mac.get_link_status = 1;
2780                         igb_update_link_status(sc);
2781                 }
2782         }
2783
2784         /*
2785          * Reading EICR has the side effect to clear interrupt mask,
2786          * so all interrupts need to be enabled here.
2787          */
2788         E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
2789 }
2790
2791 static void
2792 igb_shared_intr(void *xsc)
2793 {
2794         struct igb_softc *sc = xsc;
2795         struct ifnet *ifp = &sc->arpcom.ac_if;
2796         uint32_t reg_icr;
2797
2798         ASSERT_IFNET_SERIALIZED_ALL(ifp);
2799
2800         reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
2801
2802         /* Hot eject?  */
2803         if (reg_icr == 0xffffffff)
2804                 return;
2805
2806         /* Definitely not our interrupt.  */
2807         if (reg_icr == 0x0)
2808                 return;
2809
2810         if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0)
2811                 return;
2812
2813         if (ifp->if_flags & IFF_RUNNING) {
2814                 igb_rxeof(sc->queues[0].rxr, -1);
2815
2816                 igb_txeof(sc->queues[0].txr);
2817                 if (!ifq_is_empty(&ifp->if_snd))
2818                         if_devstart(ifp);
2819         }
2820
2821         /* Link status change */
2822         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
2823                 sc->hw.mac.get_link_status = 1;
2824                 igb_update_link_status(sc);
2825         }
2826
2827         if (reg_icr & E1000_ICR_RXO)
2828                 sc->rx_overruns++;
2829 }
2830
2831 static int
2832 igb_txctx_pullup(struct igb_tx_ring *txr, struct mbuf **m0)
2833 {
2834         struct mbuf *m = *m0;
2835         struct ether_header *eh;
2836         int len;
2837
2838         txr->ctx_try_pullup++;
2839
2840         len = ETHER_HDR_LEN + IGB_IPVHL_SIZE;
2841
2842         if (__predict_false(!M_WRITABLE(m))) {
2843                 if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2844                         txr->ctx_drop1++;
2845                         m_freem(m);
2846                         *m0 = NULL;
2847                         return ENOBUFS;
2848                 }
2849                 eh = mtod(m, struct ether_header *);
2850
2851                 if (eh->ether_type == htons(ETHERTYPE_VLAN))
2852                         len += EVL_ENCAPLEN;
2853
2854                 if (m->m_len < len) {
2855                         txr->ctx_drop2++;
2856                         m_freem(m);
2857                         *m0 = NULL;
2858                         return ENOBUFS;
2859                 }
2860                 return 0;
2861         }
2862
2863         if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2864                 txr->ctx_pullup1++;
2865                 m = m_pullup(m, ETHER_HDR_LEN);
2866                 if (m == NULL) {
2867                         txr->ctx_pullup1_failed++;
2868                         *m0 = NULL;
2869                         return ENOBUFS;
2870                 }
2871                 *m0 = m;
2872         }
2873         eh = mtod(m, struct ether_header *);
2874
2875         if (eh->ether_type == htons(ETHERTYPE_VLAN))
2876                 len += EVL_ENCAPLEN;
2877
2878         if (m->m_len < len) {
2879                 txr->ctx_pullup2++;
2880                 m = m_pullup(m, len);
2881                 if (m == NULL) {
2882                         txr->ctx_pullup2_failed++;
2883                         *m0 = NULL;
2884                         return ENOBUFS;
2885                 }
2886                 *m0 = m;
2887         }
2888         return 0;
2889 }
2890
2891 static int
2892 igb_encap(struct igb_tx_ring *txr, struct mbuf **m_headp)
2893 {
2894         bus_dma_segment_t segs[IGB_MAX_SCATTER];
2895         bus_dmamap_t map;
2896         struct igb_tx_buf *tx_buf, *tx_buf_mapped;
2897         union e1000_adv_tx_desc *txd = NULL;
2898         struct mbuf *m_head = *m_headp;
2899         uint32_t olinfo_status = 0, cmd_type_len = 0, cmd_rs = 0;
2900         int maxsegs, nsegs, i, j, error, last = 0;
2901         uint32_t hdrlen = 0;
2902
2903         if (m_head->m_len < IGB_TXCSUM_MINHL &&
2904             ((m_head->m_pkthdr.csum_flags & IGB_CSUM_FEATURES) ||
2905              (m_head->m_flags & M_VLANTAG))) {
2906                 /*
2907                  * Make sure that ethernet header and ip.ip_hl are in
2908                  * contiguous memory, since if TXCSUM or VLANTAG is
2909                  * enabled, later TX context descriptor's setup need
2910                  * to access ip.ip_hl.
2911                  */
2912                 error = igb_txctx_pullup(txr, m_headp);
2913                 if (error) {
2914                         KKASSERT(*m_headp == NULL);
2915                         return error;
2916                 }
2917                 m_head = *m_headp;
2918         }
2919
2920         /* Set basic descriptor constants */
2921         cmd_type_len |= E1000_ADVTXD_DTYP_DATA;
2922         cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
2923         if (m_head->m_flags & M_VLANTAG)
2924                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2925
2926         /*
2927          * Map the packet for DMA.
2928          */
2929         tx_buf = &txr->tx_buf[txr->next_avail_desc];
2930         tx_buf_mapped = tx_buf;
2931         map = tx_buf->map;
2932
2933         maxsegs = txr->tx_avail - IGB_TX_RESERVED;
2934         KASSERT(maxsegs >= txr->spare_desc, ("not enough spare TX desc\n"));
2935         if (maxsegs > IGB_MAX_SCATTER)
2936                 maxsegs = IGB_MAX_SCATTER;
2937
2938         error = bus_dmamap_load_mbuf_defrag(txr->tx_tag, map, m_headp,
2939             segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
2940         if (error) {
2941                 if (error == ENOBUFS)
2942                         txr->sc->mbuf_defrag_failed++;
2943                 else
2944                         txr->sc->no_tx_dma_setup++;
2945
2946                 m_freem(*m_headp);
2947                 *m_headp = NULL;
2948                 return error;
2949         }
2950         bus_dmamap_sync(txr->tx_tag, map, BUS_DMASYNC_PREWRITE);
2951
2952         m_head = *m_headp;
2953
2954 #if 0
2955         /*
2956          * Set up the context descriptor:
2957          * used when any hardware offload is done.
2958          * This includes CSUM, VLAN, and TSO. It
2959          * will use the first descriptor.
2960          */
2961         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
2962                 if (igb_tso_setup(txr, m_head, &hdrlen)) {
2963                         cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2964                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2965                         olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2966                 } else
2967                         return (ENXIO); 
2968         } else if (igb_tx_ctx_setup(txr, m_head))
2969                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2970 #else
2971         if (igb_txctx(txr, m_head)) {
2972                 olinfo_status |= (E1000_TXD_POPTS_IXSM << 8);
2973                 if (m_head->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_TCP))
2974                         olinfo_status |= (E1000_TXD_POPTS_TXSM << 8);
2975                 txr->tx_nsegs++;
2976         }
2977 #endif
2978
2979         txr->tx_nsegs += nsegs;
2980         if (txr->tx_nsegs >= txr->intr_nsegs) {
2981                 /*
2982                  * Report Status (RS) is turned on every intr_nsegs
2983                  * descriptors (roughly).
2984                  */
2985                 txr->tx_nsegs = 0;
2986                 cmd_rs = E1000_ADVTXD_DCMD_RS;
2987         }
2988
2989         /* Calculate payload length */
2990         olinfo_status |= ((m_head->m_pkthdr.len - hdrlen)
2991             << E1000_ADVTXD_PAYLEN_SHIFT);
2992
2993         /* 82575 needs the queue index added */
2994         if (txr->sc->hw.mac.type == e1000_82575)
2995                 olinfo_status |= txr->me << 4;
2996
2997         /* Set up our transmit descriptors */
2998         i = txr->next_avail_desc;
2999         for (j = 0; j < nsegs; j++) {
3000                 bus_size_t seg_len;
3001                 bus_addr_t seg_addr;
3002
3003                 tx_buf = &txr->tx_buf[i];
3004                 txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
3005                 seg_addr = segs[j].ds_addr;
3006                 seg_len = segs[j].ds_len;
3007
3008                 txd->read.buffer_addr = htole64(seg_addr);
3009                 txd->read.cmd_type_len = htole32(cmd_type_len | seg_len);
3010                 txd->read.olinfo_status = htole32(olinfo_status);
3011                 last = i;
3012                 if (++i == txr->sc->num_tx_desc)
3013                         i = 0;
3014                 tx_buf->m_head = NULL;
3015         }
3016
3017         KASSERT(txr->tx_avail > nsegs, ("invalid avail TX desc\n"));
3018         txr->next_avail_desc = i;
3019         txr->tx_avail -= nsegs;
3020
3021         tx_buf->m_head = m_head;
3022         tx_buf_mapped->map = tx_buf->map;
3023         tx_buf->map = map;
3024
3025         /*
3026          * Last Descriptor of Packet needs End Of Packet (EOP)
3027          */
3028         txd->read.cmd_type_len |= htole32(E1000_ADVTXD_DCMD_EOP | cmd_rs);
3029
3030         /*
3031          * Advance the Transmit Descriptor Tail (TDT), this tells the E1000
3032          * that this frame is available to transmit.
3033          */
3034         E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), i);
3035         ++txr->tx_packets;
3036
3037         return 0;
3038 }
3039
3040 static void
3041 igb_start(struct ifnet *ifp)
3042 {
3043         struct igb_softc *sc = ifp->if_softc;
3044         struct igb_tx_ring *txr = sc->queues[0].txr;
3045         struct mbuf *m_head;
3046
3047         ASSERT_IFNET_SERIALIZED_ALL(ifp);
3048
3049         if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3050                 return;
3051
3052         if (!sc->link_active) {
3053                 ifq_purge(&ifp->if_snd);
3054                 return;
3055         }
3056
3057         if (!IGB_IS_NOT_OACTIVE(txr))
3058                 igb_txeof(txr);
3059
3060         while (!ifq_is_empty(&ifp->if_snd)) {
3061                 if (IGB_IS_OACTIVE(txr)) {
3062                         ifp->if_flags |= IFF_OACTIVE;
3063                         /* Set watchdog on */
3064                         ifp->if_timer = 5;
3065                         break;
3066                 }
3067
3068                 m_head = ifq_dequeue(&ifp->if_snd, NULL);
3069                 if (m_head == NULL)
3070                         break;
3071
3072                 if (igb_encap(txr, &m_head)) {
3073                         ifp->if_oerrors++;
3074                         continue;
3075                 }
3076
3077                 /* Send a copy of the frame to the BPF listener */
3078                 ETHER_BPF_MTAP(ifp, m_head);
3079         }
3080 }
3081
3082 static void
3083 igb_watchdog(struct ifnet *ifp)
3084 {
3085         struct igb_softc *sc = ifp->if_softc;
3086         struct igb_tx_ring *txr = sc->queues[0].txr;
3087
3088         ASSERT_IFNET_SERIALIZED_ALL(ifp);
3089
3090         /* 
3091          * If flow control has paused us since last checking
3092          * it invalidates the watchdog timing, so dont run it.
3093          */
3094         if (sc->pause_frames) {
3095                 sc->pause_frames = 0;
3096                 ifp->if_timer = 5;
3097                 return;
3098         }
3099
3100         if_printf(ifp, "Watchdog timeout -- resetting\n");
3101         if_printf(ifp, "Queue(%d) tdh = %d, hw tdt = %d\n", txr->me,
3102             E1000_READ_REG(&sc->hw, E1000_TDH(txr->me)),
3103             E1000_READ_REG(&sc->hw, E1000_TDT(txr->me)));
3104         if_printf(ifp, "TX(%d) desc avail = %d, "
3105             "Next TX to Clean = %d\n",
3106             txr->me, txr->tx_avail, txr->next_to_clean);
3107
3108         ifp->if_oerrors++;
3109         sc->watchdog_events++;
3110
3111         igb_init(sc);
3112         if (!ifq_is_empty(&ifp->if_snd))
3113                 if_devstart(ifp);
3114 }
3115
3116 static void
3117 igb_set_eitr(struct igb_softc *sc)
3118 {
3119         uint32_t itr = 0;
3120
3121         if (sc->intr_rate > 0) {
3122                 if (sc->hw.mac.type == e1000_82575) {
3123                         itr = 1000000000 / 256 / sc->intr_rate;
3124                         /*
3125                          * NOTE:
3126                          * Document is wrong on the 2 bits left shift
3127                          */
3128                 } else {
3129                         itr = 1000000 / sc->intr_rate;
3130                         itr <<= 2;
3131                 }
3132                 itr &= 0x7FFC;
3133         }
3134         if (sc->hw.mac.type == e1000_82575)
3135                 itr |= itr << 16;
3136         else
3137                 itr |= E1000_EITR_CNT_IGNR;
3138         E1000_WRITE_REG(&sc->hw, E1000_EITR(0), itr);
3139 }
3140
3141 static int
3142 igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS)
3143 {
3144         struct igb_softc *sc = (void *)arg1;
3145         struct ifnet *ifp = &sc->arpcom.ac_if;
3146         int error, intr_rate;
3147
3148         intr_rate = sc->intr_rate;
3149         error = sysctl_handle_int(oidp, &intr_rate, 0, req);
3150         if (error || req->newptr == NULL)
3151                 return error;
3152         if (intr_rate < 0)
3153                 return EINVAL;
3154
3155         ifnet_serialize_all(ifp);
3156
3157         sc->intr_rate = intr_rate;
3158         if (ifp->if_flags & IFF_RUNNING)
3159                 igb_set_eitr(sc);
3160
3161         ifnet_deserialize_all(ifp);
3162
3163         if (bootverbose)
3164                 if_printf(ifp, "Interrupt rate set to %d/sec\n", sc->intr_rate);
3165         return 0;
3166 }
3167
3168 static int
3169 igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3170 {
3171         struct igb_softc *sc = (void *)arg1;
3172         struct ifnet *ifp = &sc->arpcom.ac_if;
3173         struct igb_tx_ring *txr = sc->queues[0].txr;
3174         int error, nsegs;
3175
3176         nsegs = txr->intr_nsegs;
3177         error = sysctl_handle_int(oidp, &nsegs, 0, req);
3178         if (error || req->newptr == NULL)
3179                 return error;
3180         if (nsegs <= 0)
3181                 return EINVAL;
3182
3183         ifnet_serialize_all(ifp);
3184
3185         if (nsegs >= sc->num_tx_desc - txr->oact_lo_desc ||
3186             nsegs >= txr->oact_hi_desc - IGB_MAX_SCATTER) {
3187                 error = EINVAL;
3188         } else {
3189                 error = 0;
3190                 txr->intr_nsegs = nsegs;
3191         }
3192
3193         ifnet_deserialize_all(ifp);
3194
3195         return error;
3196 }
3197
3198 static void
3199 igb_init_intr(struct igb_softc *sc)
3200 {
3201         if (sc->flags & IGB_FLAG_SHARED_INTR)
3202                 igb_set_eitr(sc);
3203         else
3204                 igb_init_unshared_intr(sc);
3205 }
3206
3207 static void
3208 igb_init_unshared_intr(struct igb_softc *sc)
3209 {
3210         struct e1000_hw *hw = &sc->hw;
3211         const struct igb_rx_ring *rxr;
3212         const struct igb_tx_ring *txr;
3213         uint32_t ivar, index;
3214         int i;
3215
3216         /*
3217          * Enable extended mode
3218          */
3219         if (sc->hw.mac.type != e1000_82575) {
3220                 E1000_WRITE_REG(hw, E1000_GPIE, E1000_GPIE_NSICR);
3221         } else {
3222                 uint32_t tmp;
3223
3224                 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
3225                 tmp |= E1000_CTRL_EXT_IRCA;
3226                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
3227         }
3228
3229         /*
3230          * Map TX/RX interrupts to EICR
3231          */
3232         switch (sc->hw.mac.type) {
3233         case e1000_82580:
3234         case e1000_i350:
3235         case e1000_vfadapt:
3236         case e1000_vfadapt_i350:
3237                 /* RX entries */
3238                 for (i = 0; i < sc->num_queues; ++i) {
3239                         rxr = &sc->rx_rings[i];
3240
3241                         index = i >> 1;
3242                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3243
3244                         if (i & 1) {
3245                                 ivar &= 0xff00ffff;
3246                                 ivar |=
3247                                 (rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3248                         } else {
3249                                 ivar &= 0xffffff00;
3250                                 ivar |=
3251                                 (rxr->rx_intr_bit | E1000_IVAR_VALID);
3252                         }
3253                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3254                 }
3255                 /* TX entries */
3256                 for (i = 0; i < sc->num_queues; ++i) {
3257                         txr = &sc->tx_rings[i];
3258
3259                         index = i >> 1;
3260                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3261
3262                         if (i & 1) {
3263                                 ivar &= 0x00ffffff;
3264                                 ivar |=
3265                                 (txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3266                         } else {
3267                                 ivar &= 0xffff00ff;
3268                                 ivar |=
3269                                 (txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3270                         }
3271                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3272                 }
3273                 /* Clear unused IVAR_MISC */
3274                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, 0);
3275                 break;
3276
3277         case e1000_82576:
3278                 /* RX entries */
3279                 for (i = 0; i < sc->num_queues; ++i) {
3280                         rxr = &sc->rx_rings[i];
3281
3282                         index = i & 0x7; /* Each IVAR has two entries */
3283                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3284
3285                         if (i < 8) {
3286                                 ivar &= 0xffffff00;
3287                                 ivar |=
3288                                 (rxr->rx_intr_bit | E1000_IVAR_VALID);
3289                         } else {
3290                                 ivar &= 0xff00ffff;
3291                                 ivar |=
3292                                 (rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3293                         }
3294                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3295                 }
3296                 /* TX entries */
3297                 for (i = 0; i < sc->num_queues; ++i) {
3298                         txr = &sc->tx_rings[i];
3299
3300                         index = i & 0x7; /* Each IVAR has two entries */
3301                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3302
3303                         if (i < 8) {
3304                                 ivar &= 0xffff00ff;
3305                                 ivar |=
3306                                 (txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3307                         } else {
3308                                 ivar &= 0x00ffffff;
3309                                 ivar |=
3310                                 (txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3311                         }
3312                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3313                 }
3314                 /* Clear unused IVAR_MISC */
3315                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, 0);
3316                 break;
3317
3318         case e1000_82575:
3319                 /*
3320                  * Enable necessary interrupt bits.
3321                  *
3322                  * The name of the register is confusing; in addition to
3323                  * configuring the first vector of MSI-X, it also configures
3324                  * which bits of EICR could be set by the hardware even when
3325                  * MSI or line interrupt is used; it thus controls interrupt
3326                  * generation.  It MUST be configured explicitly; the default
3327                  * value mentioned in the datasheet is wrong: RX queue0 and
3328                  * TX queue0 are NOT enabled by default.
3329                  */
3330                 E1000_WRITE_REG(&sc->hw, E1000_MSIXBM(0), sc->intr_mask);
3331                 break;
3332
3333         default:
3334                 break;
3335         }
3336
3337         /*
3338          * Configure interrupt moderation
3339          */
3340         igb_set_eitr(sc);
3341 }
3342
3343 static int
3344 igb_setup_intr(struct igb_softc *sc)
3345 {
3346         struct ifnet *ifp = &sc->arpcom.ac_if;
3347         int error, i;
3348
3349         /*
3350          * Setup interrupt mask
3351          */
3352         for (i = 0; i < sc->num_queues; ++i)
3353                 igb_setup_tx_intr(&sc->tx_rings[i]);
3354         for (i = 0; i < sc->num_queues; ++i)
3355                 igb_setup_rx_intr(&sc->rx_rings[i]);
3356
3357         sc->intr_mask = E1000_EICR_OTHER;
3358         for (i = 0; i < sc->num_queues; ++i)
3359                 sc->intr_mask |= sc->rx_rings[i].rx_intr_mask;
3360         for (i = 0; i < sc->num_queues; ++i)
3361                 sc->intr_mask |= sc->tx_rings[i].tx_intr_mask;
3362
3363         if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
3364                 int unshared;
3365
3366                 unshared = device_getenv_int(sc->dev, "irq.unshared", 0);
3367                 if (!unshared) {
3368                         sc->flags |= IGB_FLAG_SHARED_INTR;
3369                         if (bootverbose)
3370                                 device_printf(sc->dev, "IRQ shared\n");
3371                 } else if (bootverbose) {
3372                         device_printf(sc->dev, "IRQ unshared\n");
3373                 }
3374         }
3375
3376         error = bus_setup_intr(sc->dev, sc->intr_res, INTR_MPSAFE,
3377             (sc->flags & IGB_FLAG_SHARED_INTR) ? igb_shared_intr : igb_intr,
3378             sc, &sc->intr_tag, ifp->if_serializer);
3379         if (error) {
3380                 device_printf(sc->dev, "Failed to register interrupt handler");
3381                 return error;
3382         }
3383
3384         ifp->if_cpuid = rman_get_cpuid(sc->intr_res);
3385         KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
3386
3387         return 0;
3388 }
3389
3390 static void
3391 igb_setup_tx_intr(struct igb_tx_ring *txr)
3392 {
3393         if (txr->sc->hw.mac.type == e1000_82575) {
3394                 txr->tx_intr_bit = 0;   /* unused */
3395                 switch (txr->me) {
3396                 case 0:
3397                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE0;
3398                         break;
3399                 case 1:
3400                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE1;
3401                         break;
3402                 case 2:
3403                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE2;
3404                         break;
3405                 case 3:
3406                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE3;
3407                         break;
3408                 default:
3409                         panic("unsupported # of TX ring, %d\n", txr->me);
3410                 }
3411         } else {
3412                 txr->tx_intr_bit = 0;   /* XXX */
3413                 txr->tx_intr_mask = 1 << txr->tx_intr_bit;
3414         }
3415 }
3416
3417 static void
3418 igb_setup_rx_intr(struct igb_rx_ring *rxr)
3419 {
3420         if (rxr->sc->hw.mac.type == e1000_82575) {
3421                 rxr->rx_intr_bit = 0;   /* unused */
3422                 switch (rxr->me) {
3423                 case 0:
3424                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE0;
3425                         break;
3426                 case 1:
3427                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE1;
3428                         break;
3429                 case 2:
3430                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE2;
3431                         break;
3432                 case 3:
3433                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE3;
3434                         break;
3435                 default:
3436                         panic("unsupported # of RX ring, %d\n", rxr->me);
3437                 }
3438         } else {
3439                 rxr->rx_intr_bit = 1;   /* XXX */
3440                 rxr->rx_intr_mask = 1 << rxr->rx_intr_bit;
3441         }
3442 }