nrelease - fix/improve livecd
[dragonfly.git] / sys / dev / video / bktr / bktr_tuner.c
CommitLineData
d3f3bfa9 1/*-
984263bc
MD
2 * 1. Redistributions of source code must retain the
3 * Copyright (c) 1997 Amancio Hasty, 1999 Roger Hardiman
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by Amancio Hasty and
17 * Roger Hardiman
18 * 4. The name of the author may not be used to endorse or promote products
19 * derived from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
23 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
24 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
25 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
a35cc233 32 *
d3f3bfa9 33 * $FreeBSD: src/sys/dev/bktr/bktr_tuner.c,v 1.20 2005/11/13 13:26:37 netchild Exp $
984263bc
MD
34 */
35
36
a35cc233
JS
37/*
38 * This is part of the Driver for Video Capture Cards (Frame grabbers)
39 * and TV Tuner cards using the Brooktree Bt848, Bt848A, Bt849A, Bt878, Bt879
40 * chipset.
41 * Copyright Roger Hardiman and Amancio Hasty.
42 *
43 * bktr_tuner : This deals with controlling the tuner fitted to TV cards.
44 */
984263bc
MD
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/kernel.h>
1f7ab7c9 49#include <sys/bus.h>
5b22f1a7 50#include <sys/event.h>
984263bc 51
1f2de5d4 52#include <bus/pci/pcivar.h>
984263bc 53
a35cc233
JS
54#include <dev/video/meteor/ioctl_meteor.h>
55#include <dev/video/bktr/ioctl_bt848.h> /* extensions to ioctl_meteor.h */
56#include <dev/video/bktr/bktr_reg.h>
57#include <dev/video/bktr/bktr_tuner.h>
58#include <dev/video/bktr/bktr_card.h>
59#include <dev/video/bktr/bktr_core.h>
984263bc
MD
60
61
62
63#if defined( TUNER_AFC )
64#define AFC_DELAY 10000 /* 10 millisend delay */
65#define AFC_BITS 0x07
66#define AFC_FREQ_MINUS_125 0x00
67#define AFC_FREQ_MINUS_62 0x01
68#define AFC_FREQ_CENTERED 0x02
69#define AFC_FREQ_PLUS_62 0x03
70#define AFC_FREQ_PLUS_125 0x04
71#define AFC_MAX_STEP (5 * FREQFACTOR) /* no more than 5 MHz */
72#endif /* TUNER_AFC */
73
74
75#define TTYPE_XXX 0
76#define TTYPE_NTSC 1
77#define TTYPE_NTSC_J 2
78#define TTYPE_PAL 3
79#define TTYPE_PAL_M 4
80#define TTYPE_PAL_N 5
81#define TTYPE_SECAM 6
82
83#define TSA552x_CB_MSB (0x80)
84#define TSA552x_CB_CP (1<<6) /* set this for fast tuning */
85#define TSA552x_CB_T2 (1<<5) /* test mode - Normally set to 0 */
86#define TSA552x_CB_T1 (1<<4) /* test mode - Normally set to 0 */
87#define TSA552x_CB_T0 (1<<3) /* test mode - Normally set to 1 */
88#define TSA552x_CB_RSA (1<<2) /* 0 for 31.25 khz, 1 for 62.5 kHz */
89#define TSA552x_CB_RSB (1<<1) /* 0 for FM 50kHz steps, 1 = Use RSA*/
90#define TSA552x_CB_OS (1<<0) /* Set to 0 for normal operation */
91
92#define TSA552x_RADIO (TSA552x_CB_MSB | \
93 TSA552x_CB_T0)
94
95/* raise the charge pump voltage for fast tuning */
96#define TSA552x_FCONTROL (TSA552x_CB_MSB | \
97 TSA552x_CB_CP | \
98 TSA552x_CB_T0 | \
99 TSA552x_CB_RSA | \
100 TSA552x_CB_RSB)
101
102/* lower the charge pump voltage for better residual oscillator FM */
103#define TSA552x_SCONTROL (TSA552x_CB_MSB | \
104 TSA552x_CB_T0 | \
105 TSA552x_CB_RSA | \
106 TSA552x_CB_RSB)
107
108/* The control value for the ALPS TSCH5 Tuner */
109#define TSCH5_FCONTROL 0x82
110#define TSCH5_RADIO 0x86
111
112/* The control value for the ALPS TSBH1 Tuner */
113#define TSBH1_FCONTROL 0xce
114
115
7f5487a0
SS
116static void mt2032_set_tv_freq(bktr_ptr_t bktr, unsigned int freq);
117
118
984263bc
MD
119static const struct TUNER tuners[] = {
120/* XXX FIXME: fill in the band-switch crosspoints */
121 /* NO_TUNER */
122 { "<no>", /* the 'name' */
123 TTYPE_XXX, /* input type */
124 { 0x00, /* control byte for Tuner PLL */
125 0x00,
126 0x00,
127 0x00 },
128 { 0x00, 0x00 }, /* band-switch crosspoints */
129 { 0x00, 0x00, 0x00,0x00} }, /* the band-switch values */
130
131 /* TEMIC_NTSC */
132 { "Temic NTSC", /* the 'name' */
133 TTYPE_NTSC, /* input type */
134 { TSA552x_SCONTROL, /* control byte for Tuner PLL */
135 TSA552x_SCONTROL,
136 TSA552x_SCONTROL,
137 0x00 },
138 { 0x00, 0x00}, /* band-switch crosspoints */
139 { 0x02, 0x04, 0x01, 0x00 } }, /* the band-switch values */
140
141 /* TEMIC_PAL */
142 { "Temic PAL", /* the 'name' */
143 TTYPE_PAL, /* input type */
144 { TSA552x_SCONTROL, /* control byte for Tuner PLL */
145 TSA552x_SCONTROL,
146 TSA552x_SCONTROL,
147 0x00 },
148 { 0x00, 0x00 }, /* band-switch crosspoints */
149 { 0x02, 0x04, 0x01, 0x00 } }, /* the band-switch values */
150
151 /* TEMIC_SECAM */
152 { "Temic SECAM", /* the 'name' */
153 TTYPE_SECAM, /* input type */
154 { TSA552x_SCONTROL, /* control byte for Tuner PLL */
155 TSA552x_SCONTROL,
156 TSA552x_SCONTROL,
157 0x00 },
158 { 0x00, 0x00 }, /* band-switch crosspoints */
159 { 0x02, 0x04, 0x01,0x00 } }, /* the band-switch values */
160
161 /* PHILIPS_NTSC */
162 { "Philips NTSC", /* the 'name' */
163 TTYPE_NTSC, /* input type */
164 { TSA552x_SCONTROL, /* control byte for Tuner PLL */
165 TSA552x_SCONTROL,
166 TSA552x_SCONTROL,
167 0x00 },
168 { 0x00, 0x00 }, /* band-switch crosspoints */
169 { 0xa0, 0x90, 0x30, 0x00 } }, /* the band-switch values */
170
171 /* PHILIPS_PAL */
172 { "Philips PAL", /* the 'name' */
173 TTYPE_PAL, /* input type */
174 { TSA552x_SCONTROL, /* control byte for Tuner PLL */
175 TSA552x_SCONTROL,
176 TSA552x_SCONTROL,
177 0x00 },
178 { 0x00, 0x00 }, /* band-switch crosspoints */
179 { 0xa0, 0x90, 0x30, 0x00 } }, /* the band-switch values */
180
181 /* PHILIPS_SECAM */
182 { "Philips SECAM", /* the 'name' */
183 TTYPE_SECAM, /* input type */
184 { TSA552x_SCONTROL, /* control byte for Tuner PLL */
185 TSA552x_SCONTROL,
186 TSA552x_SCONTROL,
187 0x00 },
188 { 0x00, 0x00 }, /* band-switch crosspoints */
189 { 0xa7, 0x97, 0x37, 0x00 } }, /* the band-switch values */
190
191 /* TEMIC_PAL I */
192 { "Temic PAL I", /* the 'name' */
193 TTYPE_PAL, /* input type */
194 { TSA552x_SCONTROL, /* control byte for Tuner PLL */
195 TSA552x_SCONTROL,
196 TSA552x_SCONTROL,
197 0x00 },
198 { 0x00, 0x00 }, /* band-switch crosspoints */
199 { 0x02, 0x04, 0x01,0x00 } }, /* the band-switch values */
200
201 /* PHILIPS_PALI */
202 { "Philips PAL I", /* the 'name' */
203 TTYPE_PAL, /* input type */
204 { TSA552x_SCONTROL, /* control byte for Tuner PLL */
205 TSA552x_SCONTROL,
206 TSA552x_SCONTROL,
207 0x00 },
208 { 0x00, 0x00 }, /* band-switch crosspoints */
209 { 0xa0, 0x90, 0x30,0x00 } }, /* the band-switch values */
210
211 /* PHILIPS_FR1236_NTSC */
212 { "Philips FR1236 NTSC FM", /* the 'name' */
213 TTYPE_NTSC, /* input type */
214 { TSA552x_FCONTROL, /* control byte for Tuner PLL */
215 TSA552x_FCONTROL,
216 TSA552x_FCONTROL,
217 TSA552x_RADIO },
218 { 0x00, 0x00 }, /* band-switch crosspoints */
219 { 0xa0, 0x90, 0x30,0xa4 } }, /* the band-switch values */
220
221 /* PHILIPS_FR1216_PAL */
222 { "Philips FR1216 PAL FM" , /* the 'name' */
223 TTYPE_PAL, /* input type */
224 { TSA552x_FCONTROL, /* control byte for Tuner PLL */
225 TSA552x_FCONTROL,
226 TSA552x_FCONTROL,
227 TSA552x_RADIO },
228 { 0x00, 0x00 }, /* band-switch crosspoints */
229 { 0xa0, 0x90, 0x30, 0xa4 } }, /* the band-switch values */
230
231 /* PHILIPS_FR1236_SECAM */
232 { "Philips FR1236 SECAM FM", /* the 'name' */
233 TTYPE_SECAM, /* input type */
234 { TSA552x_FCONTROL, /* control byte for Tuner PLL */
235 TSA552x_FCONTROL,
236 TSA552x_FCONTROL,
237 TSA552x_RADIO },
238 { 0x00, 0x00 }, /* band-switch crosspoints */
239 { 0xa7, 0x97, 0x37, 0xa4 } }, /* the band-switch values */
240
241 /* ALPS TSCH5 NTSC */
242 { "ALPS TSCH5 NTSC FM", /* the 'name' */
243 TTYPE_NTSC, /* input type */
244 { TSCH5_FCONTROL, /* control byte for Tuner PLL */
245 TSCH5_FCONTROL,
246 TSCH5_FCONTROL,
247 TSCH5_RADIO },
248 { 0x00, 0x00 }, /* band-switch crosspoints */
249 { 0x14, 0x12, 0x11, 0x04 } }, /* the band-switch values */
250
251 /* ALPS TSBH1 NTSC */
252 { "ALPS TSBH1 NTSC", /* the 'name' */
253 TTYPE_NTSC, /* input type */
254 { TSBH1_FCONTROL, /* control byte for Tuner PLL */
255 TSBH1_FCONTROL,
256 TSBH1_FCONTROL,
257 0x00 },
258 { 0x00, 0x00 }, /* band-switch crosspoints */
d3f3bfa9 259 { 0x01, 0x02, 0x08, 0x00 } }, /* the band-switch values */
7f5487a0
SS
260
261 /* MT2032 Microtune */
262 { "MT2032", /* the 'name' */
d3f3bfa9 263 TTYPE_PAL, /* input type */
7f5487a0
SS
264 { TSA552x_SCONTROL, /* control byte for Tuner PLL */
265 TSA552x_SCONTROL,
266 TSA552x_SCONTROL,
267 0x00 },
268 { 0x00, 0x00 }, /* band-switch crosspoints */
269 { 0xa0, 0x90, 0x30, 0x00 } }, /* the band-switch values */
d3f3bfa9
SW
270
271 /* LG TPI8PSB12P PAL */
272 { "LG TPI8PSB12P PAL", /* the 'name' */
273 TTYPE_PAL, /* input type */
274 { TSA552x_SCONTROL, /* control byte for Tuner PLL */
275 TSA552x_SCONTROL,
276 TSA552x_SCONTROL,
277 0x00 },
278 { 0x00, 0x00 }, /* band-switch crosspoints */
279 { 0xa0, 0x90, 0x30, 0x8e } }, /* the band-switch values */
984263bc
MD
280};
281
282
283/* scaling factor for frequencies expressed as ints */
284#define FREQFACTOR 16
285
286/*
287 * Format:
288 * entry 0: MAX legal channel
289 * entry 1: IF frequency
290 * expressed as fi{mHz} * 16,
291 * eg 45.75mHz == 45.75 * 16 = 732
292 * entry 2: [place holder/future]
293 * entry 3: base of channel record 0
294 * entry 3 + (x*3): base of channel record 'x'
295 * entry LAST: NULL channel entry marking end of records
296 *
297 * Record:
298 * int 0: base channel
299 * int 1: frequency of base channel,
300 * expressed as fb{mHz} * 16,
301 * int 2: offset frequency between channels,
302 * expressed as fo{mHz} * 16,
303 */
304
305/*
306 * North American Broadcast Channels:
307 *
308 * 2: 55.25 mHz - 4: 67.25 mHz
309 * 5: 77.25 mHz - 6: 83.25 mHz
310 * 7: 175.25 mHz - 13: 211.25 mHz
311 * 14: 471.25 mHz - 83: 885.25 mHz
312 *
313 * IF freq: 45.75 mHz
314 */
315#define OFFSET 6.00
316static int nabcst[] = {
317 83, (int)( 45.75 * FREQFACTOR), 0,
318 14, (int)(471.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
319 7, (int)(175.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
320 5, (int)( 77.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
321 2, (int)( 55.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
322 0
323};
324#undef OFFSET
325
326/*
327 * North American Cable Channels, IRC:
328 *
329 * 2: 55.25 mHz - 4: 67.25 mHz
330 * 5: 77.25 mHz - 6: 83.25 mHz
331 * 7: 175.25 mHz - 13: 211.25 mHz
332 * 14: 121.25 mHz - 22: 169.25 mHz
333 * 23: 217.25 mHz - 94: 643.25 mHz
334 * 95: 91.25 mHz - 99: 115.25 mHz
335 *
336 * IF freq: 45.75 mHz
337 */
338#define OFFSET 6.00
339static int irccable[] = {
340 116, (int)( 45.75 * FREQFACTOR), 0,
341 100, (int)(649.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
342 95, (int)( 91.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
343 23, (int)(217.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
344 14, (int)(121.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
345 7, (int)(175.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
346 5, (int)( 77.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
347 2, (int)( 55.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
348 0
349};
350#undef OFFSET
351
352/*
353 * North American Cable Channels, HRC:
354 *
355 * 2: 54 mHz - 4: 66 mHz
356 * 5: 78 mHz - 6: 84 mHz
357 * 7: 174 mHz - 13: 210 mHz
358 * 14: 120 mHz - 22: 168 mHz
359 * 23: 216 mHz - 94: 642 mHz
360 * 95: 90 mHz - 99: 114 mHz
361 *
362 * IF freq: 45.75 mHz
363 */
364#define OFFSET 6.00
365static int hrccable[] = {
366 116, (int)( 45.75 * FREQFACTOR), 0,
367 100, (int)(648.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
368 95, (int)( 90.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
369 23, (int)(216.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
370 14, (int)(120.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
371 7, (int)(174.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
372 5, (int)( 78.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
373 2, (int)( 54.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
374 0
375};
376#undef OFFSET
377
378/*
379 * Western European broadcast channels:
380 *
381 * (there are others that appear to vary between countries - rmt)
382 *
383 * here's the table Philips provides:
384 * caution, some of the offsets don't compute...
385 *
386 * 1 4525 700 N21
387 *
388 * 2 4825 700 E2
389 * 3 5525 700 E3
390 * 4 6225 700 E4
391 *
392 * 5 17525 700 E5
393 * 6 18225 700 E6
394 * 7 18925 700 E7
395 * 8 19625 700 E8
396 * 9 20325 700 E9
397 * 10 21025 700 E10
398 * 11 21725 700 E11
399 * 12 22425 700 E12
400 *
401 * 13 5375 700 ITA
402 * 14 6225 700 ITB
403 *
404 * 15 8225 700 ITC
405 *
406 * 16 17525 700 ITD
407 * 17 18325 700 ITE
408 *
409 * 18 19225 700 ITF
410 * 19 20125 700 ITG
411 * 20 21025 700 ITH
412 *
413 * 21 47125 800 E21
414 * 22 47925 800 E22
415 * 23 48725 800 E23
416 * 24 49525 800 E24
417 * 25 50325 800 E25
418 * 26 51125 800 E26
419 * 27 51925 800 E27
420 * 28 52725 800 E28
421 * 29 53525 800 E29
422 * 30 54325 800 E30
423 * 31 55125 800 E31
424 * 32 55925 800 E32
425 * 33 56725 800 E33
426 * 34 57525 800 E34
427 * 35 58325 800 E35
428 * 36 59125 800 E36
429 * 37 59925 800 E37
430 * 38 60725 800 E38
431 * 39 61525 800 E39
432 * 40 62325 800 E40
433 * 41 63125 800 E41
434 * 42 63925 800 E42
435 * 43 64725 800 E43
436 * 44 65525 800 E44
437 * 45 66325 800 E45
438 * 46 67125 800 E46
439 * 47 67925 800 E47
440 * 48 68725 800 E48
441 * 49 69525 800 E49
442 * 50 70325 800 E50
443 * 51 71125 800 E51
444 * 52 71925 800 E52
445 * 53 72725 800 E53
446 * 54 73525 800 E54
447 * 55 74325 800 E55
448 * 56 75125 800 E56
449 * 57 75925 800 E57
450 * 58 76725 800 E58
451 * 59 77525 800 E59
452 * 60 78325 800 E60
453 * 61 79125 800 E61
454 * 62 79925 800 E62
455 * 63 80725 800 E63
456 * 64 81525 800 E64
457 * 65 82325 800 E65
458 * 66 83125 800 E66
459 * 67 83925 800 E67
460 * 68 84725 800 E68
461 * 69 85525 800 E69
462 *
463 * 70 4575 800 IA
464 * 71 5375 800 IB
465 * 72 6175 800 IC
466 *
467 * 74 6925 700 S01
468 * 75 7625 700 S02
469 * 76 8325 700 S03
470 *
471 * 80 10525 700 S1
472 * 81 11225 700 S2
473 * 82 11925 700 S3
474 * 83 12625 700 S4
475 * 84 13325 700 S5
476 * 85 14025 700 S6
477 * 86 14725 700 S7
478 * 87 15425 700 S8
479 * 88 16125 700 S9
480 * 89 16825 700 S10
481 * 90 23125 700 S11
482 * 91 23825 700 S12
483 * 92 24525 700 S13
484 * 93 25225 700 S14
485 * 94 25925 700 S15
486 * 95 26625 700 S16
487 * 96 27325 700 S17
488 * 97 28025 700 S18
489 * 98 28725 700 S19
490 * 99 29425 700 S20
491 *
492 *
493 * Channels S21 - S41 are taken from
494 * http://gemma.apple.com:80/dev/technotes/tn/tn1012.html
495 *
496 * 100 30325 800 S21
497 * 101 31125 800 S22
498 * 102 31925 800 S23
499 * 103 32725 800 S24
500 * 104 33525 800 S25
501 * 105 34325 800 S26
502 * 106 35125 800 S27
503 * 107 35925 800 S28
504 * 108 36725 800 S29
505 * 109 37525 800 S30
506 * 110 38325 800 S31
507 * 111 39125 800 S32
508 * 112 39925 800 S33
509 * 113 40725 800 S34
510 * 114 41525 800 S35
511 * 115 42325 800 S36
512 * 116 43125 800 S37
513 * 117 43925 800 S38
514 * 118 44725 800 S39
515 * 119 45525 800 S40
516 * 120 46325 800 S41
517 *
518 * 121 3890 000 IFFREQ
519 *
520 */
521static int weurope[] = {
522 121, (int)( 38.90 * FREQFACTOR), 0,
523 100, (int)(303.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR),
524 90, (int)(231.25 * FREQFACTOR), (int)(7.00 * FREQFACTOR),
525 80, (int)(105.25 * FREQFACTOR), (int)(7.00 * FREQFACTOR),
526 74, (int)( 69.25 * FREQFACTOR), (int)(7.00 * FREQFACTOR),
527 21, (int)(471.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR),
528 17, (int)(183.25 * FREQFACTOR), (int)(9.00 * FREQFACTOR),
529 16, (int)(175.25 * FREQFACTOR), (int)(9.00 * FREQFACTOR),
530 15, (int)(82.25 * FREQFACTOR), (int)(8.50 * FREQFACTOR),
531 13, (int)(53.75 * FREQFACTOR), (int)(8.50 * FREQFACTOR),
532 5, (int)(175.25 * FREQFACTOR), (int)(7.00 * FREQFACTOR),
533 2, (int)(48.25 * FREQFACTOR), (int)(7.00 * FREQFACTOR),
534 0
535};
536
537/*
538 * Japanese Broadcast Channels:
539 *
540 * 1: 91.25MHz - 3: 103.25MHz
541 * 4: 171.25MHz - 7: 189.25MHz
542 * 8: 193.25MHz - 12: 217.25MHz (VHF)
543 * 13: 471.25MHz - 62: 765.25MHz (UHF)
544 *
545 * IF freq: 45.75 mHz
546 * OR
547 * IF freq: 58.75 mHz
548 */
549#define OFFSET 6.00
550#define IF_FREQ 45.75
551static int jpnbcst[] = {
552 62, (int)(IF_FREQ * FREQFACTOR), 0,
553 13, (int)(471.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
554 8, (int)(193.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
555 4, (int)(171.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
556 1, (int)( 91.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
557 0
558};
559#undef IF_FREQ
560#undef OFFSET
561
562/*
563 * Japanese Cable Channels:
564 *
565 * 1: 91.25MHz - 3: 103.25MHz
566 * 4: 171.25MHz - 7: 189.25MHz
567 * 8: 193.25MHz - 12: 217.25MHz
568 * 13: 109.25MHz - 21: 157.25MHz
569 * 22: 165.25MHz
570 * 23: 223.25MHz - 63: 463.25MHz
571 *
572 * IF freq: 45.75 mHz
573 */
574#define OFFSET 6.00
575#define IF_FREQ 45.75
576static int jpncable[] = {
577 63, (int)(IF_FREQ * FREQFACTOR), 0,
578 23, (int)(223.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
579 22, (int)(165.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
580 13, (int)(109.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
581 8, (int)(193.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
582 4, (int)(171.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
583 1, (int)( 91.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
584 0
585};
586#undef IF_FREQ
587#undef OFFSET
588
589/*
590 * xUSSR Broadcast Channels:
591 *
592 * 1: 49.75MHz - 2: 59.25MHz
593 * 3: 77.25MHz - 5: 93.25MHz
594 * 6: 175.25MHz - 12: 223.25MHz
595 * 13-20 - not exist
596 * 21: 471.25MHz - 34: 575.25MHz
597 * 35: 583.25MHz - 69: 855.25MHz
598 *
599 * Cable channels
600 *
601 * 70: 111.25MHz - 77: 167.25MHz
602 * 78: 231.25MHz -107: 463.25MHz
603 *
604 * IF freq: 38.90 MHz
605 */
606#define IF_FREQ 38.90
607static int xussr[] = {
608 107, (int)(IF_FREQ * FREQFACTOR), 0,
609 78, (int)(231.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR),
610 70, (int)(111.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR),
611 35, (int)(583.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR),
612 21, (int)(471.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR),
613 6, (int)(175.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR),
614 3, (int)( 77.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR),
615 1, (int)( 49.75 * FREQFACTOR), (int)(9.50 * FREQFACTOR),
616 0
617};
618#undef IF_FREQ
619
620/*
621 * Australian broadcast channels
622 */
623#define OFFSET 7.00
624#define IF_FREQ 38.90
625static int australia[] = {
626 83, (int)(IF_FREQ * FREQFACTOR), 0,
627 28, (int)(527.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
628 10, (int)(209.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
629 6, (int)(175.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
630 4, (int)( 95.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
631 3, (int)( 86.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
632 1, (int)( 57.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
633 0
634};
635#undef OFFSET
636#undef IF_FREQ
637
638/*
639 * France broadcast channels
640 */
641#define OFFSET 8.00
642#define IF_FREQ 38.90
643static int france[] = {
644 69, (int)(IF_FREQ * FREQFACTOR), 0,
645 21, (int)(471.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), /* 21 -> 69 */
646 5, (int)(176.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), /* 5 -> 10 */
647 4, (int)( 63.75 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), /* 4 */
648 3, (int)( 60.50 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), /* 3 */
649 1, (int)( 47.75 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), /* 1 2 */
650 0
651};
652#undef OFFSET
653#undef IF_FREQ
654
655static struct {
656 int *ptr;
657 char name[BT848_MAX_CHNLSET_NAME_LEN];
658} freqTable[] = {
659 {NULL, ""},
660 {nabcst, "nabcst"},
661 {irccable, "cableirc"},
662 {hrccable, "cablehrc"},
663 {weurope, "weurope"},
664 {jpnbcst, "jpnbcst"},
665 {jpncable, "jpncable"},
666 {xussr, "xussr"},
667 {australia, "australia"},
668 {france, "france"},
669
670};
671
672#define TBL_CHNL freqTable[ bktr->tuner.chnlset ].ptr[ x ]
673#define TBL_BASE_FREQ freqTable[ bktr->tuner.chnlset ].ptr[ x + 1 ]
674#define TBL_OFFSET freqTable[ bktr->tuner.chnlset ].ptr[ x + 2 ]
675static int
676frequency_lookup( bktr_ptr_t bktr, int channel )
677{
678 int x;
679
680 /* check for "> MAX channel" */
681 x = 0;
682 if ( channel > TBL_CHNL )
683 return( -1 );
684
685 /* search the table for data */
686 for ( x = 3; TBL_CHNL; x += 3 ) {
687 if ( channel >= TBL_CHNL ) {
688 return( TBL_BASE_FREQ +
689 ((channel - TBL_CHNL) * TBL_OFFSET) );
690 }
691 }
692
693 /* not found, must be below the MIN channel */
694 return( -1 );
695}
696#undef TBL_OFFSET
697#undef TBL_BASE_FREQ
698#undef TBL_CHNL
699
700
d3f3bfa9
SW
701#define TBL_IF (bktr->format_params == BT848_IFORM_F_NTSCJ || \
702 bktr->format_params == BT848_IFORM_F_NTSCM ? \
703 nabcst[1] : weurope[1])
984263bc
MD
704
705
706/* Initialise the tuner structures in the bktr_softc */
707/* This is needed as the tuner details are no longer globally declared */
708
709void select_tuner( bktr_ptr_t bktr, int tuner_type ) {
710 if (tuner_type < Bt848_MAX_TUNER) {
711 bktr->card.tuner = &tuners[ tuner_type ];
712 } else {
713 bktr->card.tuner = NULL;
714 }
715}
716
717/*
718 * Tuner Notes:
719 * Programming the tuner properly is quite complicated.
720 * Here are some notes, based on a FM1246 data sheet for a PAL-I tuner.
721 * The tuner (front end) covers 45.75 Mhz - 855.25 Mhz and an FM band of
722 * 87.5 Mhz to 108.0 Mhz.
723 *
724 * RF and IF. RF = radio frequencies, it is the transmitted signal.
725 * IF is the Intermediate Frequency (the offset from the base
726 * signal where the video, color, audio and NICAM signals are.
727 *
728 * Eg, Picture at 38.9 Mhz, Colour at 34.47 MHz, sound at 32.9 MHz
729 * NICAM at 32.348 Mhz.
730 * Strangely enough, there is an IF (intermediate frequency) for
731 * FM Radio which is 10.7 Mhz.
732 *
733 * The tuner also works in Bands. Philips bands are
734 * FM radio band 87.50 to 108.00 MHz
735 * Low band 45.75 to 170.00 MHz
736 * Mid band 170.00 to 450.00 MHz
737 * High band 450.00 to 855.25 MHz
738 *
739 *
740 * Now we need to set the PLL on the tuner to the required freuqncy.
741 * It has a programmable divisor.
742 * For TV we want
743 * N = 16 (freq RF(pc) + freq IF(pc)) pc is picture carrier and RF and IF
744 * are in MHz.
745
746 * For RADIO we want a different equation.
747 * freq IF is 10.70 MHz (so the data sheet tells me)
748 * N = (freq RF + freq IF) / step size
749 * The step size must be set to 50 khz (so the data sheet tells me)
750 * (note this is 50 kHz, the other things are in MHz)
751 * so we end up with N = 20x(freq RF + 10.7)
752 *
753 */
754
755#define LOW_BAND 0
756#define MID_BAND 1
757#define HIGH_BAND 2
758#define FM_RADIO_BAND 3
759
760
761/* Check if these are correct for other than Philips PAL */
762#define STATUSBIT_COLD 0x80
763#define STATUSBIT_LOCK 0x40
764#define STATUSBIT_TV 0x20
765#define STATUSBIT_STEREO 0x10 /* valid if FM (aka not TV) */
766#define STATUSBIT_ADC 0x07
767
768/*
769 * set the frequency of the tuner
770 * If 'type' is TV_FREQUENCY, the frequency is freq MHz*16
771 * If 'type' is FM_RADIO_FREQUENCY, the frequency is freq MHz * 100
772 * (note *16 gives is 4 bits of fraction, eg steps of nnn.0625)
773 *
774 */
775int
776tv_freq( bktr_ptr_t bktr, int frequency, int type )
777{
778 const struct TUNER* tuner;
779 u_char addr;
780 u_char control;
781 u_char band;
782 int N;
783 int band_select = 0;
784#if defined( TEST_TUNER_AFC )
785 int oldFrequency, afcDelta;
786#endif
787
788 tuner = bktr->card.tuner;
789 if ( tuner == NULL )
790 return( -1 );
791
7f5487a0
SS
792 if (tuner == &tuners[TUNER_MT2032]) {
793 mt2032_set_tv_freq(bktr, frequency);
794 return 0;
795 }
984263bc
MD
796 if (type == TV_FREQUENCY) {
797 /*
798 * select the band based on frequency
799 * XXX FIXME: get the cross-over points from the tuner struct
800 */
801 if ( frequency < (160 * FREQFACTOR ) )
802 band_select = LOW_BAND;
803 else if ( frequency < (454 * FREQFACTOR ) )
804 band_select = MID_BAND;
805 else
806 band_select = HIGH_BAND;
807
808#if defined( TEST_TUNER_AFC )
809 if ( bktr->tuner.afc )
810 frequency -= 4;
811#endif
812 /*
813 * N = 16 * { fRF(pc) + fIF(pc) }
814 * or N = 16* fRF(pc) + 16*fIF(pc) }
815 * where:
816 * pc is picture carrier, fRF & fIF are in MHz
817 *
818 * fortunatly, frequency is passed in as MHz * 16
819 * and the TBL_IF frequency is also stored in MHz * 16
820 */
821 N = frequency + TBL_IF;
822
823 /* set the address of the PLL */
824 addr = bktr->card.tuner_pllAddr;
825 control = tuner->pllControl[ band_select ];
826 band = tuner->bandAddrs[ band_select ];
827
828 if(!(band && control)) /* Don't try to set un- */
829 return(-1); /* supported modes. */
830
831 if ( frequency > bktr->tuner.frequency ) {
832 i2cWrite( bktr, addr, (N>>8) & 0x7f, N & 0xff );
833 i2cWrite( bktr, addr, control, band );
834 }
835 else {
836 i2cWrite( bktr, addr, control, band );
837 i2cWrite( bktr, addr, (N>>8) & 0x7f, N & 0xff );
838 }
839
840#if defined( TUNER_AFC )
841 if ( bktr->tuner.afc == TRUE ) {
842#if defined( TEST_TUNER_AFC )
843 oldFrequency = frequency;
844#endif
845 if ( (N = do_afc( bktr, addr, N )) < 0 ) {
846 /* AFC failed, restore requested frequency */
847 N = frequency + TBL_IF;
848#if defined( TEST_TUNER_AFC )
e3869ec7 849 kprintf("%s: do_afc: failed to lock\n",
984263bc
MD
850 bktr_name(bktr));
851#endif
852 i2cWrite( bktr, addr, (N>>8) & 0x7f, N & 0xff );
853 }
854 else
855 frequency = N - TBL_IF;
856#if defined( TEST_TUNER_AFC )
e3869ec7 857 kprintf("%s: do_afc: returned freq %d (%d %% %d)\n", bktr_name(bktr), frequency, frequency / 16, frequency % 16);
984263bc 858 afcDelta = frequency - oldFrequency;
e3869ec7 859 kprintf("%s: changed by: %d clicks (%d mod %d)\n", bktr_name(bktr), afcDelta, afcDelta / 16, afcDelta % 16);
984263bc
MD
860#endif
861 }
862#endif /* TUNER_AFC */
863
864 bktr->tuner.frequency = frequency;
865 }
866
867 if ( type == FM_RADIO_FREQUENCY ) {
868 band_select = FM_RADIO_BAND;
869
870 /*
871 * N = { fRF(pc) + fIF(pc) }/step_size
872 * The step size is 50kHz for FM radio.
873 * (eg after 102.35MHz comes 102.40 MHz)
874 * fIF is 10.7 MHz (as detailed in the specs)
875 *
876 * frequency is passed in as MHz * 100
877 *
878 * So, we have N = (frequency/100 + 10.70) /(50/1000)
879 */
880 N = (frequency + 1070)/5;
881
882 /* set the address of the PLL */
883 addr = bktr->card.tuner_pllAddr;
884 control = tuner->pllControl[ band_select ];
885 band = tuner->bandAddrs[ band_select ];
886
887 if(!(band && control)) /* Don't try to set un- */
888 return(-1); /* supported modes. */
889
890 band |= bktr->tuner.radio_mode; /* tuner.radio_mode is set in
891 * the ioctls RADIO_SETMODE
892 * and RADIO_GETMODE */
893
894 i2cWrite( bktr, addr, control, band );
895 i2cWrite( bktr, addr, (N>>8) & 0x7f, N & 0xff );
896
897 bktr->tuner.frequency = (N * 5) - 1070;
898
899
900 }
901
902
903 return( 0 );
904}
905
906
907
908#if defined( TUNER_AFC )
909/*
910 *
911 */
912int
913do_afc( bktr_ptr_t bktr, int addr, int frequency )
914{
915 int step;
916 int status;
917 int origFrequency;
918
919 origFrequency = frequency;
920
921 /* wait for first setting to take effect */
377d4740 922 tsleep( BKTR_SLEEP, 0, "tuning", hz/8 );
984263bc
MD
923
924 if ( (status = i2cRead( bktr, addr + 1 )) < 0 )
925 return( -1 );
926
927#if defined( TEST_TUNER_AFC )
e3869ec7 928 kprintf( "%s: Original freq: %d, status: 0x%02x\n", bktr_name(bktr), frequency, status );
984263bc
MD
929#endif
930 for ( step = 0; step < AFC_MAX_STEP; ++step ) {
931 if ( (status = i2cRead( bktr, addr + 1 )) < 0 )
932 goto fubar;
933 if ( !(status & 0x40) ) {
934#if defined( TEST_TUNER_AFC )
e3869ec7 935 kprintf( "%s: no lock!\n", bktr_name(bktr) );
984263bc
MD
936#endif
937 goto fubar;
938 }
939
940 switch( status & AFC_BITS ) {
941 case AFC_FREQ_CENTERED:
942#if defined( TEST_TUNER_AFC )
e3869ec7 943 kprintf( "%s: Centered, freq: %d, status: 0x%02x\n", bktr_name(bktr), frequency, status );
984263bc
MD
944#endif
945 return( frequency );
946
947 case AFC_FREQ_MINUS_125:
948 case AFC_FREQ_MINUS_62:
949#if defined( TEST_TUNER_AFC )
e3869ec7 950 kprintf( "%s: Low, freq: %d, status: 0x%02x\n", bktr_name(bktr), frequency, status );
984263bc
MD
951#endif
952 --frequency;
953 break;
954
955 case AFC_FREQ_PLUS_62:
956 case AFC_FREQ_PLUS_125:
957#if defined( TEST_TUNER_AFC )
e3869ec7 958 kprintf( "%s: Hi, freq: %d, status: 0x%02x\n", bktr_name(bktr), frequency, status );
984263bc
MD
959#endif
960 ++frequency;
961 break;
962 }
963
964 i2cWrite( bktr, addr,
965 (frequency>>8) & 0x7f, frequency & 0xff );
966 DELAY( AFC_DELAY );
967 }
968
969 fubar:
970 i2cWrite( bktr, addr,
971 (origFrequency>>8) & 0x7f, origFrequency & 0xff );
972
973 return( -1 );
974}
975#endif /* TUNER_AFC */
976#undef TBL_IF
977
978
979/*
980 * Get the Tuner status and signal strength
981 */
982int get_tuner_status( bktr_ptr_t bktr ) {
7f5487a0
SS
983 if (bktr->card.tuner == &tuners[TUNER_MT2032])
984 return 0;
984263bc
MD
985 return i2cRead( bktr, bktr->card.tuner_pllAddr + 1 );
986}
987
988/*
989 * set the channel of the tuner
990 */
991int
992tv_channel( bktr_ptr_t bktr, int channel )
993{
994 int frequency;
995
996 /* calculate the frequency according to tuner type */
997 if ( (frequency = frequency_lookup( bktr, channel )) < 0 )
998 return( -1 );
999
1000 /* set the new frequency */
1001 if ( tv_freq( bktr, frequency, TV_FREQUENCY ) < 0 )
1002 return( -1 );
1003
1004 /* OK to update records */
1005 return( (bktr->tuner.channel = channel) );
1006}
1007
1008/*
1009 * get channelset name
1010 */
1011int
1012tuner_getchnlset(struct bktr_chnlset *chnlset)
1013{
1014 if (( chnlset->index < CHNLSET_MIN ) ||
1015 ( chnlset->index > CHNLSET_MAX ))
1016 return( EINVAL );
1017
1018 memcpy(&chnlset->name, &freqTable[chnlset->index].name,
1019 BT848_MAX_CHNLSET_NAME_LEN);
1020
1021 chnlset->max_channel=freqTable[chnlset->index].ptr[0];
1022 return( 0 );
1023}
7f5487a0
SS
1024
1025
1026
1027
1028#define TDA9887_ADDR 0x86
1029
1030static int
1031TDA9887_init(bktr_ptr_t bktr, int output2_enable)
1032{
1033 u_char addr = TDA9887_ADDR;
1034
1035 i2cWrite(bktr, addr, 0, output2_enable ? 0x50 : 0xd0);
1036 i2cWrite(bktr, addr, 1, 0x6e); /* takeover point / de-emphasis */
1037
1038 /* PAL BG: 0x09 PAL I: 0x0a NTSC: 0x04 */
1039#ifdef MT2032_NTSC
1040 i2cWrite(bktr, addr, 2, 0x04);
1041#else
1042 i2cWrite(bktr, addr, 2, 0x09);
1043#endif
1044 return 0;
1045}
1046
1047
1048
1049#define MT2032_OPTIMIZE_VCO 1
1050
1051/* holds the value of XOGC register after init */
1052static int MT2032_XOGC = 4;
1053
1054/* card.tuner_pllAddr not set during init */
1055#define MT2032_ADDR 0xc0
1056
1057#ifndef MT2032_ADDR
1058#define MT2032_ADDR (bktr->card.tuner_pllAddr)
1059#endif
1060
1061static int
1062_MT2032_GetRegister(bktr_ptr_t bktr, u_char regNum)
1063{
1064 int ch;
1065
1066 if (i2cWrite(bktr, MT2032_ADDR, regNum, -1) == -1) {
1067 if (bootverbose)
e3869ec7 1068 kprintf("%s: MT2032 write failed (i2c addr %#x)\n",
7f5487a0
SS
1069 bktr_name(bktr), MT2032_ADDR);
1070 return -1;
1071 }
1072 if ((ch = i2cRead(bktr, MT2032_ADDR + 1)) == -1) {
1073 if (bootverbose)
e3869ec7 1074 kprintf("%s: MT2032 get register %d failed\n",
7f5487a0
SS
1075 bktr_name(bktr), regNum);
1076 return -1;
1077 }
1078 return ch;
1079}
1080
1081static void
1082_MT2032_SetRegister(bktr_ptr_t bktr, u_char regNum, u_char data)
1083{
1084 i2cWrite(bktr, MT2032_ADDR, regNum, data);
1085}
1086
1087#define MT2032_GetRegister(r) _MT2032_GetRegister(bktr,r)
1088#define MT2032_SetRegister(r,d) _MT2032_SetRegister(bktr,r,d)
1089
1090
1091int
1092mt2032_init(bktr_ptr_t bktr)
1093{
1094 u_char rdbuf[22];
1095 int xogc, xok = 0;
1096 int i;
1097 int x;
1098
1099 TDA9887_init(bktr, 0);
1100
1101 for (i = 0; i < 21; i++) {
1102 if ((x = MT2032_GetRegister(i)) == -1)
1103 break;
1104 rdbuf[i] = x;
1105 }
1106 if (i < 21)
1107 return -1;
1108
e3869ec7 1109 kprintf("%s: MT2032: Companycode=%02x%02x Part=%02x Revision=%02x\n",
7f5487a0
SS
1110 bktr_name(bktr),
1111 rdbuf[0x11], rdbuf[0x12], rdbuf[0x13], rdbuf[0x14]);
1112 if (rdbuf[0x13] != 4) {
e3869ec7 1113 kprintf("%s: MT2032 not found or unknown type\n", bktr_name(bktr));
7f5487a0
SS
1114 return -1;
1115 }
1116
1117 /* Initialize Registers per spec. */
1118 MT2032_SetRegister(2, 0xff);
1119 MT2032_SetRegister(3, 0x0f);
1120 MT2032_SetRegister(4, 0x1f);
1121 MT2032_SetRegister(6, 0xe4);
1122 MT2032_SetRegister(7, 0x8f);
1123 MT2032_SetRegister(8, 0xc3);
1124 MT2032_SetRegister(9, 0x4e);
1125 MT2032_SetRegister(10, 0xec);
1126 MT2032_SetRegister(13, 0x32);
1127
1128 /* Adjust XOGC (register 7), wait for XOK */
1129 xogc = 7;
1130 do {
1131 DELAY(10000);
1132 xok = MT2032_GetRegister(0x0e) & 0x01;
1133 if (xok == 1) {
1134 break;
1135 }
1136 xogc--;
1137 if (xogc == 3) {
1138 xogc = 4; /* min. 4 per spec */
1139 break;
1140 }
1141 MT2032_SetRegister(7, 0x88 + xogc);
1142 } while (xok != 1);
1143
1144 TDA9887_init(bktr, 1);
1145
1146 MT2032_XOGC = xogc;
1147
1148 return 0;
1149}
1150
1151static int
1152MT2032_SpurCheck(int f1, int f2, int spectrum_from, int spectrum_to)
1153{
1154 int n1 = 1, n2, f;
1155
1156 f1 = f1 / 1000; /* scale to kHz to avoid 32bit overflows */
1157 f2 = f2 / 1000;
1158 spectrum_from /= 1000;
1159 spectrum_to /= 1000;
1160
1161 do {
1162 n2 = -n1;
1163 f = n1 * (f1 - f2);
1164 do {
1165 n2--;
1166 f = f - f2;
1167 if ((f > spectrum_from) && (f < spectrum_to)) {
1168 return 1;
1169 }
1170 } while ((f > (f2 - spectrum_to)) || (n2 > -5));
1171 n1++;
1172 } while (n1 < 5);
1173
1174 return 0;
1175}
1176
1177static int
1178MT2032_ComputeFreq(
1179 int rfin,
1180 int if1,
1181 int if2,
1182 int spectrum_from,
1183 int spectrum_to,
1184 unsigned char *buf,
1185 int *ret_sel,
1186 int xogc
1187)
1188{ /* all in Hz */
1189 int fref, lo1, lo1n, lo1a, s, sel;
1190 int lo1freq, desired_lo1, desired_lo2, lo2, lo2n, lo2a,
77f47c61 1191 lo2num;
7f5487a0
SS
1192 int nLO1adjust;
1193
1194 fref = 5250 * 1000; /* 5.25MHz */
1195
1196 /* per spec 2.3.1 */
1197 desired_lo1 = rfin + if1;
1198 lo1 = (2 * (desired_lo1 / 1000) + (fref / 1000)) / (2 * fref / 1000);
1199 lo1freq = lo1 * fref;
1200 desired_lo2 = lo1freq - rfin - if2;
1201
1202 /* per spec 2.3.2 */
1203 for (nLO1adjust = 1; nLO1adjust < 3; nLO1adjust++) {
1204 if (!MT2032_SpurCheck(lo1freq, desired_lo2, spectrum_from, spectrum_to)) {
1205 break;
1206 }
1207 if (lo1freq < desired_lo1) {
1208 lo1 += nLO1adjust;
1209 } else {
1210 lo1 -= nLO1adjust;
1211 }
1212
1213 lo1freq = lo1 * fref;
1214 desired_lo2 = lo1freq - rfin - if2;
1215 }
1216
1217 /* per spec 2.3.3 */
1218 s = lo1freq / 1000 / 1000;
1219
1220 if (MT2032_OPTIMIZE_VCO) {
1221 if (s > 1890) {
1222 sel = 0;
1223 } else if (s > 1720) {
1224 sel = 1;
1225 } else if (s > 1530) {
1226 sel = 2;
1227 } else if (s > 1370) {
1228 sel = 3;
1229 } else {
1230 sel = 4;/* >1090 */
1231 }
1232 } else {
1233 if (s > 1790) {
1234 sel = 0;/* <1958 */
1235 } else if (s > 1617) {
1236 sel = 1;
1237 } else if (s > 1449) {
1238 sel = 2;
1239 } else if (s > 1291) {
1240 sel = 3;
1241 } else {
1242 sel = 4;/* >1090 */
1243 }
1244 }
1245
1246 *ret_sel = sel;
1247
1248 /* per spec 2.3.4 */
1249 lo1n = lo1 / 8;
1250 lo1a = lo1 - (lo1n * 8);
1251 lo2 = desired_lo2 / fref;
1252 lo2n = lo2 / 8;
1253 lo2a = lo2 - (lo2n * 8);
1254 /* scale to fit in 32bit arith */
1255 lo2num = ((desired_lo2 / 1000) % (fref / 1000)) * 3780 / (fref / 1000);
7f5487a0
SS
1256
1257 if (lo1a < 0 || lo1a > 7 || lo1n < 17 || lo1n > 48 || lo2a < 0 ||
1258 lo2a > 7 || lo2n < 17 || lo2n > 30) {
e3869ec7 1259 kprintf("MT2032: parameter out of range\n");
7f5487a0
SS
1260 return -1;
1261 }
1262 /* set up MT2032 register map for transfer over i2c */
1263 buf[0] = lo1n - 1;
1264 buf[1] = lo1a | (sel << 4);
1265 buf[2] = 0x86; /* LOGC */
1266 buf[3] = 0x0f; /* reserved */
1267 buf[4] = 0x1f;
1268 buf[5] = (lo2n - 1) | (lo2a << 5);
1269 if (rfin < 400 * 1000 * 1000) {
1270 buf[6] = 0xe4;
1271 } else {
1272 buf[6] = 0xf4; /* set PKEN per rev 1.2 */
1273 }
1274
1275 buf[7] = 8 + xogc;
1276 buf[8] = 0xc3; /* reserved */
1277 buf[9] = 0x4e; /* reserved */
1278 buf[10] = 0xec; /* reserved */
1279 buf[11] = (lo2num & 0xff);
1280 buf[12] = (lo2num >> 8) | 0x80; /* Lo2RST */
1281
1282 return 0;
1283}
1284
1285static int
1286MT2032_CheckLOLock(bktr_ptr_t bktr)
1287{
1288 int t, lock = 0;
1289 for (t = 0; t < 10; t++) {
1290 lock = MT2032_GetRegister(0x0e) & 0x06;
1291 if (lock == 6) {
1292 break;
1293 }
1294 DELAY(1000);
1295 }
1296 return lock;
1297}
1298
1299static int
1300MT2032_OptimizeVCO(bktr_ptr_t bktr, int sel, int lock)
1301{
1302 int tad1, lo1a;
1303
1304 tad1 = MT2032_GetRegister(0x0f) & 0x07;
1305
1306 if (tad1 == 0) {
1307 return lock;
1308 }
1309 if (tad1 == 1) {
1310 return lock;
1311 }
1312 if (tad1 == 2) {
1313 if (sel == 0) {
1314 return lock;
1315 } else {
1316 sel--;
1317 }
1318 } else {
1319 if (sel < 4) {
1320 sel++;
1321 } else {
1322 return lock;
1323 }
1324 }
1325 lo1a = MT2032_GetRegister(0x01) & 0x07;
1326 MT2032_SetRegister(0x01, lo1a | (sel << 4));
1327 lock = MT2032_CheckLOLock(bktr);
1328 return lock;
1329}
1330
1331static int
1332MT2032_SetIFFreq(bktr_ptr_t bktr, int rfin, int if1, int if2, int from, int to)
1333{
1334 u_char buf[21];
1335 int lint_try, sel, lock = 0;
1336
1337 if (MT2032_ComputeFreq(rfin, if1, if2, from, to, &buf[0], &sel, MT2032_XOGC) == -1)
1338 return -1;
1339
1340 TDA9887_init(bktr, 0);
1341
1342 /* send only the relevant registers per Rev. 1.2 */
1343 MT2032_SetRegister(0, buf[0x00]);
1344 MT2032_SetRegister(1, buf[0x01]);
1345 MT2032_SetRegister(2, buf[0x02]);
1346
1347 MT2032_SetRegister(5, buf[0x05]);
1348 MT2032_SetRegister(6, buf[0x06]);
1349 MT2032_SetRegister(7, buf[0x07]);
1350
1351 MT2032_SetRegister(11, buf[0x0B]);
1352 MT2032_SetRegister(12, buf[0x0C]);
1353
1354 /* wait for PLLs to lock (per manual), retry LINT if not. */
1355 for (lint_try = 0; lint_try < 2; lint_try++) {
1356 lock = MT2032_CheckLOLock(bktr);
1357
1358 if (MT2032_OPTIMIZE_VCO) {
1359 lock = MT2032_OptimizeVCO(bktr, sel, lock);
1360 }
1361 if (lock == 6) {
1362 break;
1363 }
1364 /* set LINT to re-init PLLs */
1365 MT2032_SetRegister(7, 0x80 + 8 + MT2032_XOGC);
1366 DELAY(10000);
1367 MT2032_SetRegister(7, 8 + MT2032_XOGC);
1368 }
1369 if (lock != 6)
e3869ec7 1370 kprintf("%s: PLL didn't lock\n", bktr_name(bktr));
7f5487a0
SS
1371
1372 MT2032_SetRegister(2, 0x20);
1373
1374 TDA9887_init(bktr, 1);
1375 return 0;
1376}
1377
1378static void
1379mt2032_set_tv_freq(bktr_ptr_t bktr, unsigned int freq)
1380{
1381 int if2,from,to;
1382 int stat, tad;
1383
1384#ifdef MT2032_NTSC
1385 from=40750*1000;
1386 to=46750*1000;
1387 if2=45750*1000;
1388#else
1389 from=32900*1000;
1390 to=39900*1000;
1391 if2=38900*1000;
1392#endif
1393
1394 if (MT2032_SetIFFreq(bktr, freq*62500 /* freq*1000*1000/16 */,
1395 1090*1000*1000, if2, from, to) == 0) {
1396 bktr->tuner.frequency = freq;
1397 stat = MT2032_GetRegister(0x0e);
1398 tad = MT2032_GetRegister(0x0f);
1399 if (bootverbose)
e3869ec7 1400 kprintf("%s: frequency set to %d, st = %#x, tad = %#x\n",
7f5487a0
SS
1401 bktr_name(bktr), freq*62500, stat, tad);
1402 }
1403}