Merge from vendor branch ZLIB:
[dragonfly.git] / contrib / gdb-6.2.1 / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3    Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4    1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation,
5    Inc.
6
7    This file is part of GDB.
8
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 2 of the License, or
12    (at your option) any later version.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; if not, write to the Free Software
21    Foundation, Inc., 59 Temple Place - Suite 330,
22    Boston, MA 02111-1307, USA.  */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "value.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "language.h"
33 #include "annotate.h"
34 #include "valprint.h"
35 #include "floatformat.h"
36 #include "doublest.h"
37
38 #include <errno.h>
39
40 /* Prototypes for local functions */
41
42 static int partial_memory_read (CORE_ADDR memaddr, char *myaddr,
43                                 int len, int *errnoptr);
44
45 static void show_print (char *, int);
46
47 static void set_print (char *, int);
48
49 static void set_radix (char *, int);
50
51 static void show_radix (char *, int);
52
53 static void set_input_radix (char *, int, struct cmd_list_element *);
54
55 static void set_input_radix_1 (int, unsigned);
56
57 static void set_output_radix (char *, int, struct cmd_list_element *);
58
59 static void set_output_radix_1 (int, unsigned);
60
61 void _initialize_valprint (void);
62
63 /* Maximum number of chars to print for a string pointer value or vector
64    contents, or UINT_MAX for no limit.  Note that "set print elements 0"
65    stores UINT_MAX in print_max, which displays in a show command as
66    "unlimited". */
67
68 unsigned int print_max;
69 #define PRINT_MAX_DEFAULT 200   /* Start print_max off at this value. */
70
71 /* Default input and output radixes, and output format letter.  */
72
73 unsigned input_radix = 10;
74 unsigned output_radix = 10;
75 int output_format = 0;
76
77 /* Print repeat counts if there are more than this many repetitions of an
78    element in an array.  Referenced by the low level language dependent
79    print routines. */
80
81 unsigned int repeat_count_threshold = 10;
82
83 /* If nonzero, stops printing of char arrays at first null. */
84
85 int stop_print_at_null;
86
87 /* Controls pretty printing of structures. */
88
89 int prettyprint_structs;
90
91 /* Controls pretty printing of arrays.  */
92
93 int prettyprint_arrays;
94
95 /* If nonzero, causes unions inside structures or other unions to be
96    printed. */
97
98 int unionprint;                 /* Controls printing of nested unions.  */
99
100 /* If nonzero, causes machine addresses to be printed in certain contexts. */
101
102 int addressprint;               /* Controls printing of machine addresses */
103 \f
104
105 /* Print data of type TYPE located at VALADDR (within GDB), which came from
106    the inferior at address ADDRESS, onto stdio stream STREAM according to
107    FORMAT (a letter, or 0 for natural format using TYPE).
108
109    If DEREF_REF is nonzero, then dereference references, otherwise just print
110    them like pointers.
111
112    The PRETTY parameter controls prettyprinting.
113
114    If the data are a string pointer, returns the number of string characters
115    printed.
116
117    FIXME:  The data at VALADDR is in target byte order.  If gdb is ever
118    enhanced to be able to debug more than the single target it was compiled
119    for (specific CPU type and thus specific target byte ordering), then
120    either the print routines are going to have to take this into account,
121    or the data is going to have to be passed into here already converted
122    to the host byte ordering, whichever is more convenient. */
123
124
125 int
126 val_print (struct type *type, char *valaddr, int embedded_offset,
127            CORE_ADDR address, struct ui_file *stream, int format, int deref_ref,
128            int recurse, enum val_prettyprint pretty)
129 {
130   struct type *real_type = check_typedef (type);
131   if (pretty == Val_pretty_default)
132     {
133       pretty = prettyprint_structs ? Val_prettyprint : Val_no_prettyprint;
134     }
135
136   QUIT;
137
138   /* Ensure that the type is complete and not just a stub.  If the type is
139      only a stub and we can't find and substitute its complete type, then
140      print appropriate string and return.  */
141
142   if (TYPE_STUB (real_type))
143     {
144       fprintf_filtered (stream, "<incomplete type>");
145       gdb_flush (stream);
146       return (0);
147     }
148
149   return (LA_VAL_PRINT (type, valaddr, embedded_offset, address,
150                         stream, format, deref_ref, recurse, pretty));
151 }
152
153 /* Print the value VAL in C-ish syntax on stream STREAM.
154    FORMAT is a format-letter, or 0 for print in natural format of data type.
155    If the object printed is a string pointer, returns
156    the number of string bytes printed.  */
157
158 int
159 value_print (struct value *val, struct ui_file *stream, int format,
160              enum val_prettyprint pretty)
161 {
162   if (val == 0)
163     {
164       printf_filtered ("<address of value unknown>");
165       return 0;
166     }
167   if (VALUE_OPTIMIZED_OUT (val))
168     {
169       printf_filtered ("<value optimized out>");
170       return 0;
171     }
172   return LA_VALUE_PRINT (val, stream, format, pretty);
173 }
174
175 /* Called by various <lang>_val_print routines to print
176    TYPE_CODE_INT's.  TYPE is the type.  VALADDR is the address of the
177    value.  STREAM is where to print the value.  */
178
179 void
180 val_print_type_code_int (struct type *type, char *valaddr,
181                          struct ui_file *stream)
182 {
183   if (TYPE_LENGTH (type) > sizeof (LONGEST))
184     {
185       LONGEST val;
186
187       if (TYPE_UNSIGNED (type)
188           && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
189                                             &val))
190         {
191           print_longest (stream, 'u', 0, val);
192         }
193       else
194         {
195           /* Signed, or we couldn't turn an unsigned value into a
196              LONGEST.  For signed values, one could assume two's
197              complement (a reasonable assumption, I think) and do
198              better than this.  */
199           print_hex_chars (stream, (unsigned char *) valaddr,
200                            TYPE_LENGTH (type));
201         }
202     }
203   else
204     {
205       print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
206                      unpack_long (type, valaddr));
207     }
208 }
209
210 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
211    The raison d'etre of this function is to consolidate printing of 
212    LONG_LONG's into this one function.  Some platforms have long longs but
213    don't have a printf() that supports "ll" in the format string.  We handle
214    these by seeing if the number is representable as either a signed or
215    unsigned long, depending upon what format is desired, and if not we just
216    bail out and print the number in hex.
217
218    The format chars b,h,w,g are from print_scalar_formatted().  If USE_LOCAL,
219    format it according to the current language (this should be used for most
220    integers which GDB prints, the exception is things like protocols where
221    the format of the integer is a protocol thing, not a user-visible thing).
222  */
223
224 #if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
225 static void print_decimal (struct ui_file * stream, char *sign,
226                            int use_local, ULONGEST val_ulong);
227 static void
228 print_decimal (struct ui_file *stream, char *sign, int use_local,
229                ULONGEST val_ulong)
230 {
231   unsigned long temp[3];
232   int i = 0;
233   do
234     {
235       temp[i] = val_ulong % (1000 * 1000 * 1000);
236       val_ulong /= (1000 * 1000 * 1000);
237       i++;
238     }
239   while (val_ulong != 0 && i < (sizeof (temp) / sizeof (temp[0])));
240   switch (i)
241     {
242     case 1:
243       fprintf_filtered (stream, "%s%lu",
244                         sign, temp[0]);
245       break;
246     case 2:
247       fprintf_filtered (stream, "%s%lu%09lu",
248                         sign, temp[1], temp[0]);
249       break;
250     case 3:
251       fprintf_filtered (stream, "%s%lu%09lu%09lu",
252                         sign, temp[2], temp[1], temp[0]);
253       break;
254     default:
255       internal_error (__FILE__, __LINE__, "failed internal consistency check");
256     }
257   return;
258 }
259 #endif
260
261 void
262 print_longest (struct ui_file *stream, int format, int use_local,
263                LONGEST val_long)
264 {
265 #if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
266   if (sizeof (long) < sizeof (LONGEST))
267     {
268       switch (format)
269         {
270         case 'd':
271           {
272             /* Print a signed value, that doesn't fit in a long */
273             if ((long) val_long != val_long)
274               {
275                 if (val_long < 0)
276                   print_decimal (stream, "-", use_local, -val_long);
277                 else
278                   print_decimal (stream, "", use_local, val_long);
279                 return;
280               }
281             break;
282           }
283         case 'u':
284           {
285             /* Print an unsigned value, that doesn't fit in a long */
286             if ((unsigned long) val_long != (ULONGEST) val_long)
287               {
288                 print_decimal (stream, "", use_local, val_long);
289                 return;
290               }
291             break;
292           }
293         case 'x':
294         case 'o':
295         case 'b':
296         case 'h':
297         case 'w':
298         case 'g':
299           /* Print as unsigned value, must fit completely in unsigned long */
300           {
301             unsigned long temp = val_long;
302             if (temp != val_long)
303               {
304                 /* Urk, can't represent value in long so print in hex.
305                    Do shift in two operations so that if sizeof (long)
306                    == sizeof (LONGEST) we can avoid warnings from
307                    picky compilers about shifts >= the size of the
308                    shiftee in bits */
309                 unsigned long vbot = (unsigned long) val_long;
310                 LONGEST temp = (val_long >> (sizeof (long) * HOST_CHAR_BIT - 1));
311                 unsigned long vtop = temp >> 1;
312                 fprintf_filtered (stream, "0x%lx%08lx", vtop, vbot);
313                 return;
314               }
315             break;
316           }
317         }
318     }
319 #endif
320
321 #if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
322   switch (format)
323     {
324     case 'd':
325       fprintf_filtered (stream,
326                         use_local ? local_decimal_format_custom ("ll")
327                         : "%lld",
328                         (long long) val_long);
329       break;
330     case 'u':
331       fprintf_filtered (stream, "%llu", (long long) val_long);
332       break;
333     case 'x':
334       fprintf_filtered (stream,
335                         use_local ? local_hex_format_custom ("ll")
336                         : "%llx",
337                         (unsigned long long) val_long);
338       break;
339     case 'o':
340       fprintf_filtered (stream,
341                         use_local ? local_octal_format_custom ("ll")
342                         : "%llo",
343                         (unsigned long long) val_long);
344       break;
345     case 'b':
346       fprintf_filtered (stream, local_hex_format_custom ("02ll"), val_long);
347       break;
348     case 'h':
349       fprintf_filtered (stream, local_hex_format_custom ("04ll"), val_long);
350       break;
351     case 'w':
352       fprintf_filtered (stream, local_hex_format_custom ("08ll"), val_long);
353       break;
354     case 'g':
355       fprintf_filtered (stream, local_hex_format_custom ("016ll"), val_long);
356       break;
357     default:
358       internal_error (__FILE__, __LINE__, "failed internal consistency check");
359     }
360 #else /* !CC_HAS_LONG_LONG || !PRINTF_HAS_LONG_LONG */
361   /* In the following it is important to coerce (val_long) to a long. It does
362      nothing if !LONG_LONG, but it will chop off the top half (which we know
363      we can ignore) if the host supports long longs.  */
364
365   switch (format)
366     {
367     case 'd':
368       fprintf_filtered (stream,
369                         use_local ? local_decimal_format_custom ("l")
370                         : "%ld",
371                         (long) val_long);
372       break;
373     case 'u':
374       fprintf_filtered (stream, "%lu", (unsigned long) val_long);
375       break;
376     case 'x':
377       fprintf_filtered (stream,
378                         use_local ? local_hex_format_custom ("l")
379                         : "%lx",
380                         (unsigned long) val_long);
381       break;
382     case 'o':
383       fprintf_filtered (stream,
384                         use_local ? local_octal_format_custom ("l")
385                         : "%lo",
386                         (unsigned long) val_long);
387       break;
388     case 'b':
389       fprintf_filtered (stream, local_hex_format_custom ("02l"),
390                         (unsigned long) val_long);
391       break;
392     case 'h':
393       fprintf_filtered (stream, local_hex_format_custom ("04l"),
394                         (unsigned long) val_long);
395       break;
396     case 'w':
397       fprintf_filtered (stream, local_hex_format_custom ("08l"),
398                         (unsigned long) val_long);
399       break;
400     case 'g':
401       fprintf_filtered (stream, local_hex_format_custom ("016l"),
402                         (unsigned long) val_long);
403       break;
404     default:
405       internal_error (__FILE__, __LINE__, "failed internal consistency check");
406     }
407 #endif /* CC_HAS_LONG_LONG || PRINTF_HAS_LONG_LONG */
408 }
409
410 /* This used to be a macro, but I don't think it is called often enough
411    to merit such treatment.  */
412 /* Convert a LONGEST to an int.  This is used in contexts (e.g. number of
413    arguments to a function, number in a value history, register number, etc.)
414    where the value must not be larger than can fit in an int.  */
415
416 int
417 longest_to_int (LONGEST arg)
418 {
419   /* Let the compiler do the work */
420   int rtnval = (int) arg;
421
422   /* Check for overflows or underflows */
423   if (sizeof (LONGEST) > sizeof (int))
424     {
425       if (rtnval != arg)
426         {
427           error ("Value out of range.");
428         }
429     }
430   return (rtnval);
431 }
432
433 /* Print a floating point value of type TYPE (not always a
434    TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM.  */
435
436 void
437 print_floating (char *valaddr, struct type *type, struct ui_file *stream)
438 {
439   DOUBLEST doub;
440   int inv;
441   const struct floatformat *fmt = NULL;
442   unsigned len = TYPE_LENGTH (type);
443
444   /* If it is a floating-point, check for obvious problems.  */
445   if (TYPE_CODE (type) == TYPE_CODE_FLT)
446     fmt = floatformat_from_type (type);
447   if (fmt != NULL && floatformat_is_nan (fmt, valaddr))
448     {
449       if (floatformat_is_negative (fmt, valaddr))
450         fprintf_filtered (stream, "-");
451       fprintf_filtered (stream, "nan(");
452       fputs_filtered (local_hex_format_prefix (), stream);
453       fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
454       fputs_filtered (local_hex_format_suffix (), stream);
455       fprintf_filtered (stream, ")");
456       return;
457     }
458
459   /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
460      isn't necessarily a TYPE_CODE_FLT.  Consequently, unpack_double
461      needs to be used as that takes care of any necessary type
462      conversions.  Such conversions are of course direct to DOUBLEST
463      and disregard any possible target floating point limitations.
464      For instance, a u64 would be converted and displayed exactly on a
465      host with 80 bit DOUBLEST but with loss of information on a host
466      with 64 bit DOUBLEST.  */
467
468   doub = unpack_double (type, valaddr, &inv);
469   if (inv)
470     {
471       fprintf_filtered (stream, "<invalid float value>");
472       return;
473     }
474
475   /* FIXME: kettenis/2001-01-20: The following code makes too much
476      assumptions about the host and target floating point format.  */
477
478   /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
479      not necessarially be a TYPE_CODE_FLT, the below ignores that and
480      instead uses the type's length to determine the precision of the
481      floating-point value being printed.  */
482
483   if (len < sizeof (double))
484       fprintf_filtered (stream, "%.9g", (double) doub);
485   else if (len == sizeof (double))
486       fprintf_filtered (stream, "%.17g", (double) doub);
487   else
488 #ifdef PRINTF_HAS_LONG_DOUBLE
489     fprintf_filtered (stream, "%.35Lg", doub);
490 #else
491     /* This at least wins with values that are representable as
492        doubles.  */
493     fprintf_filtered (stream, "%.17g", (double) doub);
494 #endif
495 }
496
497 void
498 print_binary_chars (struct ui_file *stream, unsigned char *valaddr,
499                     unsigned len)
500 {
501
502 #define BITS_IN_BYTES 8
503
504   unsigned char *p;
505   unsigned int i;
506   int b;
507
508   /* Declared "int" so it will be signed.
509    * This ensures that right shift will shift in zeros.
510    */
511   const int mask = 0x080;
512
513   /* FIXME: We should be not printing leading zeroes in most cases.  */
514
515   fputs_filtered (local_binary_format_prefix (), stream);
516   if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
517     {
518       for (p = valaddr;
519            p < valaddr + len;
520            p++)
521         {
522           /* Every byte has 8 binary characters; peel off
523            * and print from the MSB end.
524            */
525           for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
526             {
527               if (*p & (mask >> i))
528                 b = 1;
529               else
530                 b = 0;
531
532               fprintf_filtered (stream, "%1d", b);
533             }
534         }
535     }
536   else
537     {
538       for (p = valaddr + len - 1;
539            p >= valaddr;
540            p--)
541         {
542           for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
543             {
544               if (*p & (mask >> i))
545                 b = 1;
546               else
547                 b = 0;
548
549               fprintf_filtered (stream, "%1d", b);
550             }
551         }
552     }
553   fputs_filtered (local_binary_format_suffix (), stream);
554 }
555
556 /* VALADDR points to an integer of LEN bytes.
557  * Print it in octal on stream or format it in buf.
558  */
559 void
560 print_octal_chars (struct ui_file *stream, unsigned char *valaddr, unsigned len)
561 {
562   unsigned char *p;
563   unsigned char octa1, octa2, octa3, carry;
564   int cycle;
565
566   /* FIXME: We should be not printing leading zeroes in most cases.  */
567
568
569   /* Octal is 3 bits, which doesn't fit.  Yuk.  So we have to track
570    * the extra bits, which cycle every three bytes:
571    *
572    * Byte side:       0            1             2          3
573    *                         |             |            |            |
574    * bit number   123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
575    *
576    * Octal side:   0   1   carry  3   4  carry ...
577    *
578    * Cycle number:    0             1            2
579    *
580    * But of course we are printing from the high side, so we have to
581    * figure out where in the cycle we are so that we end up with no
582    * left over bits at the end.
583    */
584 #define BITS_IN_OCTAL 3
585 #define HIGH_ZERO     0340
586 #define LOW_ZERO      0016
587 #define CARRY_ZERO    0003
588 #define HIGH_ONE      0200
589 #define MID_ONE       0160
590 #define LOW_ONE       0016
591 #define CARRY_ONE     0001
592 #define HIGH_TWO      0300
593 #define MID_TWO       0070
594 #define LOW_TWO       0007
595
596   /* For 32 we start in cycle 2, with two bits and one bit carry;
597    * for 64 in cycle in cycle 1, with one bit and a two bit carry.
598    */
599   cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
600   carry = 0;
601
602   fputs_filtered (local_octal_format_prefix (), stream);
603   if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
604     {
605       for (p = valaddr;
606            p < valaddr + len;
607            p++)
608         {
609           switch (cycle)
610             {
611             case 0:
612               /* No carry in, carry out two bits.
613                */
614               octa1 = (HIGH_ZERO & *p) >> 5;
615               octa2 = (LOW_ZERO & *p) >> 2;
616               carry = (CARRY_ZERO & *p);
617               fprintf_filtered (stream, "%o", octa1);
618               fprintf_filtered (stream, "%o", octa2);
619               break;
620
621             case 1:
622               /* Carry in two bits, carry out one bit.
623                */
624               octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
625               octa2 = (MID_ONE & *p) >> 4;
626               octa3 = (LOW_ONE & *p) >> 1;
627               carry = (CARRY_ONE & *p);
628               fprintf_filtered (stream, "%o", octa1);
629               fprintf_filtered (stream, "%o", octa2);
630               fprintf_filtered (stream, "%o", octa3);
631               break;
632
633             case 2:
634               /* Carry in one bit, no carry out.
635                */
636               octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
637               octa2 = (MID_TWO & *p) >> 3;
638               octa3 = (LOW_TWO & *p);
639               carry = 0;
640               fprintf_filtered (stream, "%o", octa1);
641               fprintf_filtered (stream, "%o", octa2);
642               fprintf_filtered (stream, "%o", octa3);
643               break;
644
645             default:
646               error ("Internal error in octal conversion;");
647             }
648
649           cycle++;
650           cycle = cycle % BITS_IN_OCTAL;
651         }
652     }
653   else
654     {
655       for (p = valaddr + len - 1;
656            p >= valaddr;
657            p--)
658         {
659           switch (cycle)
660             {
661             case 0:
662               /* Carry out, no carry in */
663               octa1 = (HIGH_ZERO & *p) >> 5;
664               octa2 = (LOW_ZERO & *p) >> 2;
665               carry = (CARRY_ZERO & *p);
666               fprintf_filtered (stream, "%o", octa1);
667               fprintf_filtered (stream, "%o", octa2);
668               break;
669
670             case 1:
671               /* Carry in, carry out */
672               octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
673               octa2 = (MID_ONE & *p) >> 4;
674               octa3 = (LOW_ONE & *p) >> 1;
675               carry = (CARRY_ONE & *p);
676               fprintf_filtered (stream, "%o", octa1);
677               fprintf_filtered (stream, "%o", octa2);
678               fprintf_filtered (stream, "%o", octa3);
679               break;
680
681             case 2:
682               /* Carry in, no carry out */
683               octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
684               octa2 = (MID_TWO & *p) >> 3;
685               octa3 = (LOW_TWO & *p);
686               carry = 0;
687               fprintf_filtered (stream, "%o", octa1);
688               fprintf_filtered (stream, "%o", octa2);
689               fprintf_filtered (stream, "%o", octa3);
690               break;
691
692             default:
693               error ("Internal error in octal conversion;");
694             }
695
696           cycle++;
697           cycle = cycle % BITS_IN_OCTAL;
698         }
699     }
700
701   fputs_filtered (local_octal_format_suffix (), stream);
702 }
703
704 /* VALADDR points to an integer of LEN bytes.
705  * Print it in decimal on stream or format it in buf.
706  */
707 void
708 print_decimal_chars (struct ui_file *stream, unsigned char *valaddr,
709                      unsigned len)
710 {
711 #define TEN             10
712 #define TWO_TO_FOURTH   16
713 #define CARRY_OUT(  x ) ((x) / TEN)     /* extend char to int */
714 #define CARRY_LEFT( x ) ((x) % TEN)
715 #define SHIFT( x )      ((x) << 4)
716 #define START_P \
717         ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1)
718 #define NOT_END_P \
719         ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
720 #define NEXT_P \
721         ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? p++ : p-- )
722 #define LOW_NIBBLE(  x ) ( (x) & 0x00F)
723 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
724
725   unsigned char *p;
726   unsigned char *digits;
727   int carry;
728   int decimal_len;
729   int i, j, decimal_digits;
730   int dummy;
731   int flip;
732
733   /* Base-ten number is less than twice as many digits
734    * as the base 16 number, which is 2 digits per byte.
735    */
736   decimal_len = len * 2 * 2;
737   digits = xmalloc (decimal_len);
738
739   for (i = 0; i < decimal_len; i++)
740     {
741       digits[i] = 0;
742     }
743
744   fputs_filtered (local_decimal_format_prefix (), stream);
745
746   /* Ok, we have an unknown number of bytes of data to be printed in
747    * decimal.
748    *
749    * Given a hex number (in nibbles) as XYZ, we start by taking X and
750    * decemalizing it as "x1 x2" in two decimal nibbles.  Then we multiply
751    * the nibbles by 16, add Y and re-decimalize.  Repeat with Z.
752    *
753    * The trick is that "digits" holds a base-10 number, but sometimes
754    * the individual digits are > 10. 
755    *
756    * Outer loop is per nibble (hex digit) of input, from MSD end to
757    * LSD end.
758    */
759   decimal_digits = 0;           /* Number of decimal digits so far */
760   p = START_P;
761   flip = 0;
762   while (NOT_END_P)
763     {
764       /*
765        * Multiply current base-ten number by 16 in place.
766        * Each digit was between 0 and 9, now is between
767        * 0 and 144.
768        */
769       for (j = 0; j < decimal_digits; j++)
770         {
771           digits[j] = SHIFT (digits[j]);
772         }
773
774       /* Take the next nibble off the input and add it to what
775        * we've got in the LSB position.  Bottom 'digit' is now
776        * between 0 and 159.
777        *
778        * "flip" is used to run this loop twice for each byte.
779        */
780       if (flip == 0)
781         {
782           /* Take top nibble.
783            */
784           digits[0] += HIGH_NIBBLE (*p);
785           flip = 1;
786         }
787       else
788         {
789           /* Take low nibble and bump our pointer "p".
790            */
791           digits[0] += LOW_NIBBLE (*p);
792           NEXT_P;
793           flip = 0;
794         }
795
796       /* Re-decimalize.  We have to do this often enough
797        * that we don't overflow, but once per nibble is
798        * overkill.  Easier this way, though.  Note that the
799        * carry is often larger than 10 (e.g. max initial
800        * carry out of lowest nibble is 15, could bubble all
801        * the way up greater than 10).  So we have to do
802        * the carrying beyond the last current digit.
803        */
804       carry = 0;
805       for (j = 0; j < decimal_len - 1; j++)
806         {
807           digits[j] += carry;
808
809           /* "/" won't handle an unsigned char with
810            * a value that if signed would be negative.
811            * So extend to longword int via "dummy".
812            */
813           dummy = digits[j];
814           carry = CARRY_OUT (dummy);
815           digits[j] = CARRY_LEFT (dummy);
816
817           if (j >= decimal_digits && carry == 0)
818             {
819               /*
820                * All higher digits are 0 and we
821                * no longer have a carry.
822                *
823                * Note: "j" is 0-based, "decimal_digits" is
824                *       1-based.
825                */
826               decimal_digits = j + 1;
827               break;
828             }
829         }
830     }
831
832   /* Ok, now "digits" is the decimal representation, with
833    * the "decimal_digits" actual digits.  Print!
834    */
835   for (i = decimal_digits - 1; i >= 0; i--)
836     {
837       fprintf_filtered (stream, "%1d", digits[i]);
838     }
839   xfree (digits);
840
841   fputs_filtered (local_decimal_format_suffix (), stream);
842 }
843
844 /* VALADDR points to an integer of LEN bytes.  Print it in hex on stream.  */
845
846 void
847 print_hex_chars (struct ui_file *stream, unsigned char *valaddr, unsigned len)
848 {
849   unsigned char *p;
850
851   /* FIXME: We should be not printing leading zeroes in most cases.  */
852
853   fputs_filtered (local_hex_format_prefix (), stream);
854   if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
855     {
856       for (p = valaddr;
857            p < valaddr + len;
858            p++)
859         {
860           fprintf_filtered (stream, "%02x", *p);
861         }
862     }
863   else
864     {
865       for (p = valaddr + len - 1;
866            p >= valaddr;
867            p--)
868         {
869           fprintf_filtered (stream, "%02x", *p);
870         }
871     }
872   fputs_filtered (local_hex_format_suffix (), stream);
873 }
874
875 /* VALADDR points to a char integer of LEN bytes.  Print it out in appropriate language form on stream.  
876    Omit any leading zero chars.  */
877
878 void
879 print_char_chars (struct ui_file *stream, unsigned char *valaddr, unsigned len)
880 {
881   unsigned char *p;
882
883   if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
884     {
885       p = valaddr;
886       while (p < valaddr + len - 1 && *p == 0)
887         ++p;
888
889       while (p < valaddr + len)
890         {
891           LA_EMIT_CHAR (*p, stream, '\'');
892           ++p;
893         }
894     }
895   else
896     {
897       p = valaddr + len - 1;
898       while (p > valaddr && *p == 0)
899         --p;
900
901       while (p >= valaddr)
902         {
903           LA_EMIT_CHAR (*p, stream, '\'');
904           --p;
905         }
906     }
907 }
908
909 /*  Called by various <lang>_val_print routines to print elements of an
910    array in the form "<elem1>, <elem2>, <elem3>, ...".
911
912    (FIXME?)  Assumes array element separator is a comma, which is correct
913    for all languages currently handled.
914    (FIXME?)  Some languages have a notation for repeated array elements,
915    perhaps we should try to use that notation when appropriate.
916  */
917
918 void
919 val_print_array_elements (struct type *type, char *valaddr, CORE_ADDR address,
920                           struct ui_file *stream, int format, int deref_ref,
921                           int recurse, enum val_prettyprint pretty,
922                           unsigned int i)
923 {
924   unsigned int things_printed = 0;
925   unsigned len;
926   struct type *elttype;
927   unsigned eltlen;
928   /* Position of the array element we are examining to see
929      whether it is repeated.  */
930   unsigned int rep1;
931   /* Number of repetitions we have detected so far.  */
932   unsigned int reps;
933
934   elttype = TYPE_TARGET_TYPE (type);
935   eltlen = TYPE_LENGTH (check_typedef (elttype));
936   len = TYPE_LENGTH (type) / eltlen;
937
938   annotate_array_section_begin (i, elttype);
939
940   for (; i < len && things_printed < print_max; i++)
941     {
942       if (i != 0)
943         {
944           if (prettyprint_arrays)
945             {
946               fprintf_filtered (stream, ",\n");
947               print_spaces_filtered (2 + 2 * recurse, stream);
948             }
949           else
950             {
951               fprintf_filtered (stream, ", ");
952             }
953         }
954       wrap_here (n_spaces (2 + 2 * recurse));
955
956       rep1 = i + 1;
957       reps = 1;
958       while ((rep1 < len) &&
959              !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
960         {
961           ++reps;
962           ++rep1;
963         }
964
965       if (reps > repeat_count_threshold)
966         {
967           val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
968                      deref_ref, recurse + 1, pretty);
969           annotate_elt_rep (reps);
970           fprintf_filtered (stream, " <repeats %u times>", reps);
971           annotate_elt_rep_end ();
972
973           i = rep1 - 1;
974           things_printed += repeat_count_threshold;
975         }
976       else
977         {
978           val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
979                      deref_ref, recurse + 1, pretty);
980           annotate_elt ();
981           things_printed++;
982         }
983     }
984   annotate_array_section_end ();
985   if (i < len)
986     {
987       fprintf_filtered (stream, "...");
988     }
989 }
990
991 /* Read LEN bytes of target memory at address MEMADDR, placing the
992    results in GDB's memory at MYADDR.  Returns a count of the bytes
993    actually read, and optionally an errno value in the location
994    pointed to by ERRNOPTR if ERRNOPTR is non-null. */
995
996 /* FIXME: cagney/1999-10-14: Only used by val_print_string.  Can this
997    function be eliminated.  */
998
999 static int
1000 partial_memory_read (CORE_ADDR memaddr, char *myaddr, int len, int *errnoptr)
1001 {
1002   int nread;                    /* Number of bytes actually read. */
1003   int errcode;                  /* Error from last read. */
1004
1005   /* First try a complete read. */
1006   errcode = target_read_memory (memaddr, myaddr, len);
1007   if (errcode == 0)
1008     {
1009       /* Got it all. */
1010       nread = len;
1011     }
1012   else
1013     {
1014       /* Loop, reading one byte at a time until we get as much as we can. */
1015       for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1016         {
1017           errcode = target_read_memory (memaddr++, myaddr++, 1);
1018         }
1019       /* If an error, the last read was unsuccessful, so adjust count. */
1020       if (errcode != 0)
1021         {
1022           nread--;
1023         }
1024     }
1025   if (errnoptr != NULL)
1026     {
1027       *errnoptr = errcode;
1028     }
1029   return (nread);
1030 }
1031
1032 /*  Print a string from the inferior, starting at ADDR and printing up to LEN
1033    characters, of WIDTH bytes a piece, to STREAM.  If LEN is -1, printing
1034    stops at the first null byte, otherwise printing proceeds (including null
1035    bytes) until either print_max or LEN characters have been printed,
1036    whichever is smaller. */
1037
1038 /* FIXME: Use target_read_string.  */
1039
1040 int
1041 val_print_string (CORE_ADDR addr, int len, int width, struct ui_file *stream)
1042 {
1043   int force_ellipsis = 0;       /* Force ellipsis to be printed if nonzero. */
1044   int errcode;                  /* Errno returned from bad reads. */
1045   unsigned int fetchlimit;      /* Maximum number of chars to print. */
1046   unsigned int nfetch;          /* Chars to fetch / chars fetched. */
1047   unsigned int chunksize;       /* Size of each fetch, in chars. */
1048   char *buffer = NULL;          /* Dynamically growable fetch buffer. */
1049   char *bufptr;                 /* Pointer to next available byte in buffer. */
1050   char *limit;                  /* First location past end of fetch buffer. */
1051   struct cleanup *old_chain = NULL;     /* Top of the old cleanup chain. */
1052   int found_nul;                /* Non-zero if we found the nul char */
1053
1054   /* First we need to figure out the limit on the number of characters we are
1055      going to attempt to fetch and print.  This is actually pretty simple.  If
1056      LEN >= zero, then the limit is the minimum of LEN and print_max.  If
1057      LEN is -1, then the limit is print_max.  This is true regardless of
1058      whether print_max is zero, UINT_MAX (unlimited), or something in between,
1059      because finding the null byte (or available memory) is what actually
1060      limits the fetch. */
1061
1062   fetchlimit = (len == -1 ? print_max : min (len, print_max));
1063
1064   /* Now decide how large of chunks to try to read in one operation.  This
1065      is also pretty simple.  If LEN >= zero, then we want fetchlimit chars,
1066      so we might as well read them all in one operation.  If LEN is -1, we
1067      are looking for a null terminator to end the fetching, so we might as
1068      well read in blocks that are large enough to be efficient, but not so
1069      large as to be slow if fetchlimit happens to be large.  So we choose the
1070      minimum of 8 and fetchlimit.  We used to use 200 instead of 8 but
1071      200 is way too big for remote debugging over a serial line.  */
1072
1073   chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1074
1075   /* Loop until we either have all the characters to print, or we encounter
1076      some error, such as bumping into the end of the address space. */
1077
1078   found_nul = 0;
1079   old_chain = make_cleanup (null_cleanup, 0);
1080
1081   if (len > 0)
1082     {
1083       buffer = (char *) xmalloc (len * width);
1084       bufptr = buffer;
1085       old_chain = make_cleanup (xfree, buffer);
1086
1087       nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1088         / width;
1089       addr += nfetch * width;
1090       bufptr += nfetch * width;
1091     }
1092   else if (len == -1)
1093     {
1094       unsigned long bufsize = 0;
1095       do
1096         {
1097           QUIT;
1098           nfetch = min (chunksize, fetchlimit - bufsize);
1099
1100           if (buffer == NULL)
1101             buffer = (char *) xmalloc (nfetch * width);
1102           else
1103             {
1104               discard_cleanups (old_chain);
1105               buffer = (char *) xrealloc (buffer, (nfetch + bufsize) * width);
1106             }
1107
1108           old_chain = make_cleanup (xfree, buffer);
1109           bufptr = buffer + bufsize * width;
1110           bufsize += nfetch;
1111
1112           /* Read as much as we can. */
1113           nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1114             / width;
1115
1116           /* Scan this chunk for the null byte that terminates the string
1117              to print.  If found, we don't need to fetch any more.  Note
1118              that bufptr is explicitly left pointing at the next character
1119              after the null byte, or at the next character after the end of
1120              the buffer. */
1121
1122           limit = bufptr + nfetch * width;
1123           while (bufptr < limit)
1124             {
1125               unsigned long c;
1126
1127               c = extract_unsigned_integer (bufptr, width);
1128               addr += width;
1129               bufptr += width;
1130               if (c == 0)
1131                 {
1132                   /* We don't care about any error which happened after
1133                      the NULL terminator.  */
1134                   errcode = 0;
1135                   found_nul = 1;
1136                   break;
1137                 }
1138             }
1139         }
1140       while (errcode == 0       /* no error */
1141              && bufptr - buffer < fetchlimit * width    /* no overrun */
1142              && !found_nul);    /* haven't found nul yet */
1143     }
1144   else
1145     {                           /* length of string is really 0! */
1146       buffer = bufptr = NULL;
1147       errcode = 0;
1148     }
1149
1150   /* bufptr and addr now point immediately beyond the last byte which we
1151      consider part of the string (including a '\0' which ends the string).  */
1152
1153   /* We now have either successfully filled the buffer to fetchlimit, or
1154      terminated early due to an error or finding a null char when LEN is -1. */
1155
1156   if (len == -1 && !found_nul)
1157     {
1158       char *peekbuf;
1159
1160       /* We didn't find a null terminator we were looking for.  Attempt
1161          to peek at the next character.  If not successful, or it is not
1162          a null byte, then force ellipsis to be printed.  */
1163
1164       peekbuf = (char *) alloca (width);
1165
1166       if (target_read_memory (addr, peekbuf, width) == 0
1167           && extract_unsigned_integer (peekbuf, width) != 0)
1168         force_ellipsis = 1;
1169     }
1170   else if ((len >= 0 && errcode != 0) || (len > (bufptr - buffer) / width))
1171     {
1172       /* Getting an error when we have a requested length, or fetching less
1173          than the number of characters actually requested, always make us
1174          print ellipsis. */
1175       force_ellipsis = 1;
1176     }
1177
1178   QUIT;
1179
1180   /* If we get an error before fetching anything, don't print a string.
1181      But if we fetch something and then get an error, print the string
1182      and then the error message.  */
1183   if (errcode == 0 || bufptr > buffer)
1184     {
1185       if (addressprint)
1186         {
1187           fputs_filtered (" ", stream);
1188         }
1189       LA_PRINT_STRING (stream, buffer, (bufptr - buffer) / width, width, force_ellipsis);
1190     }
1191
1192   if (errcode != 0)
1193     {
1194       if (errcode == EIO)
1195         {
1196           fprintf_filtered (stream, " <Address ");
1197           print_address_numeric (addr, 1, stream);
1198           fprintf_filtered (stream, " out of bounds>");
1199         }
1200       else
1201         {
1202           fprintf_filtered (stream, " <Error reading address ");
1203           print_address_numeric (addr, 1, stream);
1204           fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1205         }
1206     }
1207   gdb_flush (stream);
1208   do_cleanups (old_chain);
1209   return ((bufptr - buffer) / width);
1210 }
1211 \f
1212
1213 /* Validate an input or output radix setting, and make sure the user
1214    knows what they really did here.  Radix setting is confusing, e.g.
1215    setting the input radix to "10" never changes it!  */
1216
1217 static void
1218 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
1219 {
1220   set_input_radix_1 (from_tty, input_radix);
1221 }
1222
1223 static void
1224 set_input_radix_1 (int from_tty, unsigned radix)
1225 {
1226   /* We don't currently disallow any input radix except 0 or 1, which don't
1227      make any mathematical sense.  In theory, we can deal with any input
1228      radix greater than 1, even if we don't have unique digits for every
1229      value from 0 to radix-1, but in practice we lose on large radix values.
1230      We should either fix the lossage or restrict the radix range more.
1231      (FIXME). */
1232
1233   if (radix < 2)
1234     {
1235       /* FIXME: cagney/2002-03-17: This needs to revert the bad radix
1236          value.  */
1237       error ("Nonsense input radix ``decimal %u''; input radix unchanged.",
1238              radix);
1239     }
1240   input_radix = radix;
1241   if (from_tty)
1242     {
1243       printf_filtered ("Input radix now set to decimal %u, hex %x, octal %o.\n",
1244                        radix, radix, radix);
1245     }
1246 }
1247
1248 static void
1249 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
1250 {
1251   set_output_radix_1 (from_tty, output_radix);
1252 }
1253
1254 static void
1255 set_output_radix_1 (int from_tty, unsigned radix)
1256 {
1257   /* Validate the radix and disallow ones that we aren't prepared to
1258      handle correctly, leaving the radix unchanged. */
1259   switch (radix)
1260     {
1261     case 16:
1262       output_format = 'x';      /* hex */
1263       break;
1264     case 10:
1265       output_format = 0;        /* decimal */
1266       break;
1267     case 8:
1268       output_format = 'o';      /* octal */
1269       break;
1270     default:
1271       /* FIXME: cagney/2002-03-17: This needs to revert the bad radix
1272          value.  */
1273       error ("Unsupported output radix ``decimal %u''; output radix unchanged.",
1274              radix);
1275     }
1276   output_radix = radix;
1277   if (from_tty)
1278     {
1279       printf_filtered ("Output radix now set to decimal %u, hex %x, octal %o.\n",
1280                        radix, radix, radix);
1281     }
1282 }
1283
1284 /* Set both the input and output radix at once.  Try to set the output radix
1285    first, since it has the most restrictive range.  An radix that is valid as
1286    an output radix is also valid as an input radix.
1287
1288    It may be useful to have an unusual input radix.  If the user wishes to
1289    set an input radix that is not valid as an output radix, he needs to use
1290    the 'set input-radix' command. */
1291
1292 static void
1293 set_radix (char *arg, int from_tty)
1294 {
1295   unsigned radix;
1296
1297   radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
1298   set_output_radix_1 (0, radix);
1299   set_input_radix_1 (0, radix);
1300   if (from_tty)
1301     {
1302       printf_filtered ("Input and output radices now set to decimal %u, hex %x, octal %o.\n",
1303                        radix, radix, radix);
1304     }
1305 }
1306
1307 /* Show both the input and output radices. */
1308
1309 static void
1310 show_radix (char *arg, int from_tty)
1311 {
1312   if (from_tty)
1313     {
1314       if (input_radix == output_radix)
1315         {
1316           printf_filtered ("Input and output radices set to decimal %u, hex %x, octal %o.\n",
1317                            input_radix, input_radix, input_radix);
1318         }
1319       else
1320         {
1321           printf_filtered ("Input radix set to decimal %u, hex %x, octal %o.\n",
1322                            input_radix, input_radix, input_radix);
1323           printf_filtered ("Output radix set to decimal %u, hex %x, octal %o.\n",
1324                            output_radix, output_radix, output_radix);
1325         }
1326     }
1327 }
1328 \f
1329
1330 static void
1331 set_print (char *arg, int from_tty)
1332 {
1333   printf_unfiltered (
1334      "\"set print\" must be followed by the name of a print subcommand.\n");
1335   help_list (setprintlist, "set print ", -1, gdb_stdout);
1336 }
1337
1338 static void
1339 show_print (char *args, int from_tty)
1340 {
1341   cmd_show_list (showprintlist, from_tty, "");
1342 }
1343 \f
1344 void
1345 _initialize_valprint (void)
1346 {
1347   struct cmd_list_element *c;
1348
1349   add_prefix_cmd ("print", no_class, set_print,
1350                   "Generic command for setting how things print.",
1351                   &setprintlist, "set print ", 0, &setlist);
1352   add_alias_cmd ("p", "print", no_class, 1, &setlist);
1353   /* prefer set print to set prompt */
1354   add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1355
1356   add_prefix_cmd ("print", no_class, show_print,
1357                   "Generic command for showing print settings.",
1358                   &showprintlist, "show print ", 0, &showlist);
1359   add_alias_cmd ("p", "print", no_class, 1, &showlist);
1360   add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1361
1362   add_show_from_set
1363     (add_set_cmd ("elements", no_class, var_uinteger, (char *) &print_max,
1364                   "Set limit on string chars or array elements to print.\n\
1365 \"set print elements 0\" causes there to be no limit.",
1366                   &setprintlist),
1367      &showprintlist);
1368
1369   add_show_from_set
1370     (add_set_cmd ("null-stop", no_class, var_boolean,
1371                   (char *) &stop_print_at_null,
1372                   "Set printing of char arrays to stop at first null char.",
1373                   &setprintlist),
1374      &showprintlist);
1375
1376   add_show_from_set
1377     (add_set_cmd ("repeats", no_class, var_uinteger,
1378                   (char *) &repeat_count_threshold,
1379                   "Set threshold for repeated print elements.\n\
1380 \"set print repeats 0\" causes all elements to be individually printed.",
1381                   &setprintlist),
1382      &showprintlist);
1383
1384   add_show_from_set
1385     (add_set_cmd ("pretty", class_support, var_boolean,
1386                   (char *) &prettyprint_structs,
1387                   "Set prettyprinting of structures.",
1388                   &setprintlist),
1389      &showprintlist);
1390
1391   add_show_from_set
1392     (add_set_cmd ("union", class_support, var_boolean, (char *) &unionprint,
1393                   "Set printing of unions interior to structures.",
1394                   &setprintlist),
1395      &showprintlist);
1396
1397   add_show_from_set
1398     (add_set_cmd ("array", class_support, var_boolean,
1399                   (char *) &prettyprint_arrays,
1400                   "Set prettyprinting of arrays.",
1401                   &setprintlist),
1402      &showprintlist);
1403
1404   add_show_from_set
1405     (add_set_cmd ("address", class_support, var_boolean, (char *) &addressprint,
1406                   "Set printing of addresses.",
1407                   &setprintlist),
1408      &showprintlist);
1409
1410   c = add_set_cmd ("input-radix", class_support, var_uinteger,
1411                    (char *) &input_radix,
1412                    "Set default input radix for entering numbers.",
1413                    &setlist);
1414   add_show_from_set (c, &showlist);
1415   set_cmd_sfunc (c, set_input_radix);
1416
1417   c = add_set_cmd ("output-radix", class_support, var_uinteger,
1418                    (char *) &output_radix,
1419                    "Set default output radix for printing of values.",
1420                    &setlist);
1421   add_show_from_set (c, &showlist);
1422   set_cmd_sfunc (c, set_output_radix);
1423
1424   /* The "set radix" and "show radix" commands are special in that they are
1425      like normal set and show commands but allow two normally independent
1426      variables to be either set or shown with a single command.  So the
1427      usual add_set_cmd() and add_show_from_set() commands aren't really
1428      appropriate. */
1429   add_cmd ("radix", class_support, set_radix,
1430            "Set default input and output number radices.\n\
1431 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1432 Without an argument, sets both radices back to the default value of 10.",
1433            &setlist);
1434   add_cmd ("radix", class_support, show_radix,
1435            "Show the default input and output number radices.\n\
1436 Use 'show input-radix' or 'show output-radix' to independently show each.",
1437            &showlist);
1438
1439   /* Give people the defaults which they are used to.  */
1440   prettyprint_structs = 0;
1441   prettyprint_arrays = 0;
1442   unionprint = 1;
1443   addressprint = 1;
1444   print_max = PRINT_MAX_DEFAULT;
1445 }