bge/bnx: Remove duplicated register names; keep names consistent w/ FreeBSD
[dragonfly.git] / sys / dev / netif / bge / if_bge.c
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34  */
35
36 /*
37  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
38  * 
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Engineer, Wind River Systems
41  */
42
43 /*
44  * The Broadcom BCM5700 is based on technology originally developed by
45  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
46  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
47  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
48  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
49  * frames, highly configurable RX filtering, and 16 RX and TX queues
50  * (which, along with RX filter rules, can be used for QOS applications).
51  * Other features, such as TCP segmentation, may be available as part
52  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
53  * firmware images can be stored in hardware and need not be compiled
54  * into the driver.
55  *
56  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
57  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
58  * 
59  * The BCM5701 is a single-chip solution incorporating both the BCM5700
60  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
61  * does not support external SSRAM.
62  *
63  * Broadcom also produces a variation of the BCM5700 under the "Altima"
64  * brand name, which is functionally similar but lacks PCI-X support.
65  *
66  * Without external SSRAM, you can only have at most 4 TX rings,
67  * and the use of the mini RX ring is disabled. This seems to imply
68  * that these features are simply not available on the BCM5701. As a
69  * result, this driver does not implement any support for the mini RX
70  * ring.
71  */
72
73 #include "opt_ifpoll.h"
74
75 #include <sys/param.h>
76 #include <sys/bus.h>
77 #include <sys/endian.h>
78 #include <sys/kernel.h>
79 #include <sys/ktr.h>
80 #include <sys/interrupt.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/queue.h>
84 #include <sys/rman.h>
85 #include <sys/serialize.h>
86 #include <sys/socket.h>
87 #include <sys/sockio.h>
88 #include <sys/sysctl.h>
89
90 #include <netinet/ip.h>
91 #include <netinet/tcp.h>
92
93 #include <net/bpf.h>
94 #include <net/ethernet.h>
95 #include <net/if.h>
96 #include <net/if_arp.h>
97 #include <net/if_dl.h>
98 #include <net/if_media.h>
99 #include <net/if_poll.h>
100 #include <net/if_types.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
104
105 #include <dev/netif/mii_layer/mii.h>
106 #include <dev/netif/mii_layer/miivar.h>
107 #include <dev/netif/mii_layer/brgphyreg.h>
108
109 #include "pcidevs.h"
110 #include <bus/pci/pcireg.h>
111 #include <bus/pci/pcivar.h>
112
113 #include <dev/netif/bge/if_bgereg.h>
114 #include <dev/netif/bge/if_bgevar.h>
115
116 /* "device miibus" required.  See GENERIC if you get errors here. */
117 #include "miibus_if.h"
118
119 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP)
120
121 #define BGE_RESET_SHUTDOWN      0
122 #define BGE_RESET_START         1
123 #define BGE_RESET_SUSPEND       2
124
125 static const struct bge_type {
126         uint16_t                bge_vid;
127         uint16_t                bge_did;
128         char                    *bge_name;
129 } bge_devs[] = {
130         { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996,
131                 "3COM 3C996 Gigabit Ethernet" },
132
133         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
134                 "Alteon BCM5700 Gigabit Ethernet" },
135         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
136                 "Alteon BCM5701 Gigabit Ethernet" },
137
138         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
139                 "Altima AC1000 Gigabit Ethernet" },
140         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
141                 "Altima AC1002 Gigabit Ethernet" },
142         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
143                 "Altima AC9100 Gigabit Ethernet" },
144
145         { PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701,
146                 "Apple BCM5701 Gigabit Ethernet" },
147
148         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
149                 "Broadcom BCM5700 Gigabit Ethernet" },
150         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
151                 "Broadcom BCM5701 Gigabit Ethernet" },
152         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702,
153                 "Broadcom BCM5702 Gigabit Ethernet" },
154         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
155                 "Broadcom BCM5702X Gigabit Ethernet" },
156         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
157                 "Broadcom BCM5702 Gigabit Ethernet" },
158         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703,
159                 "Broadcom BCM5703 Gigabit Ethernet" },
160         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
161                 "Broadcom BCM5703X Gigabit Ethernet" },
162         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
163                 "Broadcom BCM5703 Gigabit Ethernet" },
164         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
165                 "Broadcom BCM5704C Dual Gigabit Ethernet" },
166         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
167                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
168         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT,
169                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
170         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
171                 "Broadcom BCM5705 Gigabit Ethernet" },
172         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F,
173                 "Broadcom BCM5705F Gigabit Ethernet" },
174         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
175                 "Broadcom BCM5705K Gigabit Ethernet" },
176         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
177                 "Broadcom BCM5705M Gigabit Ethernet" },
178         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
179                 "Broadcom BCM5705M Gigabit Ethernet" },
180         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
181                 "Broadcom BCM5714C Gigabit Ethernet" },
182         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S,
183                 "Broadcom BCM5714S Gigabit Ethernet" },
184         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715,
185                 "Broadcom BCM5715 Gigabit Ethernet" },
186         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S,
187                 "Broadcom BCM5715S Gigabit Ethernet" },
188         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720,
189                 "Broadcom BCM5720 Gigabit Ethernet" },
190         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
191                 "Broadcom BCM5721 Gigabit Ethernet" },
192         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722,
193                 "Broadcom BCM5722 Gigabit Ethernet" },
194         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5723,
195                 "Broadcom BCM5723 Gigabit Ethernet" },
196         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
197                 "Broadcom BCM5750 Gigabit Ethernet" },
198         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
199                 "Broadcom BCM5750M Gigabit Ethernet" },
200         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
201                 "Broadcom BCM5751 Gigabit Ethernet" },
202         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F,
203                 "Broadcom BCM5751F Gigabit Ethernet" },
204         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
205                 "Broadcom BCM5751M Gigabit Ethernet" },
206         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
207                 "Broadcom BCM5752 Gigabit Ethernet" },
208         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M,
209                 "Broadcom BCM5752M Gigabit Ethernet" },
210         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753,
211                 "Broadcom BCM5753 Gigabit Ethernet" },
212         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F,
213                 "Broadcom BCM5753F Gigabit Ethernet" },
214         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M,
215                 "Broadcom BCM5753M Gigabit Ethernet" },
216         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754,
217                 "Broadcom BCM5754 Gigabit Ethernet" },
218         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M,
219                 "Broadcom BCM5754M Gigabit Ethernet" },
220         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755,
221                 "Broadcom BCM5755 Gigabit Ethernet" },
222         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M,
223                 "Broadcom BCM5755M Gigabit Ethernet" },
224         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756,
225                 "Broadcom BCM5756 Gigabit Ethernet" },
226         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761,
227                 "Broadcom BCM5761 Gigabit Ethernet" },
228         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761E,
229                 "Broadcom BCM5761E Gigabit Ethernet" },
230         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761S,
231                 "Broadcom BCM5761S Gigabit Ethernet" },
232         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761SE,
233                 "Broadcom BCM5761SE Gigabit Ethernet" },
234         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5764,
235                 "Broadcom BCM5764 Gigabit Ethernet" },
236         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780,
237                 "Broadcom BCM5780 Gigabit Ethernet" },
238         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S,
239                 "Broadcom BCM5780S Gigabit Ethernet" },
240         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781,
241                 "Broadcom BCM5781 Gigabit Ethernet" },
242         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
243                 "Broadcom BCM5782 Gigabit Ethernet" },
244         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5784,
245                 "Broadcom BCM5784 Gigabit Ethernet" },
246         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785F,
247                 "Broadcom BCM5785F Gigabit Ethernet" },
248         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785G,
249                 "Broadcom BCM5785G Gigabit Ethernet" },
250         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786,
251                 "Broadcom BCM5786 Gigabit Ethernet" },
252         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787,
253                 "Broadcom BCM5787 Gigabit Ethernet" },
254         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F,
255                 "Broadcom BCM5787F Gigabit Ethernet" },
256         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M,
257                 "Broadcom BCM5787M Gigabit Ethernet" },
258         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
259                 "Broadcom BCM5788 Gigabit Ethernet" },
260         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
261                 "Broadcom BCM5789 Gigabit Ethernet" },
262         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
263                 "Broadcom BCM5901 Fast Ethernet" },
264         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
265                 "Broadcom BCM5901A2 Fast Ethernet" },
266         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M,
267                 "Broadcom BCM5903M Fast Ethernet" },
268         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906,
269                 "Broadcom BCM5906 Fast Ethernet"},
270         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906M,
271                 "Broadcom BCM5906M Fast Ethernet"},
272         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57760,
273                 "Broadcom BCM57760 Gigabit Ethernet"},
274         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57780,
275                 "Broadcom BCM57780 Gigabit Ethernet"},
276         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57788,
277                 "Broadcom BCM57788 Gigabit Ethernet"},
278         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57790,
279                 "Broadcom BCM57790 Gigabit Ethernet"},
280         { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
281                 "SysKonnect Gigabit Ethernet" },
282
283         { 0, 0, NULL }
284 };
285
286 #define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGE_FLAG_JUMBO)
287 #define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
288 #define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
289 #define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
290 #define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
291 #define BGE_IS_5755_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5755_PLUS)
292 #define BGE_IS_5788(sc)                 ((sc)->bge_flags & BGE_FLAG_5788)
293
294 #define BGE_IS_CRIPPLED(sc)             \
295         (BGE_IS_5788((sc)) || (sc)->bge_asicrev == BGE_ASICREV_BCM5700)
296
297 typedef int     (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
298
299 static int      bge_probe(device_t);
300 static int      bge_attach(device_t);
301 static int      bge_detach(device_t);
302 static void     bge_txeof(struct bge_softc *, uint16_t);
303 static void     bge_rxeof(struct bge_softc *, uint16_t, int);
304
305 static void     bge_tick(void *);
306 static void     bge_stats_update(struct bge_softc *);
307 static void     bge_stats_update_regs(struct bge_softc *);
308 static struct mbuf *
309                 bge_defrag_shortdma(struct mbuf *);
310 static int      bge_encap(struct bge_softc *, struct mbuf **,
311                     uint32_t *, int *);
312 static void     bge_xmit(struct bge_softc *, uint32_t);
313 static int      bge_setup_tso(struct bge_softc *, struct mbuf **,
314                     uint16_t *, uint16_t *);
315
316 #ifdef IFPOLL_ENABLE
317 static void     bge_npoll(struct ifnet *, struct ifpoll_info *);
318 static void     bge_npoll_compat(struct ifnet *, void *, int );
319 #endif
320 static void     bge_intr_crippled(void *);
321 static void     bge_intr_legacy(void *);
322 static void     bge_msi(void *);
323 static void     bge_msi_oneshot(void *);
324 static void     bge_intr(struct bge_softc *);
325 static void     bge_enable_intr(struct bge_softc *);
326 static void     bge_disable_intr(struct bge_softc *);
327 static void     bge_start(struct ifnet *, struct ifaltq_subque *);
328 static int      bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
329 static void     bge_init(void *);
330 static void     bge_stop(struct bge_softc *);
331 static void     bge_watchdog(struct ifnet *);
332 static void     bge_shutdown(device_t);
333 static int      bge_suspend(device_t);
334 static int      bge_resume(device_t);
335 static int      bge_ifmedia_upd(struct ifnet *);
336 static void     bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
337
338 static uint8_t  bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
339 static int      bge_read_nvram(struct bge_softc *, caddr_t, int, int);
340
341 static uint8_t  bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
342 static int      bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
343
344 static void     bge_setmulti(struct bge_softc *);
345 static void     bge_setpromisc(struct bge_softc *);
346 static void     bge_enable_msi(struct bge_softc *sc);
347
348 static int      bge_alloc_jumbo_mem(struct bge_softc *);
349 static void     bge_free_jumbo_mem(struct bge_softc *);
350 static struct bge_jslot
351                 *bge_jalloc(struct bge_softc *);
352 static void     bge_jfree(void *);
353 static void     bge_jref(void *);
354 static int      bge_newbuf_std(struct bge_softc *, int, int);
355 static int      bge_newbuf_jumbo(struct bge_softc *, int, int);
356 static void     bge_setup_rxdesc_std(struct bge_softc *, int);
357 static void     bge_setup_rxdesc_jumbo(struct bge_softc *, int);
358 static int      bge_init_rx_ring_std(struct bge_softc *);
359 static void     bge_free_rx_ring_std(struct bge_softc *);
360 static int      bge_init_rx_ring_jumbo(struct bge_softc *);
361 static void     bge_free_rx_ring_jumbo(struct bge_softc *);
362 static void     bge_free_tx_ring(struct bge_softc *);
363 static int      bge_init_tx_ring(struct bge_softc *);
364
365 static int      bge_chipinit(struct bge_softc *);
366 static int      bge_blockinit(struct bge_softc *);
367 static void     bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
368
369 static uint32_t bge_readmem_ind(struct bge_softc *, uint32_t);
370 static void     bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
371 #ifdef notdef
372 static uint32_t bge_readreg_ind(struct bge_softc *, uint32_t);
373 #endif
374 static void     bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
375 static void     bge_writemem_direct(struct bge_softc *, uint32_t, uint32_t);
376 static void     bge_writembx(struct bge_softc *, int, int);
377
378 static int      bge_miibus_readreg(device_t, int, int);
379 static int      bge_miibus_writereg(device_t, int, int, int);
380 static void     bge_miibus_statchg(device_t);
381 static void     bge_bcm5700_link_upd(struct bge_softc *, uint32_t);
382 static void     bge_tbi_link_upd(struct bge_softc *, uint32_t);
383 static void     bge_copper_link_upd(struct bge_softc *, uint32_t);
384 static void     bge_autopoll_link_upd(struct bge_softc *, uint32_t);
385 static void     bge_link_poll(struct bge_softc *);
386
387 static void     bge_reset(struct bge_softc *);
388
389 static int      bge_dma_alloc(struct bge_softc *);
390 static void     bge_dma_free(struct bge_softc *);
391 static int      bge_dma_block_alloc(struct bge_softc *, bus_size_t,
392                                     bus_dma_tag_t *, bus_dmamap_t *,
393                                     void **, bus_addr_t *);
394 static void     bge_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
395
396 static int      bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
397 static int      bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
398 static int      bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
399 static int      bge_get_eaddr(struct bge_softc *, uint8_t[]);
400
401 static void     bge_coal_change(struct bge_softc *);
402 static int      bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
403 static int      bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
404 static int      bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS);
405 static int      bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS);
406 static int      bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
407 static int      bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
408 static int      bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS);
409 static int      bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS);
410 static int      bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *,
411                     int, int, uint32_t);
412
413 static void     bge_sig_post_reset(struct bge_softc *, int);
414 static void     bge_sig_legacy(struct bge_softc *, int);
415 static void     bge_sig_pre_reset(struct bge_softc *, int);
416 static void     bge_stop_fw(struct bge_softc *);
417 static void     bge_asf_driver_up(struct bge_softc *);
418
419 /*
420  * Set following tunable to 1 for some IBM blade servers with the DNLK
421  * switch module. Auto negotiation is broken for those configurations.
422  */
423 static int      bge_fake_autoneg = 0;
424 TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
425
426 static int      bge_msi_enable = 1;
427 TUNABLE_INT("hw.bge.msi.enable", &bge_msi_enable);
428
429 static int      bge_allow_asf = 1;
430 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
431
432 #if !defined(KTR_IF_BGE)
433 #define KTR_IF_BGE      KTR_ALL
434 #endif
435 KTR_INFO_MASTER(if_bge);
436 KTR_INFO(KTR_IF_BGE, if_bge, intr, 0, "intr");
437 KTR_INFO(KTR_IF_BGE, if_bge, rx_pkt, 1, "rx_pkt");
438 KTR_INFO(KTR_IF_BGE, if_bge, tx_pkt, 2, "tx_pkt");
439 #define logif(name)     KTR_LOG(if_bge_ ## name)
440
441 static device_method_t bge_methods[] = {
442         /* Device interface */
443         DEVMETHOD(device_probe,         bge_probe),
444         DEVMETHOD(device_attach,        bge_attach),
445         DEVMETHOD(device_detach,        bge_detach),
446         DEVMETHOD(device_shutdown,      bge_shutdown),
447         DEVMETHOD(device_suspend,       bge_suspend),
448         DEVMETHOD(device_resume,        bge_resume),
449
450         /* bus interface */
451         DEVMETHOD(bus_print_child,      bus_generic_print_child),
452         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
453
454         /* MII interface */
455         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
456         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
457         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
458
459         DEVMETHOD_END
460 };
461
462 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
463 static devclass_t bge_devclass;
464
465 DECLARE_DUMMY_MODULE(if_bge);
466 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, NULL, NULL);
467 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, NULL, NULL);
468
469 static uint32_t
470 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
471 {
472         device_t dev = sc->bge_dev;
473         uint32_t val;
474
475         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
476             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
477                 return 0;
478
479         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
480         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
481         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
482         return (val);
483 }
484
485 static void
486 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
487 {
488         device_t dev = sc->bge_dev;
489
490         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
491             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
492                 return;
493
494         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
495         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
496         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
497 }
498
499 #ifdef notdef
500 static uint32_t
501 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
502 {
503         device_t dev = sc->bge_dev;
504
505         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
506         return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
507 }
508 #endif
509
510 static void
511 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
512 {
513         device_t dev = sc->bge_dev;
514
515         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
516         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
517 }
518
519 static void
520 bge_writemem_direct(struct bge_softc *sc, uint32_t off, uint32_t val)
521 {
522         CSR_WRITE_4(sc, off, val);
523 }
524
525 static void
526 bge_writembx(struct bge_softc *sc, int off, int val)
527 {
528         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
529                 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
530
531         CSR_WRITE_4(sc, off, val);
532         if (sc->bge_mbox_reorder)
533                 CSR_READ_4(sc, off);
534 }
535
536 static uint8_t
537 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
538 {
539         uint32_t access, byte = 0;
540         int i;
541
542         /* Lock. */
543         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
544         for (i = 0; i < 8000; i++) {
545                 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
546                         break;
547                 DELAY(20);
548         }
549         if (i == 8000)
550                 return (1);
551
552         /* Enable access. */
553         access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
554         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
555
556         CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
557         CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
558         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
559                 DELAY(10);
560                 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
561                         DELAY(10);
562                         break;
563                 }
564         }
565
566         if (i == BGE_TIMEOUT * 10) {
567                 if_printf(&sc->arpcom.ac_if, "nvram read timed out\n");
568                 return (1);
569         }
570
571         /* Get result. */
572         byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
573
574         *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
575
576         /* Disable access. */
577         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
578
579         /* Unlock. */
580         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
581         CSR_READ_4(sc, BGE_NVRAM_SWARB);
582
583         return (0);
584 }
585
586 /*
587  * Read a sequence of bytes from NVRAM.
588  */
589 static int
590 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
591 {
592         int err = 0, i;
593         uint8_t byte = 0;
594
595         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
596                 return (1);
597
598         for (i = 0; i < cnt; i++) {
599                 err = bge_nvram_getbyte(sc, off + i, &byte);
600                 if (err)
601                         break;
602                 *(dest + i) = byte;
603         }
604
605         return (err ? 1 : 0);
606 }
607
608 /*
609  * Read a byte of data stored in the EEPROM at address 'addr.' The
610  * BCM570x supports both the traditional bitbang interface and an
611  * auto access interface for reading the EEPROM. We use the auto
612  * access method.
613  */
614 static uint8_t
615 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
616 {
617         int i;
618         uint32_t byte = 0;
619
620         /*
621          * Enable use of auto EEPROM access so we can avoid
622          * having to use the bitbang method.
623          */
624         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
625
626         /* Reset the EEPROM, load the clock period. */
627         CSR_WRITE_4(sc, BGE_EE_ADDR,
628             BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
629         DELAY(20);
630
631         /* Issue the read EEPROM command. */
632         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
633
634         /* Wait for completion */
635         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
636                 DELAY(10);
637                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
638                         break;
639         }
640
641         if (i == BGE_TIMEOUT) {
642                 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
643                 return(1);
644         }
645
646         /* Get result. */
647         byte = CSR_READ_4(sc, BGE_EE_DATA);
648
649         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
650
651         return(0);
652 }
653
654 /*
655  * Read a sequence of bytes from the EEPROM.
656  */
657 static int
658 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
659 {
660         size_t i;
661         int err;
662         uint8_t byte;
663
664         for (byte = 0, err = 0, i = 0; i < len; i++) {
665                 err = bge_eeprom_getbyte(sc, off + i, &byte);
666                 if (err)
667                         break;
668                 *(dest + i) = byte;
669         }
670
671         return(err ? 1 : 0);
672 }
673
674 static int
675 bge_miibus_readreg(device_t dev, int phy, int reg)
676 {
677         struct bge_softc *sc = device_get_softc(dev);
678         uint32_t val;
679         int i;
680
681         KASSERT(phy == sc->bge_phyno,
682             ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
683
684         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
685         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
686                 CSR_WRITE_4(sc, BGE_MI_MODE,
687                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
688                 DELAY(80);
689         }
690
691         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
692             BGE_MIPHY(phy) | BGE_MIREG(reg));
693
694         /* Poll for the PHY register access to complete. */
695         for (i = 0; i < BGE_TIMEOUT; i++) {
696                 DELAY(10);
697                 val = CSR_READ_4(sc, BGE_MI_COMM);
698                 if ((val & BGE_MICOMM_BUSY) == 0) {
699                         DELAY(5);
700                         val = CSR_READ_4(sc, BGE_MI_COMM);
701                         break;
702                 }
703         }
704         if (i == BGE_TIMEOUT) {
705                 if_printf(&sc->arpcom.ac_if, "PHY read timed out "
706                     "(phy %d, reg %d, val 0x%08x)\n", phy, reg, val);
707                 val = 0;
708         }
709
710         /* Restore the autopoll bit if necessary. */
711         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
712                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
713                 DELAY(80);
714         }
715
716         if (val & BGE_MICOMM_READFAIL)
717                 return 0;
718
719         return (val & 0xFFFF);
720 }
721
722 static int
723 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
724 {
725         struct bge_softc *sc = device_get_softc(dev);
726         int i;
727
728         KASSERT(phy == sc->bge_phyno,
729             ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
730
731         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
732             (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
733                return 0;
734
735         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
736         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
737                 CSR_WRITE_4(sc, BGE_MI_MODE,
738                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
739                 DELAY(80);
740         }
741
742         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
743             BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
744
745         for (i = 0; i < BGE_TIMEOUT; i++) {
746                 DELAY(10);
747                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
748                         DELAY(5);
749                         CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
750                         break;
751                 }
752         }
753         if (i == BGE_TIMEOUT) {
754                 if_printf(&sc->arpcom.ac_if, "PHY write timed out "
755                     "(phy %d, reg %d, val %d)\n", phy, reg, val);
756         }
757
758         /* Restore the autopoll bit if necessary. */
759         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
760                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
761                 DELAY(80);
762         }
763
764         return 0;
765 }
766
767 static void
768 bge_miibus_statchg(device_t dev)
769 {
770         struct bge_softc *sc;
771         struct mii_data *mii;
772
773         sc = device_get_softc(dev);
774         if ((sc->arpcom.ac_if.if_flags & IFF_RUNNING) == 0)
775                 return;
776
777         mii = device_get_softc(sc->bge_miibus);
778
779         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
780             (IFM_ACTIVE | IFM_AVALID)) {
781                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
782                 case IFM_10_T:
783                 case IFM_100_TX:
784                         sc->bge_link = 1;
785                         break;
786                 case IFM_1000_T:
787                 case IFM_1000_SX:
788                 case IFM_2500_SX:
789                         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
790                                 sc->bge_link = 1;
791                         else
792                                 sc->bge_link = 0;
793                         break;
794                 default:
795                         sc->bge_link = 0;
796                         break;
797                 }
798         } else {
799                 sc->bge_link = 0;
800         }
801         if (sc->bge_link == 0)
802                 return;
803
804         BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
805         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
806             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
807                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
808         } else {
809                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
810         }
811
812         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
813                 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
814         } else {
815                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
816         }
817 }
818
819 /*
820  * Memory management for jumbo frames.
821  */
822 static int
823 bge_alloc_jumbo_mem(struct bge_softc *sc)
824 {
825         struct ifnet *ifp = &sc->arpcom.ac_if;
826         struct bge_jslot *entry;
827         uint8_t *ptr;
828         bus_addr_t paddr;
829         int i, error;
830
831         /*
832          * Create tag for jumbo mbufs.
833          * This is really a bit of a kludge. We allocate a special
834          * jumbo buffer pool which (thanks to the way our DMA
835          * memory allocation works) will consist of contiguous
836          * pages. This means that even though a jumbo buffer might
837          * be larger than a page size, we don't really need to
838          * map it into more than one DMA segment. However, the
839          * default mbuf tag will result in multi-segment mappings,
840          * so we have to create a special jumbo mbuf tag that
841          * lets us get away with mapping the jumbo buffers as
842          * a single segment. I think eventually the driver should
843          * be changed so that it uses ordinary mbufs and cluster
844          * buffers, i.e. jumbo frames can span multiple DMA
845          * descriptors. But that's a project for another day.
846          */
847
848         /*
849          * Create DMA stuffs for jumbo RX ring.
850          */
851         error = bge_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
852                                     &sc->bge_cdata.bge_rx_jumbo_ring_tag,
853                                     &sc->bge_cdata.bge_rx_jumbo_ring_map,
854                                     (void *)&sc->bge_ldata.bge_rx_jumbo_ring,
855                                     &sc->bge_ldata.bge_rx_jumbo_ring_paddr);
856         if (error) {
857                 if_printf(ifp, "could not create jumbo RX ring\n");
858                 return error;
859         }
860
861         /*
862          * Create DMA stuffs for jumbo buffer block.
863          */
864         error = bge_dma_block_alloc(sc, BGE_JMEM,
865                                     &sc->bge_cdata.bge_jumbo_tag,
866                                     &sc->bge_cdata.bge_jumbo_map,
867                                     (void **)&sc->bge_ldata.bge_jumbo_buf,
868                                     &paddr);
869         if (error) {
870                 if_printf(ifp, "could not create jumbo buffer\n");
871                 return error;
872         }
873
874         SLIST_INIT(&sc->bge_jfree_listhead);
875
876         /*
877          * Now divide it up into 9K pieces and save the addresses
878          * in an array. Note that we play an evil trick here by using
879          * the first few bytes in the buffer to hold the the address
880          * of the softc structure for this interface. This is because
881          * bge_jfree() needs it, but it is called by the mbuf management
882          * code which will not pass it to us explicitly.
883          */
884         for (i = 0, ptr = sc->bge_ldata.bge_jumbo_buf; i < BGE_JSLOTS; i++) {
885                 entry = &sc->bge_cdata.bge_jslots[i];
886                 entry->bge_sc = sc;
887                 entry->bge_buf = ptr;
888                 entry->bge_paddr = paddr;
889                 entry->bge_inuse = 0;
890                 entry->bge_slot = i;
891                 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
892
893                 ptr += BGE_JLEN;
894                 paddr += BGE_JLEN;
895         }
896         return 0;
897 }
898
899 static void
900 bge_free_jumbo_mem(struct bge_softc *sc)
901 {
902         /* Destroy jumbo RX ring. */
903         bge_dma_block_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
904                            sc->bge_cdata.bge_rx_jumbo_ring_map,
905                            sc->bge_ldata.bge_rx_jumbo_ring);
906
907         /* Destroy jumbo buffer block. */
908         bge_dma_block_free(sc->bge_cdata.bge_jumbo_tag,
909                            sc->bge_cdata.bge_jumbo_map,
910                            sc->bge_ldata.bge_jumbo_buf);
911 }
912
913 /*
914  * Allocate a jumbo buffer.
915  */
916 static struct bge_jslot *
917 bge_jalloc(struct bge_softc *sc)
918 {
919         struct bge_jslot *entry;
920
921         lwkt_serialize_enter(&sc->bge_jslot_serializer);
922         entry = SLIST_FIRST(&sc->bge_jfree_listhead);
923         if (entry) {
924                 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
925                 entry->bge_inuse = 1;
926         } else {
927                 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
928         }
929         lwkt_serialize_exit(&sc->bge_jslot_serializer);
930         return(entry);
931 }
932
933 /*
934  * Adjust usage count on a jumbo buffer.
935  */
936 static void
937 bge_jref(void *arg)
938 {
939         struct bge_jslot *entry = (struct bge_jslot *)arg;
940         struct bge_softc *sc = entry->bge_sc;
941
942         if (sc == NULL)
943                 panic("bge_jref: can't find softc pointer!");
944
945         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
946                 panic("bge_jref: asked to reference buffer "
947                     "that we don't manage!");
948         } else if (entry->bge_inuse == 0) {
949                 panic("bge_jref: buffer already free!");
950         } else {
951                 atomic_add_int(&entry->bge_inuse, 1);
952         }
953 }
954
955 /*
956  * Release a jumbo buffer.
957  */
958 static void
959 bge_jfree(void *arg)
960 {
961         struct bge_jslot *entry = (struct bge_jslot *)arg;
962         struct bge_softc *sc = entry->bge_sc;
963
964         if (sc == NULL)
965                 panic("bge_jfree: can't find softc pointer!");
966
967         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
968                 panic("bge_jfree: asked to free buffer that we don't manage!");
969         } else if (entry->bge_inuse == 0) {
970                 panic("bge_jfree: buffer already free!");
971         } else {
972                 /*
973                  * Possible MP race to 0, use the serializer.  The atomic insn
974                  * is still needed for races against bge_jref().
975                  */
976                 lwkt_serialize_enter(&sc->bge_jslot_serializer);
977                 atomic_subtract_int(&entry->bge_inuse, 1);
978                 if (entry->bge_inuse == 0) {
979                         SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, 
980                                           entry, jslot_link);
981                 }
982                 lwkt_serialize_exit(&sc->bge_jslot_serializer);
983         }
984 }
985
986
987 /*
988  * Intialize a standard receive ring descriptor.
989  */
990 static int
991 bge_newbuf_std(struct bge_softc *sc, int i, int init)
992 {
993         struct mbuf *m_new = NULL;
994         bus_dma_segment_t seg;
995         bus_dmamap_t map;
996         int error, nsegs;
997
998         m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
999         if (m_new == NULL)
1000                 return ENOBUFS;
1001         m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1002
1003         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1004                 m_adj(m_new, ETHER_ALIGN);
1005
1006         error = bus_dmamap_load_mbuf_segment(sc->bge_cdata.bge_rx_mtag,
1007                         sc->bge_cdata.bge_rx_tmpmap, m_new,
1008                         &seg, 1, &nsegs, BUS_DMA_NOWAIT);
1009         if (error) {
1010                 m_freem(m_new);
1011                 return error;
1012         }
1013
1014         if (!init) {
1015                 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1016                                 sc->bge_cdata.bge_rx_std_dmamap[i],
1017                                 BUS_DMASYNC_POSTREAD);
1018                 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1019                         sc->bge_cdata.bge_rx_std_dmamap[i]);
1020         }
1021
1022         map = sc->bge_cdata.bge_rx_tmpmap;
1023         sc->bge_cdata.bge_rx_tmpmap = sc->bge_cdata.bge_rx_std_dmamap[i];
1024         sc->bge_cdata.bge_rx_std_dmamap[i] = map;
1025
1026         sc->bge_cdata.bge_rx_std_chain[i].bge_mbuf = m_new;
1027         sc->bge_cdata.bge_rx_std_chain[i].bge_paddr = seg.ds_addr;
1028
1029         bge_setup_rxdesc_std(sc, i);
1030         return 0;
1031 }
1032
1033 static void
1034 bge_setup_rxdesc_std(struct bge_softc *sc, int i)
1035 {
1036         struct bge_rxchain *rc;
1037         struct bge_rx_bd *r;
1038
1039         rc = &sc->bge_cdata.bge_rx_std_chain[i];
1040         r = &sc->bge_ldata.bge_rx_std_ring[i];
1041
1042         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1043         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1044         r->bge_len = rc->bge_mbuf->m_len;
1045         r->bge_idx = i;
1046         r->bge_flags = BGE_RXBDFLAG_END;
1047 }
1048
1049 /*
1050  * Initialize a jumbo receive ring descriptor. This allocates
1051  * a jumbo buffer from the pool managed internally by the driver.
1052  */
1053 static int
1054 bge_newbuf_jumbo(struct bge_softc *sc, int i, int init)
1055 {
1056         struct mbuf *m_new = NULL;
1057         struct bge_jslot *buf;
1058         bus_addr_t paddr;
1059
1060         /* Allocate the mbuf. */
1061         MGETHDR(m_new, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1062         if (m_new == NULL)
1063                 return ENOBUFS;
1064
1065         /* Allocate the jumbo buffer */
1066         buf = bge_jalloc(sc);
1067         if (buf == NULL) {
1068                 m_freem(m_new);
1069                 return ENOBUFS;
1070         }
1071
1072         /* Attach the buffer to the mbuf. */
1073         m_new->m_ext.ext_arg = buf;
1074         m_new->m_ext.ext_buf = buf->bge_buf;
1075         m_new->m_ext.ext_free = bge_jfree;
1076         m_new->m_ext.ext_ref = bge_jref;
1077         m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1078
1079         m_new->m_flags |= M_EXT;
1080
1081         m_new->m_data = m_new->m_ext.ext_buf;
1082         m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
1083
1084         paddr = buf->bge_paddr;
1085         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) {
1086                 m_adj(m_new, ETHER_ALIGN);
1087                 paddr += ETHER_ALIGN;
1088         }
1089
1090         /* Save necessary information */
1091         sc->bge_cdata.bge_rx_jumbo_chain[i].bge_mbuf = m_new;
1092         sc->bge_cdata.bge_rx_jumbo_chain[i].bge_paddr = paddr;
1093
1094         /* Set up the descriptor. */
1095         bge_setup_rxdesc_jumbo(sc, i);
1096         return 0;
1097 }
1098
1099 static void
1100 bge_setup_rxdesc_jumbo(struct bge_softc *sc, int i)
1101 {
1102         struct bge_rx_bd *r;
1103         struct bge_rxchain *rc;
1104
1105         r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
1106         rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1107
1108         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1109         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1110         r->bge_len = rc->bge_mbuf->m_len;
1111         r->bge_idx = i;
1112         r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1113 }
1114
1115 static int
1116 bge_init_rx_ring_std(struct bge_softc *sc)
1117 {
1118         int i, error;
1119
1120         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1121                 error = bge_newbuf_std(sc, i, 1);
1122                 if (error)
1123                         return error;
1124         }
1125
1126         sc->bge_std = BGE_STD_RX_RING_CNT - 1;
1127         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1128
1129         return(0);
1130 }
1131
1132 static void
1133 bge_free_rx_ring_std(struct bge_softc *sc)
1134 {
1135         int i;
1136
1137         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1138                 struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_std_chain[i];
1139
1140                 if (rc->bge_mbuf != NULL) {
1141                         bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1142                                           sc->bge_cdata.bge_rx_std_dmamap[i]);
1143                         m_freem(rc->bge_mbuf);
1144                         rc->bge_mbuf = NULL;
1145                 }
1146                 bzero(&sc->bge_ldata.bge_rx_std_ring[i],
1147                     sizeof(struct bge_rx_bd));
1148         }
1149 }
1150
1151 static int
1152 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1153 {
1154         struct bge_rcb *rcb;
1155         int i, error;
1156
1157         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1158                 error = bge_newbuf_jumbo(sc, i, 1);
1159                 if (error)
1160                         return error;
1161         }
1162
1163         sc->bge_jumbo = BGE_JUMBO_RX_RING_CNT - 1;
1164
1165         rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1166         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
1167         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1168
1169         bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1170
1171         return(0);
1172 }
1173
1174 static void
1175 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1176 {
1177         int i;
1178
1179         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1180                 struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1181
1182                 if (rc->bge_mbuf != NULL) {
1183                         m_freem(rc->bge_mbuf);
1184                         rc->bge_mbuf = NULL;
1185                 }
1186                 bzero(&sc->bge_ldata.bge_rx_jumbo_ring[i],
1187                     sizeof(struct bge_rx_bd));
1188         }
1189 }
1190
1191 static void
1192 bge_free_tx_ring(struct bge_softc *sc)
1193 {
1194         int i;
1195
1196         for (i = 0; i < BGE_TX_RING_CNT; i++) {
1197                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1198                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1199                                           sc->bge_cdata.bge_tx_dmamap[i]);
1200                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
1201                         sc->bge_cdata.bge_tx_chain[i] = NULL;
1202                 }
1203                 bzero(&sc->bge_ldata.bge_tx_ring[i],
1204                     sizeof(struct bge_tx_bd));
1205         }
1206 }
1207
1208 static int
1209 bge_init_tx_ring(struct bge_softc *sc)
1210 {
1211         sc->bge_txcnt = 0;
1212         sc->bge_tx_saved_considx = 0;
1213         sc->bge_tx_prodidx = 0;
1214
1215         /* Initialize transmit producer index for host-memory send ring. */
1216         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1217
1218         /* 5700 b2 errata */
1219         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1220                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1221
1222         bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1223         /* 5700 b2 errata */
1224         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1225                 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1226
1227         return(0);
1228 }
1229
1230 static void
1231 bge_setmulti(struct bge_softc *sc)
1232 {
1233         struct ifnet *ifp;
1234         struct ifmultiaddr *ifma;
1235         uint32_t hashes[4] = { 0, 0, 0, 0 };
1236         int h, i;
1237
1238         ifp = &sc->arpcom.ac_if;
1239
1240         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1241                 for (i = 0; i < 4; i++)
1242                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1243                 return;
1244         }
1245
1246         /* First, zot all the existing filters. */
1247         for (i = 0; i < 4; i++)
1248                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1249
1250         /* Now program new ones. */
1251         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1252                 if (ifma->ifma_addr->sa_family != AF_LINK)
1253                         continue;
1254                 h = ether_crc32_le(
1255                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1256                     ETHER_ADDR_LEN) & 0x7f;
1257                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1258         }
1259
1260         for (i = 0; i < 4; i++)
1261                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1262 }
1263
1264 /*
1265  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1266  * self-test results.
1267  */
1268 static int
1269 bge_chipinit(struct bge_softc *sc)
1270 {
1271         int i;
1272         uint32_t dma_rw_ctl, mode_ctl;
1273         uint16_t val;
1274
1275         /* Set endian type before we access any non-PCI registers. */
1276         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
1277             BGE_INIT | sc->bge_pci_miscctl, 4);
1278
1279         /* Clear the MAC control register */
1280         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1281
1282         /*
1283          * Clear the MAC statistics block in the NIC's
1284          * internal memory.
1285          */
1286         for (i = BGE_STATS_BLOCK;
1287             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1288                 BGE_MEMWIN_WRITE(sc, i, 0);
1289
1290         for (i = BGE_STATUS_BLOCK;
1291             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1292                 BGE_MEMWIN_WRITE(sc, i, 0);
1293
1294         if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1295                 /*
1296                  * Fix data corruption caused by non-qword write with WB.
1297                  * Fix master abort in PCI mode.
1298                  * Fix PCI latency timer.
1299                  */
1300                 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1301                 val |= (1 << 10) | (1 << 12) | (1 << 13);
1302                 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1303         }
1304
1305         /* Set up the PCI DMA control register. */
1306         dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
1307         if (sc->bge_flags & BGE_FLAG_PCIE) {
1308                 /* PCI-E bus */
1309                 /* DMA read watermark not used on PCI-E */
1310                 dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1311         } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1312                 /* PCI-X bus */
1313                 if (sc->bge_asicrev == BGE_ASICREV_BCM5780) {
1314                         dma_rw_ctl |= (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1315                             (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1316                         dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1317                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5714) {
1318                         dma_rw_ctl |= (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1319                             (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1320                         dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1321                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1322                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1323                         uint32_t rd_wat = 0x7;
1324                         uint32_t clkctl;
1325
1326                         clkctl = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1327                         if ((sc->bge_flags & BGE_FLAG_MAXADDR_40BIT) &&
1328                             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1329                                 dma_rw_ctl |=
1330                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1331                         } else if (clkctl == 0x6 || clkctl == 0x7) {
1332                                 dma_rw_ctl |=
1333                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1334                         }
1335                         if (sc->bge_asicrev == BGE_ASICREV_BCM5703)
1336                                 rd_wat = 0x4;
1337
1338                         dma_rw_ctl |= (rd_wat << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1339                             (3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1340                         dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1341                 } else {
1342                         dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1343                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1344                         dma_rw_ctl |= 0xf;
1345                 }
1346         } else {
1347                 /* Conventional PCI bus */
1348                 dma_rw_ctl |= (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1349                     (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1350                 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1351                     sc->bge_asicrev != BGE_ASICREV_BCM5750)
1352                         dma_rw_ctl |= 0xf;
1353         }
1354
1355         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1356             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1357                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1358         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1359             sc->bge_asicrev == BGE_ASICREV_BCM5701) {
1360                 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1361                     BGE_PCIDMARWCTL_ASRT_ALL_BE;
1362         }
1363         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1364
1365         /*
1366          * Set up general mode register.
1367          */
1368         mode_ctl = BGE_DMA_SWAP_OPTIONS|
1369             BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1370             BGE_MODECTL_TX_NO_PHDR_CSUM;
1371
1372         /*
1373          * BCM5701 B5 have a bug causing data corruption when using
1374          * 64-bit DMA reads, which can be terminated early and then
1375          * completed later as 32-bit accesses, in combination with
1376          * certain bridges.
1377          */
1378         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1379             sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1380                 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1381
1382         /*
1383          * Tell the firmware the driver is running
1384          */
1385         if (sc->bge_asf_mode & ASF_STACKUP)
1386                 mode_ctl |= BGE_MODECTL_STACKUP;
1387
1388         CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1389
1390         /*
1391          * Disable memory write invalidate.  Apparently it is not supported
1392          * properly by these devices.  Also ensure that INTx isn't disabled,
1393          * as these chips need it even when using MSI.
1394          */
1395         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1396             (PCIM_CMD_MWRICEN | PCIM_CMD_INTxDIS), 4);
1397
1398         /* Set the timer prescaler (always 66Mhz) */
1399         CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1400
1401         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1402                 DELAY(40);      /* XXX */
1403
1404                 /* Put PHY into ready state */
1405                 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1406                 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1407                 DELAY(40);
1408         }
1409
1410         return(0);
1411 }
1412
1413 static int
1414 bge_blockinit(struct bge_softc *sc)
1415 {
1416         struct bge_rcb *rcb;
1417         bus_size_t vrcb;
1418         bge_hostaddr taddr;
1419         uint32_t val;
1420         int i, limit;
1421
1422         /*
1423          * Initialize the memory window pointer register so that
1424          * we can access the first 32K of internal NIC RAM. This will
1425          * allow us to set up the TX send ring RCBs and the RX return
1426          * ring RCBs, plus other things which live in NIC memory.
1427          */
1428         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1429
1430         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1431
1432         if (!BGE_IS_5705_PLUS(sc)) {
1433                 /* Configure mbuf memory pool */
1434                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1435                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1436                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1437                 else
1438                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1439
1440                 /* Configure DMA resource pool */
1441                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1442                     BGE_DMA_DESCRIPTORS);
1443                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1444         }
1445
1446         /* Configure mbuf pool watermarks */
1447         if (!BGE_IS_5705_PLUS(sc)) {
1448                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1449                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1450                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1451         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1452                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1453                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1454                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1455         } else {
1456                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1457                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1458                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1459         }
1460
1461         /* Configure DMA resource watermarks */
1462         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1463         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1464
1465         /* Enable buffer manager */
1466         CSR_WRITE_4(sc, BGE_BMAN_MODE,
1467             BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1468
1469         /* Poll for buffer manager start indication */
1470         for (i = 0; i < BGE_TIMEOUT; i++) {
1471                 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1472                         break;
1473                 DELAY(10);
1474         }
1475
1476         if (i == BGE_TIMEOUT) {
1477                 if_printf(&sc->arpcom.ac_if,
1478                           "buffer manager failed to start\n");
1479                 return(ENXIO);
1480         }
1481
1482         /* Enable flow-through queues */
1483         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1484         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1485
1486         /* Wait until queue initialization is complete */
1487         for (i = 0; i < BGE_TIMEOUT; i++) {
1488                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1489                         break;
1490                 DELAY(10);
1491         }
1492
1493         if (i == BGE_TIMEOUT) {
1494                 if_printf(&sc->arpcom.ac_if,
1495                           "flow-through queue init failed\n");
1496                 return(ENXIO);
1497         }
1498
1499         /*
1500          * Summary of rings supported by the controller:
1501          *
1502          * Standard Receive Producer Ring
1503          * - This ring is used to feed receive buffers for "standard"
1504          *   sized frames (typically 1536 bytes) to the controller.
1505          *
1506          * Jumbo Receive Producer Ring
1507          * - This ring is used to feed receive buffers for jumbo sized
1508          *   frames (i.e. anything bigger than the "standard" frames)
1509          *   to the controller.
1510          *
1511          * Mini Receive Producer Ring
1512          * - This ring is used to feed receive buffers for "mini"
1513          *   sized frames to the controller.
1514          * - This feature required external memory for the controller
1515          *   but was never used in a production system.  Should always
1516          *   be disabled.
1517          *
1518          * Receive Return Ring
1519          * - After the controller has placed an incoming frame into a
1520          *   receive buffer that buffer is moved into a receive return
1521          *   ring.  The driver is then responsible to passing the
1522          *   buffer up to the stack.  Many versions of the controller
1523          *   support multiple RR rings.
1524          *
1525          * Send Ring
1526          * - This ring is used for outgoing frames.  Many versions of
1527          *   the controller support multiple send rings.
1528          */
1529
1530         /* Initialize the standard receive producer ring control block. */
1531         rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1532         rcb->bge_hostaddr.bge_addr_lo =
1533             BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1534         rcb->bge_hostaddr.bge_addr_hi =
1535             BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1536         if (BGE_IS_5705_PLUS(sc)) {
1537                 /*
1538                  * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1539                  * Bits 15-2 : Reserved (should be 0)
1540                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1541                  * Bit 0     : Reserved
1542                  */
1543                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1544         } else {
1545                 /*
1546                  * Ring size is always XXX entries
1547                  * Bits 31-16: Maximum RX frame size
1548                  * Bits 15-2 : Reserved (should be 0)
1549                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1550                  * Bit 0     : Reserved
1551                  */
1552                 rcb->bge_maxlen_flags =
1553                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1554         }
1555         rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1556         /* Write the standard receive producer ring control block. */
1557         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1558         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1559         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1560         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1561         /* Reset the standard receive producer ring producer index. */
1562         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1563
1564         /*
1565          * Initialize the jumbo RX producer ring control
1566          * block.  We set the 'ring disabled' bit in the
1567          * flags field until we're actually ready to start
1568          * using this ring (i.e. once we set the MTU
1569          * high enough to require it).
1570          */
1571         if (BGE_IS_JUMBO_CAPABLE(sc)) {
1572                 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1573                 /* Get the jumbo receive producer ring RCB parameters. */
1574                 rcb->bge_hostaddr.bge_addr_lo =
1575                     BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1576                 rcb->bge_hostaddr.bge_addr_hi =
1577                     BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1578                 rcb->bge_maxlen_flags =
1579                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1580                     BGE_RCB_FLAG_RING_DISABLED);
1581                 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1582                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1583                     rcb->bge_hostaddr.bge_addr_hi);
1584                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1585                     rcb->bge_hostaddr.bge_addr_lo);
1586                 /* Program the jumbo receive producer ring RCB parameters. */
1587                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1588                     rcb->bge_maxlen_flags);
1589                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1590                 /* Reset the jumbo receive producer ring producer index. */
1591                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1592         }
1593
1594         /* Disable the mini receive producer ring RCB. */
1595         if (BGE_IS_5700_FAMILY(sc)) {
1596                 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1597                 rcb->bge_maxlen_flags =
1598                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1599                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1600                     rcb->bge_maxlen_flags);
1601                 /* Reset the mini receive producer ring producer index. */
1602                 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1603         }
1604
1605         /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
1606         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1607             (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
1608              sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
1609              sc->bge_chipid == BGE_CHIPID_BCM5906_A2)) {
1610                 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
1611                     (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
1612         }
1613
1614         /*
1615          * The BD ring replenish thresholds control how often the
1616          * hardware fetches new BD's from the producer rings in host
1617          * memory.  Setting the value too low on a busy system can
1618          * starve the hardware and recue the throughpout.
1619          *
1620          * Set the BD ring replentish thresholds. The recommended
1621          * values are 1/8th the number of descriptors allocated to
1622          * each ring.
1623          */
1624         if (BGE_IS_5705_PLUS(sc))
1625                 val = 8;
1626         else
1627                 val = BGE_STD_RX_RING_CNT / 8;
1628         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1629         if (BGE_IS_JUMBO_CAPABLE(sc)) {
1630                 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1631                     BGE_JUMBO_RX_RING_CNT/8);
1632         }
1633
1634         /*
1635          * Disable all send rings by setting the 'ring disabled' bit
1636          * in the flags field of all the TX send ring control blocks,
1637          * located in NIC memory.
1638          */
1639         if (!BGE_IS_5705_PLUS(sc)) {
1640                 /* 5700 to 5704 had 16 send rings. */
1641                 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
1642         } else {
1643                 limit = 1;
1644         }
1645         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1646         for (i = 0; i < limit; i++) {
1647                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1648                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1649                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1650                 vrcb += sizeof(struct bge_rcb);
1651         }
1652
1653         /* Configure send ring RCB 0 (we use only the first ring) */
1654         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1655         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1656         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1657         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1658         RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1659             BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1660         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1661             BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1662
1663         /*
1664          * Disable all receive return rings by setting the
1665          * 'ring diabled' bit in the flags field of all the receive
1666          * return ring control blocks, located in NIC memory.
1667          */
1668         if (!BGE_IS_5705_PLUS(sc))
1669                 limit = BGE_RX_RINGS_MAX;
1670         else if (sc->bge_asicrev == BGE_ASICREV_BCM5755)
1671                 limit = 4;
1672         else
1673                 limit = 1;
1674         /* Disable all receive return rings. */
1675         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1676         for (i = 0; i < limit; i++) {
1677                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1678                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1679                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1680                     BGE_RCB_FLAG_RING_DISABLED);
1681                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1682                 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1683                     (i * (sizeof(uint64_t))), 0);
1684                 vrcb += sizeof(struct bge_rcb);
1685         }
1686
1687         /*
1688          * Set up receive return ring 0.  Note that the NIC address
1689          * for RX return rings is 0x0.  The return rings live entirely
1690          * within the host, so the nicaddr field in the RCB isn't used.
1691          */
1692         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1693         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1694         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1695         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1696         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1697         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1698             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1699
1700         /* Set random backoff seed for TX */
1701         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1702             sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1703             sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1704             sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1705             BGE_TX_BACKOFF_SEED_MASK);
1706
1707         /* Set inter-packet gap */
1708         CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1709
1710         /*
1711          * Specify which ring to use for packets that don't match
1712          * any RX rules.
1713          */
1714         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1715
1716         /*
1717          * Configure number of RX lists. One interrupt distribution
1718          * list, sixteen active lists, one bad frames class.
1719          */
1720         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1721
1722         /* Inialize RX list placement stats mask. */
1723         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1724         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1725
1726         /* Disable host coalescing until we get it set up */
1727         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1728
1729         /* Poll to make sure it's shut down. */
1730         for (i = 0; i < BGE_TIMEOUT; i++) {
1731                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1732                         break;
1733                 DELAY(10);
1734         }
1735
1736         if (i == BGE_TIMEOUT) {
1737                 if_printf(&sc->arpcom.ac_if,
1738                           "host coalescing engine failed to idle\n");
1739                 return(ENXIO);
1740         }
1741
1742         /* Set up host coalescing defaults */
1743         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1744         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1745         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_coal_bds);
1746         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_coal_bds);
1747         if (!BGE_IS_5705_PLUS(sc)) {
1748                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
1749                     sc->bge_rx_coal_ticks_int);
1750                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
1751                     sc->bge_tx_coal_ticks_int);
1752         }
1753         /*
1754          * NOTE:
1755          * The datasheet (57XX-PG105-R) says BCM5705+ do not
1756          * have following two registers; obviously it is wrong.
1757          */
1758         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, sc->bge_rx_coal_bds_int);
1759         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, sc->bge_tx_coal_bds_int);
1760
1761         /* Set up address of statistics block */
1762         if (!BGE_IS_5705_PLUS(sc)) {
1763                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1764                     BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1765                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1766                     BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1767
1768                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1769                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1770                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1771         }
1772
1773         /* Set up address of status block */
1774         bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
1775         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1776             BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1777         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1778             BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1779
1780         /*
1781          * Set up status block partail update size.
1782          *
1783          * Because only single TX ring, RX produce ring and Rx return ring
1784          * are used, ask device to update only minimum part of status block
1785          * except for BCM5700 AX/BX, whose status block partial update size
1786          * can't be configured.
1787          */
1788         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1789             sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
1790                 /* XXX Actually reserved on BCM5700 AX/BX */
1791                 val = BGE_STATBLKSZ_FULL;
1792         } else {
1793                 val = BGE_STATBLKSZ_32BYTE;
1794         }
1795 #if 0
1796         /*
1797          * Does not seem to have visible effect in both
1798          * bulk data (1472B UDP datagram) and tiny data
1799          * (18B UDP datagram) TX tests.
1800          */
1801         if (!BGE_IS_CRIPPLED(sc))
1802                 val |= BGE_HCCMODE_CLRTICK_TX;
1803 #endif
1804
1805         /* Turn on host coalescing state machine */
1806         CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1807
1808         /* Turn on RX BD completion state machine and enable attentions */
1809         CSR_WRITE_4(sc, BGE_RBDC_MODE,
1810             BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1811
1812         /* Turn on RX list placement state machine */
1813         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1814
1815         /* Turn on RX list selector state machine. */
1816         if (!BGE_IS_5705_PLUS(sc))
1817                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1818
1819         val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1820             BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1821             BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1822             BGE_MACMODE_FRMHDR_DMA_ENB;
1823
1824         if (sc->bge_flags & BGE_FLAG_TBI)
1825                 val |= BGE_PORTMODE_TBI;
1826         else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
1827                 val |= BGE_PORTMODE_GMII;
1828         else
1829                 val |= BGE_PORTMODE_MII;
1830
1831         /* Turn on DMA, clear stats */
1832         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1833
1834         /* Set misc. local control, enable interrupts on attentions */
1835         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1836
1837 #ifdef notdef
1838         /* Assert GPIO pins for PHY reset */
1839         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1840             BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1841         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1842             BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1843 #endif
1844
1845         /* Turn on DMA completion state machine */
1846         if (!BGE_IS_5705_PLUS(sc))
1847                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1848
1849         /* Turn on write DMA state machine */
1850         val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1851         if (BGE_IS_5755_PLUS(sc)) {
1852                 /* Enable host coalescing bug fix. */
1853                 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1854         }
1855         if (sc->bge_asicrev == BGE_ASICREV_BCM5785) {
1856                 /* Request larger DMA burst size to get better performance. */
1857                 val |= BGE_WDMAMODE_BURST_ALL_DATA;
1858         }
1859         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1860         DELAY(40);
1861
1862         if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
1863             sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1864             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1865             sc->bge_asicrev == BGE_ASICREV_BCM57780) {
1866                 /*
1867                  * Enable fix for read DMA FIFO overruns.
1868                  * The fix is to limit the number of RX BDs
1869                  * the hardware would fetch at a fime.
1870                  */
1871                 val = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
1872                 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL,
1873                     val| BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
1874         }
1875
1876         /* Turn on read DMA state machine */
1877         val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1878         if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1879             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1880             sc->bge_asicrev == BGE_ASICREV_BCM57780)
1881                 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1882                   BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1883                   BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1884         if (sc->bge_flags & BGE_FLAG_PCIE)
1885                 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1886         if (sc->bge_flags & BGE_FLAG_TSO)
1887                 val |= BGE_RDMAMODE_TSO4_ENABLE;
1888         CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1889         DELAY(40);
1890
1891         /* Turn on RX data completion state machine */
1892         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1893
1894         /* Turn on RX BD initiator state machine */
1895         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1896
1897         /* Turn on RX data and RX BD initiator state machine */
1898         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1899
1900         /* Turn on Mbuf cluster free state machine */
1901         if (!BGE_IS_5705_PLUS(sc))
1902                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1903
1904         /* Turn on send BD completion state machine */
1905         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1906
1907         /* Turn on send data completion state machine */
1908         val = BGE_SDCMODE_ENABLE;
1909         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
1910                 val |= BGE_SDCMODE_CDELAY; 
1911         CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1912
1913         /* Turn on send data initiator state machine */
1914         if (sc->bge_flags & BGE_FLAG_TSO)
1915                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
1916                     BGE_SDIMODE_HW_LSO_PRE_DMA);
1917         else
1918                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1919
1920         /* Turn on send BD initiator state machine */
1921         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1922
1923         /* Turn on send BD selector state machine */
1924         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1925
1926         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1927         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1928             BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1929
1930         /* ack/clear link change events */
1931         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1932             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1933             BGE_MACSTAT_LINK_CHANGED);
1934         CSR_WRITE_4(sc, BGE_MI_STS, 0);
1935
1936         /*
1937          * Enable attention when the link has changed state for
1938          * devices that use auto polling.
1939          */
1940         if (sc->bge_flags & BGE_FLAG_TBI) {
1941                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1942         } else {
1943                 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
1944                         CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1945                         DELAY(80);
1946                 }
1947                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1948                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1949                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1950                             BGE_EVTENB_MI_INTERRUPT);
1951                 }
1952         }
1953
1954         /*
1955          * Clear any pending link state attention.
1956          * Otherwise some link state change events may be lost until attention
1957          * is cleared by bge_intr() -> bge_softc.bge_link_upd() sequence.
1958          * It's not necessary on newer BCM chips - perhaps enabling link
1959          * state change attentions implies clearing pending attention.
1960          */
1961         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1962             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1963             BGE_MACSTAT_LINK_CHANGED);
1964
1965         /* Enable link state change attentions. */
1966         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1967
1968         return(0);
1969 }
1970
1971 /*
1972  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1973  * against our list and return its name if we find a match. Note
1974  * that since the Broadcom controller contains VPD support, we
1975  * can get the device name string from the controller itself instead
1976  * of the compiled-in string. This is a little slow, but it guarantees
1977  * we'll always announce the right product name.
1978  */
1979 static int
1980 bge_probe(device_t dev)
1981 {
1982         const struct bge_type *t;
1983         uint16_t product, vendor;
1984
1985         product = pci_get_device(dev);
1986         vendor = pci_get_vendor(dev);
1987
1988         for (t = bge_devs; t->bge_name != NULL; t++) {
1989                 if (vendor == t->bge_vid && product == t->bge_did)
1990                         break;
1991         }
1992         if (t->bge_name == NULL)
1993                 return(ENXIO);
1994
1995         device_set_desc(dev, t->bge_name);
1996         return(0);
1997 }
1998
1999 static int
2000 bge_attach(device_t dev)
2001 {
2002         struct ifnet *ifp;
2003         struct bge_softc *sc;
2004         uint32_t hwcfg = 0, misccfg;
2005         int error = 0, rid, capmask;
2006         uint8_t ether_addr[ETHER_ADDR_LEN];
2007         uint16_t product, vendor;
2008         driver_intr_t *intr_func;
2009         uintptr_t mii_priv = 0;
2010         u_int intr_flags;
2011         int msi_enable;
2012
2013         sc = device_get_softc(dev);
2014         sc->bge_dev = dev;
2015         callout_init_mp(&sc->bge_stat_timer);
2016         lwkt_serialize_init(&sc->bge_jslot_serializer);
2017
2018         product = pci_get_device(dev);
2019         vendor = pci_get_vendor(dev);
2020
2021 #ifndef BURN_BRIDGES
2022         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
2023                 uint32_t irq, mem;
2024
2025                 irq = pci_read_config(dev, PCIR_INTLINE, 4);
2026                 mem = pci_read_config(dev, BGE_PCI_BAR0, 4);
2027
2028                 device_printf(dev, "chip is in D%d power mode "
2029                     "-- setting to D0\n", pci_get_powerstate(dev));
2030
2031                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
2032
2033                 pci_write_config(dev, PCIR_INTLINE, irq, 4);
2034                 pci_write_config(dev, BGE_PCI_BAR0, mem, 4);
2035         }
2036 #endif  /* !BURN_BRIDGE */
2037
2038         /*
2039          * Map control/status registers.
2040          */
2041         pci_enable_busmaster(dev);
2042
2043         rid = BGE_PCI_BAR0;
2044         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2045             RF_ACTIVE);
2046
2047         if (sc->bge_res == NULL) {
2048                 device_printf(dev, "couldn't map memory\n");
2049                 return ENXIO;
2050         }
2051
2052         sc->bge_btag = rman_get_bustag(sc->bge_res);
2053         sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
2054
2055         /* Save various chip information */
2056         sc->bge_chipid =
2057             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2058             BGE_PCIMISCCTL_ASICREV_SHIFT;
2059         if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2060                 /* All chips, which use BGE_PCI_PRODID_ASICREV, have CPMU */
2061                 sc->bge_flags |= BGE_FLAG_CPMU;
2062                 sc->bge_chipid = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2063         }
2064         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2065         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2066
2067         /* Save chipset family. */
2068         switch (sc->bge_asicrev) {
2069         case BGE_ASICREV_BCM5755:
2070         case BGE_ASICREV_BCM5761:
2071         case BGE_ASICREV_BCM5784:
2072         case BGE_ASICREV_BCM5785:
2073         case BGE_ASICREV_BCM5787:
2074         case BGE_ASICREV_BCM57780:
2075             sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
2076                 BGE_FLAG_5705_PLUS;
2077             break;
2078
2079         case BGE_ASICREV_BCM5700:
2080         case BGE_ASICREV_BCM5701:
2081         case BGE_ASICREV_BCM5703:
2082         case BGE_ASICREV_BCM5704:
2083                 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2084                 break;
2085
2086         case BGE_ASICREV_BCM5714_A0:
2087         case BGE_ASICREV_BCM5780:
2088         case BGE_ASICREV_BCM5714:
2089                 sc->bge_flags |= BGE_FLAG_5714_FAMILY;
2090                 /* Fall through */
2091
2092         case BGE_ASICREV_BCM5750:
2093         case BGE_ASICREV_BCM5752:
2094         case BGE_ASICREV_BCM5906:
2095                 sc->bge_flags |= BGE_FLAG_575X_PLUS;
2096                 /* Fall through */
2097
2098         case BGE_ASICREV_BCM5705:
2099                 sc->bge_flags |= BGE_FLAG_5705_PLUS;
2100                 break;
2101         }
2102
2103         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2104                 sc->bge_flags |= BGE_FLAG_NO_EEPROM;
2105
2106         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2107                 sc->bge_flags |= BGE_FLAG_APE;
2108
2109         misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
2110         if (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2111             (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2112              misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2113                 sc->bge_flags |= BGE_FLAG_5788;
2114
2115         /* BCM5755 or higher and BCM5906 have short DMA bug. */
2116         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
2117                 sc->bge_flags |= BGE_FLAG_SHORTDMA;
2118
2119         /*
2120          * Increase STD RX ring prod index by at most 8 for BCM5750,
2121          * BCM5752 and BCM5755 to workaround hardware errata.
2122          */
2123         if (sc->bge_asicrev == BGE_ASICREV_BCM5750 ||
2124             sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2125             sc->bge_asicrev == BGE_ASICREV_BCM5755)
2126                 sc->bge_rx_wreg = 8;
2127
2128         /*
2129          * Check if this is a PCI-X or PCI Express device.
2130          */
2131         if (BGE_IS_5705_PLUS(sc)) {
2132                 if (pci_is_pcie(dev)) {
2133                         sc->bge_flags |= BGE_FLAG_PCIE;
2134                         sc->bge_pciecap = pci_get_pciecap_ptr(sc->bge_dev);
2135                         pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_4096);
2136                 }
2137         } else {
2138                 /*
2139                  * Check if the device is in PCI-X Mode.
2140                  * (This bit is not valid on PCI Express controllers.)
2141                  */
2142                 if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
2143                     BGE_PCISTATE_PCI_BUSMODE) == 0) {
2144                         sc->bge_flags |= BGE_FLAG_PCIX;
2145                         sc->bge_pcixcap = pci_get_pcixcap_ptr(sc->bge_dev);
2146                         sc->bge_mbox_reorder = device_getenv_int(sc->bge_dev,
2147                             "mbox_reorder", 0);
2148                 }
2149         }
2150         device_printf(dev, "CHIP ID 0x%08x; "
2151                       "ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
2152                       sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
2153                       (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X"
2154                       : ((sc->bge_flags & BGE_FLAG_PCIE) ?
2155                         "PCI-E" : "PCI"));
2156
2157         /*
2158          * The 40bit DMA bug applies to the 5714/5715 controllers and is
2159          * not actually a MAC controller bug but an issue with the embedded
2160          * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
2161          */
2162         if ((sc->bge_flags & BGE_FLAG_PCIX) &&
2163             (BGE_IS_5714_FAMILY(sc) || device_getenv_int(dev, "dma40b", 0)))
2164                 sc->bge_flags |= BGE_FLAG_MAXADDR_40BIT;
2165
2166         /*
2167          * When using the BCM5701 in PCI-X mode, data corruption has
2168          * been observed in the first few bytes of some received packets.
2169          * Aligning the packet buffer in memory eliminates the corruption.
2170          * Unfortunately, this misaligns the packet payloads.  On platforms
2171          * which do not support unaligned accesses, we will realign the
2172          * payloads by copying the received packets.
2173          */
2174         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
2175             (sc->bge_flags & BGE_FLAG_PCIX))
2176                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
2177
2178         if (!BGE_IS_CRIPPLED(sc)) {
2179                 if (device_getenv_int(dev, "status_tag", 1)) {
2180                         sc->bge_flags |= BGE_FLAG_STATUS_TAG;
2181                         sc->bge_pci_miscctl = BGE_PCIMISCCTL_TAGGED_STATUS;
2182                         if (bootverbose)
2183                                 device_printf(dev, "enable status tag\n");
2184                 }
2185         }
2186
2187         if (BGE_IS_5755_PLUS(sc)) {
2188                 /*
2189                  * BCM5754 and BCM5787 shares the same ASIC id so
2190                  * explicit device id check is required.
2191                  * Due to unknown reason TSO does not work on BCM5755M.
2192                  */
2193                 if (product != PCI_PRODUCT_BROADCOM_BCM5754 &&
2194                     product != PCI_PRODUCT_BROADCOM_BCM5754M &&
2195                     product != PCI_PRODUCT_BROADCOM_BCM5755M)
2196                         sc->bge_flags |= BGE_FLAG_TSO;
2197         }
2198
2199         /*
2200          * Set various PHY quirk flags.
2201          */
2202
2203         if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2204              sc->bge_asicrev == BGE_ASICREV_BCM5701) &&
2205             pci_get_subvendor(dev) == PCI_VENDOR_DELL)
2206                 mii_priv |= BRGPHY_FLAG_NO_3LED;
2207
2208         capmask = MII_CAPMASK_DEFAULT;
2209         if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
2210              (misccfg == 0x4000 || misccfg == 0x8000)) ||
2211             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2212              vendor == PCI_VENDOR_BROADCOM &&
2213              (product == PCI_PRODUCT_BROADCOM_BCM5901 ||
2214               product == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2215               product == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2216             (vendor == PCI_VENDOR_BROADCOM &&
2217              (product == PCI_PRODUCT_BROADCOM_BCM5751F ||
2218               product == PCI_PRODUCT_BROADCOM_BCM5753F ||
2219               product == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2220             product == PCI_PRODUCT_BROADCOM_BCM57790 ||
2221             sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2222                 /* 10/100 only */
2223                 capmask &= ~BMSR_EXTSTAT;
2224         }
2225
2226         mii_priv |= BRGPHY_FLAG_WIRESPEED;
2227         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2228             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2229              (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2230               sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2231             sc->bge_asicrev == BGE_ASICREV_BCM5906)
2232                 mii_priv &= ~BRGPHY_FLAG_WIRESPEED;
2233
2234         if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2235             sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2236                 mii_priv |= BRGPHY_FLAG_CRC_BUG;
2237
2238         if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2239             sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2240                 mii_priv |= BRGPHY_FLAG_ADC_BUG;
2241
2242         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2243                 mii_priv |= BRGPHY_FLAG_5704_A0;
2244
2245         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2246                 mii_priv |= BRGPHY_FLAG_5906;
2247
2248         if (BGE_IS_5705_PLUS(sc) &&
2249             sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2250             /* sc->bge_asicrev != BGE_ASICREV_BCM5717 && */
2251             sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2252             /* sc->bge_asicrev != BGE_ASICREV_BCM57765 && */
2253             sc->bge_asicrev != BGE_ASICREV_BCM57780) {
2254                 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2255                     sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2256                     sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2257                     sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2258                         if (product != PCI_PRODUCT_BROADCOM_BCM5722 &&
2259                             product != PCI_PRODUCT_BROADCOM_BCM5756)
2260                                 mii_priv |= BRGPHY_FLAG_JITTER_BUG;
2261                         if (product == PCI_PRODUCT_BROADCOM_BCM5755M)
2262                                 mii_priv |= BRGPHY_FLAG_ADJUST_TRIM;
2263                 } else {
2264                         mii_priv |= BRGPHY_FLAG_BER_BUG;
2265                 }
2266         }
2267
2268         /*
2269          * Allocate interrupt
2270          */
2271         msi_enable = bge_msi_enable;
2272         if ((sc->bge_flags & BGE_FLAG_STATUS_TAG) == 0) {
2273                 /* If "tagged status" is disabled, don't enable MSI */
2274                 msi_enable = 0;
2275         } else if (msi_enable) {
2276                 msi_enable = 0; /* Disable by default */
2277                 if (BGE_IS_575X_PLUS(sc)) {
2278                         msi_enable = 1;
2279                         /* XXX we filter all 5714 chips */
2280                         if (sc->bge_asicrev == BGE_ASICREV_BCM5714 ||
2281                             (sc->bge_asicrev == BGE_ASICREV_BCM5750 &&
2282                              (sc->bge_chiprev == BGE_CHIPREV_5750_AX ||
2283                               sc->bge_chiprev == BGE_CHIPREV_5750_BX)))
2284                                 msi_enable = 0;
2285                         else if (BGE_IS_5755_PLUS(sc) ||
2286                             sc->bge_asicrev == BGE_ASICREV_BCM5906)
2287                                 sc->bge_flags |= BGE_FLAG_ONESHOT_MSI;
2288                 }
2289         }
2290         if (msi_enable) {
2291                 if (pci_find_extcap(dev, PCIY_MSI, &sc->bge_msicap)) {
2292                         device_printf(dev, "no MSI capability\n");
2293                         msi_enable = 0;
2294                 }
2295         }
2296
2297         sc->bge_irq_type = pci_alloc_1intr(dev, msi_enable, &sc->bge_irq_rid,
2298             &intr_flags);
2299
2300         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->bge_irq_rid,
2301             intr_flags);
2302         if (sc->bge_irq == NULL) {
2303                 device_printf(dev, "couldn't map interrupt\n");
2304                 error = ENXIO;
2305                 goto fail;
2306         }
2307
2308         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2309                 bge_enable_msi(sc);
2310         else
2311                 sc->bge_flags &= ~BGE_FLAG_ONESHOT_MSI;
2312
2313         /* Initialize if_name earlier, so if_printf could be used */
2314         ifp = &sc->arpcom.ac_if;
2315         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2316
2317         sc->bge_asf_mode = 0;
2318         /* No ASF if APE present. */
2319         if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
2320                 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
2321                     BGE_SRAM_DATA_SIG_MAGIC)) {
2322                         if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
2323                             BGE_HWCFG_ASF) {
2324                                 sc->bge_asf_mode |= ASF_ENABLE;
2325                                 sc->bge_asf_mode |= ASF_STACKUP;
2326                                 if (BGE_IS_575X_PLUS(sc))
2327                                         sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2328                         }
2329                 }
2330         }
2331
2332         /*
2333          * Try to reset the chip.
2334          */
2335         bge_stop_fw(sc);
2336         bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
2337         bge_reset(sc);
2338         bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
2339         bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
2340
2341         if (bge_chipinit(sc)) {
2342                 device_printf(dev, "chip initialization failed\n");
2343                 error = ENXIO;
2344                 goto fail;
2345         }
2346
2347         /*
2348          * Get station address
2349          */
2350         error = bge_get_eaddr(sc, ether_addr);
2351         if (error) {
2352                 device_printf(dev, "failed to read station address\n");
2353                 goto fail;
2354         }
2355
2356         /* 5705/5750 limits RX return ring to 512 entries. */
2357         if (BGE_IS_5705_PLUS(sc))
2358                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2359         else
2360                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2361
2362         error = bge_dma_alloc(sc);
2363         if (error)
2364                 goto fail;
2365
2366         /* Set default tuneable values. */
2367         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2368         sc->bge_rx_coal_ticks = BGE_RX_COAL_TICKS_DEF;
2369         sc->bge_tx_coal_ticks = BGE_TX_COAL_TICKS_DEF;
2370         sc->bge_rx_coal_bds = BGE_RX_COAL_BDS_DEF;
2371         sc->bge_tx_coal_bds = BGE_TX_COAL_BDS_DEF;
2372         if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2373                 sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_DEF;
2374                 sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_DEF;
2375                 sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_DEF;
2376                 sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_DEF;
2377         } else {
2378                 sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_MIN;
2379                 sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_MIN;
2380                 sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_MIN;
2381                 sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_MIN;
2382         }
2383         sc->bge_tx_wreg = BGE_TX_WREG_NSEGS;
2384
2385         /* Set up TX spare and reserved descriptor count */
2386         if (sc->bge_flags & BGE_FLAG_TSO) {
2387                 sc->bge_txspare = BGE_NSEG_SPARE_TSO;
2388                 sc->bge_txrsvd = BGE_NSEG_RSVD_TSO;
2389         } else {
2390                 sc->bge_txspare = BGE_NSEG_SPARE;
2391                 sc->bge_txrsvd = BGE_NSEG_RSVD;
2392         }
2393
2394         /* Set up ifnet structure */
2395         ifp->if_softc = sc;
2396         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2397         ifp->if_ioctl = bge_ioctl;
2398         ifp->if_start = bge_start;
2399 #ifdef IFPOLL_ENABLE
2400         ifp->if_npoll = bge_npoll;
2401 #endif
2402         ifp->if_watchdog = bge_watchdog;
2403         ifp->if_init = bge_init;
2404         ifp->if_mtu = ETHERMTU;
2405         ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2406         ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
2407         ifq_set_ready(&ifp->if_snd);
2408
2409         /*
2410          * 5700 B0 chips do not support checksumming correctly due
2411          * to hardware bugs.
2412          */
2413         if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) {
2414                 ifp->if_capabilities |= IFCAP_HWCSUM;
2415                 ifp->if_hwassist |= BGE_CSUM_FEATURES;
2416         }
2417         if (sc->bge_flags & BGE_FLAG_TSO) {
2418                 ifp->if_capabilities |= IFCAP_TSO;
2419                 ifp->if_hwassist |= CSUM_TSO;
2420         }
2421         ifp->if_capenable = ifp->if_capabilities;
2422
2423         /*
2424          * Figure out what sort of media we have by checking the
2425          * hardware config word in the first 32k of NIC internal memory,
2426          * or fall back to examining the EEPROM if necessary.
2427          * Note: on some BCM5700 cards, this value appears to be unset.
2428          * If that's the case, we have to rely on identifying the NIC
2429          * by its PCI subsystem ID, as we do below for the SysKonnect
2430          * SK-9D41.
2431          */
2432         if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC) {
2433                 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
2434         } else {
2435                 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2436                                     sizeof(hwcfg))) {
2437                         device_printf(dev, "failed to read EEPROM\n");
2438                         error = ENXIO;
2439                         goto fail;
2440                 }
2441                 hwcfg = ntohl(hwcfg);
2442         }
2443
2444         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2445         if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41 ||
2446             (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2447                 if (BGE_IS_5714_FAMILY(sc))
2448                         sc->bge_flags |= BGE_FLAG_MII_SERDES;
2449                 else
2450                         sc->bge_flags |= BGE_FLAG_TBI;
2451         }
2452
2453         /* Setup MI MODE */
2454         if (sc->bge_flags & BGE_FLAG_CPMU)
2455                 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
2456         else
2457                 sc->bge_mi_mode = BGE_MIMODE_BASE;
2458         if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705) {
2459                 /* Enable auto polling for BCM570[0-5]. */
2460                 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
2461         }
2462
2463         /* Setup link status update stuffs */
2464         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2465             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
2466                 sc->bge_link_upd = bge_bcm5700_link_upd;
2467                 sc->bge_link_chg = BGE_MACSTAT_MI_INTERRUPT;
2468         } else if (sc->bge_flags & BGE_FLAG_TBI) {
2469                 sc->bge_link_upd = bge_tbi_link_upd;
2470                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2471         } else if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2472                 sc->bge_link_upd = bge_autopoll_link_upd;
2473                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2474         } else {
2475                 sc->bge_link_upd = bge_copper_link_upd;
2476                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2477         }
2478
2479         /*
2480          * Broadcom's own driver always assumes the internal
2481          * PHY is at GMII address 1.  On some chips, the PHY responds
2482          * to accesses at all addresses, which could cause us to
2483          * bogusly attach the PHY 32 times at probe type.  Always
2484          * restricting the lookup to address 1 is simpler than
2485          * trying to figure out which chips revisions should be
2486          * special-cased.
2487          */
2488         sc->bge_phyno = 1;
2489
2490         if (sc->bge_flags & BGE_FLAG_TBI) {
2491                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
2492                     bge_ifmedia_upd, bge_ifmedia_sts);
2493                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2494                 ifmedia_add(&sc->bge_ifmedia,
2495                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2496                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2497                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2498                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2499         } else {
2500                 struct mii_probe_args mii_args;
2501                 int tries;
2502
2503                 /*
2504                  * Do transceiver setup and tell the firmware the
2505                  * driver is down so we can try to get access the
2506                  * probe if ASF is running.  Retry a couple of times
2507                  * if we get a conflict with the ASF firmware accessing
2508                  * the PHY.
2509                  */
2510                 tries = 0;
2511                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2512 again:
2513                 bge_asf_driver_up(sc);
2514
2515                 mii_probe_args_init(&mii_args, bge_ifmedia_upd, bge_ifmedia_sts);
2516                 mii_args.mii_probemask = 1 << sc->bge_phyno;
2517                 mii_args.mii_capmask = capmask;
2518                 mii_args.mii_privtag = MII_PRIVTAG_BRGPHY;
2519                 mii_args.mii_priv = mii_priv;
2520
2521                 error = mii_probe(dev, &sc->bge_miibus, &mii_args);
2522                 if (error) {
2523                         if (tries++ < 4) {
2524                                 device_printf(sc->bge_dev, "Probe MII again\n");
2525                                 bge_miibus_writereg(sc->bge_dev,
2526                                     sc->bge_phyno, MII_BMCR, BMCR_RESET);
2527                                 goto again;
2528                         }
2529                         device_printf(dev, "MII without any PHY!\n");
2530                         goto fail;
2531                 }
2532
2533                 /*
2534                  * Now tell the firmware we are going up after probing the PHY
2535                  */
2536                 if (sc->bge_asf_mode & ASF_STACKUP)
2537                         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2538         }
2539
2540         /*
2541          * Create sysctl nodes.
2542          */
2543         sysctl_ctx_init(&sc->bge_sysctl_ctx);
2544         sc->bge_sysctl_tree = SYSCTL_ADD_NODE(&sc->bge_sysctl_ctx,
2545                                               SYSCTL_STATIC_CHILDREN(_hw),
2546                                               OID_AUTO,
2547                                               device_get_nameunit(dev),
2548                                               CTLFLAG_RD, 0, "");
2549         if (sc->bge_sysctl_tree == NULL) {
2550                 device_printf(dev, "can't add sysctl node\n");
2551                 error = ENXIO;
2552                 goto fail;
2553         }
2554
2555         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2556                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2557                         OID_AUTO, "rx_coal_ticks",
2558                         CTLTYPE_INT | CTLFLAG_RW,
2559                         sc, 0, bge_sysctl_rx_coal_ticks, "I",
2560                         "Receive coalescing ticks (usec).");
2561         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2562                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2563                         OID_AUTO, "tx_coal_ticks",
2564                         CTLTYPE_INT | CTLFLAG_RW,
2565                         sc, 0, bge_sysctl_tx_coal_ticks, "I",
2566                         "Transmit coalescing ticks (usec).");
2567         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2568                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2569                         OID_AUTO, "rx_coal_bds",
2570                         CTLTYPE_INT | CTLFLAG_RW,
2571                         sc, 0, bge_sysctl_rx_coal_bds, "I",
2572                         "Receive max coalesced BD count.");
2573         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2574                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2575                         OID_AUTO, "tx_coal_bds",
2576                         CTLTYPE_INT | CTLFLAG_RW,
2577                         sc, 0, bge_sysctl_tx_coal_bds, "I",
2578                         "Transmit max coalesced BD count.");
2579
2580         SYSCTL_ADD_INT(&sc->bge_sysctl_ctx,
2581                        SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2582                        OID_AUTO, "tx_wreg", CTLFLAG_RW,
2583                        &sc->bge_tx_wreg, 0,
2584                        "# of segments before writing to hardware register");
2585
2586         if (sc->bge_flags & BGE_FLAG_PCIE) {
2587                 /*
2588                  * A common design characteristic for many Broadcom
2589                  * client controllers is that they only support a
2590                  * single outstanding DMA read operation on the PCIe
2591                  * bus. This means that it will take twice as long to
2592                  * fetch a TX frame that is split into header and
2593                  * payload buffers as it does to fetch a single,
2594                  * contiguous TX frame (2 reads vs. 1 read). For these
2595                  * controllers, coalescing buffers to reduce the number
2596                  * of memory reads is effective way to get maximum
2597                  * performance(about 940Mbps).  Without collapsing TX
2598                  * buffers the maximum TCP bulk transfer performance
2599                  * is about 850Mbps. However forcing coalescing mbufs
2600                  * consumes a lot of CPU cycles, so leave it off by
2601                  * default.
2602                  */
2603                 SYSCTL_ADD_INT(&sc->bge_sysctl_ctx,
2604                                SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2605                                OID_AUTO, "force_defrag", CTLFLAG_RW,
2606                                &sc->bge_force_defrag, 0,
2607                                "Force defragment on TX path");
2608         }
2609         if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2610                 if (!BGE_IS_5705_PLUS(sc)) {
2611                         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2612                             SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2613                             "rx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2614                             sc, 0, bge_sysctl_rx_coal_ticks_int, "I",
2615                             "Receive coalescing ticks "
2616                             "during interrupt (usec).");
2617                         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2618                             SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2619                             "tx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2620                             sc, 0, bge_sysctl_tx_coal_ticks_int, "I",
2621                             "Transmit coalescing ticks "
2622                             "during interrupt (usec).");
2623                 }
2624                 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2625                     SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2626                     "rx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2627                     sc, 0, bge_sysctl_rx_coal_bds_int, "I",
2628                     "Receive max coalesced BD count during interrupt.");
2629                 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2630                     SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2631                     "tx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2632                     sc, 0, bge_sysctl_tx_coal_bds_int, "I",
2633                     "Transmit max coalesced BD count during interrupt.");
2634         }
2635
2636         /*
2637          * Call MI attach routine.
2638          */
2639         ether_ifattach(ifp, ether_addr, NULL);
2640
2641         ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->bge_irq));
2642
2643 #ifdef IFPOLL_ENABLE
2644         /* Polling setup */
2645         ifpoll_compat_setup(&sc->bge_npoll,
2646             &sc->bge_sysctl_ctx, sc->bge_sysctl_tree, device_get_unit(dev),
2647             ifp->if_serializer);
2648 #endif
2649
2650         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2651                 if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
2652                         intr_func = bge_msi_oneshot;
2653                         if (bootverbose)
2654                                 device_printf(dev, "oneshot MSI\n");
2655                 } else {
2656                         intr_func = bge_msi;
2657                 }
2658         } else if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2659                 intr_func = bge_intr_legacy;
2660         } else {
2661                 intr_func = bge_intr_crippled;
2662         }
2663         error = bus_setup_intr(dev, sc->bge_irq, INTR_MPSAFE, intr_func, sc,
2664             &sc->bge_intrhand, ifp->if_serializer);
2665         if (error) {
2666                 ether_ifdetach(ifp);
2667                 device_printf(dev, "couldn't set up irq\n");
2668                 goto fail;
2669         }
2670
2671         return(0);
2672 fail:
2673         bge_detach(dev);
2674         return(error);
2675 }
2676
2677 static int
2678 bge_detach(device_t dev)
2679 {
2680         struct bge_softc *sc = device_get_softc(dev);
2681
2682         if (device_is_attached(dev)) {
2683                 struct ifnet *ifp = &sc->arpcom.ac_if;
2684
2685                 lwkt_serialize_enter(ifp->if_serializer);
2686                 bge_stop(sc);
2687                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
2688                 lwkt_serialize_exit(ifp->if_serializer);
2689
2690                 ether_ifdetach(ifp);
2691         }
2692
2693         if (sc->bge_flags & BGE_FLAG_TBI)
2694                 ifmedia_removeall(&sc->bge_ifmedia);
2695         if (sc->bge_miibus)
2696                 device_delete_child(dev, sc->bge_miibus);
2697         bus_generic_detach(dev);
2698
2699         if (sc->bge_irq != NULL) {
2700                 bus_release_resource(dev, SYS_RES_IRQ, sc->bge_irq_rid,
2701                     sc->bge_irq);
2702         }
2703         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2704                 pci_release_msi(dev);
2705
2706         if (sc->bge_res != NULL) {
2707                 bus_release_resource(dev, SYS_RES_MEMORY,
2708                     BGE_PCI_BAR0, sc->bge_res);
2709         }
2710
2711         if (sc->bge_sysctl_tree != NULL)
2712                 sysctl_ctx_free(&sc->bge_sysctl_ctx);
2713
2714         bge_dma_free(sc);
2715
2716         return 0;
2717 }
2718
2719 static void
2720 bge_reset(struct bge_softc *sc)
2721 {
2722         device_t dev;
2723         uint32_t cachesize, command, pcistate, reset;
2724         void (*write_op)(struct bge_softc *, uint32_t, uint32_t);
2725         int i, val = 0;
2726
2727         dev = sc->bge_dev;
2728
2729         if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
2730             sc->bge_asicrev != BGE_ASICREV_BCM5906) {
2731                 if (sc->bge_flags & BGE_FLAG_PCIE)
2732                         write_op = bge_writemem_direct;
2733                 else
2734                         write_op = bge_writemem_ind;
2735         } else {
2736                 write_op = bge_writereg_ind;
2737         }
2738
2739         /* Save some important PCI state. */
2740         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2741         command = pci_read_config(dev, BGE_PCI_CMD, 4);
2742         pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2743
2744         pci_write_config(dev, BGE_PCI_MISC_CTL,
2745             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2746             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2747             sc->bge_pci_miscctl, 4);
2748
2749         /* Disable fastboot on controllers that support it. */
2750         if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2751             BGE_IS_5755_PLUS(sc)) {
2752                 if (bootverbose)
2753                         if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2754                 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2755         }
2756
2757         /*
2758          * Write the magic number to SRAM at offset 0xB50.
2759          * When firmware finishes its initialization it will
2760          * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
2761          */
2762         bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2763
2764         reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2765
2766         /* XXX: Broadcom Linux driver. */
2767         if (sc->bge_flags & BGE_FLAG_PCIE) {
2768                 /* Force PCI-E 1.0a mode */
2769                 if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2770                     CSR_READ_4(sc, BGE_PCIE_PHY_TSTCTL) ==
2771                     (BGE_PCIE_PHY_TSTCTL_PSCRAM |
2772                      BGE_PCIE_PHY_TSTCTL_PCIE10)) {
2773                         CSR_WRITE_4(sc, BGE_PCIE_PHY_TSTCTL,
2774                             BGE_PCIE_PHY_TSTCTL_PSCRAM);
2775                 }
2776                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2777                         /* Prevent PCIE link training during global reset */
2778                         CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2779                         reset |= (1<<29);
2780                 }
2781         }
2782
2783         /* 
2784          * Set GPHY Power Down Override to leave GPHY
2785          * powered up in D0 uninitialized.
2786          */
2787         if (BGE_IS_5705_PLUS(sc) && (sc->bge_flags & BGE_FLAG_CPMU) == 0)
2788                 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
2789
2790         /* Issue global reset */
2791         write_op(sc, BGE_MISC_CFG, reset);
2792
2793         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2794                 uint32_t status, ctrl;
2795
2796                 status = CSR_READ_4(sc, BGE_VCPU_STATUS);
2797                 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2798                     status | BGE_VCPU_STATUS_DRV_RESET);
2799                 ctrl = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2800                 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2801                     ctrl & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2802         }
2803
2804         DELAY(1000);
2805
2806         /* XXX: Broadcom Linux driver. */
2807         if (sc->bge_flags & BGE_FLAG_PCIE) {
2808                 uint16_t devctl;
2809
2810                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2811                         uint32_t v;
2812
2813                         DELAY(500000); /* wait for link training to complete */
2814                         v = pci_read_config(dev, 0xc4, 4);
2815                         pci_write_config(dev, 0xc4, v | (1<<15), 4);
2816                 }
2817
2818                 devctl = pci_read_config(dev,
2819                     sc->bge_pciecap + PCIER_DEVCTRL, 2);
2820
2821                 /* Disable no snoop and disable relaxed ordering. */
2822                 devctl &= ~(PCIEM_DEVCTL_RELAX_ORDER | PCIEM_DEVCTL_NOSNOOP);
2823
2824                 /* Old PCI-E chips only support 128 bytes Max PayLoad Size. */
2825                 if ((sc->bge_flags & BGE_FLAG_CPMU) == 0) {
2826                         devctl &= ~PCIEM_DEVCTL_MAX_PAYLOAD_MASK;
2827                         devctl |= PCIEM_DEVCTL_MAX_PAYLOAD_128;
2828                 }
2829
2830                 pci_write_config(dev, sc->bge_pciecap + PCIER_DEVCTRL,
2831                     devctl, 2);
2832
2833                 /* Clear error status. */
2834                 pci_write_config(dev, sc->bge_pciecap + PCIER_DEVSTS,
2835                     PCIEM_DEVSTS_CORR_ERR |
2836                     PCIEM_DEVSTS_NFATAL_ERR |
2837                     PCIEM_DEVSTS_FATAL_ERR |
2838                     PCIEM_DEVSTS_UNSUPP_REQ, 2);
2839         }
2840
2841         /* Reset some of the PCI state that got zapped by reset */
2842         pci_write_config(dev, BGE_PCI_MISC_CTL,
2843             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2844             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2845             sc->bge_pci_miscctl, 4);
2846         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2847         pci_write_config(dev, BGE_PCI_CMD, command, 4);
2848         write_op(sc, BGE_MISC_CFG, (65 << 1));
2849
2850         /*
2851          * Disable PCI-X relaxed ordering to ensure status block update
2852          * comes first then packet buffer DMA. Otherwise driver may
2853          * read stale status block.
2854          */
2855         if (sc->bge_flags & BGE_FLAG_PCIX) {
2856                 uint16_t devctl;
2857
2858                 devctl = pci_read_config(dev,
2859                     sc->bge_pcixcap + PCIXR_COMMAND, 2);
2860                 devctl &= ~PCIXM_COMMAND_ERO;
2861                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
2862                         devctl &= ~PCIXM_COMMAND_MAX_READ;
2863                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
2864                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2865                         devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
2866                             PCIXM_COMMAND_MAX_READ);
2867                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
2868                 }
2869                 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
2870                     devctl, 2);
2871         }
2872
2873         /*
2874          * Enable memory arbiter and re-enable MSI if necessary.
2875          */
2876         if (BGE_IS_5714_FAMILY(sc)) {
2877                 uint32_t val;
2878
2879                 if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2880                         /*
2881                          * Resetting BCM5714 family will clear MSI
2882                          * enable bit; restore it after resetting.
2883                          */
2884                         PCI_SETBIT(sc->bge_dev, sc->bge_msicap + PCIR_MSI_CTRL,
2885                             PCIM_MSICTRL_MSI_ENABLE, 2);
2886                         BGE_SETBIT(sc, BGE_MSI_MODE, BGE_MSIMODE_ENABLE);
2887                 }
2888                 val = CSR_READ_4(sc, BGE_MARB_MODE);
2889                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2890         } else {
2891                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2892         }
2893
2894         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2895                 for (i = 0; i < BGE_TIMEOUT; i++) {
2896                         val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2897                         if (val & BGE_VCPU_STATUS_INIT_DONE)
2898                                 break;
2899                         DELAY(100);
2900                 }
2901                 if (i == BGE_TIMEOUT) {
2902                         if_printf(&sc->arpcom.ac_if, "reset timed out\n");
2903                         return;
2904                 }
2905         } else {
2906                 /*
2907                  * Poll until we see the 1's complement of the magic number.
2908                  * This indicates that the firmware initialization
2909                  * is complete.
2910                  */
2911                 for (i = 0; i < BGE_FIRMWARE_TIMEOUT; i++) {
2912                         val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2913                         if (val == ~BGE_SRAM_FW_MB_MAGIC)
2914                                 break;
2915                         DELAY(10);
2916                 }
2917                 if (i == BGE_FIRMWARE_TIMEOUT) {
2918                         if_printf(&sc->arpcom.ac_if, "firmware handshake "
2919                                   "timed out, found 0x%08x\n", val);
2920                 }
2921         }
2922
2923         /*
2924          * XXX Wait for the value of the PCISTATE register to
2925          * return to its original pre-reset state. This is a
2926          * fairly good indicator of reset completion. If we don't
2927          * wait for the reset to fully complete, trying to read
2928          * from the device's non-PCI registers may yield garbage
2929          * results.
2930          */
2931         for (i = 0; i < BGE_TIMEOUT; i++) {
2932                 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2933                         break;
2934                 DELAY(10);
2935         }
2936
2937         /* Fix up byte swapping */
2938         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
2939             BGE_MODECTL_BYTESWAP_DATA);
2940
2941         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2942
2943         /*
2944          * The 5704 in TBI mode apparently needs some special
2945          * adjustment to insure the SERDES drive level is set
2946          * to 1.2V.
2947          */
2948         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
2949             (sc->bge_flags & BGE_FLAG_TBI)) {
2950                 uint32_t serdescfg;
2951
2952                 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2953                 serdescfg = (serdescfg & ~0xFFF) | 0x880;
2954                 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2955         }
2956
2957         /* XXX: Broadcom Linux driver. */
2958         if ((sc->bge_flags & BGE_FLAG_PCIE) &&
2959             sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
2960             sc->bge_asicrev != BGE_ASICREV_BCM5785) {
2961                 uint32_t v;
2962
2963                 /* Enable Data FIFO protection. */
2964                 v = CSR_READ_4(sc, BGE_PCIE_TLDLPL_PORT);
2965                 CSR_WRITE_4(sc, BGE_PCIE_TLDLPL_PORT, v | (1 << 25));
2966         }
2967
2968         DELAY(10000);
2969 }
2970
2971 /*
2972  * Frame reception handling. This is called if there's a frame
2973  * on the receive return list.
2974  *
2975  * Note: we have to be able to handle two possibilities here:
2976  * 1) the frame is from the jumbo recieve ring
2977  * 2) the frame is from the standard receive ring
2978  */
2979
2980 static void
2981 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int count)
2982 {
2983         struct ifnet *ifp;
2984         int stdcnt = 0, jumbocnt = 0;
2985
2986         ifp = &sc->arpcom.ac_if;
2987
2988         while (sc->bge_rx_saved_considx != rx_prod && count != 0) {
2989                 struct bge_rx_bd        *cur_rx;
2990                 uint32_t                rxidx;
2991                 struct mbuf             *m = NULL;
2992                 uint16_t                vlan_tag = 0;
2993                 int                     have_tag = 0;
2994
2995                 --count;
2996
2997                 cur_rx =
2998             &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
2999
3000                 rxidx = cur_rx->bge_idx;
3001                 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
3002                 logif(rx_pkt);
3003
3004                 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3005                         have_tag = 1;
3006                         vlan_tag = cur_rx->bge_vlan_tag;
3007                 }
3008
3009                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3010                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3011                         jumbocnt++;
3012
3013                         if (rxidx != sc->bge_jumbo) {
3014                                 IFNET_STAT_INC(ifp, ierrors, 1);
3015                                 if_printf(ifp, "sw jumbo index(%d) "
3016                                     "and hw jumbo index(%d) mismatch, drop!\n",
3017                                     sc->bge_jumbo, rxidx);
3018                                 bge_setup_rxdesc_jumbo(sc, rxidx);
3019                                 continue;
3020                         }
3021
3022                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx].bge_mbuf;
3023                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3024                                 IFNET_STAT_INC(ifp, ierrors, 1);
3025                                 bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
3026                                 continue;
3027                         }
3028                         if (bge_newbuf_jumbo(sc, sc->bge_jumbo, 0)) {
3029                                 IFNET_STAT_INC(ifp, ierrors, 1);
3030                                 bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
3031                                 continue;
3032                         }
3033                 } else {
3034                         int discard = 0;
3035
3036                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3037                         stdcnt++;
3038
3039                         if (rxidx != sc->bge_std) {
3040                                 IFNET_STAT_INC(ifp, ierrors, 1);
3041                                 if_printf(ifp, "sw std index(%d) "
3042                                     "and hw std index(%d) mismatch, drop!\n",
3043                                     sc->bge_std, rxidx);
3044                                 bge_setup_rxdesc_std(sc, rxidx);
3045                                 discard = 1;
3046                                 goto refresh_rx;
3047                         }
3048
3049                         m = sc->bge_cdata.bge_rx_std_chain[rxidx].bge_mbuf;
3050                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3051                                 IFNET_STAT_INC(ifp, ierrors, 1);
3052                                 bge_setup_rxdesc_std(sc, sc->bge_std);
3053                                 discard = 1;
3054                                 goto refresh_rx;
3055                         }
3056                         if (bge_newbuf_std(sc, sc->bge_std, 0)) {
3057                                 IFNET_STAT_INC(ifp, ierrors, 1);
3058                                 bge_setup_rxdesc_std(sc, sc->bge_std);
3059                                 discard = 1;
3060                         }
3061 refresh_rx:
3062                         if (sc->bge_rx_wreg > 0 && stdcnt >= sc->bge_rx_wreg) {
3063                                 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO,
3064                                     sc->bge_std);
3065                                 stdcnt = 0;
3066                         }
3067                         if (discard)
3068                                 continue;
3069                 }
3070
3071                 IFNET_STAT_INC(ifp, ipackets, 1);
3072 #if !defined(__i386__) && !defined(__x86_64__)
3073                 /*
3074                  * The x86 allows unaligned accesses, but for other
3075                  * platforms we must make sure the payload is aligned.
3076                  */
3077                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
3078                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
3079                             cur_rx->bge_len);
3080                         m->m_data += ETHER_ALIGN;
3081                 }
3082 #endif
3083                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3084                 m->m_pkthdr.rcvif = ifp;
3085
3086                 if (ifp->if_capenable & IFCAP_RXCSUM) {
3087                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3088                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3089                                 if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
3090                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3091                         }
3092                         if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) &&
3093                             m->m_pkthdr.len >= BGE_MIN_FRAMELEN) {
3094                                 m->m_pkthdr.csum_data =
3095                                         cur_rx->bge_tcp_udp_csum;
3096                                 m->m_pkthdr.csum_flags |=
3097                                         CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
3098                         }
3099                 }
3100
3101                 /*
3102                  * If we received a packet with a vlan tag, pass it
3103                  * to vlan_input() instead of ether_input().
3104                  */
3105                 if (have_tag) {
3106                         m->m_flags |= M_VLANTAG;
3107                         m->m_pkthdr.ether_vlantag = vlan_tag;
3108                 }
3109                 ifp->if_input(ifp, m);
3110         }
3111
3112         bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3113         if (stdcnt)
3114                 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3115         if (jumbocnt)
3116                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3117 }
3118
3119 static void
3120 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
3121 {
3122         struct ifnet *ifp;
3123
3124         ifp = &sc->arpcom.ac_if;
3125
3126         /*
3127          * Go through our tx ring and free mbufs for those
3128          * frames that have been sent.
3129          */
3130         while (sc->bge_tx_saved_considx != tx_cons) {
3131                 uint32_t idx = 0;
3132
3133                 idx = sc->bge_tx_saved_considx;
3134                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
3135                         IFNET_STAT_INC(ifp, opackets, 1);
3136                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
3137                             sc->bge_cdata.bge_tx_dmamap[idx]);
3138                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
3139                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
3140                 }
3141                 sc->bge_txcnt--;
3142                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3143                 logif(tx_pkt);
3144         }
3145
3146         if ((BGE_TX_RING_CNT - sc->bge_txcnt) >=
3147             (sc->bge_txrsvd + sc->bge_txspare))
3148                 ifq_clr_oactive(&ifp->if_snd);
3149
3150         if (sc->bge_txcnt == 0)
3151                 ifp->if_timer = 0;
3152
3153         if (!ifq_is_empty(&ifp->if_snd))
3154                 if_devstart(ifp);
3155 }
3156
3157 #ifdef IFPOLL_ENABLE
3158
3159 static void
3160 bge_npoll_compat(struct ifnet *ifp, void *arg __unused, int cycles)
3161 {
3162         struct bge_softc *sc = ifp->if_softc;
3163         struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3164         uint16_t rx_prod, tx_cons;
3165
3166         ASSERT_SERIALIZED(ifp->if_serializer);
3167
3168         if (sc->bge_npoll.ifpc_stcount-- == 0) {
3169                 sc->bge_npoll.ifpc_stcount = sc->bge_npoll.ifpc_stfrac;
3170                 /*
3171                  * Process link state changes.
3172                  */
3173                 bge_link_poll(sc);
3174         }
3175
3176         if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
3177                 sc->bge_status_tag = sblk->bge_status_tag;
3178                 /*
3179                  * Use a load fence to ensure that status_tag
3180                  * is saved  before rx_prod and tx_cons.
3181                  */
3182                 cpu_lfence();
3183         }
3184
3185         rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3186         if (sc->bge_rx_saved_considx != rx_prod)
3187                 bge_rxeof(sc, rx_prod, cycles);
3188
3189         tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3190         if (sc->bge_tx_saved_considx != tx_cons)
3191                 bge_txeof(sc, tx_cons);
3192
3193         if (sc->bge_flags & BGE_FLAG_STATUS_TAG)
3194                 bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
3195
3196         if (sc->bge_coal_chg)
3197                 bge_coal_change(sc);
3198 }
3199
3200 static void
3201 bge_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3202 {
3203         struct bge_softc *sc = ifp->if_softc;
3204
3205         ASSERT_SERIALIZED(ifp->if_serializer);
3206
3207         if (info != NULL) {
3208                 int cpuid = sc->bge_npoll.ifpc_cpuid;
3209
3210                 info->ifpi_rx[cpuid].poll_func = bge_npoll_compat;
3211                 info->ifpi_rx[cpuid].arg = NULL;
3212                 info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
3213
3214                 if (ifp->if_flags & IFF_RUNNING)
3215                         bge_disable_intr(sc);
3216                 ifq_set_cpuid(&ifp->if_snd, cpuid);
3217         } else {
3218                 if (ifp->if_flags & IFF_RUNNING)
3219                         bge_enable_intr(sc);
3220                 ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->bge_irq));
3221         }
3222 }
3223
3224 #endif  /* IFPOLL_ENABLE */
3225
3226 static void
3227 bge_intr_crippled(void *xsc)
3228 {
3229         struct bge_softc *sc = xsc;
3230         struct ifnet *ifp = &sc->arpcom.ac_if;
3231
3232         logif(intr);
3233
3234         /*
3235          * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
3236          * disable interrupts by writing nonzero like we used to, since with
3237          * our current organization this just gives complications and
3238          * pessimizations for re-enabling interrupts.  We used to have races
3239          * instead of the necessary complications.  Disabling interrupts
3240          * would just reduce the chance of a status update while we are
3241          * running (by switching to the interrupt-mode coalescence
3242          * parameters), but this chance is already very low so it is more
3243          * efficient to get another interrupt than prevent it.
3244          *
3245          * We do the ack first to ensure another interrupt if there is a
3246          * status update after the ack.  We don't check for the status
3247          * changing later because it is more efficient to get another
3248          * interrupt than prevent it, not quite as above (not checking is
3249          * a smaller optimization than not toggling the interrupt enable,
3250          * since checking doesn't involve PCI accesses and toggling require
3251          * the status check).  So toggling would probably be a pessimization
3252          * even with MSI.  It would only be needed for using a task queue.
3253          */
3254         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3255
3256         /*
3257          * Process link state changes.
3258          */
3259         bge_link_poll(sc);
3260
3261         if (ifp->if_flags & IFF_RUNNING) {
3262                 struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3263                 uint16_t rx_prod, tx_cons;
3264
3265                 rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3266                 if (sc->bge_rx_saved_considx != rx_prod)
3267                         bge_rxeof(sc, rx_prod, -1);
3268
3269                 tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3270                 if (sc->bge_tx_saved_considx != tx_cons)
3271                         bge_txeof(sc, tx_cons);
3272         }
3273
3274         if (sc->bge_coal_chg)
3275                 bge_coal_change(sc);
3276 }
3277
3278 static void
3279 bge_intr_legacy(void *xsc)
3280 {
3281         struct bge_softc *sc = xsc;
3282         struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3283
3284         if (sc->bge_status_tag == sblk->bge_status_tag) {
3285                 uint32_t val;
3286
3287                 val = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3288                 if (val & BGE_PCISTAT_INTR_NOTACT)
3289                         return;
3290         }
3291
3292         /*
3293          * NOTE:
3294          * Interrupt will have to be disabled if tagged status
3295          * is used, else interrupt will always be asserted on
3296          * certain chips (at least on BCM5750 AX/BX).
3297          */
3298         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3299
3300         bge_intr(sc);
3301 }
3302
3303 static void
3304 bge_msi(void *xsc)
3305 {
3306         struct bge_softc *sc = xsc;
3307
3308         /* Disable interrupt first */
3309         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3310         bge_intr(sc);
3311 }
3312
3313 static void
3314 bge_msi_oneshot(void *xsc)
3315 {
3316         bge_intr(xsc);
3317 }
3318
3319 static void
3320 bge_intr(struct bge_softc *sc)
3321 {
3322         struct ifnet *ifp = &sc->arpcom.ac_if;
3323         struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3324         uint16_t rx_prod, tx_cons;
3325         uint32_t status;
3326
3327         sc->bge_status_tag = sblk->bge_status_tag;
3328         /*
3329          * Use a load fence to ensure that status_tag is saved 
3330          * before rx_prod, tx_cons and status.
3331          */
3332         cpu_lfence();
3333
3334         rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3335         tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3336         status = sblk->bge_status;
3337
3338         if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) || sc->bge_link_evt)
3339                 bge_link_poll(sc);
3340
3341         if (ifp->if_flags & IFF_RUNNING) {
3342                 if (sc->bge_rx_saved_considx != rx_prod)
3343                         bge_rxeof(sc, rx_prod, -1);
3344
3345                 if (sc->bge_tx_saved_considx != tx_cons)
3346                         bge_txeof(sc, tx_cons);
3347         }
3348
3349         bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
3350
3351         if (sc->bge_coal_chg)
3352                 bge_coal_change(sc);
3353 }
3354
3355 static void
3356 bge_tick(void *xsc)
3357 {
3358         struct bge_softc *sc = xsc;
3359         struct ifnet *ifp = &sc->arpcom.ac_if;
3360
3361         lwkt_serialize_enter(ifp->if_serializer);
3362
3363         if (BGE_IS_5705_PLUS(sc))
3364                 bge_stats_update_regs(sc);
3365         else
3366                 bge_stats_update(sc);
3367
3368         if (sc->bge_flags & BGE_FLAG_TBI) {
3369                 /*
3370                  * Since in TBI mode auto-polling can't be used we should poll
3371                  * link status manually. Here we register pending link event
3372                  * and trigger interrupt.
3373                  */
3374                 sc->bge_link_evt++;
3375                 if (BGE_IS_CRIPPLED(sc))
3376                         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3377                 else
3378                         BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3379         } else if (!sc->bge_link) {
3380                 mii_tick(device_get_softc(sc->bge_miibus));
3381         }
3382
3383         bge_asf_driver_up(sc);
3384
3385         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3386
3387         lwkt_serialize_exit(ifp->if_serializer);
3388 }
3389
3390 static void
3391 bge_stats_update_regs(struct bge_softc *sc)
3392 {
3393         struct ifnet *ifp = &sc->arpcom.ac_if;
3394         struct bge_mac_stats_regs stats;
3395         uint32_t *s;
3396         int i;
3397
3398         s = (uint32_t *)&stats;
3399         for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
3400                 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
3401                 s++;
3402         }
3403
3404         IFNET_STAT_SET(ifp, collisions,
3405            (stats.dot3StatsSingleCollisionFrames +
3406            stats.dot3StatsMultipleCollisionFrames +
3407            stats.dot3StatsExcessiveCollisions +
3408            stats.dot3StatsLateCollisions));
3409 }
3410
3411 static void
3412 bge_stats_update(struct bge_softc *sc)
3413 {
3414         struct ifnet *ifp = &sc->arpcom.ac_if;
3415         bus_size_t stats;
3416
3417         stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3418
3419 #define READ_STAT(sc, stats, stat)      \
3420         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3421
3422         IFNET_STAT_SET(ifp, collisions,
3423            (READ_STAT(sc, stats,
3424                 txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) +
3425             READ_STAT(sc, stats,
3426                 txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3427             READ_STAT(sc, stats,
3428                 txstats.dot3StatsExcessiveCollisions.bge_addr_lo) +
3429             READ_STAT(sc, stats,
3430                 txstats.dot3StatsLateCollisions.bge_addr_lo)));
3431
3432 #undef READ_STAT
3433
3434 #ifdef notdef
3435         IFNET_STAT_SET(ifp, collisions,
3436            (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3437            sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3438            sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3439            sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions));
3440 #endif
3441 }
3442
3443 /*
3444  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3445  * pointers to descriptors.
3446  */
3447 static int
3448 bge_encap(struct bge_softc *sc, struct mbuf **m_head0, uint32_t *txidx,
3449     int *segs_used)
3450 {
3451         struct bge_tx_bd *d = NULL, *last_d;
3452         uint16_t csum_flags = 0, mss = 0;
3453         bus_dma_segment_t segs[BGE_NSEG_NEW];
3454         bus_dmamap_t map;
3455         int error, maxsegs, nsegs, idx, i;
3456         struct mbuf *m_head = *m_head0, *m_new;
3457
3458         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3459                 error = bge_setup_tso(sc, m_head0, &mss, &csum_flags);
3460                 if (error)
3461                         return ENOBUFS;
3462                 m_head = *m_head0;
3463         } else if (m_head->m_pkthdr.csum_flags & BGE_CSUM_FEATURES) {
3464                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3465                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3466                 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3467                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3468                 if (m_head->m_flags & M_LASTFRAG)
3469                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
3470                 else if (m_head->m_flags & M_FRAG)
3471                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
3472         }
3473
3474         idx = *txidx;
3475         map = sc->bge_cdata.bge_tx_dmamap[idx];
3476
3477         maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - sc->bge_txrsvd;
3478         KASSERT(maxsegs >= sc->bge_txspare,
3479                 ("not enough segments %d", maxsegs));
3480
3481         if (maxsegs > BGE_NSEG_NEW)
3482                 maxsegs = BGE_NSEG_NEW;
3483
3484         /*
3485          * Pad outbound frame to BGE_MIN_FRAMELEN for an unusual reason.
3486          * The bge hardware will pad out Tx runts to BGE_MIN_FRAMELEN,
3487          * but when such padded frames employ the bge IP/TCP checksum
3488          * offload, the hardware checksum assist gives incorrect results
3489          * (possibly from incorporating its own padding into the UDP/TCP
3490          * checksum; who knows).  If we pad such runts with zeros, the
3491          * onboard checksum comes out correct.
3492          */
3493         if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
3494             m_head->m_pkthdr.len < BGE_MIN_FRAMELEN) {
3495                 error = m_devpad(m_head, BGE_MIN_FRAMELEN);
3496                 if (error)
3497                         goto back;
3498         }
3499
3500         if ((sc->bge_flags & BGE_FLAG_SHORTDMA) && m_head->m_next != NULL) {
3501                 m_new = bge_defrag_shortdma(m_head);
3502                 if (m_new == NULL) {
3503                         error = ENOBUFS;
3504                         goto back;
3505                 }
3506                 *m_head0 = m_head = m_new;
3507         }
3508         if ((m_head->m_pkthdr.csum_flags & CSUM_TSO) == 0 &&
3509             sc->bge_force_defrag && (sc->bge_flags & BGE_FLAG_PCIE) &&
3510             m_head->m_next != NULL) {
3511                 /*
3512                  * Forcefully defragment mbuf chain to overcome hardware
3513                  * limitation which only support a single outstanding
3514                  * DMA read operation.  If it fails, keep moving on using
3515                  * the original mbuf chain.
3516                  */
3517                 m_new = m_defrag(m_head, MB_DONTWAIT);
3518                 if (m_new != NULL)
3519                         *m_head0 = m_head = m_new;
3520         }
3521
3522         error = bus_dmamap_load_mbuf_defrag(sc->bge_cdata.bge_tx_mtag, map,
3523                         m_head0, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3524         if (error)
3525                 goto back;
3526         *segs_used += nsegs;
3527
3528         m_head = *m_head0;
3529         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
3530
3531         for (i = 0; ; i++) {
3532                 d = &sc->bge_ldata.bge_tx_ring[idx];
3533
3534                 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
3535                 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
3536                 d->bge_len = segs[i].ds_len;
3537                 d->bge_flags = csum_flags;
3538                 d->bge_mss = mss;
3539
3540                 if (i == nsegs - 1)
3541                         break;
3542                 BGE_INC(idx, BGE_TX_RING_CNT);
3543         }
3544         last_d = d;
3545
3546         /* Set vlan tag to the first segment of the packet. */
3547         d = &sc->bge_ldata.bge_tx_ring[*txidx];
3548         if (m_head->m_flags & M_VLANTAG) {
3549                 d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3550                 d->bge_vlan_tag = m_head->m_pkthdr.ether_vlantag;
3551         } else {
3552                 d->bge_vlan_tag = 0;
3553         }
3554
3555         /* Mark the last segment as end of packet... */
3556         last_d->bge_flags |= BGE_TXBDFLAG_END;
3557
3558         /*
3559          * Insure that the map for this transmission is placed at
3560          * the array index of the last descriptor in this chain.
3561          */
3562         sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
3563         sc->bge_cdata.bge_tx_dmamap[idx] = map;
3564         sc->bge_cdata.bge_tx_chain[idx] = m_head;
3565         sc->bge_txcnt += nsegs;
3566
3567         BGE_INC(idx, BGE_TX_RING_CNT);
3568         *txidx = idx;
3569 back:
3570         if (error) {
3571                 m_freem(*m_head0);
3572                 *m_head0 = NULL;
3573         }
3574         return error;
3575 }
3576
3577 static void
3578 bge_xmit(struct bge_softc *sc, uint32_t prodidx)
3579 {
3580         /* Transmit */
3581         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3582         /* 5700 b2 errata */
3583         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
3584                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3585 }
3586
3587 /*
3588  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3589  * to the mbuf data regions directly in the transmit descriptors.
3590  */
3591 static void
3592 bge_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3593 {
3594         struct bge_softc *sc = ifp->if_softc;
3595         struct mbuf *m_head = NULL;
3596         uint32_t prodidx;
3597         int nsegs = 0;
3598
3599         ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
3600
3601         if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
3602                 return;
3603
3604         prodidx = sc->bge_tx_prodidx;
3605
3606         while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3607                 m_head = ifq_dequeue(&ifp->if_snd);
3608                 if (m_head == NULL)
3609                         break;
3610
3611                 /*
3612                  * XXX
3613                  * The code inside the if() block is never reached since we
3614                  * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
3615                  * requests to checksum TCP/UDP in a fragmented packet.
3616                  * 
3617                  * XXX
3618                  * safety overkill.  If this is a fragmented packet chain
3619                  * with delayed TCP/UDP checksums, then only encapsulate
3620                  * it if we have enough descriptors to handle the entire
3621                  * chain at once.
3622                  * (paranoia -- may not actually be needed)
3623                  */
3624                 if ((m_head->m_flags & M_FIRSTFRAG) &&
3625                     (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA)) {
3626                         if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3627                             m_head->m_pkthdr.csum_data + sc->bge_txrsvd) {
3628                                 ifq_set_oactive(&ifp->if_snd);
3629                                 ifq_prepend(&ifp->if_snd, m_head);
3630                                 break;
3631                         }
3632                 }
3633
3634                 /*
3635                  * Sanity check: avoid coming within bge_txrsvd
3636                  * descriptors of the end of the ring.  Also make
3637                  * sure there are bge_txspare descriptors for
3638                  * jumbo buffers' defragmentation.
3639                  */
3640                 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3641                     (sc->bge_txrsvd + sc->bge_txspare)) {
3642                         ifq_set_oactive(&ifp->if_snd);
3643                         ifq_prepend(&ifp->if_snd, m_head);
3644                         break;
3645                 }
3646
3647                 /*
3648                  * Pack the data into the transmit ring. If we
3649                  * don't have room, set the OACTIVE flag and wait
3650                  * for the NIC to drain the ring.
3651                  */
3652                 if (bge_encap(sc, &m_head, &prodidx, &nsegs)) {
3653                         ifq_set_oactive(&ifp->if_snd);
3654                         IFNET_STAT_INC(ifp, oerrors, 1);
3655                         break;
3656                 }
3657
3658                 if (nsegs >= sc->bge_tx_wreg) {
3659                         bge_xmit(sc, prodidx);
3660                         nsegs = 0;
3661                 }
3662
3663                 ETHER_BPF_MTAP(ifp, m_head);
3664
3665                 /*
3666                  * Set a timeout in case the chip goes out to lunch.
3667                  */
3668                 ifp->if_timer = 5;
3669         }
3670
3671         if (nsegs > 0)
3672                 bge_xmit(sc, prodidx);
3673         sc->bge_tx_prodidx = prodidx;
3674 }
3675
3676 static void
3677 bge_init(void *xsc)
3678 {
3679         struct bge_softc *sc = xsc;
3680         struct ifnet *ifp = &sc->arpcom.ac_if;
3681         uint16_t *m;
3682         uint32_t mode;
3683
3684         ASSERT_SERIALIZED(ifp->if_serializer);
3685
3686         /* Cancel pending I/O and flush buffers. */
3687         bge_stop(sc);
3688
3689         bge_stop_fw(sc);
3690         bge_sig_pre_reset(sc, BGE_RESET_START);
3691         bge_reset(sc);
3692         bge_sig_legacy(sc, BGE_RESET_START);
3693         bge_sig_post_reset(sc, BGE_RESET_START);
3694
3695         bge_chipinit(sc);
3696
3697         /*
3698          * Init the various state machines, ring
3699          * control blocks and firmware.
3700          */
3701         if (bge_blockinit(sc)) {
3702                 if_printf(ifp, "initialization failure\n");
3703                 bge_stop(sc);
3704                 return;
3705         }
3706
3707         /* Specify MTU. */
3708         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3709             ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
3710
3711         /* Load our MAC address. */
3712         m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
3713         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3714         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3715
3716         /* Enable or disable promiscuous mode as needed. */
3717         bge_setpromisc(sc);
3718
3719         /* Program multicast filter. */
3720         bge_setmulti(sc);
3721
3722         /* Init RX ring. */
3723         if (bge_init_rx_ring_std(sc)) {
3724                 if_printf(ifp, "RX ring initialization failed\n");
3725                 bge_stop(sc);
3726                 return;
3727         }
3728
3729         /*
3730          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
3731          * memory to insure that the chip has in fact read the first
3732          * entry of the ring.
3733          */
3734         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
3735                 uint32_t                v, i;
3736                 for (i = 0; i < 10; i++) {
3737                         DELAY(20);
3738                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
3739                         if (v == (MCLBYTES - ETHER_ALIGN))
3740                                 break;
3741                 }
3742                 if (i == 10)
3743                         if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
3744         }
3745
3746         /* Init jumbo RX ring. */
3747         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) {
3748                 if (bge_init_rx_ring_jumbo(sc)) {
3749                         if_printf(ifp, "Jumbo RX ring initialization failed\n");
3750                         bge_stop(sc);
3751                         return;
3752                 }
3753         }
3754
3755         /* Init our RX return ring index */
3756         sc->bge_rx_saved_considx = 0;
3757
3758         /* Init TX ring. */
3759         bge_init_tx_ring(sc);
3760
3761         /* Enable TX MAC state machine lockup fix. */
3762         mode = CSR_READ_4(sc, BGE_TX_MODE);
3763         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3764                 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
3765         /* Turn on transmitter */
3766         CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
3767
3768         /* Turn on receiver */
3769         BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3770
3771         /*
3772          * Set the number of good frames to receive after RX MBUF
3773          * Low Watermark has been reached.  After the RX MAC receives
3774          * this number of frames, it will drop subsequent incoming
3775          * frames until the MBUF High Watermark is reached.
3776          */
3777         CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3778
3779         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
3780                 if (bootverbose) {
3781                         if_printf(ifp, "MSI_MODE: %#x\n",
3782                             CSR_READ_4(sc, BGE_MSI_MODE));
3783                 }
3784
3785                 /*
3786                  * XXX
3787                  * Linux driver turns it on for all chips supporting MSI?!
3788                  */
3789                 if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
3790                         /*
3791                          * XXX
3792                          * According to 5722-PG101-R,
3793                          * BGE_PCIE_TRANSACT_ONESHOT_MSI applies only to
3794                          * BCM5906.
3795                          */
3796                         BGE_SETBIT(sc, BGE_PCIE_TRANSACT,
3797                             BGE_PCIE_TRANSACT_ONESHOT_MSI);
3798                 }
3799         }
3800
3801         /* Tell firmware we're alive. */
3802         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3803
3804         /* Enable host interrupts if polling(4) is not enabled. */
3805         PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA, 4);
3806 #ifdef IFPOLL_ENABLE
3807         if (ifp->if_flags & IFF_NPOLLING)
3808                 bge_disable_intr(sc);
3809         else
3810 #endif
3811         bge_enable_intr(sc);
3812
3813         ifp->if_flags |= IFF_RUNNING;
3814         ifq_clr_oactive(&ifp->if_snd);
3815
3816         bge_ifmedia_upd(ifp);
3817
3818         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3819 }
3820
3821 /*
3822  * Set media options.
3823  */
3824 static int
3825 bge_ifmedia_upd(struct ifnet *ifp)
3826 {
3827         struct bge_softc *sc = ifp->if_softc;
3828
3829         /* If this is a 1000baseX NIC, enable the TBI port. */
3830         if (sc->bge_flags & BGE_FLAG_TBI) {
3831                 struct ifmedia *ifm = &sc->bge_ifmedia;
3832
3833                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3834                         return(EINVAL);
3835
3836                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3837                 case IFM_AUTO:
3838                         /*
3839                          * The BCM5704 ASIC appears to have a special
3840                          * mechanism for programming the autoneg
3841                          * advertisement registers in TBI mode.
3842                          */
3843                         if (!bge_fake_autoneg &&
3844                             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3845                                 uint32_t sgdig;
3846
3847                                 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
3848                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
3849                                 sgdig |= BGE_SGDIGCFG_AUTO |
3850                                          BGE_SGDIGCFG_PAUSE_CAP |
3851                                          BGE_SGDIGCFG_ASYM_PAUSE;
3852                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
3853                                             sgdig | BGE_SGDIGCFG_SEND);
3854                                 DELAY(5);
3855                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
3856                         }
3857                         break;
3858                 case IFM_1000_SX:
3859                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3860                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
3861                                     BGE_MACMODE_HALF_DUPLEX);
3862                         } else {
3863                                 BGE_SETBIT(sc, BGE_MAC_MODE,
3864                                     BGE_MACMODE_HALF_DUPLEX);
3865                         }
3866                         break;
3867                 default:
3868                         return(EINVAL);
3869                 }
3870         } else {
3871                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3872
3873                 sc->bge_link_evt++;
3874                 sc->bge_link = 0;
3875                 if (mii->mii_instance) {
3876                         struct mii_softc *miisc;
3877
3878                         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3879                                 mii_phy_reset(miisc);
3880                 }
3881                 mii_mediachg(mii);
3882
3883                 /*
3884                  * Force an interrupt so that we will call bge_link_upd
3885                  * if needed and clear any pending link state attention.
3886                  * Without this we are not getting any further interrupts
3887                  * for link state changes and thus will not UP the link and
3888                  * not be able to send in bge_start.  The only way to get
3889                  * things working was to receive a packet and get an RX
3890                  * intr.
3891                  *
3892                  * bge_tick should help for fiber cards and we might not
3893                  * need to do this here if BGE_FLAG_TBI is set but as
3894                  * we poll for fiber anyway it should not harm.
3895                  */
3896                 if (BGE_IS_CRIPPLED(sc))
3897                         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3898                 else
3899                         BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3900         }
3901         return(0);
3902 }
3903
3904 /*
3905  * Report current media status.
3906  */
3907 static void
3908 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3909 {
3910         struct bge_softc *sc = ifp->if_softc;
3911
3912         if ((ifp->if_flags & IFF_RUNNING) == 0)
3913                 return;
3914
3915         if (sc->bge_flags & BGE_FLAG_TBI) {
3916                 ifmr->ifm_status = IFM_AVALID;
3917                 ifmr->ifm_active = IFM_ETHER;
3918                 if (CSR_READ_4(sc, BGE_MAC_STS) &
3919                     BGE_MACSTAT_TBI_PCS_SYNCHED) {
3920                         ifmr->ifm_status |= IFM_ACTIVE;
3921                 } else {
3922                         ifmr->ifm_active |= IFM_NONE;
3923                         return;
3924                 }
3925
3926                 ifmr->ifm_active |= IFM_1000_SX;
3927                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3928                         ifmr->ifm_active |= IFM_HDX;    
3929                 else
3930                         ifmr->ifm_active |= IFM_FDX;
3931         } else {
3932                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3933
3934                 mii_pollstat(mii);
3935                 ifmr->ifm_active = mii->mii_media_active;
3936                 ifmr->ifm_status = mii->mii_media_status;
3937         }
3938 }
3939
3940 static int
3941 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3942 {
3943         struct bge_softc *sc = ifp->if_softc;
3944         struct ifreq *ifr = (struct ifreq *)data;
3945         int mask, error = 0;
3946
3947         ASSERT_SERIALIZED(ifp->if_serializer);
3948
3949         switch (command) {
3950         case SIOCSIFMTU:
3951                 if ((!BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
3952                     (BGE_IS_JUMBO_CAPABLE(sc) &&
3953                      ifr->ifr_mtu > BGE_JUMBO_MTU)) {
3954                         error = EINVAL;
3955                 } else if (ifp->if_mtu != ifr->ifr_mtu) {
3956                         ifp->if_mtu = ifr->ifr_mtu;
3957                         if (ifp->if_flags & IFF_RUNNING)
3958                                 bge_init(sc);
3959                 }
3960                 break;
3961         case SIOCSIFFLAGS:
3962                 if (ifp->if_flags & IFF_UP) {
3963                         if (ifp->if_flags & IFF_RUNNING) {
3964                                 mask = ifp->if_flags ^ sc->bge_if_flags;
3965
3966                                 /*
3967                                  * If only the state of the PROMISC flag
3968                                  * changed, then just use the 'set promisc
3969                                  * mode' command instead of reinitializing
3970                                  * the entire NIC. Doing a full re-init
3971                                  * means reloading the firmware and waiting
3972                                  * for it to start up, which may take a
3973                                  * second or two.  Similarly for ALLMULTI.
3974                                  */
3975                                 if (mask & IFF_PROMISC)
3976                                         bge_setpromisc(sc);
3977                                 if (mask & IFF_ALLMULTI)
3978                                         bge_setmulti(sc);
3979                         } else {
3980                                 bge_init(sc);
3981                         }
3982                 } else if (ifp->if_flags & IFF_RUNNING) {
3983                         bge_stop(sc);
3984                 }
3985                 sc->bge_if_flags = ifp->if_flags;
3986                 break;
3987         case SIOCADDMULTI:
3988         case SIOCDELMULTI:
3989                 if (ifp->if_flags & IFF_RUNNING)
3990                         bge_setmulti(sc);
3991                 break;
3992         case SIOCSIFMEDIA:
3993         case SIOCGIFMEDIA:
3994                 if (sc->bge_flags & BGE_FLAG_TBI) {
3995                         error = ifmedia_ioctl(ifp, ifr,
3996                             &sc->bge_ifmedia, command);
3997                 } else {
3998                         struct mii_data *mii;
3999
4000                         mii = device_get_softc(sc->bge_miibus);
4001                         error = ifmedia_ioctl(ifp, ifr,
4002                                               &mii->mii_media, command);
4003                 }
4004                 break;
4005         case SIOCSIFCAP:
4006                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
4007                 if (mask & IFCAP_HWCSUM) {
4008                         ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
4009                         if (ifp->if_capenable & IFCAP_TXCSUM)
4010                                 ifp->if_hwassist |= BGE_CSUM_FEATURES;
4011                         else
4012                                 ifp->if_hwassist &= ~BGE_CSUM_FEATURES;
4013                 }
4014                 if (mask & IFCAP_TSO) {
4015                         ifp->if_capenable ^= IFCAP_TSO;
4016                         if (ifp->if_capenable & IFCAP_TSO)
4017                                 ifp->if_hwassist |= CSUM_TSO;
4018                         else
4019                                 ifp->if_hwassist &= ~CSUM_TSO;
4020                 }
4021                 break;
4022         default:
4023                 error = ether_ioctl(ifp, command, data);
4024                 break;
4025         }
4026         return error;
4027 }
4028
4029 static void
4030 bge_watchdog(struct ifnet *ifp)
4031 {
4032         struct bge_softc *sc = ifp->if_softc;
4033
4034         if_printf(ifp, "watchdog timeout -- resetting\n");
4035
4036         bge_init(sc);
4037
4038         IFNET_STAT_INC(ifp, oerrors, 1);
4039
4040         if (!ifq_is_empty(&ifp->if_snd))
4041                 if_devstart(ifp);
4042 }
4043
4044 /*
4045  * Stop the adapter and free any mbufs allocated to the
4046  * RX and TX lists.
4047  */
4048 static void
4049 bge_stop(struct bge_softc *sc)
4050 {
4051         struct ifnet *ifp = &sc->arpcom.ac_if;
4052
4053         ASSERT_SERIALIZED(ifp->if_serializer);
4054
4055         callout_stop(&sc->bge_stat_timer);
4056
4057         /* Disable host interrupts. */
4058         bge_disable_intr(sc);
4059
4060         /*
4061          * Tell firmware we're shutting down.
4062          */
4063         bge_stop_fw(sc);
4064         bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
4065
4066         /*
4067          * Disable all of the receiver blocks
4068          */
4069         bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4070         bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4071         bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4072         if (BGE_IS_5700_FAMILY(sc))
4073                 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4074         bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4075         bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4076         bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4077
4078         /*
4079          * Disable all of the transmit blocks
4080          */
4081         bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4082         bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4083         bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4084         bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4085         bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4086         if (BGE_IS_5700_FAMILY(sc))
4087                 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4088         bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4089
4090         /*
4091          * Shut down all of the memory managers and related
4092          * state machines.
4093          */
4094         bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4095         bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4096         if (BGE_IS_5700_FAMILY(sc))
4097                 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4098         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4099         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4100         if (!BGE_IS_5705_PLUS(sc)) {
4101                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4102                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4103         }
4104
4105         bge_reset(sc);
4106         bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
4107         bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
4108
4109         /*
4110          * Keep the ASF firmware running if up.
4111          */
4112         if (sc->bge_asf_mode & ASF_STACKUP)
4113                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4114         else
4115                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4116
4117         /* Free the RX lists. */
4118         bge_free_rx_ring_std(sc);
4119
4120         /* Free jumbo RX list. */
4121         if (BGE_IS_JUMBO_CAPABLE(sc))
4122                 bge_free_rx_ring_jumbo(sc);
4123
4124         /* Free TX buffers. */
4125         bge_free_tx_ring(sc);
4126
4127         sc->bge_status_tag = 0;
4128         sc->bge_link = 0;
4129         sc->bge_coal_chg = 0;
4130
4131         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4132
4133         ifp->if_flags &= ~IFF_RUNNING;
4134         ifq_clr_oactive(&ifp->if_snd);
4135         ifp->if_timer = 0;
4136 }
4137
4138 /*
4139  * Stop all chip I/O so that the kernel's probe routines don't
4140  * get confused by errant DMAs when rebooting.
4141  */
4142 static void
4143 bge_shutdown(device_t dev)
4144 {
4145         struct bge_softc *sc = device_get_softc(dev);
4146         struct ifnet *ifp = &sc->arpcom.ac_if;
4147
4148         lwkt_serialize_enter(ifp->if_serializer);
4149         bge_stop(sc);
4150         lwkt_serialize_exit(ifp->if_serializer);
4151 }
4152
4153 static int
4154 bge_suspend(device_t dev)
4155 {
4156         struct bge_softc *sc = device_get_softc(dev);
4157         struct ifnet *ifp = &sc->arpcom.ac_if;
4158
4159         lwkt_serialize_enter(ifp->if_serializer);
4160         bge_stop(sc);
4161         lwkt_serialize_exit(ifp->if_serializer);
4162
4163         return 0;
4164 }
4165
4166 static int
4167 bge_resume(device_t dev)
4168 {
4169         struct bge_softc *sc = device_get_softc(dev);
4170         struct ifnet *ifp = &sc->arpcom.ac_if;
4171
4172         lwkt_serialize_enter(ifp->if_serializer);
4173
4174         if (ifp->if_flags & IFF_UP) {
4175                 bge_init(sc);
4176
4177                 if (!ifq_is_empty(&ifp->if_snd))
4178                         if_devstart(ifp);
4179         }
4180
4181         lwkt_serialize_exit(ifp->if_serializer);
4182
4183         return 0;
4184 }
4185
4186 static void
4187 bge_setpromisc(struct bge_softc *sc)
4188 {
4189         struct ifnet *ifp = &sc->arpcom.ac_if;
4190
4191         if (ifp->if_flags & IFF_PROMISC)
4192                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4193         else
4194                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4195 }
4196
4197 static void
4198 bge_dma_free(struct bge_softc *sc)
4199 {
4200         int i;
4201
4202         /* Destroy RX mbuf DMA stuffs. */
4203         if (sc->bge_cdata.bge_rx_mtag != NULL) {
4204                 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4205                         bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4206                             sc->bge_cdata.bge_rx_std_dmamap[i]);
4207                 }
4208                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4209                                    sc->bge_cdata.bge_rx_tmpmap);
4210                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4211         }
4212
4213         /* Destroy TX mbuf DMA stuffs. */
4214         if (sc->bge_cdata.bge_tx_mtag != NULL) {
4215                 for (i = 0; i < BGE_TX_RING_CNT; i++) {
4216                         bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4217                             sc->bge_cdata.bge_tx_dmamap[i]);
4218                 }
4219                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4220         }
4221
4222         /* Destroy standard RX ring */
4223         bge_dma_block_free(sc->bge_cdata.bge_rx_std_ring_tag,
4224                            sc->bge_cdata.bge_rx_std_ring_map,
4225                            sc->bge_ldata.bge_rx_std_ring);
4226
4227         if (BGE_IS_JUMBO_CAPABLE(sc))
4228                 bge_free_jumbo_mem(sc);
4229
4230         /* Destroy RX return ring */
4231         bge_dma_block_free(sc->bge_cdata.bge_rx_return_ring_tag,
4232                            sc->bge_cdata.bge_rx_return_ring_map,
4233                            sc->bge_ldata.bge_rx_return_ring);
4234
4235         /* Destroy TX ring */
4236         bge_dma_block_free(sc->bge_cdata.bge_tx_ring_tag,
4237                            sc->bge_cdata.bge_tx_ring_map,
4238                            sc->bge_ldata.bge_tx_ring);
4239
4240         /* Destroy status block */
4241         bge_dma_block_free(sc->bge_cdata.bge_status_tag,
4242                            sc->bge_cdata.bge_status_map,
4243                            sc->bge_ldata.bge_status_block);
4244
4245         /* Destroy statistics block */
4246         bge_dma_block_free(sc->bge_cdata.bge_stats_tag,
4247                            sc->bge_cdata.bge_stats_map,
4248                            sc->bge_ldata.bge_stats);
4249
4250         /* Destroy the parent tag */
4251         if (sc->bge_cdata.bge_parent_tag != NULL)
4252                 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
4253 }
4254
4255 static int
4256 bge_dma_alloc(struct bge_softc *sc)
4257 {
4258         struct ifnet *ifp = &sc->arpcom.ac_if;
4259         int i, error;
4260         bus_addr_t lowaddr;
4261         bus_size_t txmaxsz;
4262
4263         lowaddr = BUS_SPACE_MAXADDR;
4264         if (sc->bge_flags & BGE_FLAG_MAXADDR_40BIT)
4265                 lowaddr = BGE_DMA_MAXADDR_40BIT;
4266
4267         /*
4268          * Allocate the parent bus DMA tag appropriate for PCI.
4269          *
4270          * All of the NetExtreme/NetLink controllers have 4GB boundary
4271          * DMA bug.
4272          * Whenever an address crosses a multiple of the 4GB boundary
4273          * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
4274          * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
4275          * state machine will lockup and cause the device to hang.
4276          */
4277         error = bus_dma_tag_create(NULL, 1, BGE_DMA_BOUNDARY_4G,
4278                                    lowaddr, BUS_SPACE_MAXADDR,
4279                                    NULL, NULL,
4280                                    BUS_SPACE_MAXSIZE_32BIT, 0,
4281                                    BUS_SPACE_MAXSIZE_32BIT,
4282                                    0, &sc->bge_cdata.bge_parent_tag);
4283         if (error) {
4284                 if_printf(ifp, "could not allocate parent dma tag\n");
4285                 return error;
4286         }
4287
4288         /*
4289          * Create DMA tag and maps for RX mbufs.
4290          */
4291         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4292                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4293                                    NULL, NULL, MCLBYTES, 1, MCLBYTES,
4294                                    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
4295                                    &sc->bge_cdata.bge_rx_mtag);
4296         if (error) {
4297                 if_printf(ifp, "could not allocate RX mbuf dma tag\n");
4298                 return error;
4299         }
4300
4301         error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4302                                   BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_tmpmap);
4303         if (error) {
4304                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4305                 sc->bge_cdata.bge_rx_mtag = NULL;
4306                 return error;
4307         }
4308
4309         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4310                 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4311                                           BUS_DMA_WAITOK,
4312                                           &sc->bge_cdata.bge_rx_std_dmamap[i]);
4313                 if (error) {
4314                         int j;
4315
4316                         for (j = 0; j < i; ++j) {
4317                                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4318                                         sc->bge_cdata.bge_rx_std_dmamap[j]);
4319                         }
4320                         bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4321                         sc->bge_cdata.bge_rx_mtag = NULL;
4322
4323                         if_printf(ifp, "could not create DMA map for RX\n");
4324                         return error;
4325                 }
4326         }
4327
4328         /*
4329          * Create DMA tag and maps for TX mbufs.
4330          */
4331         if (sc->bge_flags & BGE_FLAG_TSO)
4332                 txmaxsz = IP_MAXPACKET + sizeof(struct ether_vlan_header);
4333         else
4334                 txmaxsz = BGE_JUMBO_FRAMELEN;
4335         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4336                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4337                                    NULL, NULL,
4338                                    txmaxsz, BGE_NSEG_NEW, PAGE_SIZE,
4339                                    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
4340                                    BUS_DMA_ONEBPAGE,
4341                                    &sc->bge_cdata.bge_tx_mtag);
4342         if (error) {
4343                 if_printf(ifp, "could not allocate TX mbuf dma tag\n");
4344                 return error;
4345         }
4346
4347         for (i = 0; i < BGE_TX_RING_CNT; i++) {
4348                 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag,
4349                                           BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
4350                                           &sc->bge_cdata.bge_tx_dmamap[i]);
4351                 if (error) {
4352                         int j;
4353
4354                         for (j = 0; j < i; ++j) {
4355                                 bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4356                                         sc->bge_cdata.bge_tx_dmamap[j]);
4357                         }
4358                         bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4359                         sc->bge_cdata.bge_tx_mtag = NULL;
4360
4361                         if_printf(ifp, "could not create DMA map for TX\n");
4362                         return error;
4363                 }
4364         }
4365
4366         /*
4367          * Create DMA stuffs for standard RX ring.
4368          */
4369         error = bge_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
4370                                     &sc->bge_cdata.bge_rx_std_ring_tag,
4371                                     &sc->bge_cdata.bge_rx_std_ring_map,
4372                                     (void *)&sc->bge_ldata.bge_rx_std_ring,
4373                                     &sc->bge_ldata.bge_rx_std_ring_paddr);
4374         if (error) {
4375                 if_printf(ifp, "could not create std RX ring\n");
4376                 return error;
4377         }
4378
4379         /*
4380          * Create jumbo buffer pool.
4381          */
4382         if (BGE_IS_JUMBO_CAPABLE(sc)) {
4383                 error = bge_alloc_jumbo_mem(sc);
4384                 if (error) {
4385                         if_printf(ifp, "could not create jumbo buffer pool\n");
4386                         return error;
4387                 }
4388         }
4389
4390         /*
4391          * Create DMA stuffs for RX return ring.
4392          */
4393         error = bge_dma_block_alloc(sc,
4394             BGE_RX_RTN_RING_SZ(sc->bge_return_ring_cnt),
4395             &sc->bge_cdata.bge_rx_return_ring_tag,
4396             &sc->bge_cdata.bge_rx_return_ring_map,
4397             (void *)&sc->bge_ldata.bge_rx_return_ring,
4398             &sc->bge_ldata.bge_rx_return_ring_paddr);
4399         if (error) {
4400                 if_printf(ifp, "could not create RX ret ring\n");
4401                 return error;
4402         }
4403
4404         /*
4405          * Create DMA stuffs for TX ring.
4406          */
4407         error = bge_dma_block_alloc(sc, BGE_TX_RING_SZ,
4408                                     &sc->bge_cdata.bge_tx_ring_tag,
4409                                     &sc->bge_cdata.bge_tx_ring_map,
4410                                     (void *)&sc->bge_ldata.bge_tx_ring,
4411                                     &sc->bge_ldata.bge_tx_ring_paddr);
4412         if (error) {
4413                 if_printf(ifp, "could not create TX ring\n");
4414                 return error;
4415         }
4416
4417         /*
4418          * Create DMA stuffs for status block.
4419          */
4420         error = bge_dma_block_alloc(sc, BGE_STATUS_BLK_SZ,
4421                                     &sc->bge_cdata.bge_status_tag,
4422                                     &sc->bge_cdata.bge_status_map,
4423                                     (void *)&sc->bge_ldata.bge_status_block,
4424                                     &sc->bge_ldata.bge_status_block_paddr);
4425         if (error) {
4426                 if_printf(ifp, "could not create status block\n");
4427                 return error;
4428         }
4429
4430         /*
4431          * Create DMA stuffs for statistics block.
4432          */
4433         error = bge_dma_block_alloc(sc, BGE_STATS_SZ,
4434                                     &sc->bge_cdata.bge_stats_tag,
4435                                     &sc->bge_cdata.bge_stats_map,
4436                                     (void *)&sc->bge_ldata.bge_stats,
4437                                     &sc->bge_ldata.bge_stats_paddr);
4438         if (error) {
4439                 if_printf(ifp, "could not create stats block\n");
4440                 return error;
4441         }
4442         return 0;
4443 }
4444
4445 static int
4446 bge_dma_block_alloc(struct bge_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
4447                     bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
4448 {
4449         bus_dmamem_t dmem;
4450         int error;
4451
4452         error = bus_dmamem_coherent(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0,
4453                                     BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4454                                     size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
4455         if (error)
4456                 return error;
4457
4458         *tag = dmem.dmem_tag;
4459         *map = dmem.dmem_map;
4460         *addr = dmem.dmem_addr;
4461         *paddr = dmem.dmem_busaddr;
4462
4463         return 0;
4464 }
4465
4466 static void
4467 bge_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
4468 {
4469         if (tag != NULL) {
4470                 bus_dmamap_unload(tag, map);
4471                 bus_dmamem_free(tag, addr, map);
4472                 bus_dma_tag_destroy(tag);
4473         }
4474 }
4475
4476 /*
4477  * Grrr. The link status word in the status block does
4478  * not work correctly on the BCM5700 rev AX and BX chips,
4479  * according to all available information. Hence, we have
4480  * to enable MII interrupts in order to properly obtain
4481  * async link changes. Unfortunately, this also means that
4482  * we have to read the MAC status register to detect link
4483  * changes, thereby adding an additional register access to
4484  * the interrupt handler.
4485  *
4486  * XXX: perhaps link state detection procedure used for
4487  * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
4488  */
4489 static void
4490 bge_bcm5700_link_upd(struct bge_softc *sc, uint32_t status __unused)
4491 {
4492         struct ifnet *ifp = &sc->arpcom.ac_if;
4493         struct mii_data *mii = device_get_softc(sc->bge_miibus);
4494
4495         mii_pollstat(mii);
4496
4497         if (!sc->bge_link &&
4498             (mii->mii_media_status & IFM_ACTIVE) &&
4499             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4500                 sc->bge_link++;
4501                 if (bootverbose)
4502                         if_printf(ifp, "link UP\n");
4503         } else if (sc->bge_link &&
4504             (!(mii->mii_media_status & IFM_ACTIVE) ||
4505             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4506                 sc->bge_link = 0;
4507                 if (bootverbose)
4508                         if_printf(ifp, "link DOWN\n");
4509         }
4510
4511         /* Clear the interrupt. */
4512         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT);
4513         bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4514         bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS);
4515 }
4516
4517 static void
4518 bge_tbi_link_upd(struct bge_softc *sc, uint32_t status)
4519 {
4520         struct ifnet *ifp = &sc->arpcom.ac_if;
4521
4522 #define PCS_ENCODE_ERR  (BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
4523
4524         /*
4525          * Sometimes PCS encoding errors are detected in
4526          * TBI mode (on fiber NICs), and for some reason
4527          * the chip will signal them as link changes.
4528          * If we get a link change event, but the 'PCS
4529          * encoding error' bit in the MAC status register
4530          * is set, don't bother doing a link check.
4531          * This avoids spurious "gigabit link up" messages
4532          * that sometimes appear on fiber NICs during
4533          * periods of heavy traffic.
4534          */
4535         if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4536                 if (!sc->bge_link) {
4537                         sc->bge_link++;
4538                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4539                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
4540                                     BGE_MACMODE_TBI_SEND_CFGS);
4541                         }
4542                         CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4543
4544                         if (bootverbose)
4545                                 if_printf(ifp, "link UP\n");
4546
4547                         ifp->if_link_state = LINK_STATE_UP;
4548                         if_link_state_change(ifp);
4549                 }
4550         } else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
4551                 if (sc->bge_link) {
4552                         sc->bge_link = 0;
4553
4554                         if (bootverbose)
4555                                 if_printf(ifp, "link DOWN\n");
4556
4557                         ifp->if_link_state = LINK_STATE_DOWN;
4558                         if_link_state_change(ifp);
4559                 }
4560         }
4561
4562 #undef PCS_ENCODE_ERR
4563
4564         /* Clear the attention. */
4565         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4566             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4567             BGE_MACSTAT_LINK_CHANGED);
4568 }
4569
4570 static void
4571 bge_copper_link_upd(struct bge_softc *sc, uint32_t status __unused)
4572 {
4573         struct ifnet *ifp = &sc->arpcom.ac_if;
4574         struct mii_data *mii = device_get_softc(sc->bge_miibus);
4575
4576         mii_pollstat(mii);
4577         bge_miibus_statchg(sc->bge_dev);
4578
4579         if (bootverbose) {
4580                 if (sc->bge_link)
4581                         if_printf(ifp, "link UP\n");
4582                 else
4583                         if_printf(ifp, "link DOWN\n");
4584         }
4585
4586         /* Clear the attention. */
4587         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4588             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4589             BGE_MACSTAT_LINK_CHANGED);
4590 }
4591
4592 static void
4593 bge_autopoll_link_upd(struct bge_softc *sc, uint32_t status __unused)
4594 {
4595         struct ifnet *ifp = &sc->arpcom.ac_if;
4596         struct mii_data *mii = device_get_softc(sc->bge_miibus);
4597
4598         mii_pollstat(mii);
4599
4600         if (!sc->bge_link &&
4601             (mii->mii_media_status & IFM_ACTIVE) &&
4602             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4603                 sc->bge_link++;
4604                 if (bootverbose)
4605                         if_printf(ifp, "link UP\n");
4606         } else if (sc->bge_link &&
4607             (!(mii->mii_media_status & IFM_ACTIVE) ||
4608             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4609                 sc->bge_link = 0;
4610                 if (bootverbose)
4611                         if_printf(ifp, "link DOWN\n");
4612         }
4613
4614         /* Clear the attention. */
4615         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4616             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4617             BGE_MACSTAT_LINK_CHANGED);
4618 }
4619
4620 static int
4621 bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
4622 {
4623         struct bge_softc *sc = arg1;
4624
4625         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4626             &sc->bge_rx_coal_ticks,
4627             BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4628             BGE_RX_COAL_TICKS_CHG);
4629 }
4630
4631 static int
4632 bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
4633 {
4634         struct bge_softc *sc = arg1;
4635
4636         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4637             &sc->bge_tx_coal_ticks,
4638             BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4639             BGE_TX_COAL_TICKS_CHG);
4640 }
4641
4642 static int
4643 bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS)
4644 {
4645         struct bge_softc *sc = arg1;
4646
4647         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4648             &sc->bge_rx_coal_bds,
4649             BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4650             BGE_RX_COAL_BDS_CHG);
4651 }
4652
4653 static int
4654 bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS)
4655 {
4656         struct bge_softc *sc = arg1;
4657
4658         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4659             &sc->bge_tx_coal_bds,
4660             BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4661             BGE_TX_COAL_BDS_CHG);
4662 }
4663
4664 static int
4665 bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4666 {
4667         struct bge_softc *sc = arg1;
4668
4669         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4670             &sc->bge_rx_coal_ticks_int,
4671             BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4672             BGE_RX_COAL_TICKS_INT_CHG);
4673 }
4674
4675 static int
4676 bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4677 {
4678         struct bge_softc *sc = arg1;
4679
4680         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4681             &sc->bge_tx_coal_ticks_int,
4682             BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4683             BGE_TX_COAL_TICKS_INT_CHG);
4684 }
4685
4686 static int
4687 bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4688 {
4689         struct bge_softc *sc = arg1;
4690
4691         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4692             &sc->bge_rx_coal_bds_int,
4693             BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4694             BGE_RX_COAL_BDS_INT_CHG);
4695 }
4696
4697 static int
4698 bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4699 {
4700         struct bge_softc *sc = arg1;
4701
4702         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4703             &sc->bge_tx_coal_bds_int,
4704             BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4705             BGE_TX_COAL_BDS_INT_CHG);
4706 }
4707
4708 static int
4709 bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
4710     int coal_min, int coal_max, uint32_t coal_chg_mask)
4711 {
4712         struct bge_softc *sc = arg1;
4713         struct ifnet *ifp = &sc->arpcom.ac_if;
4714         int error = 0, v;
4715
4716         lwkt_serialize_enter(ifp->if_serializer);
4717
4718         v = *coal;
4719         error = sysctl_handle_int(oidp, &v, 0, req);
4720         if (!error && req->newptr != NULL) {
4721                 if (v < coal_min || v > coal_max) {
4722                         error = EINVAL;
4723                 } else {
4724                         *coal = v;
4725                         sc->bge_coal_chg |= coal_chg_mask;
4726                 }
4727         }
4728
4729         lwkt_serialize_exit(ifp->if_serializer);
4730         return error;
4731 }
4732
4733 static void
4734 bge_coal_change(struct bge_softc *sc)
4735 {
4736         struct ifnet *ifp = &sc->arpcom.ac_if;
4737
4738         ASSERT_SERIALIZED(ifp->if_serializer);
4739
4740         if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_CHG) {
4741                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
4742                             sc->bge_rx_coal_ticks);
4743                 DELAY(10);
4744                 CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4745
4746                 if (bootverbose) {
4747                         if_printf(ifp, "rx_coal_ticks -> %u\n",
4748                                   sc->bge_rx_coal_ticks);
4749                 }
4750         }
4751
4752         if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_CHG) {
4753                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
4754                             sc->bge_tx_coal_ticks);
4755                 DELAY(10);
4756                 CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS);
4757
4758                 if (bootverbose) {
4759                         if_printf(ifp, "tx_coal_ticks -> %u\n",
4760                                   sc->bge_tx_coal_ticks);
4761                 }
4762         }
4763
4764         if (sc->bge_coal_chg & BGE_RX_COAL_BDS_CHG) {
4765                 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS,
4766                             sc->bge_rx_coal_bds);
4767                 DELAY(10);
4768                 CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4769
4770                 if (bootverbose) {
4771                         if_printf(ifp, "rx_coal_bds -> %u\n",
4772                                   sc->bge_rx_coal_bds);
4773                 }
4774         }
4775
4776         if (sc->bge_coal_chg & BGE_TX_COAL_BDS_CHG) {
4777                 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS,
4778                             sc->bge_tx_coal_bds);
4779                 DELAY(10);
4780                 CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS);
4781
4782                 if (bootverbose) {
4783                         if_printf(ifp, "tx_max_coal_bds -> %u\n",
4784                                   sc->bge_tx_coal_bds);
4785                 }
4786         }
4787
4788         if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_INT_CHG) {
4789                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
4790                     sc->bge_rx_coal_ticks_int);
4791                 DELAY(10);
4792                 CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS_INT);
4793
4794                 if (bootverbose) {
4795                         if_printf(ifp, "rx_coal_ticks_int -> %u\n",
4796                             sc->bge_rx_coal_ticks_int);
4797                 }
4798         }
4799
4800         if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_INT_CHG) {
4801                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
4802                     sc->bge_tx_coal_ticks_int);
4803                 DELAY(10);
4804                 CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS_INT);
4805
4806                 if (bootverbose) {
4807                         if_printf(ifp, "tx_coal_ticks_int -> %u\n",
4808                             sc->bge_tx_coal_ticks_int);
4809                 }
4810         }
4811
4812         if (sc->bge_coal_chg & BGE_RX_COAL_BDS_INT_CHG) {
4813                 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT,
4814                     sc->bge_rx_coal_bds_int);
4815                 DELAY(10);
4816                 CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT);
4817
4818                 if (bootverbose) {
4819                         if_printf(ifp, "rx_coal_bds_int -> %u\n",
4820                             sc->bge_rx_coal_bds_int);
4821                 }
4822         }
4823
4824         if (sc->bge_coal_chg & BGE_TX_COAL_BDS_INT_CHG) {
4825                 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT,
4826                     sc->bge_tx_coal_bds_int);
4827                 DELAY(10);
4828                 CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT);
4829
4830                 if (bootverbose) {
4831                         if_printf(ifp, "tx_coal_bds_int -> %u\n",
4832                             sc->bge_tx_coal_bds_int);
4833                 }
4834         }
4835
4836         sc->bge_coal_chg = 0;
4837 }
4838
4839 static void
4840 bge_enable_intr(struct bge_softc *sc)
4841 {
4842         struct ifnet *ifp = &sc->arpcom.ac_if;
4843
4844         lwkt_serialize_handler_enable(ifp->if_serializer);
4845
4846         /*
4847          * Enable interrupt.
4848          */
4849         bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4850         if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
4851                 /* XXX Linux driver */
4852                 bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4853         }
4854
4855         /*
4856          * Unmask the interrupt when we stop polling.
4857          */
4858         PCI_CLRBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4859             BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4860
4861         /*
4862          * Trigger another interrupt, since above writing
4863          * to interrupt mailbox0 may acknowledge pending
4864          * interrupt.
4865          */
4866         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4867 }
4868
4869 static void
4870 bge_disable_intr(struct bge_softc *sc)
4871 {
4872         struct ifnet *ifp = &sc->arpcom.ac_if;
4873
4874         /*
4875          * Mask the interrupt when we start polling.
4876          */
4877         PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4878             BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4879
4880         /*
4881          * Acknowledge possible asserted interrupt.
4882          */
4883         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4884
4885         sc->bge_npoll.ifpc_stcount = 0;
4886
4887         lwkt_serialize_handler_disable(ifp->if_serializer);
4888 }
4889
4890 static int
4891 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4892 {
4893         uint32_t mac_addr;
4894         int ret = 1;
4895
4896         mac_addr = bge_readmem_ind(sc, 0x0c14);
4897         if ((mac_addr >> 16) == 0x484b) {
4898                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
4899                 ether_addr[1] = (uint8_t)mac_addr;
4900                 mac_addr = bge_readmem_ind(sc, 0x0c18);
4901                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
4902                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
4903                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
4904                 ether_addr[5] = (uint8_t)mac_addr;
4905                 ret = 0;
4906         }
4907         return ret;
4908 }
4909
4910 static int
4911 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
4912 {
4913         int mac_offset = BGE_EE_MAC_OFFSET;
4914
4915         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
4916                 mac_offset = BGE_EE_MAC_OFFSET_5906;
4917
4918         return bge_read_nvram(sc, ether_addr, mac_offset + 2, ETHER_ADDR_LEN);
4919 }
4920
4921 static int
4922 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
4923 {
4924         if (sc->bge_flags & BGE_FLAG_NO_EEPROM)
4925                 return 1;
4926
4927         return bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4928                                ETHER_ADDR_LEN);
4929 }
4930
4931 static int
4932 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
4933 {
4934         static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4935                 /* NOTE: Order is critical */
4936                 bge_get_eaddr_mem,
4937                 bge_get_eaddr_nvram,
4938                 bge_get_eaddr_eeprom,
4939                 NULL
4940         };
4941         const bge_eaddr_fcn_t *func;
4942
4943         for (func = bge_eaddr_funcs; *func != NULL; ++func) {
4944                 if ((*func)(sc, eaddr) == 0)
4945                         break;
4946         }
4947         return (*func == NULL ? ENXIO : 0);
4948 }
4949
4950 /*
4951  * NOTE: 'm' is not freed upon failure
4952  */
4953 struct mbuf *
4954 bge_defrag_shortdma(struct mbuf *m)
4955 {
4956         struct mbuf *n;
4957         int found;
4958
4959         /*
4960          * If device receive two back-to-back send BDs with less than
4961          * or equal to 8 total bytes then the device may hang.  The two
4962          * back-to-back send BDs must in the same frame for this failure
4963          * to occur.  Scan mbuf chains and see whether two back-to-back
4964          * send BDs are there.  If this is the case, allocate new mbuf
4965          * and copy the frame to workaround the silicon bug.
4966          */
4967         for (n = m, found = 0; n != NULL; n = n->m_next) {
4968                 if (n->m_len < 8) {
4969                         found++;
4970                         if (found > 1)
4971                                 break;
4972                         continue;
4973                 }
4974                 found = 0;
4975         }
4976
4977         if (found > 1)
4978                 n = m_defrag(m, MB_DONTWAIT);
4979         else
4980                 n = m;
4981         return n;
4982 }
4983
4984 static void
4985 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
4986 {
4987         int i;
4988
4989         BGE_CLRBIT(sc, reg, bit);
4990         for (i = 0; i < BGE_TIMEOUT; i++) {
4991                 if ((CSR_READ_4(sc, reg) & bit) == 0)
4992                         return;
4993                 DELAY(100);
4994         }
4995 }
4996
4997 static void
4998 bge_link_poll(struct bge_softc *sc)
4999 {
5000         uint32_t status;
5001
5002         status = CSR_READ_4(sc, BGE_MAC_STS);
5003         if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
5004                 sc->bge_link_evt = 0;
5005                 sc->bge_link_upd(sc, status);
5006         }
5007 }
5008
5009 static void
5010 bge_enable_msi(struct bge_softc *sc)
5011 {
5012         uint32_t msi_mode;
5013
5014         msi_mode = CSR_READ_4(sc, BGE_MSI_MODE);
5015         msi_mode |= BGE_MSIMODE_ENABLE;
5016         if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
5017                 /*
5018                  * According to all of the datasheets that are publicly
5019                  * available, bit 5 of the MSI_MODE is defined to be
5020                  * "MSI FIFO Underrun Attn" for BCM5755+ and BCM5906, on
5021                  * which "oneshot MSI" is enabled.  However, it is always
5022                  * safe to clear it here.
5023                  */
5024                 msi_mode &= ~BGE_MSIMODE_ONESHOT_DISABLE;
5025         }
5026         CSR_WRITE_4(sc, BGE_MSI_MODE, msi_mode);
5027 }
5028
5029 static int
5030 bge_setup_tso(struct bge_softc *sc, struct mbuf **mp,
5031     uint16_t *mss0, uint16_t *flags0)
5032 {
5033         struct mbuf *m;
5034         struct ip *ip;
5035         struct tcphdr *th;
5036         int thoff, iphlen, hoff, hlen;
5037         uint16_t flags, mss;
5038
5039         m = *mp;
5040         KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
5041
5042         hoff = m->m_pkthdr.csum_lhlen;
5043         iphlen = m->m_pkthdr.csum_iphlen;
5044         thoff = m->m_pkthdr.csum_thlen;
5045
5046         KASSERT(hoff > 0, ("invalid ether header len"));
5047         KASSERT(iphlen > 0, ("invalid ip header len"));
5048         KASSERT(thoff > 0, ("invalid tcp header len"));
5049
5050         if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
5051                 m = m_pullup(m, hoff + iphlen + thoff);
5052                 if (m == NULL) {
5053                         *mp = NULL;
5054                         return ENOBUFS;
5055                 }
5056                 *mp = m;
5057         }
5058         ip = mtodoff(m, struct ip *, hoff);
5059         th = mtodoff(m, struct tcphdr *, hoff + iphlen);
5060
5061         mss = m->m_pkthdr.tso_segsz;
5062         flags = BGE_TXBDFLAG_CPU_PRE_DMA | BGE_TXBDFLAG_CPU_POST_DMA;
5063
5064         ip->ip_len = htons(mss + iphlen + thoff);
5065         th->th_sum = 0;
5066
5067         hlen = (iphlen + thoff) >> 2;
5068         mss |= (hlen << 11);
5069
5070         *mss0 = mss;
5071         *flags0 = flags;
5072
5073         return 0;
5074 }
5075
5076 static void
5077 bge_stop_fw(struct bge_softc *sc)
5078 {
5079         int i;
5080
5081         if (sc->bge_asf_mode) {
5082                 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
5083                 CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
5084                     CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
5085
5086                 for (i = 0; i < 100; i++ ) {
5087                         if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
5088                             BGE_RX_CPU_DRV_EVENT))
5089                                 break;
5090                         DELAY(10);
5091                 }
5092         }
5093 }
5094
5095 static void
5096 bge_sig_pre_reset(struct bge_softc *sc, int type)
5097 {
5098         /*
5099          * Some chips don't like this so only do this if ASF is enabled
5100          */
5101         if (sc->bge_asf_mode)
5102                 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
5103
5104         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
5105                 switch (type) {
5106                 case BGE_RESET_START:
5107                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5108                             BGE_FW_DRV_STATE_START);
5109                         break;
5110                 case BGE_RESET_SHUTDOWN:
5111                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5112                             BGE_FW_DRV_STATE_UNLOAD);
5113                         break;
5114                 case BGE_RESET_SUSPEND:
5115                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5116                             BGE_FW_DRV_STATE_SUSPEND);
5117                         break;
5118                 }
5119         }
5120
5121 #ifdef notyet
5122         if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
5123                 bge_ape_driver_state_change(sc, type);
5124 #endif
5125 }
5126
5127 static void
5128 bge_sig_legacy(struct bge_softc *sc, int type)
5129 {
5130         if (sc->bge_asf_mode) {
5131                 switch (type) {
5132                 case BGE_RESET_START:
5133                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5134                             BGE_FW_DRV_STATE_START);
5135                         break;
5136                 case BGE_RESET_SHUTDOWN:
5137                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5138                             BGE_FW_DRV_STATE_UNLOAD);
5139                         break;
5140                 }
5141         }
5142 }
5143
5144 static void
5145 bge_sig_post_reset(struct bge_softc *sc, int type)
5146 {
5147         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
5148                 switch (type) {
5149                 case BGE_RESET_START:
5150                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5151                             BGE_FW_DRV_STATE_START_DONE);
5152                         /* START DONE */
5153                         break;
5154                 case BGE_RESET_SHUTDOWN:
5155                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5156                             BGE_FW_DRV_STATE_UNLOAD_DONE);
5157                         break;
5158                 }
5159         }
5160 #ifdef notyet
5161         if (type == BGE_RESET_SHUTDOWN)
5162                 bge_ape_driver_state_change(sc, type);
5163 #endif
5164 }
5165
5166 static void
5167 bge_asf_driver_up(struct bge_softc *sc)
5168 {
5169         if (sc->bge_asf_mode & ASF_STACKUP) {
5170                 /* Send ASF heartbeat aprox. every 2s */
5171                 if (sc->bge_asf_count)
5172                         sc->bge_asf_count --;
5173                 else {
5174                         sc->bge_asf_count = 2;
5175                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
5176                             BGE_FW_CMD_DRV_ALIVE);
5177                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
5178                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
5179                             BGE_FW_HB_TIMEOUT_SEC);
5180                         CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
5181                             CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
5182                             BGE_RX_CPU_DRV_EVENT);
5183                 }
5184         }
5185 }