Merge from vendor branch GCC:
[dragonfly.git] / sys / vm / vm_object.c
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by the University of
19  *      California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
65  * $DragonFly: src/sys/vm/vm_object.c,v 1.29 2006/12/28 21:24:02 dillon Exp $
66  */
67
68 /*
69  *      Virtual memory object module.
70  */
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>           /* for curproc, pageproc */
75 #include <sys/vnode.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_zone.h>
94
95 #define EASY_SCAN_FACTOR        8
96
97 static void     vm_object_qcollapse(vm_object_t object);
98 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
99                                              int pagerflags);
100
101 /*
102  *      Virtual memory objects maintain the actual data
103  *      associated with allocated virtual memory.  A given
104  *      page of memory exists within exactly one object.
105  *
106  *      An object is only deallocated when all "references"
107  *      are given up.  Only one "reference" to a given
108  *      region of an object should be writeable.
109  *
110  *      Associated with each object is a list of all resident
111  *      memory pages belonging to that object; this list is
112  *      maintained by the "vm_page" module, and locked by the object's
113  *      lock.
114  *
115  *      Each object also records a "pager" routine which is
116  *      used to retrieve (and store) pages to the proper backing
117  *      storage.  In addition, objects may be backed by other
118  *      objects from which they were virtual-copied.
119  *
120  *      The only items within the object structure which are
121  *      modified after time of creation are:
122  *              reference count         locked by object's lock
123  *              pager routine           locked by object's lock
124  *
125  */
126
127 struct object_q vm_object_list;
128 struct vm_object kernel_object;
129
130 static long vm_object_count;            /* count of all objects */
131 extern int vm_pageout_page_count;
132
133 static long object_collapses;
134 static long object_bypasses;
135 static int next_index;
136 static vm_zone_t obj_zone;
137 static struct vm_zone obj_zone_store;
138 static int object_hash_rand;
139 #define VM_OBJECTS_INIT 256
140 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
141
142 void
143 _vm_object_allocate(objtype_t type, vm_size_t size, vm_object_t object)
144 {
145         int incr;
146         RB_INIT(&object->rb_memq);
147         LIST_INIT(&object->shadow_head);
148
149         object->type = type;
150         object->size = size;
151         object->ref_count = 1;
152         object->flags = 0;
153         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
154                 vm_object_set_flag(object, OBJ_ONEMAPPING);
155         object->paging_in_progress = 0;
156         object->resident_page_count = 0;
157         object->shadow_count = 0;
158         object->pg_color = next_index;
159         if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
160                 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
161         else
162                 incr = size;
163         next_index = (next_index + incr) & PQ_L2_MASK;
164         object->handle = NULL;
165         object->backing_object = NULL;
166         object->backing_object_offset = (vm_ooffset_t) 0;
167         /*
168          * Try to generate a number that will spread objects out in the
169          * hash table.  We 'wipe' new objects across the hash in 128 page
170          * increments plus 1 more to offset it a little more by the time
171          * it wraps around.
172          */
173         object->hash_rand = object_hash_rand - 129;
174
175         object->generation++;
176
177         crit_enter();
178         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
179         vm_object_count++;
180         object_hash_rand = object->hash_rand;
181         crit_exit();
182 }
183
184 /*
185  *      vm_object_init:
186  *
187  *      Initialize the VM objects module.
188  */
189 void
190 vm_object_init(void)
191 {
192         TAILQ_INIT(&vm_object_list);
193         
194         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
195                             &kernel_object);
196
197         obj_zone = &obj_zone_store;
198         zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
199                 vm_objects_init, VM_OBJECTS_INIT);
200 }
201
202 void
203 vm_object_init2(void)
204 {
205         zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
206 }
207
208 /*
209  *      vm_object_allocate:
210  *
211  *      Returns a new object with the given size.
212  */
213
214 vm_object_t
215 vm_object_allocate(objtype_t type, vm_size_t size)
216 {
217         vm_object_t result;
218
219         result = (vm_object_t) zalloc(obj_zone);
220
221         _vm_object_allocate(type, size, result);
222
223         return (result);
224 }
225
226
227 /*
228  *      vm_object_reference:
229  *
230  *      Gets another reference to the given object.
231  */
232 void
233 vm_object_reference(vm_object_t object)
234 {
235         if (object == NULL)
236                 return;
237
238         object->ref_count++;
239         if (object->type == OBJT_VNODE) {
240                 vref(object->handle);
241                 /* XXX what if the vnode is being destroyed? */
242         }
243 }
244
245 static void
246 vm_object_vndeallocate(vm_object_t object)
247 {
248         struct vnode *vp = (struct vnode *) object->handle;
249
250         KASSERT(object->type == OBJT_VNODE,
251             ("vm_object_vndeallocate: not a vnode object"));
252         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
253 #ifdef INVARIANTS
254         if (object->ref_count == 0) {
255                 vprint("vm_object_vndeallocate", vp);
256                 panic("vm_object_vndeallocate: bad object reference count");
257         }
258 #endif
259
260         object->ref_count--;
261         if (object->ref_count == 0)
262                 vp->v_flag &= ~VTEXT;
263         vrele(vp);
264 }
265
266 /*
267  *      vm_object_deallocate:
268  *
269  *      Release a reference to the specified object,
270  *      gained either through a vm_object_allocate
271  *      or a vm_object_reference call.  When all references
272  *      are gone, storage associated with this object
273  *      may be relinquished.
274  *
275  *      No object may be locked.
276  */
277 void
278 vm_object_deallocate(vm_object_t object)
279 {
280         vm_object_t temp;
281
282         while (object != NULL) {
283                 if (object->type == OBJT_VNODE) {
284                         vm_object_vndeallocate(object);
285                         return;
286                 }
287
288                 if (object->ref_count == 0) {
289                         panic("vm_object_deallocate: object deallocated too many times: %d", object->type);
290                 } else if (object->ref_count > 2) {
291                         object->ref_count--;
292                         return;
293                 }
294
295                 /*
296                  * Here on ref_count of one or two, which are special cases for
297                  * objects.
298                  */
299                 if ((object->ref_count == 2) && (object->shadow_count == 0)) {
300                         vm_object_set_flag(object, OBJ_ONEMAPPING);
301                         object->ref_count--;
302                         return;
303                 } else if ((object->ref_count == 2) && (object->shadow_count == 1)) {
304                         object->ref_count--;
305                         if ((object->handle == NULL) &&
306                             (object->type == OBJT_DEFAULT ||
307                              object->type == OBJT_SWAP)) {
308                                 vm_object_t robject;
309
310                                 robject = LIST_FIRST(&object->shadow_head);
311                                 KASSERT(robject != NULL,
312                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
313                                          object->ref_count,
314                                          object->shadow_count));
315                                 if ((robject->handle == NULL) &&
316                                     (robject->type == OBJT_DEFAULT ||
317                                      robject->type == OBJT_SWAP)) {
318
319                                         robject->ref_count++;
320
321                                         while (
322                                                 robject->paging_in_progress ||
323                                                 object->paging_in_progress
324                                         ) {
325                                                 vm_object_pip_sleep(robject, "objde1");
326                                                 vm_object_pip_sleep(object, "objde2");
327                                         }
328
329                                         if (robject->ref_count == 1) {
330                                                 robject->ref_count--;
331                                                 object = robject;
332                                                 goto doterm;
333                                         }
334
335                                         object = robject;
336                                         vm_object_collapse(object);
337                                         continue;
338                                 }
339                         }
340
341                         return;
342
343                 } else {
344                         object->ref_count--;
345                         if (object->ref_count != 0)
346                                 return;
347                 }
348
349 doterm:
350
351                 temp = object->backing_object;
352                 if (temp) {
353                         LIST_REMOVE(object, shadow_list);
354                         temp->shadow_count--;
355                         temp->generation++;
356                         object->backing_object = NULL;
357                 }
358
359                 /*
360                  * Don't double-terminate, we could be in a termination
361                  * recursion due to the terminate having to sync data
362                  * to disk.
363                  */
364                 if ((object->flags & OBJ_DEAD) == 0)
365                         vm_object_terminate(object);
366                 object = temp;
367         }
368 }
369
370 /*
371  *      vm_object_terminate actually destroys the specified object, freeing
372  *      up all previously used resources.
373  *
374  *      The object must be locked.
375  *      This routine may block.
376  */
377 static int vm_object_terminate_callback(vm_page_t p, void *data);
378
379 void
380 vm_object_terminate(vm_object_t object)
381 {
382         /*
383          * Make sure no one uses us.
384          */
385         vm_object_set_flag(object, OBJ_DEAD);
386
387         /*
388          * wait for the pageout daemon to be done with the object
389          */
390         vm_object_pip_wait(object, "objtrm");
391
392         KASSERT(!object->paging_in_progress,
393                 ("vm_object_terminate: pageout in progress"));
394
395         /*
396          * Clean and free the pages, as appropriate. All references to the
397          * object are gone, so we don't need to lock it.
398          */
399         if (object->type == OBJT_VNODE) {
400                 struct vnode *vp;
401
402                 /*
403                  * Clean pages and flush buffers.
404                  */
405                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
406
407                 vp = (struct vnode *) object->handle;
408                 vinvalbuf(vp, V_SAVE, 0, 0);
409         }
410
411         /*
412          * Wait for any I/O to complete, after which there had better not
413          * be any references left on the object.
414          */
415         vm_object_pip_wait(object, "objtrm");
416
417         if (object->ref_count != 0)
418                 panic("vm_object_terminate: object with references, ref_count=%d", object->ref_count);
419
420         /*
421          * Now free any remaining pages. For internal objects, this also
422          * removes them from paging queues. Don't free wired pages, just
423          * remove them from the object. 
424          */
425         crit_enter();
426         vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
427                                 vm_object_terminate_callback, NULL);
428         crit_exit();
429
430         /*
431          * Let the pager know object is dead.
432          */
433         vm_pager_deallocate(object);
434
435         /*
436          * Remove the object from the global object list.
437          */
438         crit_enter();
439         TAILQ_REMOVE(&vm_object_list, object, object_list);
440         vm_object_count--;
441         crit_exit();
442
443         wakeup(object);
444         if (object->ref_count != 0)
445                 panic("vm_object_terminate2: object with references, ref_count=%d", object->ref_count);
446
447         /*
448          * Free the space for the object.
449          */
450         zfree(obj_zone, object);
451 }
452
453 static int
454 vm_object_terminate_callback(vm_page_t p, void *data __unused)
455 {
456         if (p->busy || (p->flags & PG_BUSY))
457                 panic("vm_object_terminate: freeing busy page %p", p);
458         if (p->wire_count == 0) {
459                 vm_page_busy(p);
460                 vm_page_free(p);
461                 mycpu->gd_cnt.v_pfree++;
462         } else {
463                 vm_page_busy(p);
464                 vm_page_remove(p);
465                 vm_page_wakeup(p);
466         }
467         return(0);
468 }
469
470 /*
471  *      vm_object_page_clean
472  *
473  *      Clean all dirty pages in the specified range of object.  Leaves page 
474  *      on whatever queue it is currently on.   If NOSYNC is set then do not
475  *      write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
476  *      leaving the object dirty.
477  *
478  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
479  *      synchronous clustering mode implementation.
480  *
481  *      Odd semantics: if start == end, we clean everything.
482  */
483 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
484 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
485
486 void
487 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
488                      int flags)
489 {
490         struct rb_vm_page_scan_info info;
491         struct vnode *vp;
492         int wholescan;
493         int pagerflags;
494         int curgeneration;
495
496         if (object->type != OBJT_VNODE ||
497                 (object->flags & OBJ_MIGHTBEDIRTY) == 0)
498                 return;
499
500         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? 
501                         VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
502         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
503
504         vp = object->handle;
505
506         /*
507          * Interlock other major object operations.  This allows us to 
508          * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
509          */
510         crit_enter();
511         vm_object_set_flag(object, OBJ_CLEANING);
512
513         /*
514          * Handle 'entire object' case
515          */
516         info.start_pindex = start;
517         if (end == 0) {
518                 info.end_pindex = object->size - 1;
519         } else {
520                 info.end_pindex = end - 1;
521         }
522         wholescan = (start == 0 && info.end_pindex == object->size - 1);
523         info.limit = flags;
524         info.pagerflags = pagerflags;
525         info.object = object;
526
527         /*
528          * If cleaning the entire object do a pass to mark the pages read-only.
529          * If everything worked out ok, clear OBJ_WRITEABLE and
530          * OBJ_MIGHTBEDIRTY.
531          */
532         if (wholescan) {
533                 info.error = 0;
534                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
535                                         vm_object_page_clean_pass1, &info);
536                 if (info.error == 0) {
537                         vm_object_clear_flag(object,
538                                              OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
539                         if (object->type == OBJT_VNODE &&
540                             (vp = (struct vnode *)object->handle) != NULL) {
541                                 if (vp->v_flag & VOBJDIRTY) 
542                                         vclrflags(vp, VOBJDIRTY);
543                         }
544                 }
545         }
546
547         /*
548          * Do a pass to clean all the dirty pages we find.
549          */
550         do {
551                 info.error = 0;
552                 curgeneration = object->generation;
553                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
554                                         vm_object_page_clean_pass2, &info);
555         } while (info.error || curgeneration != object->generation);
556
557         vm_object_clear_flag(object, OBJ_CLEANING);
558         crit_exit();
559 }
560
561 static 
562 int
563 vm_object_page_clean_pass1(struct vm_page *p, void *data)
564 {
565         struct rb_vm_page_scan_info *info = data;
566
567         vm_page_flag_set(p, PG_CLEANCHK);
568         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
569                 info->error = 1;
570         else
571                 vm_page_protect(p, VM_PROT_READ);
572         return(0);
573 }
574
575 static 
576 int
577 vm_object_page_clean_pass2(struct vm_page *p, void *data)
578 {
579         struct rb_vm_page_scan_info *info = data;
580         int n;
581
582         /*
583          * Do not mess with pages that were inserted after we started
584          * the cleaning pass.
585          */
586         if ((p->flags & PG_CLEANCHK) == 0)
587                 return(0);
588
589         /*
590          * Before wasting time traversing the pmaps, check for trivial
591          * cases where the page cannot be dirty.
592          */
593         if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
594                 KKASSERT((p->dirty & p->valid) == 0);
595                 return(0);
596         }
597
598         /*
599          * Check whether the page is dirty or not.  The page has been set
600          * to be read-only so the check will not race a user dirtying the
601          * page.
602          */
603         vm_page_test_dirty(p);
604         if ((p->dirty & p->valid) == 0) {
605                 vm_page_flag_clear(p, PG_CLEANCHK);
606                 return(0);
607         }
608
609         /*
610          * If we have been asked to skip nosync pages and this is a
611          * nosync page, skip it.  Note that the object flags were
612          * not cleared in this case (because pass1 will have returned an
613          * error), so we do not have to set them.
614          */
615         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
616                 vm_page_flag_clear(p, PG_CLEANCHK);
617                 return(0);
618         }
619
620         /*
621          * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
622          * the pages that get successfully flushed.  Set info->error if
623          * we raced an object modification.
624          */
625         n = vm_object_page_collect_flush(info->object, p, info->pagerflags);
626         if (n == 0)
627                 info->error = 1;
628         return(0);
629 }
630
631 /*
632  * This routine must be called within a critical section to properly avoid
633  * an interrupt unbusy/free race that can occur prior to the busy check.
634  *
635  * Using the object generation number here to detect page ripout is not
636  * the best idea in the world. XXX
637  *
638  * NOTE: we operate under the assumption that a page found to not be busy
639  * will not be ripped out from under us by an interrupt.  XXX we should
640  * recode this to explicitly busy the pages.
641  */
642 static int
643 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
644 {
645         int runlen;
646         int maxf;
647         int chkb;
648         int maxb;
649         int i;
650         int curgeneration;
651         vm_pindex_t pi;
652         vm_page_t maf[vm_pageout_page_count];
653         vm_page_t mab[vm_pageout_page_count];
654         vm_page_t ma[vm_pageout_page_count];
655
656         curgeneration = object->generation;
657
658         pi = p->pindex;
659         while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
660                 if (object->generation != curgeneration) {
661                         return(0);
662                 }
663         }
664         KKASSERT(p->object == object && p->pindex == pi);
665
666         maxf = 0;
667         for(i = 1; i < vm_pageout_page_count; i++) {
668                 vm_page_t tp;
669
670                 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
671                         if ((tp->flags & PG_BUSY) ||
672                                 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 
673                                  (tp->flags & PG_CLEANCHK) == 0) ||
674                                 (tp->busy != 0))
675                                 break;
676                         if((tp->queue - tp->pc) == PQ_CACHE) {
677                                 vm_page_flag_clear(tp, PG_CLEANCHK);
678                                 break;
679                         }
680                         vm_page_test_dirty(tp);
681                         if ((tp->dirty & tp->valid) == 0) {
682                                 vm_page_flag_clear(tp, PG_CLEANCHK);
683                                 break;
684                         }
685                         maf[ i - 1 ] = tp;
686                         maxf++;
687                         continue;
688                 }
689                 break;
690         }
691
692         maxb = 0;
693         chkb = vm_pageout_page_count -  maxf;
694         if (chkb) {
695                 for(i = 1; i < chkb;i++) {
696                         vm_page_t tp;
697
698                         if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
699                                 if ((tp->flags & PG_BUSY) ||
700                                         ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 
701                                          (tp->flags & PG_CLEANCHK) == 0) ||
702                                         (tp->busy != 0))
703                                         break;
704                                 if((tp->queue - tp->pc) == PQ_CACHE) {
705                                         vm_page_flag_clear(tp, PG_CLEANCHK);
706                                         break;
707                                 }
708                                 vm_page_test_dirty(tp);
709                                 if ((tp->dirty & tp->valid) == 0) {
710                                         vm_page_flag_clear(tp, PG_CLEANCHK);
711                                         break;
712                                 }
713                                 mab[ i - 1 ] = tp;
714                                 maxb++;
715                                 continue;
716                         }
717                         break;
718                 }
719         }
720
721         for(i = 0; i < maxb; i++) {
722                 int index = (maxb - i) - 1;
723                 ma[index] = mab[i];
724                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
725         }
726         vm_page_flag_clear(p, PG_CLEANCHK);
727         ma[maxb] = p;
728         for(i = 0; i < maxf; i++) {
729                 int index = (maxb + i) + 1;
730                 ma[index] = maf[i];
731                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
732         }
733         runlen = maxb + maxf + 1;
734
735         vm_pageout_flush(ma, runlen, pagerflags);
736         for (i = 0; i < runlen; i++) {
737                 if (ma[i]->valid & ma[i]->dirty) {
738                         vm_page_protect(ma[i], VM_PROT_READ);
739                         vm_page_flag_set(ma[i], PG_CLEANCHK);
740
741                         /*
742                          * maxf will end up being the actual number of pages
743                          * we wrote out contiguously, non-inclusive of the
744                          * first page.  We do not count look-behind pages.
745                          */
746                         if (i >= maxb + 1 && (maxf > i - maxb - 1))
747                                 maxf = i - maxb - 1;
748                 }
749         }
750         return(maxf + 1);
751 }
752
753 #ifdef not_used
754 /* XXX I cannot tell if this should be an exported symbol */
755 /*
756  *      vm_object_deactivate_pages
757  *
758  *      Deactivate all pages in the specified object.  (Keep its pages
759  *      in memory even though it is no longer referenced.)
760  *
761  *      The object must be locked.
762  */
763 static int vm_object_deactivate_pages_callback(vm_page_t p, void *data);
764
765 static void
766 vm_object_deactivate_pages(vm_object_t object)
767 {
768         crit_enter();
769         vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
770                                 vm_object_deactivate_pages_callback, NULL);
771         crit_exit();
772 }
773
774 static int
775 vm_object_deactivate_pages_callback(vm_page_t p, void *data __unused)
776 {
777         vm_page_deactivate(p);
778         return(0);
779 }
780
781 #endif
782
783 /*
784  * Same as vm_object_pmap_copy, except range checking really
785  * works, and is meant for small sections of an object.
786  *
787  * This code protects resident pages by making them read-only
788  * and is typically called on a fork or split when a page
789  * is converted to copy-on-write.  
790  *
791  * NOTE: If the page is already at VM_PROT_NONE, calling
792  * vm_page_protect will have no effect.
793  */
794 void
795 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
796 {
797         vm_pindex_t idx;
798         vm_page_t p;
799
800         if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
801                 return;
802
803         /*
804          * spl protection needed to prevent races between the lookup,
805          * an interrupt unbusy/free, and our protect call.
806          */
807         crit_enter();
808         for (idx = start; idx < end; idx++) {
809                 p = vm_page_lookup(object, idx);
810                 if (p == NULL)
811                         continue;
812                 vm_page_protect(p, VM_PROT_READ);
813         }
814         crit_exit();
815 }
816
817 /*
818  *      vm_object_pmap_remove:
819  *
820  *      Removes all physical pages in the specified
821  *      object range from all physical maps.
822  *
823  *      The object must *not* be locked.
824  */
825
826 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
827
828 void
829 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
830 {
831         struct rb_vm_page_scan_info info;
832
833         if (object == NULL)
834                 return;
835         info.start_pindex = start;
836         info.end_pindex = end - 1;
837         crit_enter();
838         vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
839                                 vm_object_pmap_remove_callback, &info);
840         if (start == 0 && end == object->size)
841                 vm_object_clear_flag(object, OBJ_WRITEABLE);
842         crit_exit();
843 }
844
845 static int
846 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
847 {
848         vm_page_protect(p, VM_PROT_NONE);
849         return(0);
850 }
851
852 /*
853  *      vm_object_madvise:
854  *
855  *      Implements the madvise function at the object/page level.
856  *
857  *      MADV_WILLNEED   (any object)
858  *
859  *          Activate the specified pages if they are resident.
860  *
861  *      MADV_DONTNEED   (any object)
862  *
863  *          Deactivate the specified pages if they are resident.
864  *
865  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
866  *                       OBJ_ONEMAPPING only)
867  *
868  *          Deactivate and clean the specified pages if they are
869  *          resident.  This permits the process to reuse the pages
870  *          without faulting or the kernel to reclaim the pages
871  *          without I/O.
872  */
873 void
874 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
875 {
876         vm_pindex_t end, tpindex;
877         vm_object_t tobject;
878         vm_page_t m;
879
880         if (object == NULL)
881                 return;
882
883         end = pindex + count;
884
885         /*
886          * Locate and adjust resident pages
887          */
888
889         for (; pindex < end; pindex += 1) {
890 relookup:
891                 tobject = object;
892                 tpindex = pindex;
893 shadowlookup:
894                 /*
895                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
896                  * and those pages must be OBJ_ONEMAPPING.
897                  */
898                 if (advise == MADV_FREE) {
899                         if ((tobject->type != OBJT_DEFAULT &&
900                              tobject->type != OBJT_SWAP) ||
901                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
902                                 continue;
903                         }
904                 }
905
906                 /*
907                  * spl protection is required to avoid a race between the
908                  * lookup, an interrupt unbusy/free, and our busy check.
909                  */
910
911                 crit_enter();
912                 m = vm_page_lookup(tobject, tpindex);
913
914                 if (m == NULL) {
915                         /*
916                          * There may be swap even if there is no backing page
917                          */
918                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
919                                 swap_pager_freespace(tobject, tpindex, 1);
920
921                         /*
922                          * next object
923                          */
924                         crit_exit();
925                         if (tobject->backing_object == NULL)
926                                 continue;
927                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
928                         tobject = tobject->backing_object;
929                         goto shadowlookup;
930                 }
931
932                 /*
933                  * If the page is busy or not in a normal active state,
934                  * we skip it.  If the page is not managed there are no
935                  * page queues to mess with.  Things can break if we mess
936                  * with pages in any of the below states.
937                  */
938                 if (
939                     m->hold_count ||
940                     m->wire_count ||
941                     (m->flags & PG_UNMANAGED) ||
942                     m->valid != VM_PAGE_BITS_ALL
943                 ) {
944                         crit_exit();
945                         continue;
946                 }
947
948                 if (vm_page_sleep_busy(m, TRUE, "madvpo")) {
949                         crit_exit();
950                         goto relookup;
951                 }
952                 crit_exit();
953
954                 /*
955                  * Theoretically once a page is known not to be busy, an
956                  * interrupt cannot come along and rip it out from under us.
957                  */
958
959                 if (advise == MADV_WILLNEED) {
960                         vm_page_activate(m);
961                 } else if (advise == MADV_DONTNEED) {
962                         vm_page_dontneed(m);
963                 } else if (advise == MADV_FREE) {
964                         /*
965                          * Mark the page clean.  This will allow the page
966                          * to be freed up by the system.  However, such pages
967                          * are often reused quickly by malloc()/free()
968                          * so we do not do anything that would cause
969                          * a page fault if we can help it.
970                          *
971                          * Specifically, we do not try to actually free
972                          * the page now nor do we try to put it in the
973                          * cache (which would cause a page fault on reuse).
974                          *
975                          * But we do make the page is freeable as we
976                          * can without actually taking the step of unmapping
977                          * it.
978                          */
979                         pmap_clear_modify(m);
980                         m->dirty = 0;
981                         m->act_count = 0;
982                         vm_page_dontneed(m);
983                         if (tobject->type == OBJT_SWAP)
984                                 swap_pager_freespace(tobject, tpindex, 1);
985                 }
986         }       
987 }
988
989 /*
990  *      vm_object_shadow:
991  *
992  *      Create a new object which is backed by the
993  *      specified existing object range.  The source
994  *      object reference is deallocated.
995  *
996  *      The new object and offset into that object
997  *      are returned in the source parameters.
998  */
999
1000 void
1001 vm_object_shadow(vm_object_t *object,   /* IN/OUT */
1002                  vm_ooffset_t *offset,  /* IN/OUT */
1003                  vm_size_t length)
1004 {
1005         vm_object_t source;
1006         vm_object_t result;
1007
1008         source = *object;
1009
1010         /*
1011          * Don't create the new object if the old object isn't shared.
1012          */
1013
1014         if (source != NULL &&
1015             source->ref_count == 1 &&
1016             source->handle == NULL &&
1017             (source->type == OBJT_DEFAULT ||
1018              source->type == OBJT_SWAP))
1019                 return;
1020
1021         /*
1022          * Allocate a new object with the given length
1023          */
1024
1025         if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1026                 panic("vm_object_shadow: no object for shadowing");
1027
1028         /*
1029          * The new object shadows the source object, adding a reference to it.
1030          * Our caller changes his reference to point to the new object,
1031          * removing a reference to the source object.  Net result: no change
1032          * of reference count.
1033          *
1034          * Try to optimize the result object's page color when shadowing
1035          * in order to maintain page coloring consistency in the combined 
1036          * shadowed object.
1037          */
1038         result->backing_object = source;
1039         if (source) {
1040                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1041                 source->shadow_count++;
1042                 source->generation++;
1043                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1044         }
1045
1046         /*
1047          * Store the offset into the source object, and fix up the offset into
1048          * the new object.
1049          */
1050
1051         result->backing_object_offset = *offset;
1052
1053         /*
1054          * Return the new things
1055          */
1056
1057         *offset = 0;
1058         *object = result;
1059 }
1060
1061 #define OBSC_TEST_ALL_SHADOWED  0x0001
1062 #define OBSC_COLLAPSE_NOWAIT    0x0002
1063 #define OBSC_COLLAPSE_WAIT      0x0004
1064
1065 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1066
1067 static __inline int
1068 vm_object_backing_scan(vm_object_t object, int op)
1069 {
1070         struct rb_vm_page_scan_info info;
1071         vm_object_t backing_object;
1072
1073         /*
1074          * spl protection is required to avoid races between the memq/lookup,
1075          * an interrupt doing an unbusy/free, and our busy check.  Amoung
1076          * other things.
1077          */
1078         crit_enter();
1079
1080         backing_object = object->backing_object;
1081         info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1082
1083         /*
1084          * Initial conditions
1085          */
1086
1087         if (op & OBSC_TEST_ALL_SHADOWED) {
1088                 /*
1089                  * We do not want to have to test for the existence of
1090                  * swap pages in the backing object.  XXX but with the
1091                  * new swapper this would be pretty easy to do.
1092                  *
1093                  * XXX what about anonymous MAP_SHARED memory that hasn't
1094                  * been ZFOD faulted yet?  If we do not test for this, the
1095                  * shadow test may succeed! XXX
1096                  */
1097                 if (backing_object->type != OBJT_DEFAULT) {
1098                         crit_exit();
1099                         return(0);
1100                 }
1101         }
1102         if (op & OBSC_COLLAPSE_WAIT) {
1103                 KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1104                 vm_object_set_flag(backing_object, OBJ_DEAD);
1105         }
1106
1107         /*
1108          * Our scan.   We have to retry if a negative error code is returned,
1109          * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1110          * the scan had to be stopped because the parent does not completely
1111          * shadow the child.
1112          */
1113         info.object = object;
1114         info.backing_object = backing_object;
1115         info.limit = op;
1116         do {
1117                 info.error = 1;
1118                 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1119                                         vm_object_backing_scan_callback,
1120                                         &info);
1121         } while (info.error < 0);
1122         crit_exit();
1123         return(info.error);
1124 }
1125
1126 static int
1127 vm_object_backing_scan_callback(vm_page_t p, void *data)
1128 {
1129         struct rb_vm_page_scan_info *info = data;
1130         vm_object_t backing_object;
1131         vm_object_t object;
1132         vm_pindex_t new_pindex;
1133         vm_pindex_t backing_offset_index;
1134         int op;
1135
1136         new_pindex = p->pindex - info->backing_offset_index;
1137         op = info->limit;
1138         object = info->object;
1139         backing_object = info->backing_object;
1140         backing_offset_index = info->backing_offset_index;
1141
1142         if (op & OBSC_TEST_ALL_SHADOWED) {
1143                 vm_page_t pp;
1144
1145                 /*
1146                  * Ignore pages outside the parent object's range
1147                  * and outside the parent object's mapping of the 
1148                  * backing object.
1149                  *
1150                  * note that we do not busy the backing object's
1151                  * page.
1152                  */
1153                 if (
1154                     p->pindex < backing_offset_index ||
1155                     new_pindex >= object->size
1156                 ) {
1157                         return(0);
1158                 }
1159
1160                 /*
1161                  * See if the parent has the page or if the parent's
1162                  * object pager has the page.  If the parent has the
1163                  * page but the page is not valid, the parent's
1164                  * object pager must have the page.
1165                  *
1166                  * If this fails, the parent does not completely shadow
1167                  * the object and we might as well give up now.
1168                  */
1169
1170                 pp = vm_page_lookup(object, new_pindex);
1171                 if (
1172                     (pp == NULL || pp->valid == 0) &&
1173                     !vm_pager_has_page(object, new_pindex, NULL, NULL)
1174                 ) {
1175                         info->error = 0;        /* problemo */
1176                         return(-1);             /* stop the scan */
1177                 }
1178         }
1179
1180         /*
1181          * Check for busy page
1182          */
1183
1184         if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1185                 vm_page_t pp;
1186
1187                 if (op & OBSC_COLLAPSE_NOWAIT) {
1188                         if (
1189                             (p->flags & PG_BUSY) ||
1190                             !p->valid || 
1191                             p->hold_count || 
1192                             p->wire_count ||
1193                             p->busy
1194                         ) {
1195                                 return(0);
1196                         }
1197                 } else if (op & OBSC_COLLAPSE_WAIT) {
1198                         if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1199                                 /*
1200                                  * If we slept, anything could have
1201                                  * happened.   Ask that the scan be restarted.
1202                                  *
1203                                  * Since the object is marked dead, the
1204                                  * backing offset should not have changed.  
1205                                  */
1206                                 info->error = -1;
1207                                 return(-1);
1208                         }
1209                 }
1210
1211                 /* 
1212                  * Busy the page
1213                  */
1214                 vm_page_busy(p);
1215
1216                 KASSERT(
1217                     p->object == backing_object,
1218                     ("vm_object_qcollapse(): object mismatch")
1219                 );
1220
1221                 /*
1222                  * Destroy any associated swap
1223                  */
1224                 if (backing_object->type == OBJT_SWAP) {
1225                         swap_pager_freespace(
1226                             backing_object, 
1227                             p->pindex,
1228                             1
1229                         );
1230                 }
1231
1232                 if (
1233                     p->pindex < backing_offset_index ||
1234                     new_pindex >= object->size
1235                 ) {
1236                         /*
1237                          * Page is out of the parent object's range, we 
1238                          * can simply destroy it. 
1239                          */
1240                         vm_page_protect(p, VM_PROT_NONE);
1241                         vm_page_free(p);
1242                         return(0);
1243                 }
1244
1245                 pp = vm_page_lookup(object, new_pindex);
1246                 if (
1247                     pp != NULL ||
1248                     vm_pager_has_page(object, new_pindex, NULL, NULL)
1249                 ) {
1250                         /*
1251                          * page already exists in parent OR swap exists
1252                          * for this location in the parent.  Destroy 
1253                          * the original page from the backing object.
1254                          *
1255                          * Leave the parent's page alone
1256                          */
1257                         vm_page_protect(p, VM_PROT_NONE);
1258                         vm_page_free(p);
1259                         return(0);
1260                 }
1261
1262                 /*
1263                  * Page does not exist in parent, rename the
1264                  * page from the backing object to the main object. 
1265                  *
1266                  * If the page was mapped to a process, it can remain 
1267                  * mapped through the rename.
1268                  */
1269                 if ((p->queue - p->pc) == PQ_CACHE)
1270                         vm_page_deactivate(p);
1271
1272                 vm_page_rename(p, object, new_pindex);
1273                 /* page automatically made dirty by rename */
1274         }
1275         return(0);
1276 }
1277
1278 /*
1279  * this version of collapse allows the operation to occur earlier and
1280  * when paging_in_progress is true for an object...  This is not a complete
1281  * operation, but should plug 99.9% of the rest of the leaks.
1282  */
1283 static void
1284 vm_object_qcollapse(vm_object_t object)
1285 {
1286         vm_object_t backing_object = object->backing_object;
1287
1288         if (backing_object->ref_count != 1)
1289                 return;
1290
1291         backing_object->ref_count += 2;
1292
1293         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1294
1295         backing_object->ref_count -= 2;
1296 }
1297
1298 /*
1299  *      vm_object_collapse:
1300  *
1301  *      Collapse an object with the object backing it.
1302  *      Pages in the backing object are moved into the
1303  *      parent, and the backing object is deallocated.
1304  */
1305 void
1306 vm_object_collapse(vm_object_t object)
1307 {
1308         while (TRUE) {
1309                 vm_object_t backing_object;
1310
1311                 /*
1312                  * Verify that the conditions are right for collapse:
1313                  *
1314                  * The object exists and the backing object exists.
1315                  */
1316                 if (object == NULL)
1317                         break;
1318
1319                 if ((backing_object = object->backing_object) == NULL)
1320                         break;
1321
1322                 /*
1323                  * we check the backing object first, because it is most likely
1324                  * not collapsable.
1325                  */
1326                 if (backing_object->handle != NULL ||
1327                     (backing_object->type != OBJT_DEFAULT &&
1328                      backing_object->type != OBJT_SWAP) ||
1329                     (backing_object->flags & OBJ_DEAD) ||
1330                     object->handle != NULL ||
1331                     (object->type != OBJT_DEFAULT &&
1332                      object->type != OBJT_SWAP) ||
1333                     (object->flags & OBJ_DEAD)) {
1334                         break;
1335                 }
1336
1337                 if (
1338                     object->paging_in_progress != 0 ||
1339                     backing_object->paging_in_progress != 0
1340                 ) {
1341                         vm_object_qcollapse(object);
1342                         break;
1343                 }
1344
1345                 /*
1346                  * We know that we can either collapse the backing object (if
1347                  * the parent is the only reference to it) or (perhaps) have
1348                  * the parent bypass the object if the parent happens to shadow
1349                  * all the resident pages in the entire backing object.
1350                  *
1351                  * This is ignoring pager-backed pages such as swap pages.
1352                  * vm_object_backing_scan fails the shadowing test in this
1353                  * case.
1354                  */
1355
1356                 if (backing_object->ref_count == 1) {
1357                         /*
1358                          * If there is exactly one reference to the backing
1359                          * object, we can collapse it into the parent.  
1360                          */
1361                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1362
1363                         /*
1364                          * Move the pager from backing_object to object.
1365                          */
1366
1367                         if (backing_object->type == OBJT_SWAP) {
1368                                 vm_object_pip_add(backing_object, 1);
1369
1370                                 /*
1371                                  * scrap the paging_offset junk and do a 
1372                                  * discrete copy.  This also removes major 
1373                                  * assumptions about how the swap-pager 
1374                                  * works from where it doesn't belong.  The
1375                                  * new swapper is able to optimize the
1376                                  * destroy-source case.
1377                                  */
1378
1379                                 vm_object_pip_add(object, 1);
1380                                 swap_pager_copy(
1381                                     backing_object,
1382                                     object,
1383                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1384                                 vm_object_pip_wakeup(object);
1385
1386                                 vm_object_pip_wakeup(backing_object);
1387                         }
1388                         /*
1389                          * Object now shadows whatever backing_object did.
1390                          * Note that the reference to 
1391                          * backing_object->backing_object moves from within 
1392                          * backing_object to within object.
1393                          */
1394
1395                         LIST_REMOVE(object, shadow_list);
1396                         object->backing_object->shadow_count--;
1397                         object->backing_object->generation++;
1398                         if (backing_object->backing_object) {
1399                                 LIST_REMOVE(backing_object, shadow_list);
1400                                 backing_object->backing_object->shadow_count--;
1401                                 backing_object->backing_object->generation++;
1402                         }
1403                         object->backing_object = backing_object->backing_object;
1404                         if (object->backing_object) {
1405                                 LIST_INSERT_HEAD(
1406                                     &object->backing_object->shadow_head,
1407                                     object, 
1408                                     shadow_list
1409                                 );
1410                                 object->backing_object->shadow_count++;
1411                                 object->backing_object->generation++;
1412                         }
1413
1414                         object->backing_object_offset +=
1415                             backing_object->backing_object_offset;
1416
1417                         /*
1418                          * Discard backing_object.
1419                          *
1420                          * Since the backing object has no pages, no pager left,
1421                          * and no object references within it, all that is
1422                          * necessary is to dispose of it.
1423                          */
1424
1425                         KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1426                         KASSERT(RB_EMPTY(&backing_object->rb_memq), ("backing_object %p somehow has left over pages during collapse!", backing_object));
1427                         crit_enter();
1428                         TAILQ_REMOVE(
1429                             &vm_object_list, 
1430                             backing_object,
1431                             object_list
1432                         );
1433                         vm_object_count--;
1434                         crit_exit();
1435
1436                         zfree(obj_zone, backing_object);
1437
1438                         object_collapses++;
1439                 } else {
1440                         vm_object_t new_backing_object;
1441
1442                         /*
1443                          * If we do not entirely shadow the backing object,
1444                          * there is nothing we can do so we give up.
1445                          */
1446
1447                         if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1448                                 break;
1449                         }
1450
1451                         /*
1452                          * Make the parent shadow the next object in the
1453                          * chain.  Deallocating backing_object will not remove
1454                          * it, since its reference count is at least 2.
1455                          */
1456
1457                         LIST_REMOVE(object, shadow_list);
1458                         backing_object->shadow_count--;
1459                         backing_object->generation++;
1460
1461                         new_backing_object = backing_object->backing_object;
1462                         if ((object->backing_object = new_backing_object) != NULL) {
1463                                 vm_object_reference(new_backing_object);
1464                                 LIST_INSERT_HEAD(
1465                                     &new_backing_object->shadow_head,
1466                                     object,
1467                                     shadow_list
1468                                 );
1469                                 new_backing_object->shadow_count++;
1470                                 new_backing_object->generation++;
1471                                 object->backing_object_offset +=
1472                                         backing_object->backing_object_offset;
1473                         }
1474
1475                         /*
1476                          * Drop the reference count on backing_object. Since
1477                          * its ref_count was at least 2, it will not vanish;
1478                          * so we don't need to call vm_object_deallocate, but
1479                          * we do anyway.
1480                          */
1481                         vm_object_deallocate(backing_object);
1482                         object_bypasses++;
1483                 }
1484
1485                 /*
1486                  * Try again with this object's new backing object.
1487                  */
1488         }
1489 }
1490
1491 /*
1492  *      vm_object_page_remove: [internal]
1493  *
1494  *      Removes all physical pages in the specified
1495  *      object range from the object's list of pages.
1496  */
1497 static int vm_object_page_remove_callback(vm_page_t p, void *data);
1498
1499 void
1500 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1501                       boolean_t clean_only)
1502 {
1503         struct rb_vm_page_scan_info info;
1504         int all;
1505
1506         /*
1507          * Degenerate cases and assertions
1508          */
1509         if (object == NULL || object->resident_page_count == 0)
1510                 return;
1511         KASSERT(object->type != OBJT_PHYS, 
1512                 ("attempt to remove pages from a physical object"));
1513
1514         /*
1515          * Indicate that paging is occuring on the object
1516          */
1517         crit_enter();
1518         vm_object_pip_add(object, 1);
1519
1520         /*
1521          * Figure out the actual removal range and whether we are removing
1522          * the entire contents of the object or not.  If removing the entire
1523          * contents, be sure to get all pages, even those that might be 
1524          * beyond the end of the object.
1525          */
1526         info.start_pindex = start;
1527         if (end == 0)
1528                 info.end_pindex = (vm_pindex_t)-1;
1529         else
1530                 info.end_pindex = end - 1;
1531         info.limit = clean_only;
1532         all = (start == 0 && info.end_pindex >= object->size - 1);
1533
1534         /*
1535          * Loop until we are sure we have gotten them all.
1536          */
1537         do {
1538                 info.error = 0;
1539                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1540                                         vm_object_page_remove_callback, &info);
1541         } while (info.error);
1542
1543         /*
1544          * Cleanup
1545          */
1546         vm_object_pip_wakeup(object);
1547         crit_exit();
1548 }
1549
1550 static int
1551 vm_object_page_remove_callback(vm_page_t p, void *data)
1552 {
1553         struct rb_vm_page_scan_info *info = data;
1554
1555         /*
1556          * Wired pages cannot be destroyed, but they can be invalidated
1557          * and we do so if clean_only (limit) is not set.
1558          */
1559         if (p->wire_count != 0) {
1560                 vm_page_protect(p, VM_PROT_NONE);
1561                 if (info->limit == 0)
1562                         p->valid = 0;
1563                 return(0);
1564         }
1565
1566         /*
1567          * The busy flags are only cleared at
1568          * interrupt -- minimize the spl transitions
1569          */
1570
1571         if (vm_page_sleep_busy(p, TRUE, "vmopar")) {
1572                 info->error = 1;
1573                 return(0);
1574         }
1575
1576         /*
1577          * limit is our clean_only flag.  If set and the page is dirty, do
1578          * not free it.
1579          */
1580         if (info->limit && p->valid) {
1581                 vm_page_test_dirty(p);
1582                 if (p->valid & p->dirty)
1583                         return(0);
1584         }
1585
1586         /*
1587          * Destroy the page
1588          */
1589         vm_page_busy(p);
1590         vm_page_protect(p, VM_PROT_NONE);
1591         vm_page_free(p);
1592         return(0);
1593 }
1594
1595 /*
1596  *      Routine:        vm_object_coalesce
1597  *      Function:       Coalesces two objects backing up adjoining
1598  *                      regions of memory into a single object.
1599  *
1600  *      returns TRUE if objects were combined.
1601  *
1602  *      NOTE:   Only works at the moment if the second object is NULL -
1603  *              if it's not, which object do we lock first?
1604  *
1605  *      Parameters:
1606  *              prev_object     First object to coalesce
1607  *              prev_offset     Offset into prev_object
1608  *              next_object     Second object into coalesce
1609  *              next_offset     Offset into next_object
1610  *
1611  *              prev_size       Size of reference to prev_object
1612  *              next_size       Size of reference to next_object
1613  *
1614  *      Conditions:
1615  *      The object must *not* be locked.
1616  */
1617 boolean_t
1618 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1619     vm_size_t prev_size, vm_size_t next_size)
1620 {
1621         vm_pindex_t next_pindex;
1622
1623         if (prev_object == NULL) {
1624                 return (TRUE);
1625         }
1626
1627         if (prev_object->type != OBJT_DEFAULT &&
1628             prev_object->type != OBJT_SWAP) {
1629                 return (FALSE);
1630         }
1631
1632         /*
1633          * Try to collapse the object first
1634          */
1635         vm_object_collapse(prev_object);
1636
1637         /*
1638          * Can't coalesce if: . more than one reference . paged out . shadows
1639          * another object . has a copy elsewhere (any of which mean that the
1640          * pages not mapped to prev_entry may be in use anyway)
1641          */
1642
1643         if (prev_object->backing_object != NULL) {
1644                 return (FALSE);
1645         }
1646
1647         prev_size >>= PAGE_SHIFT;
1648         next_size >>= PAGE_SHIFT;
1649         next_pindex = prev_pindex + prev_size;
1650
1651         if ((prev_object->ref_count > 1) &&
1652             (prev_object->size != next_pindex)) {
1653                 return (FALSE);
1654         }
1655
1656         /*
1657          * Remove any pages that may still be in the object from a previous
1658          * deallocation.
1659          */
1660         if (next_pindex < prev_object->size) {
1661                 vm_object_page_remove(prev_object,
1662                                       next_pindex,
1663                                       next_pindex + next_size, FALSE);
1664                 if (prev_object->type == OBJT_SWAP)
1665                         swap_pager_freespace(prev_object,
1666                                              next_pindex, next_size);
1667         }
1668
1669         /*
1670          * Extend the object if necessary.
1671          */
1672         if (next_pindex + next_size > prev_object->size)
1673                 prev_object->size = next_pindex + next_size;
1674
1675         return (TRUE);
1676 }
1677
1678 void
1679 vm_object_set_writeable_dirty(vm_object_t object)
1680 {
1681         struct vnode *vp;
1682
1683         vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1684         if (object->type == OBJT_VNODE &&
1685             (vp = (struct vnode *)object->handle) != NULL) {
1686                 if ((vp->v_flag & VOBJDIRTY) == 0) {
1687                         vsetflags(vp, VOBJDIRTY);
1688                 }
1689         }
1690 }
1691
1692
1693
1694 #include "opt_ddb.h"
1695 #ifdef DDB
1696 #include <sys/kernel.h>
1697
1698 #include <sys/cons.h>
1699
1700 #include <ddb/ddb.h>
1701
1702 static int      _vm_object_in_map (vm_map_t map, vm_object_t object,
1703                                        vm_map_entry_t entry);
1704 static int      vm_object_in_map (vm_object_t object);
1705
1706 static int
1707 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1708 {
1709         vm_map_t tmpm;
1710         vm_map_entry_t tmpe;
1711         vm_object_t obj;
1712         int entcount;
1713
1714         if (map == 0)
1715                 return 0;
1716         if (entry == 0) {
1717                 tmpe = map->header.next;
1718                 entcount = map->nentries;
1719                 while (entcount-- && (tmpe != &map->header)) {
1720                         if( _vm_object_in_map(map, object, tmpe)) {
1721                                 return 1;
1722                         }
1723                         tmpe = tmpe->next;
1724                 }
1725                 return (0);
1726         }
1727         switch(entry->maptype) {
1728         case VM_MAPTYPE_SUBMAP:
1729                 tmpm = entry->object.sub_map;
1730                 tmpe = tmpm->header.next;
1731                 entcount = tmpm->nentries;
1732                 while (entcount-- && tmpe != &tmpm->header) {
1733                         if( _vm_object_in_map(tmpm, object, tmpe)) {
1734                                 return 1;
1735                         }
1736                         tmpe = tmpe->next;
1737                 }
1738                 break;
1739         case VM_MAPTYPE_NORMAL:
1740         case VM_MAPTYPE_VPAGETABLE:
1741                 obj = entry->object.vm_object;
1742                 while (obj) {
1743                         if (obj == object)
1744                                 return 1;
1745                         obj = obj->backing_object;
1746                 }
1747                 break;
1748         default:
1749                 break;
1750         }
1751         return 0;
1752 }
1753
1754 static int vm_object_in_map_callback(struct proc *p, void *data);
1755
1756 struct vm_object_in_map_info {
1757         vm_object_t object;
1758         int rv;
1759 };
1760
1761 static int
1762 vm_object_in_map(vm_object_t object)
1763 {
1764         struct vm_object_in_map_info info;
1765
1766         info.rv = 0;
1767         info.object = object;
1768
1769         allproc_scan(vm_object_in_map_callback, &info);
1770         if (info.rv)
1771                 return 1;
1772         if( _vm_object_in_map(&kernel_map, object, 0))
1773                 return 1;
1774         if( _vm_object_in_map(&pager_map, object, 0))
1775                 return 1;
1776         if( _vm_object_in_map(&buffer_map, object, 0))
1777                 return 1;
1778         return 0;
1779 }
1780
1781 static int
1782 vm_object_in_map_callback(struct proc *p, void *data)
1783 {
1784         struct vm_object_in_map_info *info = data;
1785
1786         if (p->p_vmspace) {
1787                 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
1788                         info->rv = 1;
1789                         return -1;
1790                 }
1791         }
1792         return (0);
1793 }
1794
1795 DB_SHOW_COMMAND(vmochk, vm_object_check)
1796 {
1797         vm_object_t object;
1798
1799         /*
1800          * make sure that internal objs are in a map somewhere
1801          * and none have zero ref counts.
1802          */
1803         for (object = TAILQ_FIRST(&vm_object_list);
1804                         object != NULL;
1805                         object = TAILQ_NEXT(object, object_list)) {
1806                 if (object->handle == NULL &&
1807                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1808                         if (object->ref_count == 0) {
1809                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
1810                                         (long)object->size);
1811                         }
1812                         if (!vm_object_in_map(object)) {
1813                                 db_printf(
1814                         "vmochk: internal obj is not in a map: "
1815                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1816                                     object->ref_count, (u_long)object->size, 
1817                                     (u_long)object->size,
1818                                     (void *)object->backing_object);
1819                         }
1820                 }
1821         }
1822 }
1823
1824 /*
1825  *      vm_object_print:        [ debug ]
1826  */
1827 DB_SHOW_COMMAND(object, vm_object_print_static)
1828 {
1829         /* XXX convert args. */
1830         vm_object_t object = (vm_object_t)addr;
1831         boolean_t full = have_addr;
1832
1833         vm_page_t p;
1834
1835         /* XXX count is an (unused) arg.  Avoid shadowing it. */
1836 #define count   was_count
1837
1838         int count;
1839
1840         if (object == NULL)
1841                 return;
1842
1843         db_iprintf(
1844             "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1845             object, (int)object->type, (u_long)object->size,
1846             object->resident_page_count, object->ref_count, object->flags);
1847         /*
1848          * XXX no %qd in kernel.  Truncate object->backing_object_offset.
1849          */
1850         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1851             object->shadow_count, 
1852             object->backing_object ? object->backing_object->ref_count : 0,
1853             object->backing_object, (long)object->backing_object_offset);
1854
1855         if (!full)
1856                 return;
1857
1858         db_indent += 2;
1859         count = 0;
1860         RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
1861                 if (count == 0)
1862                         db_iprintf("memory:=");
1863                 else if (count == 6) {
1864                         db_printf("\n");
1865                         db_iprintf(" ...");
1866                         count = 0;
1867                 } else
1868                         db_printf(",");
1869                 count++;
1870
1871                 db_printf("(off=0x%lx,page=0x%lx)",
1872                     (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
1873         }
1874         if (count != 0)
1875                 db_printf("\n");
1876         db_indent -= 2;
1877 }
1878
1879 /* XXX. */
1880 #undef count
1881
1882 /* XXX need this non-static entry for calling from vm_map_print. */
1883 void
1884 vm_object_print(/* db_expr_t */ long addr,
1885                 boolean_t have_addr,
1886                 /* db_expr_t */ long count,
1887                 char *modif)
1888 {
1889         vm_object_print_static(addr, have_addr, count, modif);
1890 }
1891
1892 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
1893 {
1894         vm_object_t object;
1895         int nl = 0;
1896         int c;
1897         for (object = TAILQ_FIRST(&vm_object_list);
1898                         object != NULL;
1899                         object = TAILQ_NEXT(object, object_list)) {
1900                 vm_pindex_t idx, fidx;
1901                 vm_pindex_t osize;
1902                 vm_paddr_t pa = -1, padiff;
1903                 int rcount;
1904                 vm_page_t m;
1905
1906                 db_printf("new object: %p\n", (void *)object);
1907                 if ( nl > 18) {
1908                         c = cngetc();
1909                         if (c != ' ')
1910                                 return;
1911                         nl = 0;
1912                 }
1913                 nl++;
1914                 rcount = 0;
1915                 fidx = 0;
1916                 osize = object->size;
1917                 if (osize > 128)
1918                         osize = 128;
1919                 for (idx = 0; idx < osize; idx++) {
1920                         m = vm_page_lookup(object, idx);
1921                         if (m == NULL) {
1922                                 if (rcount) {
1923                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1924                                                 (long)fidx, rcount, (long)pa);
1925                                         if ( nl > 18) {
1926                                                 c = cngetc();
1927                                                 if (c != ' ')
1928                                                         return;
1929                                                 nl = 0;
1930                                         }
1931                                         nl++;
1932                                         rcount = 0;
1933                                 }
1934                                 continue;
1935                         }
1936
1937                                 
1938                         if (rcount &&
1939                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
1940                                 ++rcount;
1941                                 continue;
1942                         }
1943                         if (rcount) {
1944                                 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
1945                                 padiff >>= PAGE_SHIFT;
1946                                 padiff &= PQ_L2_MASK;
1947                                 if (padiff == 0) {
1948                                         pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
1949                                         ++rcount;
1950                                         continue;
1951                                 }
1952                                 db_printf(" index(%ld)run(%d)pa(0x%lx)",
1953                                         (long)fidx, rcount, (long)pa);
1954                                 db_printf("pd(%ld)\n", (long)padiff);
1955                                 if ( nl > 18) {
1956                                         c = cngetc();
1957                                         if (c != ' ')
1958                                                 return;
1959                                         nl = 0;
1960                                 }
1961                                 nl++;
1962                         }
1963                         fidx = idx;
1964                         pa = VM_PAGE_TO_PHYS(m);
1965                         rcount = 1;
1966                 }
1967                 if (rcount) {
1968                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1969                                 (long)fidx, rcount, (long)pa);
1970                         if ( nl > 18) {
1971                                 c = cngetc();
1972                                 if (c != ' ')
1973                                         return;
1974                                 nl = 0;
1975                         }
1976                         nl++;
1977                 }
1978         }
1979 }
1980 #endif /* DDB */