2191023c1319686fa6cd5d1afee65913fb2ab50c
[dragonfly.git] / sys / dev / netif / bnx / if_bnx.c
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34  */
35
36 #include "opt_bnx.h"
37 #include "opt_ifpoll.h"
38
39 #include <sys/param.h>
40 #include <sys/bus.h>
41 #include <sys/endian.h>
42 #include <sys/kernel.h>
43 #include <sys/interrupt.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/queue.h>
47 #include <sys/rman.h>
48 #include <sys/serialize.h>
49 #include <sys/socket.h>
50 #include <sys/sockio.h>
51 #include <sys/sysctl.h>
52
53 #include <netinet/ip.h>
54 #include <netinet/tcp.h>
55
56 #include <net/bpf.h>
57 #include <net/ethernet.h>
58 #include <net/if.h>
59 #include <net/if_arp.h>
60 #include <net/if_dl.h>
61 #include <net/if_media.h>
62 #include <net/if_poll.h>
63 #include <net/if_types.h>
64 #include <net/ifq_var.h>
65 #include <net/toeplitz.h>
66 #include <net/toeplitz2.h>
67 #include <net/vlan/if_vlan_var.h>
68 #include <net/vlan/if_vlan_ether.h>
69
70 #include <dev/netif/mii_layer/mii.h>
71 #include <dev/netif/mii_layer/miivar.h>
72 #include <dev/netif/mii_layer/brgphyreg.h>
73
74 #include "pcidevs.h"
75 #include <bus/pci/pcireg.h>
76 #include <bus/pci/pcivar.h>
77
78 #include <dev/netif/bge/if_bgereg.h>
79 #include <dev/netif/bnx/if_bnxvar.h>
80
81 /* "device miibus" required.  See GENERIC if you get errors here. */
82 #include "miibus_if.h"
83
84 #define BNX_CSUM_FEATURES       (CSUM_IP | CSUM_TCP | CSUM_UDP)
85
86 #define BNX_RESET_SHUTDOWN      0
87 #define BNX_RESET_START         1
88 #define BNX_RESET_SUSPEND       2
89
90 #define BNX_INTR_CKINTVL        ((10 * hz) / 1000)      /* 10ms */
91
92 #ifdef BNX_RSS_DEBUG
93 #define BNX_RSS_DPRINTF(sc, lvl, fmt, ...) \
94 do { \
95         if (sc->bnx_rss_debug >= lvl) \
96                 if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
97 } while (0)
98 #else   /* !BNX_RSS_DEBUG */
99 #define BNX_RSS_DPRINTF(sc, lvl, fmt, ...)      ((void)0)
100 #endif  /* BNX_RSS_DEBUG */
101
102 static const struct bnx_type {
103         uint16_t                bnx_vid;
104         uint16_t                bnx_did;
105         char                    *bnx_name;
106 } bnx_devs[] = {
107         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5717,
108                 "Broadcom BCM5717 Gigabit Ethernet" },
109         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5717C,
110                 "Broadcom BCM5717C Gigabit Ethernet" },
111         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5718,
112                 "Broadcom BCM5718 Gigabit Ethernet" },
113         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5719,
114                 "Broadcom BCM5719 Gigabit Ethernet" },
115         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720_ALT,
116                 "Broadcom BCM5720 Gigabit Ethernet" },
117
118         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5725,
119                 "Broadcom BCM5725 Gigabit Ethernet" },
120         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5727,
121                 "Broadcom BCM5727 Gigabit Ethernet" },
122         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5762,
123                 "Broadcom BCM5762 Gigabit Ethernet" },
124
125         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57761,
126                 "Broadcom BCM57761 Gigabit Ethernet" },
127         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57762,
128                 "Broadcom BCM57762 Gigabit Ethernet" },
129         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57765,
130                 "Broadcom BCM57765 Gigabit Ethernet" },
131         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57766,
132                 "Broadcom BCM57766 Gigabit Ethernet" },
133         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57781,
134                 "Broadcom BCM57781 Gigabit Ethernet" },
135         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57782,
136                 "Broadcom BCM57782 Gigabit Ethernet" },
137         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57785,
138                 "Broadcom BCM57785 Gigabit Ethernet" },
139         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57786,
140                 "Broadcom BCM57786 Gigabit Ethernet" },
141         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57791,
142                 "Broadcom BCM57791 Fast Ethernet" },
143         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57795,
144                 "Broadcom BCM57795 Fast Ethernet" },
145
146         { 0, 0, NULL }
147 };
148
149 static const int bnx_tx_mailbox[BNX_TX_RING_MAX] = {
150         BGE_MBX_TX_HOST_PROD0_LO,
151         BGE_MBX_TX_HOST_PROD0_HI,
152         BGE_MBX_TX_HOST_PROD1_LO,
153         BGE_MBX_TX_HOST_PROD1_HI
154 };
155
156 #define BNX_IS_JUMBO_CAPABLE(sc)        ((sc)->bnx_flags & BNX_FLAG_JUMBO)
157 #define BNX_IS_5717_PLUS(sc)            ((sc)->bnx_flags & BNX_FLAG_5717_PLUS)
158 #define BNX_IS_57765_PLUS(sc)           ((sc)->bnx_flags & BNX_FLAG_57765_PLUS)
159 #define BNX_IS_57765_FAMILY(sc)  \
160         ((sc)->bnx_flags & BNX_FLAG_57765_FAMILY)
161
162 typedef int     (*bnx_eaddr_fcn_t)(struct bnx_softc *, uint8_t[]);
163
164 static int      bnx_probe(device_t);
165 static int      bnx_attach(device_t);
166 static int      bnx_detach(device_t);
167 static void     bnx_shutdown(device_t);
168 static int      bnx_suspend(device_t);
169 static int      bnx_resume(device_t);
170 static int      bnx_miibus_readreg(device_t, int, int);
171 static int      bnx_miibus_writereg(device_t, int, int, int);
172 static void     bnx_miibus_statchg(device_t);
173
174 static int      bnx_handle_status(struct bnx_softc *);
175 #ifdef IFPOLL_ENABLE
176 static void     bnx_npoll(struct ifnet *, struct ifpoll_info *);
177 static void     bnx_npoll_rx(struct ifnet *, void *, int);
178 static void     bnx_npoll_tx(struct ifnet *, void *, int);
179 static void     bnx_npoll_tx_notag(struct ifnet *, void *, int);
180 static void     bnx_npoll_status(struct ifnet *);
181 static void     bnx_npoll_status_notag(struct ifnet *);
182 #endif
183 static void     bnx_intr_legacy(void *);
184 static void     bnx_msi(void *);
185 static void     bnx_intr(struct bnx_softc *);
186 static void     bnx_msix_status(void *);
187 static void     bnx_msix_tx_status(void *);
188 static void     bnx_msix_rx(void *);
189 static void     bnx_msix_rxtx(void *);
190 static void     bnx_enable_intr(struct bnx_softc *);
191 static void     bnx_disable_intr(struct bnx_softc *);
192 static void     bnx_txeof(struct bnx_tx_ring *, uint16_t);
193 static void     bnx_rxeof(struct bnx_rx_ret_ring *, uint16_t, int);
194 static int      bnx_alloc_intr(struct bnx_softc *);
195 static int      bnx_setup_intr(struct bnx_softc *);
196 static void     bnx_free_intr(struct bnx_softc *);
197 static void     bnx_teardown_intr(struct bnx_softc *, int);
198 static int      bnx_alloc_msix(struct bnx_softc *);
199 static void     bnx_free_msix(struct bnx_softc *, boolean_t);
200 static void     bnx_check_intr_rxtx(void *);
201 static void     bnx_check_intr_rx(void *);
202 static void     bnx_check_intr_tx(void *);
203 static void     bnx_rx_std_refill_ithread(void *);
204 static void     bnx_rx_std_refill(void *, void *);
205 static void     bnx_rx_std_refill_sched_ipi(void *);
206 static void     bnx_rx_std_refill_stop(void *);
207 static void     bnx_rx_std_refill_sched(struct bnx_rx_ret_ring *,
208                     struct bnx_rx_std_ring *);
209
210 static void     bnx_start(struct ifnet *, struct ifaltq_subque *);
211 static int      bnx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
212 static void     bnx_init(void *);
213 static void     bnx_stop(struct bnx_softc *);
214 static void     bnx_watchdog(struct ifaltq_subque *);
215 static int      bnx_ifmedia_upd(struct ifnet *);
216 static void     bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
217 static void     bnx_tick(void *);
218 static void     bnx_serialize(struct ifnet *, enum ifnet_serialize);
219 static void     bnx_deserialize(struct ifnet *, enum ifnet_serialize);
220 static int      bnx_tryserialize(struct ifnet *, enum ifnet_serialize);
221 #ifdef INVARIANTS
222 static void     bnx_serialize_assert(struct ifnet *, enum ifnet_serialize,
223                     boolean_t);
224 #endif
225 static void     bnx_serialize_skipmain(struct bnx_softc *);
226 static void     bnx_deserialize_skipmain(struct bnx_softc *sc);
227
228 static int      bnx_alloc_jumbo_mem(struct bnx_softc *);
229 static void     bnx_free_jumbo_mem(struct bnx_softc *);
230 static struct bnx_jslot
231                 *bnx_jalloc(struct bnx_softc *);
232 static void     bnx_jfree(void *);
233 static void     bnx_jref(void *);
234 static int      bnx_newbuf_std(struct bnx_rx_ret_ring *, int, int);
235 static int      bnx_newbuf_jumbo(struct bnx_softc *, int, int);
236 static void     bnx_setup_rxdesc_std(struct bnx_rx_std_ring *, int);
237 static void     bnx_setup_rxdesc_jumbo(struct bnx_softc *, int);
238 static int      bnx_init_rx_ring_std(struct bnx_rx_std_ring *);
239 static void     bnx_free_rx_ring_std(struct bnx_rx_std_ring *);
240 static int      bnx_init_rx_ring_jumbo(struct bnx_softc *);
241 static void     bnx_free_rx_ring_jumbo(struct bnx_softc *);
242 static void     bnx_free_tx_ring(struct bnx_tx_ring *);
243 static int      bnx_init_tx_ring(struct bnx_tx_ring *);
244 static int      bnx_create_tx_ring(struct bnx_tx_ring *);
245 static void     bnx_destroy_tx_ring(struct bnx_tx_ring *);
246 static int      bnx_create_rx_ret_ring(struct bnx_rx_ret_ring *);
247 static void     bnx_destroy_rx_ret_ring(struct bnx_rx_ret_ring *);
248 static int      bnx_dma_alloc(device_t);
249 static void     bnx_dma_free(struct bnx_softc *);
250 static int      bnx_dma_block_alloc(struct bnx_softc *, bus_size_t,
251                     bus_dma_tag_t *, bus_dmamap_t *, void **, bus_addr_t *);
252 static void     bnx_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
253 static struct mbuf *
254                 bnx_defrag_shortdma(struct mbuf *);
255 static int      bnx_encap(struct bnx_tx_ring *, struct mbuf **,
256                     uint32_t *, int *);
257 static int      bnx_setup_tso(struct bnx_tx_ring *, struct mbuf **,
258                     uint16_t *, uint16_t *);
259 static void     bnx_setup_serialize(struct bnx_softc *);
260 static void     bnx_set_tick_cpuid(struct bnx_softc *, boolean_t);
261 static void     bnx_setup_ring_cnt(struct bnx_softc *);
262
263 static struct pktinfo *bnx_rss_info(struct pktinfo *,
264                     const struct bge_rx_bd *);
265 static void     bnx_init_rss(struct bnx_softc *);
266 static void     bnx_reset(struct bnx_softc *);
267 static int      bnx_chipinit(struct bnx_softc *);
268 static int      bnx_blockinit(struct bnx_softc *);
269 static void     bnx_stop_block(struct bnx_softc *, bus_size_t, uint32_t);
270 static void     bnx_enable_msi(struct bnx_softc *, boolean_t);
271 static void     bnx_setmulti(struct bnx_softc *);
272 static void     bnx_setpromisc(struct bnx_softc *);
273 static void     bnx_stats_update_regs(struct bnx_softc *);
274 static uint32_t bnx_dma_swap_options(struct bnx_softc *);
275
276 static uint32_t bnx_readmem_ind(struct bnx_softc *, uint32_t);
277 static void     bnx_writemem_ind(struct bnx_softc *, uint32_t, uint32_t);
278 #ifdef notdef
279 static uint32_t bnx_readreg_ind(struct bnx_softc *, uint32_t);
280 #endif
281 static void     bnx_writemem_direct(struct bnx_softc *, uint32_t, uint32_t);
282 static void     bnx_writembx(struct bnx_softc *, int, int);
283 static int      bnx_read_nvram(struct bnx_softc *, caddr_t, int, int);
284 static uint8_t  bnx_eeprom_getbyte(struct bnx_softc *, uint32_t, uint8_t *);
285 static int      bnx_read_eeprom(struct bnx_softc *, caddr_t, uint32_t, size_t);
286
287 static void     bnx_tbi_link_upd(struct bnx_softc *, uint32_t);
288 static void     bnx_copper_link_upd(struct bnx_softc *, uint32_t);
289 static void     bnx_autopoll_link_upd(struct bnx_softc *, uint32_t);
290 static void     bnx_link_poll(struct bnx_softc *);
291
292 static int      bnx_get_eaddr_mem(struct bnx_softc *, uint8_t[]);
293 static int      bnx_get_eaddr_nvram(struct bnx_softc *, uint8_t[]);
294 static int      bnx_get_eaddr_eeprom(struct bnx_softc *, uint8_t[]);
295 static int      bnx_get_eaddr(struct bnx_softc *, uint8_t[]);
296
297 static void     bnx_coal_change(struct bnx_softc *);
298 static int      bnx_sysctl_force_defrag(SYSCTL_HANDLER_ARGS);
299 static int      bnx_sysctl_tx_wreg(SYSCTL_HANDLER_ARGS);
300 static int      bnx_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
301 static int      bnx_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
302 static int      bnx_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS);
303 static int      bnx_sysctl_rx_coal_bds_poll(SYSCTL_HANDLER_ARGS);
304 static int      bnx_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS);
305 static int      bnx_sysctl_tx_coal_bds_poll(SYSCTL_HANDLER_ARGS);
306 static int      bnx_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS);
307 static int      bnx_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS);
308 static int      bnx_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *,
309                     int, int, uint32_t);
310 #ifdef IFPOLL_ENABLE
311 static int      bnx_sysctl_npoll_offset(SYSCTL_HANDLER_ARGS);
312 static int      bnx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
313 static int      bnx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
314 #endif
315 static int      bnx_sysctl_std_refill(SYSCTL_HANDLER_ARGS);
316
317 static void     bnx_sig_post_reset(struct bnx_softc *, int);
318 static void     bnx_sig_pre_reset(struct bnx_softc *, int);
319 static void     bnx_ape_lock_init(struct bnx_softc *);
320 static void     bnx_ape_read_fw_ver(struct bnx_softc *);
321 static int      bnx_ape_lock(struct bnx_softc *, int);
322 static void     bnx_ape_unlock(struct bnx_softc *, int);
323 static void     bnx_ape_send_event(struct bnx_softc *, uint32_t);
324 static void     bnx_ape_driver_state_change(struct bnx_softc *, int);
325
326 static int      bnx_msi_enable = 1;
327 static int      bnx_msix_enable = 1;
328
329 static int      bnx_rx_rings = 0; /* auto */
330 static int      bnx_tx_rings = 0; /* auto */
331
332 TUNABLE_INT("hw.bnx.msi.enable", &bnx_msi_enable);
333 TUNABLE_INT("hw.bnx.msix.enable", &bnx_msix_enable);
334 TUNABLE_INT("hw.bnx.rx_rings", &bnx_rx_rings);
335 TUNABLE_INT("hw.bnx.tx_rings", &bnx_tx_rings);
336
337 static device_method_t bnx_methods[] = {
338         /* Device interface */
339         DEVMETHOD(device_probe,         bnx_probe),
340         DEVMETHOD(device_attach,        bnx_attach),
341         DEVMETHOD(device_detach,        bnx_detach),
342         DEVMETHOD(device_shutdown,      bnx_shutdown),
343         DEVMETHOD(device_suspend,       bnx_suspend),
344         DEVMETHOD(device_resume,        bnx_resume),
345
346         /* bus interface */
347         DEVMETHOD(bus_print_child,      bus_generic_print_child),
348         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
349
350         /* MII interface */
351         DEVMETHOD(miibus_readreg,       bnx_miibus_readreg),
352         DEVMETHOD(miibus_writereg,      bnx_miibus_writereg),
353         DEVMETHOD(miibus_statchg,       bnx_miibus_statchg),
354
355         DEVMETHOD_END
356 };
357
358 static DEFINE_CLASS_0(bnx, bnx_driver, bnx_methods, sizeof(struct bnx_softc));
359 static devclass_t bnx_devclass;
360
361 DECLARE_DUMMY_MODULE(if_bnx);
362 DRIVER_MODULE(if_bnx, pci, bnx_driver, bnx_devclass, NULL, NULL);
363 DRIVER_MODULE(miibus, bnx, miibus_driver, miibus_devclass, NULL, NULL);
364
365 static uint32_t
366 bnx_readmem_ind(struct bnx_softc *sc, uint32_t off)
367 {
368         device_t dev = sc->bnx_dev;
369         uint32_t val;
370
371         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
372         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
373         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
374         return (val);
375 }
376
377 static void
378 bnx_writemem_ind(struct bnx_softc *sc, uint32_t off, uint32_t val)
379 {
380         device_t dev = sc->bnx_dev;
381
382         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
383         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
384         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
385 }
386
387 static void
388 bnx_writemem_direct(struct bnx_softc *sc, uint32_t off, uint32_t val)
389 {
390         CSR_WRITE_4(sc, off, val);
391 }
392
393 static void
394 bnx_writembx(struct bnx_softc *sc, int off, int val)
395 {
396         CSR_WRITE_4(sc, off, val);
397 }
398
399 /*
400  * Read a sequence of bytes from NVRAM.
401  */
402 static int
403 bnx_read_nvram(struct bnx_softc *sc, caddr_t dest, int off, int cnt)
404 {
405         return (1);
406 }
407
408 /*
409  * Read a byte of data stored in the EEPROM at address 'addr.' The
410  * BCM570x supports both the traditional bitbang interface and an
411  * auto access interface for reading the EEPROM. We use the auto
412  * access method.
413  */
414 static uint8_t
415 bnx_eeprom_getbyte(struct bnx_softc *sc, uint32_t addr, uint8_t *dest)
416 {
417         int i;
418         uint32_t byte = 0;
419
420         /*
421          * Enable use of auto EEPROM access so we can avoid
422          * having to use the bitbang method.
423          */
424         BNX_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
425
426         /* Reset the EEPROM, load the clock period. */
427         CSR_WRITE_4(sc, BGE_EE_ADDR,
428             BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
429         DELAY(20);
430
431         /* Issue the read EEPROM command. */
432         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
433
434         /* Wait for completion */
435         for(i = 0; i < BNX_TIMEOUT * 10; i++) {
436                 DELAY(10);
437                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
438                         break;
439         }
440
441         if (i == BNX_TIMEOUT) {
442                 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
443                 return(1);
444         }
445
446         /* Get result. */
447         byte = CSR_READ_4(sc, BGE_EE_DATA);
448
449         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
450
451         return(0);
452 }
453
454 /*
455  * Read a sequence of bytes from the EEPROM.
456  */
457 static int
458 bnx_read_eeprom(struct bnx_softc *sc, caddr_t dest, uint32_t off, size_t len)
459 {
460         size_t i;
461         int err;
462         uint8_t byte;
463
464         for (byte = 0, err = 0, i = 0; i < len; i++) {
465                 err = bnx_eeprom_getbyte(sc, off + i, &byte);
466                 if (err)
467                         break;
468                 *(dest + i) = byte;
469         }
470
471         return(err ? 1 : 0);
472 }
473
474 static int
475 bnx_miibus_readreg(device_t dev, int phy, int reg)
476 {
477         struct bnx_softc *sc = device_get_softc(dev);
478         uint32_t val;
479         int i;
480
481         KASSERT(phy == sc->bnx_phyno,
482             ("invalid phyno %d, should be %d", phy, sc->bnx_phyno));
483
484         if (bnx_ape_lock(sc, sc->bnx_phy_ape_lock) != 0)
485                 return 0;
486
487         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
488         if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
489                 CSR_WRITE_4(sc, BGE_MI_MODE,
490                     sc->bnx_mi_mode & ~BGE_MIMODE_AUTOPOLL);
491                 DELAY(80);
492         }
493
494         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
495             BGE_MIPHY(phy) | BGE_MIREG(reg));
496
497         /* Poll for the PHY register access to complete. */
498         for (i = 0; i < BNX_TIMEOUT; i++) {
499                 DELAY(10);
500                 val = CSR_READ_4(sc, BGE_MI_COMM);
501                 if ((val & BGE_MICOMM_BUSY) == 0) {
502                         DELAY(5);
503                         val = CSR_READ_4(sc, BGE_MI_COMM);
504                         break;
505                 }
506         }
507         if (i == BNX_TIMEOUT) {
508                 if_printf(&sc->arpcom.ac_if, "PHY read timed out "
509                     "(phy %d, reg %d, val 0x%08x)\n", phy, reg, val);
510                 val = 0;
511         }
512
513         /* Restore the autopoll bit if necessary. */
514         if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
515                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bnx_mi_mode);
516                 DELAY(80);
517         }
518
519         bnx_ape_unlock(sc, sc->bnx_phy_ape_lock);
520
521         if (val & BGE_MICOMM_READFAIL)
522                 return 0;
523
524         return (val & 0xFFFF);
525 }
526
527 static int
528 bnx_miibus_writereg(device_t dev, int phy, int reg, int val)
529 {
530         struct bnx_softc *sc = device_get_softc(dev);
531         int i;
532
533         KASSERT(phy == sc->bnx_phyno,
534             ("invalid phyno %d, should be %d", phy, sc->bnx_phyno));
535
536         if (bnx_ape_lock(sc, sc->bnx_phy_ape_lock) != 0)
537                 return 0;
538
539         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
540         if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
541                 CSR_WRITE_4(sc, BGE_MI_MODE,
542                     sc->bnx_mi_mode & ~BGE_MIMODE_AUTOPOLL);
543                 DELAY(80);
544         }
545
546         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
547             BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
548
549         for (i = 0; i < BNX_TIMEOUT; i++) {
550                 DELAY(10);
551                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
552                         DELAY(5);
553                         CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
554                         break;
555                 }
556         }
557         if (i == BNX_TIMEOUT) {
558                 if_printf(&sc->arpcom.ac_if, "PHY write timed out "
559                     "(phy %d, reg %d, val %d)\n", phy, reg, val);
560         }
561
562         /* Restore the autopoll bit if necessary. */
563         if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
564                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bnx_mi_mode);
565                 DELAY(80);
566         }
567
568         bnx_ape_unlock(sc, sc->bnx_phy_ape_lock);
569
570         return 0;
571 }
572
573 static void
574 bnx_miibus_statchg(device_t dev)
575 {
576         struct bnx_softc *sc;
577         struct mii_data *mii;
578         uint32_t mac_mode;
579
580         sc = device_get_softc(dev);
581         if ((sc->arpcom.ac_if.if_flags & IFF_RUNNING) == 0)
582                 return;
583
584         mii = device_get_softc(sc->bnx_miibus);
585
586         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
587             (IFM_ACTIVE | IFM_AVALID)) {
588                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
589                 case IFM_10_T:
590                 case IFM_100_TX:
591                         sc->bnx_link = 1;
592                         break;
593                 case IFM_1000_T:
594                 case IFM_1000_SX:
595                 case IFM_2500_SX:
596                         sc->bnx_link = 1;
597                         break;
598                 default:
599                         sc->bnx_link = 0;
600                         break;
601                 }
602         } else {
603                 sc->bnx_link = 0;
604         }
605         if (sc->bnx_link == 0)
606                 return;
607
608         /*
609          * APE firmware touches these registers to keep the MAC
610          * connected to the outside world.  Try to keep the
611          * accesses atomic.
612          */
613
614         mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
615             ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
616
617         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
618             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
619                 mac_mode |= BGE_PORTMODE_GMII;
620         else
621                 mac_mode |= BGE_PORTMODE_MII;
622
623         if ((mii->mii_media_active & IFM_GMASK) != IFM_FDX)
624                 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
625
626         CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
627         DELAY(40);
628 }
629
630 /*
631  * Memory management for jumbo frames.
632  */
633 static int
634 bnx_alloc_jumbo_mem(struct bnx_softc *sc)
635 {
636         struct ifnet *ifp = &sc->arpcom.ac_if;
637         struct bnx_jslot *entry;
638         uint8_t *ptr;
639         bus_addr_t paddr;
640         int i, error;
641
642         /*
643          * Create tag for jumbo mbufs.
644          * This is really a bit of a kludge. We allocate a special
645          * jumbo buffer pool which (thanks to the way our DMA
646          * memory allocation works) will consist of contiguous
647          * pages. This means that even though a jumbo buffer might
648          * be larger than a page size, we don't really need to
649          * map it into more than one DMA segment. However, the
650          * default mbuf tag will result in multi-segment mappings,
651          * so we have to create a special jumbo mbuf tag that
652          * lets us get away with mapping the jumbo buffers as
653          * a single segment. I think eventually the driver should
654          * be changed so that it uses ordinary mbufs and cluster
655          * buffers, i.e. jumbo frames can span multiple DMA
656          * descriptors. But that's a project for another day.
657          */
658
659         /*
660          * Create DMA stuffs for jumbo RX ring.
661          */
662         error = bnx_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
663                                     &sc->bnx_cdata.bnx_rx_jumbo_ring_tag,
664                                     &sc->bnx_cdata.bnx_rx_jumbo_ring_map,
665                                     (void *)&sc->bnx_ldata.bnx_rx_jumbo_ring,
666                                     &sc->bnx_ldata.bnx_rx_jumbo_ring_paddr);
667         if (error) {
668                 if_printf(ifp, "could not create jumbo RX ring\n");
669                 return error;
670         }
671
672         /*
673          * Create DMA stuffs for jumbo buffer block.
674          */
675         error = bnx_dma_block_alloc(sc, BNX_JMEM,
676                                     &sc->bnx_cdata.bnx_jumbo_tag,
677                                     &sc->bnx_cdata.bnx_jumbo_map,
678                                     (void **)&sc->bnx_ldata.bnx_jumbo_buf,
679                                     &paddr);
680         if (error) {
681                 if_printf(ifp, "could not create jumbo buffer\n");
682                 return error;
683         }
684
685         SLIST_INIT(&sc->bnx_jfree_listhead);
686
687         /*
688          * Now divide it up into 9K pieces and save the addresses
689          * in an array. Note that we play an evil trick here by using
690          * the first few bytes in the buffer to hold the the address
691          * of the softc structure for this interface. This is because
692          * bnx_jfree() needs it, but it is called by the mbuf management
693          * code which will not pass it to us explicitly.
694          */
695         for (i = 0, ptr = sc->bnx_ldata.bnx_jumbo_buf; i < BNX_JSLOTS; i++) {
696                 entry = &sc->bnx_cdata.bnx_jslots[i];
697                 entry->bnx_sc = sc;
698                 entry->bnx_buf = ptr;
699                 entry->bnx_paddr = paddr;
700                 entry->bnx_inuse = 0;
701                 entry->bnx_slot = i;
702                 SLIST_INSERT_HEAD(&sc->bnx_jfree_listhead, entry, jslot_link);
703
704                 ptr += BNX_JLEN;
705                 paddr += BNX_JLEN;
706         }
707         return 0;
708 }
709
710 static void
711 bnx_free_jumbo_mem(struct bnx_softc *sc)
712 {
713         /* Destroy jumbo RX ring. */
714         bnx_dma_block_free(sc->bnx_cdata.bnx_rx_jumbo_ring_tag,
715                            sc->bnx_cdata.bnx_rx_jumbo_ring_map,
716                            sc->bnx_ldata.bnx_rx_jumbo_ring);
717
718         /* Destroy jumbo buffer block. */
719         bnx_dma_block_free(sc->bnx_cdata.bnx_jumbo_tag,
720                            sc->bnx_cdata.bnx_jumbo_map,
721                            sc->bnx_ldata.bnx_jumbo_buf);
722 }
723
724 /*
725  * Allocate a jumbo buffer.
726  */
727 static struct bnx_jslot *
728 bnx_jalloc(struct bnx_softc *sc)
729 {
730         struct bnx_jslot *entry;
731
732         lwkt_serialize_enter(&sc->bnx_jslot_serializer);
733         entry = SLIST_FIRST(&sc->bnx_jfree_listhead);
734         if (entry) {
735                 SLIST_REMOVE_HEAD(&sc->bnx_jfree_listhead, jslot_link);
736                 entry->bnx_inuse = 1;
737         } else {
738                 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
739         }
740         lwkt_serialize_exit(&sc->bnx_jslot_serializer);
741         return(entry);
742 }
743
744 /*
745  * Adjust usage count on a jumbo buffer.
746  */
747 static void
748 bnx_jref(void *arg)
749 {
750         struct bnx_jslot *entry = (struct bnx_jslot *)arg;
751         struct bnx_softc *sc = entry->bnx_sc;
752
753         if (sc == NULL)
754                 panic("bnx_jref: can't find softc pointer!");
755
756         if (&sc->bnx_cdata.bnx_jslots[entry->bnx_slot] != entry) {
757                 panic("bnx_jref: asked to reference buffer "
758                     "that we don't manage!");
759         } else if (entry->bnx_inuse == 0) {
760                 panic("bnx_jref: buffer already free!");
761         } else {
762                 atomic_add_int(&entry->bnx_inuse, 1);
763         }
764 }
765
766 /*
767  * Release a jumbo buffer.
768  */
769 static void
770 bnx_jfree(void *arg)
771 {
772         struct bnx_jslot *entry = (struct bnx_jslot *)arg;
773         struct bnx_softc *sc = entry->bnx_sc;
774
775         if (sc == NULL)
776                 panic("bnx_jfree: can't find softc pointer!");
777
778         if (&sc->bnx_cdata.bnx_jslots[entry->bnx_slot] != entry) {
779                 panic("bnx_jfree: asked to free buffer that we don't manage!");
780         } else if (entry->bnx_inuse == 0) {
781                 panic("bnx_jfree: buffer already free!");
782         } else {
783                 /*
784                  * Possible MP race to 0, use the serializer.  The atomic insn
785                  * is still needed for races against bnx_jref().
786                  */
787                 lwkt_serialize_enter(&sc->bnx_jslot_serializer);
788                 atomic_subtract_int(&entry->bnx_inuse, 1);
789                 if (entry->bnx_inuse == 0) {
790                         SLIST_INSERT_HEAD(&sc->bnx_jfree_listhead, 
791                                           entry, jslot_link);
792                 }
793                 lwkt_serialize_exit(&sc->bnx_jslot_serializer);
794         }
795 }
796
797
798 /*
799  * Intialize a standard receive ring descriptor.
800  */
801 static int
802 bnx_newbuf_std(struct bnx_rx_ret_ring *ret, int i, int init)
803 {
804         struct mbuf *m_new = NULL;
805         bus_dma_segment_t seg;
806         bus_dmamap_t map;
807         int error, nsegs;
808         struct bnx_rx_buf *rb;
809
810         rb = &ret->bnx_std->bnx_rx_std_buf[i];
811         KASSERT(!rb->bnx_rx_refilled, ("RX buf %dth has been refilled", i));
812
813         m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
814         if (m_new == NULL) {
815                 error = ENOBUFS;
816                 goto back;
817         }
818         m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
819         m_adj(m_new, ETHER_ALIGN);
820
821         error = bus_dmamap_load_mbuf_segment(ret->bnx_rx_mtag,
822             ret->bnx_rx_tmpmap, m_new, &seg, 1, &nsegs, BUS_DMA_NOWAIT);
823         if (error) {
824                 m_freem(m_new);
825                 goto back;
826         }
827
828         if (!init) {
829                 bus_dmamap_sync(ret->bnx_rx_mtag, rb->bnx_rx_dmamap,
830                     BUS_DMASYNC_POSTREAD);
831                 bus_dmamap_unload(ret->bnx_rx_mtag, rb->bnx_rx_dmamap);
832         }
833
834         map = ret->bnx_rx_tmpmap;
835         ret->bnx_rx_tmpmap = rb->bnx_rx_dmamap;
836
837         rb->bnx_rx_dmamap = map;
838         rb->bnx_rx_mbuf = m_new;
839         rb->bnx_rx_paddr = seg.ds_addr;
840         rb->bnx_rx_len = m_new->m_len;
841 back:
842         cpu_sfence();
843         rb->bnx_rx_refilled = 1;
844         return error;
845 }
846
847 static void
848 bnx_setup_rxdesc_std(struct bnx_rx_std_ring *std, int i)
849 {
850         struct bnx_rx_buf *rb;
851         struct bge_rx_bd *r;
852         bus_addr_t paddr;
853         int len;
854
855         rb = &std->bnx_rx_std_buf[i];
856         KASSERT(rb->bnx_rx_refilled, ("RX buf %dth is not refilled", i));
857
858         paddr = rb->bnx_rx_paddr;
859         len = rb->bnx_rx_len;
860
861         cpu_mfence();
862
863         rb->bnx_rx_refilled = 0;
864
865         r = &std->bnx_rx_std_ring[i];
866         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(paddr);
867         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(paddr);
868         r->bge_len = len;
869         r->bge_idx = i;
870         r->bge_flags = BGE_RXBDFLAG_END;
871 }
872
873 /*
874  * Initialize a jumbo receive ring descriptor. This allocates
875  * a jumbo buffer from the pool managed internally by the driver.
876  */
877 static int
878 bnx_newbuf_jumbo(struct bnx_softc *sc, int i, int init)
879 {
880         struct mbuf *m_new = NULL;
881         struct bnx_jslot *buf;
882         bus_addr_t paddr;
883
884         /* Allocate the mbuf. */
885         MGETHDR(m_new, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
886         if (m_new == NULL)
887                 return ENOBUFS;
888
889         /* Allocate the jumbo buffer */
890         buf = bnx_jalloc(sc);
891         if (buf == NULL) {
892                 m_freem(m_new);
893                 return ENOBUFS;
894         }
895
896         /* Attach the buffer to the mbuf. */
897         m_new->m_ext.ext_arg = buf;
898         m_new->m_ext.ext_buf = buf->bnx_buf;
899         m_new->m_ext.ext_free = bnx_jfree;
900         m_new->m_ext.ext_ref = bnx_jref;
901         m_new->m_ext.ext_size = BNX_JUMBO_FRAMELEN;
902
903         m_new->m_flags |= M_EXT;
904
905         m_new->m_data = m_new->m_ext.ext_buf;
906         m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
907
908         paddr = buf->bnx_paddr;
909         m_adj(m_new, ETHER_ALIGN);
910         paddr += ETHER_ALIGN;
911
912         /* Save necessary information */
913         sc->bnx_cdata.bnx_rx_jumbo_chain[i].bnx_rx_mbuf = m_new;
914         sc->bnx_cdata.bnx_rx_jumbo_chain[i].bnx_rx_paddr = paddr;
915
916         /* Set up the descriptor. */
917         bnx_setup_rxdesc_jumbo(sc, i);
918         return 0;
919 }
920
921 static void
922 bnx_setup_rxdesc_jumbo(struct bnx_softc *sc, int i)
923 {
924         struct bge_rx_bd *r;
925         struct bnx_rx_buf *rc;
926
927         r = &sc->bnx_ldata.bnx_rx_jumbo_ring[i];
928         rc = &sc->bnx_cdata.bnx_rx_jumbo_chain[i];
929
930         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bnx_rx_paddr);
931         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bnx_rx_paddr);
932         r->bge_len = rc->bnx_rx_mbuf->m_len;
933         r->bge_idx = i;
934         r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
935 }
936
937 static int
938 bnx_init_rx_ring_std(struct bnx_rx_std_ring *std)
939 {
940         int i, error;
941
942         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
943                 /* Use the first RX return ring's tmp RX mbuf DMA map */
944                 error = bnx_newbuf_std(&std->bnx_sc->bnx_rx_ret_ring[0], i, 1);
945                 if (error)
946                         return error;
947                 bnx_setup_rxdesc_std(std, i);
948         }
949
950         std->bnx_rx_std_used = 0;
951         std->bnx_rx_std_refill = 0;
952         std->bnx_rx_std_running = 0;
953         cpu_sfence();
954         lwkt_serialize_handler_enable(&std->bnx_rx_std_serialize);
955
956         std->bnx_rx_std = BGE_STD_RX_RING_CNT - 1;
957         bnx_writembx(std->bnx_sc, BGE_MBX_RX_STD_PROD_LO, std->bnx_rx_std);
958
959         return(0);
960 }
961
962 static void
963 bnx_free_rx_ring_std(struct bnx_rx_std_ring *std)
964 {
965         int i;
966
967         lwkt_serialize_handler_disable(&std->bnx_rx_std_serialize);
968
969         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
970                 struct bnx_rx_buf *rb = &std->bnx_rx_std_buf[i];
971
972                 rb->bnx_rx_refilled = 0;
973                 if (rb->bnx_rx_mbuf != NULL) {
974                         bus_dmamap_unload(std->bnx_rx_mtag, rb->bnx_rx_dmamap);
975                         m_freem(rb->bnx_rx_mbuf);
976                         rb->bnx_rx_mbuf = NULL;
977                 }
978                 bzero(&std->bnx_rx_std_ring[i], sizeof(struct bge_rx_bd));
979         }
980 }
981
982 static int
983 bnx_init_rx_ring_jumbo(struct bnx_softc *sc)
984 {
985         struct bge_rcb *rcb;
986         int i, error;
987
988         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
989                 error = bnx_newbuf_jumbo(sc, i, 1);
990                 if (error)
991                         return error;
992         }
993
994         sc->bnx_jumbo = BGE_JUMBO_RX_RING_CNT - 1;
995
996         rcb = &sc->bnx_ldata.bnx_info.bnx_jumbo_rx_rcb;
997         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
998         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
999
1000         bnx_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bnx_jumbo);
1001
1002         return(0);
1003 }
1004
1005 static void
1006 bnx_free_rx_ring_jumbo(struct bnx_softc *sc)
1007 {
1008         int i;
1009
1010         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1011                 struct bnx_rx_buf *rc = &sc->bnx_cdata.bnx_rx_jumbo_chain[i];
1012
1013                 if (rc->bnx_rx_mbuf != NULL) {
1014                         m_freem(rc->bnx_rx_mbuf);
1015                         rc->bnx_rx_mbuf = NULL;
1016                 }
1017                 bzero(&sc->bnx_ldata.bnx_rx_jumbo_ring[i],
1018                     sizeof(struct bge_rx_bd));
1019         }
1020 }
1021
1022 static void
1023 bnx_free_tx_ring(struct bnx_tx_ring *txr)
1024 {
1025         int i;
1026
1027         for (i = 0; i < BGE_TX_RING_CNT; i++) {
1028                 struct bnx_tx_buf *buf = &txr->bnx_tx_buf[i];
1029
1030                 if (buf->bnx_tx_mbuf != NULL) {
1031                         bus_dmamap_unload(txr->bnx_tx_mtag,
1032                             buf->bnx_tx_dmamap);
1033                         m_freem(buf->bnx_tx_mbuf);
1034                         buf->bnx_tx_mbuf = NULL;
1035                 }
1036                 bzero(&txr->bnx_tx_ring[i], sizeof(struct bge_tx_bd));
1037         }
1038         txr->bnx_tx_saved_considx = BNX_TXCONS_UNSET;
1039 }
1040
1041 static int
1042 bnx_init_tx_ring(struct bnx_tx_ring *txr)
1043 {
1044         txr->bnx_tx_cnt = 0;
1045         txr->bnx_tx_saved_considx = 0;
1046         txr->bnx_tx_prodidx = 0;
1047
1048         /* Initialize transmit producer index for host-memory send ring. */
1049         bnx_writembx(txr->bnx_sc, txr->bnx_tx_mbx, txr->bnx_tx_prodidx);
1050
1051         return(0);
1052 }
1053
1054 static void
1055 bnx_setmulti(struct bnx_softc *sc)
1056 {
1057         struct ifnet *ifp;
1058         struct ifmultiaddr *ifma;
1059         uint32_t hashes[4] = { 0, 0, 0, 0 };
1060         int h, i;
1061
1062         ifp = &sc->arpcom.ac_if;
1063
1064         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1065                 for (i = 0; i < 4; i++)
1066                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1067                 return;
1068         }
1069
1070         /* First, zot all the existing filters. */
1071         for (i = 0; i < 4; i++)
1072                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1073
1074         /* Now program new ones. */
1075         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1076                 if (ifma->ifma_addr->sa_family != AF_LINK)
1077                         continue;
1078                 h = ether_crc32_le(
1079                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1080                     ETHER_ADDR_LEN) & 0x7f;
1081                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1082         }
1083
1084         for (i = 0; i < 4; i++)
1085                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1086 }
1087
1088 /*
1089  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1090  * self-test results.
1091  */
1092 static int
1093 bnx_chipinit(struct bnx_softc *sc)
1094 {
1095         uint32_t dma_rw_ctl, mode_ctl;
1096         int i;
1097
1098         /* Set endian type before we access any non-PCI registers. */
1099         pci_write_config(sc->bnx_dev, BGE_PCI_MISC_CTL,
1100             BGE_INIT | BGE_PCIMISCCTL_TAGGED_STATUS, 4);
1101
1102         /*
1103          * Clear the MAC statistics block in the NIC's
1104          * internal memory.
1105          */
1106         for (i = BGE_STATS_BLOCK;
1107             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1108                 BNX_MEMWIN_WRITE(sc, i, 0);
1109
1110         for (i = BGE_STATUS_BLOCK;
1111             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1112                 BNX_MEMWIN_WRITE(sc, i, 0);
1113
1114         if (BNX_IS_57765_FAMILY(sc)) {
1115                 uint32_t val;
1116
1117                 if (sc->bnx_chipid == BGE_CHIPID_BCM57765_A0) {
1118                         mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
1119                         val = mode_ctl & ~BGE_MODECTL_PCIE_PORTS;
1120
1121                         /* Access the lower 1K of PL PCI-E block registers. */
1122                         CSR_WRITE_4(sc, BGE_MODE_CTL,
1123                             val | BGE_MODECTL_PCIE_PL_SEL);
1124
1125                         val = CSR_READ_4(sc, BGE_PCIE_PL_LO_PHYCTL5);
1126                         val |= BGE_PCIE_PL_LO_PHYCTL5_DIS_L2CLKREQ;
1127                         CSR_WRITE_4(sc, BGE_PCIE_PL_LO_PHYCTL5, val);
1128
1129                         CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1130                 }
1131                 if (sc->bnx_chiprev != BGE_CHIPREV_57765_AX) {
1132                         /* Fix transmit hangs */
1133                         val = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
1134                         val |= BGE_CPMU_PADRNG_CTL_RDIV2;
1135                         CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL, val);
1136
1137                         mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
1138                         val = mode_ctl & ~BGE_MODECTL_PCIE_PORTS;
1139
1140                         /* Access the lower 1K of DL PCI-E block registers. */
1141                         CSR_WRITE_4(sc, BGE_MODE_CTL,
1142                             val | BGE_MODECTL_PCIE_DL_SEL);
1143
1144                         val = CSR_READ_4(sc, BGE_PCIE_DL_LO_FTSMAX);
1145                         val &= ~BGE_PCIE_DL_LO_FTSMAX_MASK;
1146                         val |= BGE_PCIE_DL_LO_FTSMAX_VAL;
1147                         CSR_WRITE_4(sc, BGE_PCIE_DL_LO_FTSMAX, val);
1148
1149                         CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1150                 }
1151
1152                 val = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
1153                 val &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
1154                 val |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
1155                 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, val);
1156         }
1157
1158         /*
1159          * Set up the PCI DMA control register.
1160          */
1161         dma_rw_ctl = pci_read_config(sc->bnx_dev, BGE_PCI_DMA_RW_CTL, 4);
1162         /*
1163          * Disable 32bytes cache alignment for DMA write to host memory
1164          *
1165          * NOTE:
1166          * 64bytes cache alignment for DMA write to host memory is still
1167          * enabled.
1168          */
1169         dma_rw_ctl |= BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1170         if (sc->bnx_chipid == BGE_CHIPID_BCM57765_A0)
1171                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1172         /*
1173          * Enable HW workaround for controllers that misinterpret
1174          * a status tag update and leave interrupts permanently
1175          * disabled.
1176          */
1177         if (sc->bnx_asicrev != BGE_ASICREV_BCM5717 &&
1178             sc->bnx_asicrev != BGE_ASICREV_BCM5762 &&
1179             !BNX_IS_57765_FAMILY(sc))
1180                 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1181         if (bootverbose) {
1182                 if_printf(&sc->arpcom.ac_if, "DMA read/write %#x\n",
1183                     dma_rw_ctl);
1184         }
1185         pci_write_config(sc->bnx_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1186
1187         /*
1188          * Set up general mode register.
1189          */
1190         mode_ctl = bnx_dma_swap_options(sc);
1191         if (sc->bnx_asicrev == BGE_ASICREV_BCM5720 ||
1192             sc->bnx_asicrev == BGE_ASICREV_BCM5762) {
1193                 /* Retain Host-2-BMC settings written by APE firmware. */
1194                 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
1195                     (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
1196                     BGE_MODECTL_WORDSWAP_B2HRX_DATA |
1197                     BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
1198         }
1199         mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR |
1200             BGE_MODECTL_HOST_SEND_BDS | BGE_MODECTL_TX_NO_PHDR_CSUM;
1201         CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1202
1203         /*
1204          * Disable memory write invalidate.  Apparently it is not supported
1205          * properly by these devices.  Also ensure that INTx isn't disabled,
1206          * as these chips need it even when using MSI.
1207          */
1208         PCI_CLRBIT(sc->bnx_dev, BGE_PCI_CMD,
1209             (PCIM_CMD_MWRICEN | PCIM_CMD_INTxDIS), 4);
1210
1211         /* Set the timer prescaler (always 66Mhz) */
1212         CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1213
1214         return(0);
1215 }
1216
1217 static int
1218 bnx_blockinit(struct bnx_softc *sc)
1219 {
1220         struct bnx_intr_data *intr;
1221         struct bge_rcb *rcb;
1222         bus_size_t vrcb;
1223         bge_hostaddr taddr;
1224         uint32_t val;
1225         int i, limit;
1226
1227         /*
1228          * Initialize the memory window pointer register so that
1229          * we can access the first 32K of internal NIC RAM. This will
1230          * allow us to set up the TX send ring RCBs and the RX return
1231          * ring RCBs, plus other things which live in NIC memory.
1232          */
1233         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1234
1235         /* Configure mbuf pool watermarks */
1236         if (BNX_IS_57765_PLUS(sc)) {
1237                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1238                 if (sc->arpcom.ac_if.if_mtu > ETHERMTU) {
1239                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
1240                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
1241                 } else {
1242                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
1243                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
1244                 }
1245         } else {
1246                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1247                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1248                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1249         }
1250
1251         /* Configure DMA resource watermarks */
1252         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1253         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1254
1255         /* Enable buffer manager */
1256         val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
1257         /*
1258          * Change the arbitration algorithm of TXMBUF read request to
1259          * round-robin instead of priority based for BCM5719.  When
1260          * TXFIFO is almost empty, RDMA will hold its request until
1261          * TXFIFO is not almost empty.
1262          */
1263         if (sc->bnx_asicrev == BGE_ASICREV_BCM5719)
1264                 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
1265         if (sc->bnx_asicrev == BGE_ASICREV_BCM5717 ||
1266             sc->bnx_chipid == BGE_CHIPID_BCM5719_A0 ||
1267             sc->bnx_chipid == BGE_CHIPID_BCM5720_A0)
1268                 val |= BGE_BMANMODE_LOMBUF_ATTN;
1269         CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
1270
1271         /* Poll for buffer manager start indication */
1272         for (i = 0; i < BNX_TIMEOUT; i++) {
1273                 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1274                         break;
1275                 DELAY(10);
1276         }
1277
1278         if (i == BNX_TIMEOUT) {
1279                 if_printf(&sc->arpcom.ac_if,
1280                           "buffer manager failed to start\n");
1281                 return(ENXIO);
1282         }
1283
1284         /* Enable flow-through queues */
1285         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1286         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1287
1288         /* Wait until queue initialization is complete */
1289         for (i = 0; i < BNX_TIMEOUT; i++) {
1290                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1291                         break;
1292                 DELAY(10);
1293         }
1294
1295         if (i == BNX_TIMEOUT) {
1296                 if_printf(&sc->arpcom.ac_if,
1297                           "flow-through queue init failed\n");
1298                 return(ENXIO);
1299         }
1300
1301         /*
1302          * Summary of rings supported by the controller:
1303          *
1304          * Standard Receive Producer Ring
1305          * - This ring is used to feed receive buffers for "standard"
1306          *   sized frames (typically 1536 bytes) to the controller.
1307          *
1308          * Jumbo Receive Producer Ring
1309          * - This ring is used to feed receive buffers for jumbo sized
1310          *   frames (i.e. anything bigger than the "standard" frames)
1311          *   to the controller.
1312          *
1313          * Mini Receive Producer Ring
1314          * - This ring is used to feed receive buffers for "mini"
1315          *   sized frames to the controller.
1316          * - This feature required external memory for the controller
1317          *   but was never used in a production system.  Should always
1318          *   be disabled.
1319          *
1320          * Receive Return Ring
1321          * - After the controller has placed an incoming frame into a
1322          *   receive buffer that buffer is moved into a receive return
1323          *   ring.  The driver is then responsible to passing the
1324          *   buffer up to the stack.  BCM5718/BCM57785 families support
1325          *   multiple receive return rings.
1326          *
1327          * Send Ring
1328          * - This ring is used for outgoing frames.  BCM5719/BCM5720
1329          *   support multiple send rings.
1330          */
1331
1332         /* Initialize the standard receive producer ring control block. */
1333         rcb = &sc->bnx_ldata.bnx_info.bnx_std_rx_rcb;
1334         rcb->bge_hostaddr.bge_addr_lo =
1335             BGE_ADDR_LO(sc->bnx_rx_std_ring.bnx_rx_std_ring_paddr);
1336         rcb->bge_hostaddr.bge_addr_hi =
1337             BGE_ADDR_HI(sc->bnx_rx_std_ring.bnx_rx_std_ring_paddr);
1338         if (BNX_IS_57765_PLUS(sc)) {
1339                 /*
1340                  * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
1341                  * Bits 15-2 : Maximum RX frame size
1342                  * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
1343                  * Bit 0     : Reserved
1344                  */
1345                 rcb->bge_maxlen_flags =
1346                     BGE_RCB_MAXLEN_FLAGS(512, BNX_MAX_FRAMELEN << 2);
1347         } else {
1348                 /*
1349                  * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1350                  * Bits 15-2 : Reserved (should be 0)
1351                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1352                  * Bit 0     : Reserved
1353                  */
1354                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1355         }
1356         if (BNX_IS_5717_PLUS(sc))
1357                 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
1358         else
1359                 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1360         /* Write the standard receive producer ring control block. */
1361         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1362         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1363         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1364         if (!BNX_IS_5717_PLUS(sc))
1365                 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1366         /* Reset the standard receive producer ring producer index. */
1367         bnx_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1368
1369         /*
1370          * Initialize the jumbo RX producer ring control
1371          * block.  We set the 'ring disabled' bit in the
1372          * flags field until we're actually ready to start
1373          * using this ring (i.e. once we set the MTU
1374          * high enough to require it).
1375          */
1376         if (BNX_IS_JUMBO_CAPABLE(sc)) {
1377                 rcb = &sc->bnx_ldata.bnx_info.bnx_jumbo_rx_rcb;
1378                 /* Get the jumbo receive producer ring RCB parameters. */
1379                 rcb->bge_hostaddr.bge_addr_lo =
1380                     BGE_ADDR_LO(sc->bnx_ldata.bnx_rx_jumbo_ring_paddr);
1381                 rcb->bge_hostaddr.bge_addr_hi =
1382                     BGE_ADDR_HI(sc->bnx_ldata.bnx_rx_jumbo_ring_paddr);
1383                 rcb->bge_maxlen_flags =
1384                     BGE_RCB_MAXLEN_FLAGS(BNX_MAX_FRAMELEN,
1385                     BGE_RCB_FLAG_RING_DISABLED);
1386                 if (BNX_IS_5717_PLUS(sc))
1387                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
1388                 else
1389                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1390                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1391                     rcb->bge_hostaddr.bge_addr_hi);
1392                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1393                     rcb->bge_hostaddr.bge_addr_lo);
1394                 /* Program the jumbo receive producer ring RCB parameters. */
1395                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1396                     rcb->bge_maxlen_flags);
1397                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1398                 /* Reset the jumbo receive producer ring producer index. */
1399                 bnx_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1400         }
1401
1402         /*
1403          * The BD ring replenish thresholds control how often the
1404          * hardware fetches new BD's from the producer rings in host
1405          * memory.  Setting the value too low on a busy system can
1406          * starve the hardware and recue the throughpout.
1407          *
1408          * Set the BD ring replentish thresholds. The recommended
1409          * values are 1/8th the number of descriptors allocated to
1410          * each ring.
1411          */
1412         val = 8;
1413         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1414         if (BNX_IS_JUMBO_CAPABLE(sc)) {
1415                 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1416                     BGE_JUMBO_RX_RING_CNT/8);
1417         }
1418         if (BNX_IS_57765_PLUS(sc)) {
1419                 CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
1420                 CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
1421         }
1422
1423         /*
1424          * Disable all send rings by setting the 'ring disabled' bit
1425          * in the flags field of all the TX send ring control blocks,
1426          * located in NIC memory.
1427          */
1428         if (BNX_IS_5717_PLUS(sc))
1429                 limit = 4;
1430         else if (BNX_IS_57765_FAMILY(sc) ||
1431             sc->bnx_asicrev == BGE_ASICREV_BCM5762)
1432                 limit = 2;
1433         else
1434                 limit = 1;
1435         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1436         for (i = 0; i < limit; i++) {
1437                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1438                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1439                 vrcb += sizeof(struct bge_rcb);
1440         }
1441
1442         /*
1443          * Configure send ring RCBs
1444          */
1445         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1446         for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
1447                 struct bnx_tx_ring *txr = &sc->bnx_tx_ring[i];
1448
1449                 BGE_HOSTADDR(taddr, txr->bnx_tx_ring_paddr);
1450                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi,
1451                     taddr.bge_addr_hi);
1452                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo,
1453                     taddr.bge_addr_lo);
1454                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1455                     BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1456                 vrcb += sizeof(struct bge_rcb);
1457         }
1458
1459         /*
1460          * Disable all receive return rings by setting the
1461          * 'ring disabled' bit in the flags field of all the receive
1462          * return ring control blocks, located in NIC memory.
1463          */
1464         if (BNX_IS_5717_PLUS(sc)) {
1465                 /* Should be 17, use 16 until we get an SRAM map. */
1466                 limit = 16;
1467         } else if (BNX_IS_57765_FAMILY(sc) ||
1468             sc->bnx_asicrev == BGE_ASICREV_BCM5762) {
1469                 limit = 4;
1470         } else {
1471                 limit = 1;
1472         }
1473         /* Disable all receive return rings. */
1474         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1475         for (i = 0; i < limit; i++) {
1476                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1477                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1478                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1479                     BGE_RCB_FLAG_RING_DISABLED);
1480                 bnx_writembx(sc, BGE_MBX_RX_CONS0_LO +
1481                     (i * (sizeof(uint64_t))), 0);
1482                 vrcb += sizeof(struct bge_rcb);
1483         }
1484
1485         /*
1486          * Set up receive return rings.
1487          */
1488         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1489         for (i = 0; i < sc->bnx_rx_retcnt; ++i) {
1490                 struct bnx_rx_ret_ring *ret = &sc->bnx_rx_ret_ring[i];
1491
1492                 BGE_HOSTADDR(taddr, ret->bnx_rx_ret_ring_paddr);
1493                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi,
1494                     taddr.bge_addr_hi);
1495                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo,
1496                     taddr.bge_addr_lo);
1497                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1498                     BGE_RCB_MAXLEN_FLAGS(BNX_RETURN_RING_CNT, 0));
1499                 vrcb += sizeof(struct bge_rcb);
1500         }
1501
1502         /* Set random backoff seed for TX */
1503         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1504             (sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1505              sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1506              sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5]) &
1507             BGE_TX_BACKOFF_SEED_MASK);
1508
1509         /* Set inter-packet gap */
1510         val = 0x2620;
1511         if (sc->bnx_asicrev == BGE_ASICREV_BCM5720 ||
1512             sc->bnx_asicrev == BGE_ASICREV_BCM5762) {
1513                 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
1514                     (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
1515         }
1516         CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
1517
1518         /*
1519          * Specify which ring to use for packets that don't match
1520          * any RX rules.
1521          */
1522         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1523
1524         /*
1525          * Configure number of RX lists. One interrupt distribution
1526          * list, sixteen active lists, one bad frames class.
1527          */
1528         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1529
1530         /* Inialize RX list placement stats mask. */
1531         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1532         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1533
1534         /* Disable host coalescing until we get it set up */
1535         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1536
1537         /* Poll to make sure it's shut down. */
1538         for (i = 0; i < BNX_TIMEOUT; i++) {
1539                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1540                         break;
1541                 DELAY(10);
1542         }
1543
1544         if (i == BNX_TIMEOUT) {
1545                 if_printf(&sc->arpcom.ac_if,
1546                           "host coalescing engine failed to idle\n");
1547                 return(ENXIO);
1548         }
1549
1550         /* Set up host coalescing defaults */
1551         sc->bnx_coal_chg = BNX_RX_COAL_TICKS_CHG |
1552             BNX_TX_COAL_TICKS_CHG |
1553             BNX_RX_COAL_BDS_CHG |
1554             BNX_TX_COAL_BDS_CHG |
1555             BNX_RX_COAL_BDS_INT_CHG |
1556             BNX_TX_COAL_BDS_INT_CHG;
1557         bnx_coal_change(sc);
1558
1559         /*
1560          * Set up addresses of status blocks
1561          */
1562         intr = &sc->bnx_intr_data[0];
1563         bzero(intr->bnx_status_block, BGE_STATUS_BLK_SZ);
1564         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1565             BGE_ADDR_HI(intr->bnx_status_block_paddr));
1566         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1567             BGE_ADDR_LO(intr->bnx_status_block_paddr));
1568         for (i = 1; i < sc->bnx_intr_cnt; ++i) {
1569                 intr = &sc->bnx_intr_data[i];
1570                 bzero(intr->bnx_status_block, BGE_STATUS_BLK_SZ);
1571                 CSR_WRITE_4(sc, BGE_VEC1_STATUSBLK_ADDR_HI + ((i - 1) * 8),
1572                     BGE_ADDR_HI(intr->bnx_status_block_paddr));
1573                 CSR_WRITE_4(sc, BGE_VEC1_STATUSBLK_ADDR_LO + ((i - 1) * 8),
1574                     BGE_ADDR_LO(intr->bnx_status_block_paddr));
1575         }
1576
1577         /* Set up status block partail update size. */
1578         val = BGE_STATBLKSZ_32BYTE;
1579 #if 0
1580         /*
1581          * Does not seem to have visible effect in both
1582          * bulk data (1472B UDP datagram) and tiny data
1583          * (18B UDP datagram) TX tests.
1584          */
1585         val |= BGE_HCCMODE_CLRTICK_TX;
1586 #endif
1587         /* Turn on host coalescing state machine */
1588         CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1589
1590         /* Turn on RX BD completion state machine and enable attentions */
1591         CSR_WRITE_4(sc, BGE_RBDC_MODE,
1592             BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1593
1594         /* Turn on RX list placement state machine */
1595         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1596
1597         val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1598             BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1599             BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1600             BGE_MACMODE_FRMHDR_DMA_ENB;
1601
1602         if (sc->bnx_flags & BNX_FLAG_TBI)
1603                 val |= BGE_PORTMODE_TBI;
1604         else if (sc->bnx_flags & BNX_FLAG_MII_SERDES)
1605                 val |= BGE_PORTMODE_GMII;
1606         else
1607                 val |= BGE_PORTMODE_MII;
1608
1609         /* Allow APE to send/receive frames. */
1610         if (sc->bnx_mfw_flags & BNX_MFW_ON_APE)
1611                 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
1612
1613         /* Turn on DMA, clear stats */
1614         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1615         DELAY(40);
1616
1617         /* Set misc. local control, enable interrupts on attentions */
1618         BNX_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1619
1620 #ifdef notdef
1621         /* Assert GPIO pins for PHY reset */
1622         BNX_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1623             BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1624         BNX_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1625             BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1626 #endif
1627
1628         if (sc->bnx_intr_type == PCI_INTR_TYPE_MSIX)
1629                 bnx_enable_msi(sc, TRUE);
1630
1631         /* Turn on write DMA state machine */
1632         val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1633         /* Enable host coalescing bug fix. */
1634         val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1635         if (sc->bnx_asicrev == BGE_ASICREV_BCM5785) {
1636                 /* Request larger DMA burst size to get better performance. */
1637                 val |= BGE_WDMAMODE_BURST_ALL_DATA;
1638         }
1639         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1640         DELAY(40);
1641
1642         if (BNX_IS_57765_PLUS(sc)) {
1643                 uint32_t dmactl, dmactl_reg;
1644
1645                 if (sc->bnx_asicrev == BGE_ASICREV_BCM5762)
1646                         dmactl_reg = BGE_RDMA_RSRVCTRL2;
1647                 else
1648                         dmactl_reg = BGE_RDMA_RSRVCTRL;
1649
1650                 dmactl = CSR_READ_4(sc, dmactl_reg);
1651                 /*
1652                  * Adjust tx margin to prevent TX data corruption and
1653                  * fix internal FIFO overflow.
1654                  */
1655                 if (sc->bnx_asicrev == BGE_ASICREV_BCM5719 ||
1656                     sc->bnx_asicrev == BGE_ASICREV_BCM5720 ||
1657                     sc->bnx_asicrev == BGE_ASICREV_BCM5762) {
1658                         dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
1659                             BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
1660                             BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
1661                         dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
1662                             BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
1663                             BGE_RDMA_RSRVCTRL_TXMRGN_320B;
1664                 }
1665                 /*
1666                  * Enable fix for read DMA FIFO overruns.
1667                  * The fix is to limit the number of RX BDs
1668                  * the hardware would fetch at a fime.
1669                  */
1670                 CSR_WRITE_4(sc, dmactl_reg,
1671                     dmactl | BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
1672         }
1673
1674         if (sc->bnx_asicrev == BGE_ASICREV_BCM5719) {
1675                 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
1676                     CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
1677                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
1678                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
1679         } else if (sc->bnx_asicrev == BGE_ASICREV_BCM5720 ||
1680             sc->bnx_asicrev == BGE_ASICREV_BCM5762) {
1681                 uint32_t ctrl_reg;
1682
1683                 if (sc->bnx_asicrev == BGE_ASICREV_BCM5762)
1684                         ctrl_reg = BGE_RDMA_LSO_CRPTEN_CTRL2;
1685                 else
1686                         ctrl_reg = BGE_RDMA_LSO_CRPTEN_CTRL;
1687
1688                 /*
1689                  * Allow 4KB burst length reads for non-LSO frames.
1690                  * Enable 512B burst length reads for buffer descriptors.
1691                  */
1692                 CSR_WRITE_4(sc, ctrl_reg,
1693                     CSR_READ_4(sc, ctrl_reg) |
1694                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
1695                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
1696         }
1697
1698         /* Turn on read DMA state machine */
1699         val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1700         if (sc->bnx_asicrev == BGE_ASICREV_BCM5717)
1701                 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
1702         if (sc->bnx_asicrev == BGE_ASICREV_BCM5784 ||
1703             sc->bnx_asicrev == BGE_ASICREV_BCM5785 ||
1704             sc->bnx_asicrev == BGE_ASICREV_BCM57780) {
1705                 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1706                     BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1707                     BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1708         }
1709         if (sc->bnx_asicrev == BGE_ASICREV_BCM5720 ||
1710             sc->bnx_asicrev == BGE_ASICREV_BCM5762) {
1711                 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
1712                     BGE_RDMAMODE_H2BNC_VLAN_DET;
1713                 /*
1714                  * Allow multiple outstanding read requests from
1715                  * non-LSO read DMA engine.
1716                  */
1717                 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
1718         }
1719         if (sc->bnx_asicrev == BGE_ASICREV_BCM57766)
1720                 val |= BGE_RDMAMODE_JMB_2K_MMRR;
1721         if (sc->bnx_flags & BNX_FLAG_TSO)
1722                 val |= BGE_RDMAMODE_TSO4_ENABLE;
1723         val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1724         CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1725         DELAY(40);
1726
1727         /* Turn on RX data completion state machine */
1728         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1729
1730         /* Turn on RX BD initiator state machine */
1731         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1732
1733         /* Turn on RX data and RX BD initiator state machine */
1734         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1735
1736         /* Turn on send BD completion state machine */
1737         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1738
1739         /* Turn on send data completion state machine */
1740         val = BGE_SDCMODE_ENABLE;
1741         if (sc->bnx_asicrev == BGE_ASICREV_BCM5761)
1742                 val |= BGE_SDCMODE_CDELAY; 
1743         CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1744
1745         /* Turn on send data initiator state machine */
1746         if (sc->bnx_flags & BNX_FLAG_TSO) {
1747                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
1748                     BGE_SDIMODE_HW_LSO_PRE_DMA);
1749         } else {
1750                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1751         }
1752
1753         /* Turn on send BD initiator state machine */
1754         val = BGE_SBDIMODE_ENABLE;
1755         if (sc->bnx_tx_ringcnt > 1)
1756                 val |= BGE_SBDIMODE_MULTI_TXR;
1757         CSR_WRITE_4(sc, BGE_SBDI_MODE, val);
1758
1759         /* Turn on send BD selector state machine */
1760         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1761
1762         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1763         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1764             BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1765
1766         /* ack/clear link change events */
1767         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1768             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1769             BGE_MACSTAT_LINK_CHANGED);
1770         CSR_WRITE_4(sc, BGE_MI_STS, 0);
1771
1772         /*
1773          * Enable attention when the link has changed state for
1774          * devices that use auto polling.
1775          */
1776         if (sc->bnx_flags & BNX_FLAG_TBI) {
1777                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1778         } else {
1779                 if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
1780                         CSR_WRITE_4(sc, BGE_MI_MODE, sc->bnx_mi_mode);
1781                         DELAY(80);
1782                 }
1783         }
1784
1785         /*
1786          * Clear any pending link state attention.
1787          * Otherwise some link state change events may be lost until attention
1788          * is cleared by bnx_intr() -> bnx_softc.bnx_link_upd() sequence.
1789          * It's not necessary on newer BCM chips - perhaps enabling link
1790          * state change attentions implies clearing pending attention.
1791          */
1792         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1793             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1794             BGE_MACSTAT_LINK_CHANGED);
1795
1796         /* Enable link state change attentions. */
1797         BNX_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1798
1799         return(0);
1800 }
1801
1802 /*
1803  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1804  * against our list and return its name if we find a match. Note
1805  * that since the Broadcom controller contains VPD support, we
1806  * can get the device name string from the controller itself instead
1807  * of the compiled-in string. This is a little slow, but it guarantees
1808  * we'll always announce the right product name.
1809  */
1810 static int
1811 bnx_probe(device_t dev)
1812 {
1813         const struct bnx_type *t;
1814         uint16_t product, vendor;
1815
1816         if (!pci_is_pcie(dev))
1817                 return ENXIO;
1818
1819         product = pci_get_device(dev);
1820         vendor = pci_get_vendor(dev);
1821
1822         for (t = bnx_devs; t->bnx_name != NULL; t++) {
1823                 if (vendor == t->bnx_vid && product == t->bnx_did)
1824                         break;
1825         }
1826         if (t->bnx_name == NULL)
1827                 return ENXIO;
1828
1829         device_set_desc(dev, t->bnx_name);
1830         return 0;
1831 }
1832
1833 static int
1834 bnx_attach(device_t dev)
1835 {
1836         struct ifnet *ifp;
1837         struct bnx_softc *sc;
1838         struct bnx_rx_std_ring *std;
1839         uint32_t hwcfg = 0;
1840         int error = 0, rid, capmask, i, std_cpuid, std_cpuid_def;
1841         uint8_t ether_addr[ETHER_ADDR_LEN];
1842         uint16_t product;
1843         uintptr_t mii_priv = 0;
1844 #if defined(BNX_TSO_DEBUG) || defined(BNX_RSS_DEBUG) || defined(BNX_TSS_DEBUG)
1845         char desc[32];
1846 #endif
1847 #ifdef IFPOLL_ENABLE
1848         int offset, offset_def;
1849 #endif
1850
1851         sc = device_get_softc(dev);
1852         sc->bnx_dev = dev;
1853         callout_init_mp(&sc->bnx_tick_timer);
1854         lwkt_serialize_init(&sc->bnx_jslot_serializer);
1855         lwkt_serialize_init(&sc->bnx_main_serialize);
1856
1857         /* Always setup interrupt mailboxes */
1858         for (i = 0; i < BNX_INTR_MAX; ++i) {
1859                 callout_init_mp(&sc->bnx_intr_data[i].bnx_intr_timer);
1860                 sc->bnx_intr_data[i].bnx_sc = sc;
1861                 sc->bnx_intr_data[i].bnx_intr_mbx = BGE_MBX_IRQ0_LO + (i * 8);
1862                 sc->bnx_intr_data[i].bnx_intr_rid = -1;
1863                 sc->bnx_intr_data[i].bnx_intr_cpuid = -1;
1864         }
1865
1866         sc->bnx_func_addr = pci_get_function(dev);
1867         product = pci_get_device(dev);
1868
1869 #ifndef BURN_BRIDGES
1870         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1871                 uint32_t irq, mem;
1872
1873                 irq = pci_read_config(dev, PCIR_INTLINE, 4);
1874                 mem = pci_read_config(dev, BGE_PCI_BAR0, 4);
1875
1876                 device_printf(dev, "chip is in D%d power mode "
1877                     "-- setting to D0\n", pci_get_powerstate(dev));
1878
1879                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1880
1881                 pci_write_config(dev, PCIR_INTLINE, irq, 4);
1882                 pci_write_config(dev, BGE_PCI_BAR0, mem, 4);
1883         }
1884 #endif  /* !BURN_BRIDGE */
1885
1886         /*
1887          * Map control/status registers.
1888          */
1889         pci_enable_busmaster(dev);
1890
1891         rid = BGE_PCI_BAR0;
1892         sc->bnx_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1893             RF_ACTIVE);
1894
1895         if (sc->bnx_res == NULL) {
1896                 device_printf(dev, "couldn't map memory\n");
1897                 return ENXIO;
1898         }
1899
1900         sc->bnx_btag = rman_get_bustag(sc->bnx_res);
1901         sc->bnx_bhandle = rman_get_bushandle(sc->bnx_res);
1902
1903         /* Save various chip information */
1904         sc->bnx_chipid =
1905             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
1906             BGE_PCIMISCCTL_ASICREV_SHIFT;
1907         if (BGE_ASICREV(sc->bnx_chipid) == BGE_ASICREV_USE_PRODID_REG) {
1908                 /* All chips having dedicated ASICREV register have CPMU */
1909                 sc->bnx_flags |= BNX_FLAG_CPMU;
1910
1911                 switch (product) {
1912                 case PCI_PRODUCT_BROADCOM_BCM5717:
1913                 case PCI_PRODUCT_BROADCOM_BCM5717C:
1914                 case PCI_PRODUCT_BROADCOM_BCM5718:
1915                 case PCI_PRODUCT_BROADCOM_BCM5719:
1916                 case PCI_PRODUCT_BROADCOM_BCM5720_ALT:
1917                 case PCI_PRODUCT_BROADCOM_BCM5725:
1918                 case PCI_PRODUCT_BROADCOM_BCM5727:
1919                 case PCI_PRODUCT_BROADCOM_BCM5762:
1920                         sc->bnx_chipid = pci_read_config(dev,
1921                             BGE_PCI_GEN2_PRODID_ASICREV, 4);
1922                         break;
1923
1924                 case PCI_PRODUCT_BROADCOM_BCM57761:
1925                 case PCI_PRODUCT_BROADCOM_BCM57762:
1926                 case PCI_PRODUCT_BROADCOM_BCM57765:
1927                 case PCI_PRODUCT_BROADCOM_BCM57766:
1928                 case PCI_PRODUCT_BROADCOM_BCM57781:
1929                 case PCI_PRODUCT_BROADCOM_BCM57782:
1930                 case PCI_PRODUCT_BROADCOM_BCM57785:
1931                 case PCI_PRODUCT_BROADCOM_BCM57786:
1932                 case PCI_PRODUCT_BROADCOM_BCM57791:
1933                 case PCI_PRODUCT_BROADCOM_BCM57795:
1934                         sc->bnx_chipid = pci_read_config(dev,
1935                             BGE_PCI_GEN15_PRODID_ASICREV, 4);
1936                         break;
1937
1938                 default:
1939                         sc->bnx_chipid = pci_read_config(dev,
1940                             BGE_PCI_PRODID_ASICREV, 4);
1941                         break;
1942                 }
1943         }
1944         if (sc->bnx_chipid == BGE_CHIPID_BCM5717_C0)
1945                 sc->bnx_chipid = BGE_CHIPID_BCM5720_A0;
1946
1947         sc->bnx_asicrev = BGE_ASICREV(sc->bnx_chipid);
1948         sc->bnx_chiprev = BGE_CHIPREV(sc->bnx_chipid);
1949
1950         switch (sc->bnx_asicrev) {
1951         case BGE_ASICREV_BCM5717:
1952         case BGE_ASICREV_BCM5719:
1953         case BGE_ASICREV_BCM5720:
1954                 sc->bnx_flags |= BNX_FLAG_5717_PLUS | BNX_FLAG_57765_PLUS;
1955                 break;
1956
1957         case BGE_ASICREV_BCM5762:
1958                 sc->bnx_flags |= BNX_FLAG_57765_PLUS;
1959                 break;
1960
1961         case BGE_ASICREV_BCM57765:
1962         case BGE_ASICREV_BCM57766:
1963                 sc->bnx_flags |= BNX_FLAG_57765_FAMILY | BNX_FLAG_57765_PLUS;
1964                 break;
1965         }
1966
1967         if (sc->bnx_asicrev == BGE_ASICREV_BCM5717 ||
1968             sc->bnx_asicrev == BGE_ASICREV_BCM5719 ||
1969             sc->bnx_asicrev == BGE_ASICREV_BCM5720 ||
1970             sc->bnx_asicrev == BGE_ASICREV_BCM5762)
1971                 sc->bnx_flags |= BNX_FLAG_APE;
1972
1973         sc->bnx_flags |= BNX_FLAG_TSO;
1974         if (sc->bnx_asicrev == BGE_ASICREV_BCM5719 &&
1975             sc->bnx_chipid == BGE_CHIPID_BCM5719_A0)
1976                 sc->bnx_flags &= ~BNX_FLAG_TSO;
1977
1978         if (sc->bnx_asicrev == BGE_ASICREV_BCM5717 ||
1979             BNX_IS_57765_FAMILY(sc)) {
1980                 /*
1981                  * All BCM57785 and BCM5718 families chips have a bug that
1982                  * under certain situation interrupt will not be enabled
1983                  * even if status tag is written to interrupt mailbox.
1984                  *
1985                  * While BCM5719 and BCM5720 have a hardware workaround
1986                  * which could fix the above bug.
1987                  * See the comment near BGE_PCIDMARWCTL_TAGGED_STATUS_WA in
1988                  * bnx_chipinit().
1989                  *
1990                  * For the rest of the chips in these two families, we will
1991                  * have to poll the status block at high rate (10ms currently)
1992                  * to check whether the interrupt is hosed or not.
1993                  * See bnx_check_intr_*() for details.
1994                  */
1995                 sc->bnx_flags |= BNX_FLAG_STATUSTAG_BUG;
1996         }
1997
1998         sc->bnx_pciecap = pci_get_pciecap_ptr(sc->bnx_dev);
1999         if (sc->bnx_asicrev == BGE_ASICREV_BCM5719 ||
2000             sc->bnx_asicrev == BGE_ASICREV_BCM5720)
2001                 pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_2048);
2002         else
2003                 pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_4096);
2004         device_printf(dev, "CHIP ID 0x%08x; "
2005                       "ASIC REV 0x%02x; CHIP REV 0x%02x\n",
2006                       sc->bnx_chipid, sc->bnx_asicrev, sc->bnx_chiprev);
2007
2008         /*
2009          * Set various PHY quirk flags.
2010          */
2011
2012         capmask = MII_CAPMASK_DEFAULT;
2013         if (product == PCI_PRODUCT_BROADCOM_BCM57791 ||
2014             product == PCI_PRODUCT_BROADCOM_BCM57795) {
2015                 /* 10/100 only */
2016                 capmask &= ~BMSR_EXTSTAT;
2017         }
2018
2019         mii_priv |= BRGPHY_FLAG_WIRESPEED;
2020         if (sc->bnx_chipid == BGE_CHIPID_BCM5762_A0)
2021                 mii_priv |= BRGPHY_FLAG_5762_A0;
2022
2023         /*
2024          * Chips with APE need BAR2 access for APE registers/memory.
2025          */
2026         if (sc->bnx_flags & BNX_FLAG_APE) {
2027                 uint32_t pcistate;
2028
2029                 rid = PCIR_BAR(2);
2030                 sc->bnx_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2031                     RF_ACTIVE);
2032                 if (sc->bnx_res2 == NULL) {
2033                         device_printf(dev, "couldn't map BAR2 memory\n");
2034                         error = ENXIO;
2035                         goto fail;
2036                 }
2037
2038                 /* Enable APE register/memory access by host driver. */
2039                 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2040                 pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
2041                     BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
2042                     BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
2043                 pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
2044
2045                 bnx_ape_lock_init(sc);
2046                 bnx_ape_read_fw_ver(sc);
2047         }
2048
2049         /* Initialize if_name earlier, so if_printf could be used */
2050         ifp = &sc->arpcom.ac_if;
2051         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2052
2053         /*
2054          * Try to reset the chip.
2055          */
2056         bnx_sig_pre_reset(sc, BNX_RESET_SHUTDOWN);
2057         bnx_reset(sc);
2058         bnx_sig_post_reset(sc, BNX_RESET_SHUTDOWN);
2059
2060         if (bnx_chipinit(sc)) {
2061                 device_printf(dev, "chip initialization failed\n");
2062                 error = ENXIO;
2063                 goto fail;
2064         }
2065
2066         /*
2067          * Get station address
2068          */
2069         error = bnx_get_eaddr(sc, ether_addr);
2070         if (error) {
2071                 device_printf(dev, "failed to read station address\n");
2072                 goto fail;
2073         }
2074
2075         /* Setup RX/TX and interrupt count */
2076         bnx_setup_ring_cnt(sc);
2077
2078         if ((sc->bnx_rx_retcnt == 1 && sc->bnx_tx_ringcnt == 1) ||
2079             (sc->bnx_rx_retcnt > 1 && sc->bnx_tx_ringcnt > 1)) {
2080                 /*
2081                  * The RX ring and the corresponding TX ring processing
2082                  * should be on the same CPU, since they share the same
2083                  * status block.
2084                  */
2085                 sc->bnx_flags |= BNX_FLAG_RXTX_BUNDLE;
2086                 if (bootverbose)
2087                         device_printf(dev, "RX/TX bundle\n");
2088                 if (sc->bnx_tx_ringcnt > 1) {
2089                         /*
2090                          * Multiple TX rings do not share status block
2091                          * with link status, so link status will have
2092                          * to save its own status_tag.
2093                          */
2094                         sc->bnx_flags |= BNX_FLAG_STATUS_HASTAG;
2095                         if (bootverbose)
2096                                 device_printf(dev, "status needs tag\n");
2097                 }
2098         } else {
2099                 KKASSERT(sc->bnx_rx_retcnt > 1 && sc->bnx_tx_ringcnt == 1);
2100                 if (bootverbose)
2101                         device_printf(dev, "RX/TX not bundled\n");
2102         }
2103
2104         error = bnx_dma_alloc(dev);
2105         if (error)
2106                 goto fail;
2107
2108 #ifdef IFPOLL_ENABLE
2109         if (sc->bnx_flags & BNX_FLAG_RXTX_BUNDLE) {
2110                 /*
2111                  * NPOLLING RX/TX CPU offset
2112                  */
2113                 if (sc->bnx_rx_retcnt == ncpus2) {
2114                         offset = 0;
2115                 } else {
2116                         offset_def =
2117                         (sc->bnx_rx_retcnt * device_get_unit(dev)) % ncpus2;
2118                         offset = device_getenv_int(dev, "npoll.offset",
2119                             offset_def);
2120                         if (offset >= ncpus2 ||
2121                             offset % sc->bnx_rx_retcnt != 0) {
2122                                 device_printf(dev, "invalid npoll.offset %d, "
2123                                     "use %d\n", offset, offset_def);
2124                                 offset = offset_def;
2125                         }
2126                 }
2127                 sc->bnx_npoll_rxoff = offset;
2128                 sc->bnx_npoll_txoff = offset;
2129         } else {
2130                 /*
2131                  * NPOLLING RX CPU offset
2132                  */
2133                 if (sc->bnx_rx_retcnt == ncpus2) {
2134                         offset = 0;
2135                 } else {
2136                         offset_def =
2137                         (sc->bnx_rx_retcnt * device_get_unit(dev)) % ncpus2;
2138                         offset = device_getenv_int(dev, "npoll.rxoff",
2139                             offset_def);
2140                         if (offset >= ncpus2 ||
2141                             offset % sc->bnx_rx_retcnt != 0) {
2142                                 device_printf(dev, "invalid npoll.rxoff %d, "
2143                                     "use %d\n", offset, offset_def);
2144                                 offset = offset_def;
2145                         }
2146                 }
2147                 sc->bnx_npoll_rxoff = offset;
2148
2149                 /*
2150                  * NPOLLING TX CPU offset
2151                  */
2152                 offset_def = device_get_unit(dev) % ncpus2;
2153                 offset = device_getenv_int(dev, "npoll.txoff", offset_def);
2154                 if (offset >= ncpus2) {
2155                         device_printf(dev, "invalid npoll.txoff %d, use %d\n",
2156                             offset, offset_def);
2157                         offset = offset_def;
2158                 }
2159                 sc->bnx_npoll_txoff = offset;
2160         }
2161 #endif  /* IFPOLL_ENABLE */
2162
2163         /*
2164          * Allocate interrupt
2165          */
2166         error = bnx_alloc_intr(sc);
2167         if (error)
2168                 goto fail;
2169
2170         /* Setup serializers */
2171         bnx_setup_serialize(sc);
2172
2173         /* Set default tuneable values. */
2174         sc->bnx_rx_coal_ticks = BNX_RX_COAL_TICKS_DEF;
2175         sc->bnx_tx_coal_ticks = BNX_TX_COAL_TICKS_DEF;
2176         sc->bnx_rx_coal_bds = BNX_RX_COAL_BDS_DEF;
2177         sc->bnx_rx_coal_bds_poll = sc->bnx_rx_ret_ring[0].bnx_rx_cntmax;
2178         sc->bnx_tx_coal_bds = BNX_TX_COAL_BDS_DEF;
2179         sc->bnx_tx_coal_bds_poll = BNX_TX_COAL_BDS_POLL_DEF;
2180         sc->bnx_rx_coal_bds_int = BNX_RX_COAL_BDS_INT_DEF;
2181         sc->bnx_tx_coal_bds_int = BNX_TX_COAL_BDS_INT_DEF;
2182
2183         /* Set up ifnet structure */
2184         ifp->if_softc = sc;
2185         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2186         ifp->if_ioctl = bnx_ioctl;
2187         ifp->if_start = bnx_start;
2188 #ifdef IFPOLL_ENABLE
2189         ifp->if_npoll = bnx_npoll;
2190 #endif
2191         ifp->if_init = bnx_init;
2192         ifp->if_serialize = bnx_serialize;
2193         ifp->if_deserialize = bnx_deserialize;
2194         ifp->if_tryserialize = bnx_tryserialize;
2195 #ifdef INVARIANTS
2196         ifp->if_serialize_assert = bnx_serialize_assert;
2197 #endif
2198         ifp->if_mtu = ETHERMTU;
2199         ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2200
2201         ifp->if_capabilities |= IFCAP_HWCSUM;
2202         ifp->if_hwassist = BNX_CSUM_FEATURES;
2203         if (sc->bnx_flags & BNX_FLAG_TSO) {
2204                 ifp->if_capabilities |= IFCAP_TSO;
2205                 ifp->if_hwassist |= CSUM_TSO;
2206         }
2207         if (BNX_RSS_ENABLED(sc))
2208                 ifp->if_capabilities |= IFCAP_RSS;
2209         ifp->if_capenable = ifp->if_capabilities;
2210
2211         ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
2212         ifq_set_ready(&ifp->if_snd);
2213         ifq_set_subq_cnt(&ifp->if_snd, sc->bnx_tx_ringcnt);
2214
2215         if (sc->bnx_tx_ringcnt > 1) {
2216                 ifp->if_mapsubq = ifq_mapsubq_mask;
2217                 ifq_set_subq_mask(&ifp->if_snd, sc->bnx_tx_ringcnt - 1);
2218         }
2219
2220         /*
2221          * Figure out what sort of media we have by checking the
2222          * hardware config word in the first 32k of NIC internal memory,
2223          * or fall back to examining the EEPROM if necessary.
2224          * Note: on some BCM5700 cards, this value appears to be unset.
2225          * If that's the case, we have to rely on identifying the NIC
2226          * by its PCI subsystem ID, as we do below for the SysKonnect
2227          * SK-9D41.
2228          */
2229         if (bnx_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC) {
2230                 hwcfg = bnx_readmem_ind(sc, BGE_SRAM_DATA_CFG);
2231         } else {
2232                 if (bnx_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2233                                     sizeof(hwcfg))) {
2234                         device_printf(dev, "failed to read EEPROM\n");
2235                         error = ENXIO;
2236                         goto fail;
2237                 }
2238                 hwcfg = ntohl(hwcfg);
2239         }
2240
2241         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2242         if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41 ||
2243             (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2244                 sc->bnx_flags |= BNX_FLAG_TBI;
2245
2246         /* Setup MI MODE */
2247         if (sc->bnx_flags & BNX_FLAG_CPMU)
2248                 sc->bnx_mi_mode = BGE_MIMODE_500KHZ_CONST;
2249         else
2250                 sc->bnx_mi_mode = BGE_MIMODE_BASE;
2251
2252         /* Setup link status update stuffs */
2253         if (sc->bnx_flags & BNX_FLAG_TBI) {
2254                 sc->bnx_link_upd = bnx_tbi_link_upd;
2255                 sc->bnx_link_chg = BGE_MACSTAT_LINK_CHANGED;
2256         } else if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
2257                 sc->bnx_link_upd = bnx_autopoll_link_upd;
2258                 sc->bnx_link_chg = BGE_MACSTAT_LINK_CHANGED;
2259         } else {
2260                 sc->bnx_link_upd = bnx_copper_link_upd;
2261                 sc->bnx_link_chg = BGE_MACSTAT_LINK_CHANGED;
2262         }
2263
2264         /* Set default PHY address */
2265         sc->bnx_phyno = 1;
2266
2267         /*
2268          * PHY address mapping for various devices.
2269          *
2270          *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2271          * ---------+-------+-------+-------+-------+
2272          * BCM57XX  |   1   |   X   |   X   |   X   |
2273          * BCM5717  |   1   |   8   |   2   |   9   |
2274          * BCM5719  |   1   |   8   |   2   |   9   |
2275          * BCM5720  |   1   |   8   |   2   |   9   |
2276          *
2277          *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2278          * ---------+-------+-------+-------+-------+
2279          * BCM57XX  |   X   |   X   |   X   |   X   |
2280          * BCM5717  |   X   |   X   |   X   |   X   |
2281          * BCM5719  |   3   |   10  |   4   |   11  |
2282          * BCM5720  |   X   |   X   |   X   |   X   |
2283          *
2284          * Other addresses may respond but they are not
2285          * IEEE compliant PHYs and should be ignored.
2286          */
2287         if (BNX_IS_5717_PLUS(sc)) {
2288                 if (sc->bnx_chipid == BGE_CHIPID_BCM5717_A0) {
2289                         if (CSR_READ_4(sc, BGE_SGDIG_STS) &
2290                             BGE_SGDIGSTS_IS_SERDES)
2291                                 sc->bnx_phyno = sc->bnx_func_addr + 8;
2292                         else
2293                                 sc->bnx_phyno = sc->bnx_func_addr + 1;
2294                 } else {
2295                         if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2296                             BGE_CPMU_PHY_STRAP_IS_SERDES)
2297                                 sc->bnx_phyno = sc->bnx_func_addr + 8;
2298                         else
2299                                 sc->bnx_phyno = sc->bnx_func_addr + 1;
2300                 }
2301         }
2302
2303         if (sc->bnx_flags & BNX_FLAG_TBI) {
2304                 ifmedia_init(&sc->bnx_ifmedia, IFM_IMASK,
2305                     bnx_ifmedia_upd, bnx_ifmedia_sts);
2306                 ifmedia_add(&sc->bnx_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2307                 ifmedia_add(&sc->bnx_ifmedia,
2308                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2309                 ifmedia_add(&sc->bnx_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2310                 ifmedia_set(&sc->bnx_ifmedia, IFM_ETHER|IFM_AUTO);
2311                 sc->bnx_ifmedia.ifm_media = sc->bnx_ifmedia.ifm_cur->ifm_media;
2312         } else {
2313                 struct mii_probe_args mii_args;
2314
2315                 mii_probe_args_init(&mii_args, bnx_ifmedia_upd, bnx_ifmedia_sts);
2316                 mii_args.mii_probemask = 1 << sc->bnx_phyno;
2317                 mii_args.mii_capmask = capmask;
2318                 mii_args.mii_privtag = MII_PRIVTAG_BRGPHY;
2319                 mii_args.mii_priv = mii_priv;
2320
2321                 error = mii_probe(dev, &sc->bnx_miibus, &mii_args);
2322                 if (error) {
2323                         device_printf(dev, "MII without any PHY!\n");
2324                         goto fail;
2325                 }
2326         }
2327
2328         /*
2329          * Create sysctl nodes.
2330          */
2331         sysctl_ctx_init(&sc->bnx_sysctl_ctx);
2332         sc->bnx_sysctl_tree = SYSCTL_ADD_NODE(&sc->bnx_sysctl_ctx,
2333                                               SYSCTL_STATIC_CHILDREN(_hw),
2334                                               OID_AUTO,
2335                                               device_get_nameunit(dev),
2336                                               CTLFLAG_RD, 0, "");
2337         if (sc->bnx_sysctl_tree == NULL) {
2338                 device_printf(dev, "can't add sysctl node\n");
2339                 error = ENXIO;
2340                 goto fail;
2341         }
2342
2343         SYSCTL_ADD_INT(&sc->bnx_sysctl_ctx,
2344             SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2345             "rx_rings", CTLFLAG_RD, &sc->bnx_rx_retcnt, 0, "# of RX rings");
2346         SYSCTL_ADD_INT(&sc->bnx_sysctl_ctx,
2347             SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2348             "tx_rings", CTLFLAG_RD, &sc->bnx_tx_ringcnt, 0, "# of TX rings");
2349
2350         SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2351                         SYSCTL_CHILDREN(sc->bnx_sysctl_tree),
2352                         OID_AUTO, "rx_coal_ticks",
2353                         CTLTYPE_INT | CTLFLAG_RW,
2354                         sc, 0, bnx_sysctl_rx_coal_ticks, "I",
2355                         "Receive coalescing ticks (usec).");
2356         SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2357                         SYSCTL_CHILDREN(sc->bnx_sysctl_tree),
2358                         OID_AUTO, "tx_coal_ticks",
2359                         CTLTYPE_INT | CTLFLAG_RW,
2360                         sc, 0, bnx_sysctl_tx_coal_ticks, "I",
2361                         "Transmit coalescing ticks (usec).");
2362         SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2363                         SYSCTL_CHILDREN(sc->bnx_sysctl_tree),
2364                         OID_AUTO, "rx_coal_bds",
2365                         CTLTYPE_INT | CTLFLAG_RW,
2366                         sc, 0, bnx_sysctl_rx_coal_bds, "I",
2367                         "Receive max coalesced BD count.");
2368         SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2369                         SYSCTL_CHILDREN(sc->bnx_sysctl_tree),
2370                         OID_AUTO, "rx_coal_bds_poll",
2371                         CTLTYPE_INT | CTLFLAG_RW,
2372                         sc, 0, bnx_sysctl_rx_coal_bds_poll, "I",
2373                         "Receive max coalesced BD count in polling.");
2374         SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2375                         SYSCTL_CHILDREN(sc->bnx_sysctl_tree),
2376                         OID_AUTO, "tx_coal_bds",
2377                         CTLTYPE_INT | CTLFLAG_RW,
2378                         sc, 0, bnx_sysctl_tx_coal_bds, "I",
2379                         "Transmit max coalesced BD count.");
2380         SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2381                         SYSCTL_CHILDREN(sc->bnx_sysctl_tree),
2382                         OID_AUTO, "tx_coal_bds_poll",
2383                         CTLTYPE_INT | CTLFLAG_RW,
2384                         sc, 0, bnx_sysctl_tx_coal_bds_poll, "I",
2385                         "Transmit max coalesced BD count in polling.");
2386         /*
2387          * A common design characteristic for many Broadcom
2388          * client controllers is that they only support a
2389          * single outstanding DMA read operation on the PCIe
2390          * bus. This means that it will take twice as long to
2391          * fetch a TX frame that is split into header and
2392          * payload buffers as it does to fetch a single,
2393          * contiguous TX frame (2 reads vs. 1 read). For these
2394          * controllers, coalescing buffers to reduce the number
2395          * of memory reads is effective way to get maximum
2396          * performance(about 940Mbps).  Without collapsing TX
2397          * buffers the maximum TCP bulk transfer performance
2398          * is about 850Mbps. However forcing coalescing mbufs
2399          * consumes a lot of CPU cycles, so leave it off by
2400          * default.
2401          */
2402         SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2403             SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2404             "force_defrag", CTLTYPE_INT | CTLFLAG_RW,
2405             sc, 0, bnx_sysctl_force_defrag, "I",
2406             "Force defragment on TX path");
2407
2408         SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2409             SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2410             "tx_wreg", CTLTYPE_INT | CTLFLAG_RW,
2411             sc, 0, bnx_sysctl_tx_wreg, "I",
2412             "# of segments before writing to hardware register");
2413
2414         SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2415             SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2416             "std_refill", CTLTYPE_INT | CTLFLAG_RW,
2417             sc, 0, bnx_sysctl_std_refill, "I",
2418             "# of packets received before scheduling standard refilling");
2419
2420         SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2421             SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2422             "rx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2423             sc, 0, bnx_sysctl_rx_coal_bds_int, "I",
2424             "Receive max coalesced BD count during interrupt.");
2425         SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2426             SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2427             "tx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2428             sc, 0, bnx_sysctl_tx_coal_bds_int, "I",
2429             "Transmit max coalesced BD count during interrupt.");
2430
2431 #ifdef IFPOLL_ENABLE
2432         if (sc->bnx_flags & BNX_FLAG_RXTX_BUNDLE) {
2433                 SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2434                     SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2435                     "npoll_offset", CTLTYPE_INT | CTLFLAG_RW,
2436                     sc, 0, bnx_sysctl_npoll_offset, "I",
2437                     "NPOLLING cpu offset");
2438         } else {
2439                 SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2440                     SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2441                     "npoll_rxoff", CTLTYPE_INT | CTLFLAG_RW,
2442                     sc, 0, bnx_sysctl_npoll_rxoff, "I",
2443                     "NPOLLING RX cpu offset");
2444                 SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2445                     SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2446                     "npoll_txoff", CTLTYPE_INT | CTLFLAG_RW,
2447                     sc, 0, bnx_sysctl_npoll_txoff, "I",
2448                     "NPOLLING TX cpu offset");
2449         }
2450 #endif
2451
2452 #ifdef BNX_RSS_DEBUG
2453         SYSCTL_ADD_INT(&sc->bnx_sysctl_ctx,
2454             SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2455             "std_refill_mask", CTLFLAG_RD,
2456             &sc->bnx_rx_std_ring.bnx_rx_std_refill, 0, "");
2457         SYSCTL_ADD_INT(&sc->bnx_sysctl_ctx,
2458             SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2459             "std_used", CTLFLAG_RD,
2460             &sc->bnx_rx_std_ring.bnx_rx_std_used, 0, "");
2461         SYSCTL_ADD_INT(&sc->bnx_sysctl_ctx,
2462             SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2463             "rss_debug", CTLFLAG_RW, &sc->bnx_rss_debug, 0, "");
2464         for (i = 0; i < sc->bnx_rx_retcnt; ++i) {
2465                 ksnprintf(desc, sizeof(desc), "rx_pkt%d", i);
2466                 SYSCTL_ADD_ULONG(&sc->bnx_sysctl_ctx,
2467                     SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2468                     desc, CTLFLAG_RW, &sc->bnx_rx_ret_ring[i].bnx_rx_pkt, "");
2469
2470                 ksnprintf(desc, sizeof(desc), "rx_force_sched%d", i);
2471                 SYSCTL_ADD_ULONG(&sc->bnx_sysctl_ctx,
2472                     SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2473                     desc, CTLFLAG_RW,
2474                     &sc->bnx_rx_ret_ring[i].bnx_rx_force_sched, "");
2475         }
2476 #endif
2477 #ifdef BNX_TSS_DEBUG
2478         for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
2479                 ksnprintf(desc, sizeof(desc), "tx_pkt%d", i);
2480                 SYSCTL_ADD_ULONG(&sc->bnx_sysctl_ctx,
2481                     SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2482                     desc, CTLFLAG_RW, &sc->bnx_tx_ring[i].bnx_tx_pkt, "");
2483         }
2484 #endif
2485
2486         SYSCTL_ADD_ULONG(&sc->bnx_sysctl_ctx,
2487             SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2488             "norxbds", CTLFLAG_RW, &sc->bnx_norxbds, "");
2489
2490         SYSCTL_ADD_ULONG(&sc->bnx_sysctl_ctx,
2491             SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2492             "errors", CTLFLAG_RW, &sc->bnx_errors, "");
2493
2494 #ifdef BNX_TSO_DEBUG
2495         for (i = 0; i < BNX_TSO_NSTATS; ++i) {
2496                 ksnprintf(desc, sizeof(desc), "tso%d", i + 1);
2497                 SYSCTL_ADD_ULONG(&sc->bnx_sysctl_ctx,
2498                     SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2499                     desc, CTLFLAG_RW, &sc->bnx_tsosegs[i], "");
2500         }
2501 #endif
2502
2503         /*
2504          * Call MI attach routine.
2505          */
2506         ether_ifattach(ifp, ether_addr, NULL);
2507
2508         /* Setup TX rings and subqueues */
2509         for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
2510                 struct ifaltq_subque *ifsq = ifq_get_subq(&ifp->if_snd, i);
2511                 struct bnx_tx_ring *txr = &sc->bnx_tx_ring[i];
2512
2513                 ifsq_set_cpuid(ifsq, txr->bnx_tx_cpuid);
2514                 ifsq_set_hw_serialize(ifsq, &txr->bnx_tx_serialize);
2515                 ifsq_set_priv(ifsq, txr);
2516                 txr->bnx_ifsq = ifsq;
2517
2518                 ifsq_watchdog_init(&txr->bnx_tx_watchdog, ifsq, bnx_watchdog);
2519
2520                 if (bootverbose) {
2521                         device_printf(dev, "txr %d -> cpu%d\n", i,
2522                             txr->bnx_tx_cpuid);
2523                 }
2524         }
2525
2526         error = bnx_setup_intr(sc);
2527         if (error) {
2528                 ether_ifdetach(ifp);
2529                 goto fail;
2530         }
2531         bnx_set_tick_cpuid(sc, FALSE);
2532
2533         /*
2534          * Create RX standard ring refilling thread
2535          */
2536         std_cpuid_def = device_get_unit(dev) % ncpus;
2537         std_cpuid = device_getenv_int(dev, "std.cpuid", std_cpuid_def);
2538         if (std_cpuid < 0 || std_cpuid >= ncpus) {
2539                 device_printf(dev, "invalid std.cpuid %d, use %d\n",
2540                     std_cpuid, std_cpuid_def);
2541                 std_cpuid = std_cpuid_def;
2542         }
2543
2544         std = &sc->bnx_rx_std_ring;
2545         lwkt_create(bnx_rx_std_refill_ithread, std, NULL,
2546             &std->bnx_rx_std_ithread, TDF_NOSTART | TDF_INTTHREAD, std_cpuid,
2547             "%s std", device_get_nameunit(dev));
2548         lwkt_setpri(&std->bnx_rx_std_ithread, TDPRI_INT_MED);
2549         std->bnx_rx_std_ithread.td_preemptable = lwkt_preempt;
2550         sc->bnx_flags |= BNX_FLAG_STD_THREAD;
2551
2552         return(0);
2553 fail:
2554         bnx_detach(dev);
2555         return(error);
2556 }
2557
2558 static int
2559 bnx_detach(device_t dev)
2560 {
2561         struct bnx_softc *sc = device_get_softc(dev);
2562
2563         if (device_is_attached(dev)) {
2564                 struct ifnet *ifp = &sc->arpcom.ac_if;
2565
2566                 ifnet_serialize_all(ifp);
2567                 bnx_stop(sc);
2568                 bnx_teardown_intr(sc, sc->bnx_intr_cnt);
2569                 ifnet_deserialize_all(ifp);
2570
2571                 ether_ifdetach(ifp);
2572         }
2573
2574         if (sc->bnx_flags & BNX_FLAG_STD_THREAD) {
2575                 struct bnx_rx_std_ring *std = &sc->bnx_rx_std_ring;
2576
2577                 tsleep_interlock(std, 0);
2578
2579                 if (std->bnx_rx_std_ithread.td_gd == mycpu) {
2580                         bnx_rx_std_refill_stop(std);
2581                 } else {
2582                         lwkt_send_ipiq(std->bnx_rx_std_ithread.td_gd,
2583                             bnx_rx_std_refill_stop, std);
2584                 }
2585
2586                 tsleep(std, PINTERLOCKED, "bnx_detach", 0);
2587                 if (bootverbose)
2588                         device_printf(dev, "RX std ithread exited\n");
2589
2590                 lwkt_synchronize_ipiqs("bnx_detach_ipiq");
2591         }
2592
2593         if (sc->bnx_flags & BNX_FLAG_TBI)
2594                 ifmedia_removeall(&sc->bnx_ifmedia);
2595         if (sc->bnx_miibus)
2596                 device_delete_child(dev, sc->bnx_miibus);
2597         bus_generic_detach(dev);
2598
2599         bnx_free_intr(sc);
2600
2601         if (sc->bnx_msix_mem_res != NULL) {
2602                 bus_release_resource(dev, SYS_RES_MEMORY, sc->bnx_msix_mem_rid,
2603                     sc->bnx_msix_mem_res);
2604         }
2605         if (sc->bnx_res != NULL) {
2606                 bus_release_resource(dev, SYS_RES_MEMORY,
2607                     BGE_PCI_BAR0, sc->bnx_res);
2608         }
2609         if (sc->bnx_res2 != NULL) {
2610                 bus_release_resource(dev, SYS_RES_MEMORY,
2611                     PCIR_BAR(2), sc->bnx_res2);
2612         }
2613
2614         if (sc->bnx_sysctl_tree != NULL)
2615                 sysctl_ctx_free(&sc->bnx_sysctl_ctx);
2616
2617         bnx_dma_free(sc);
2618
2619         if (sc->bnx_serialize != NULL)
2620                 kfree(sc->bnx_serialize, M_DEVBUF);
2621
2622         return 0;
2623 }
2624
2625 static void
2626 bnx_reset(struct bnx_softc *sc)
2627 {
2628         device_t dev = sc->bnx_dev;
2629         uint32_t cachesize, command, reset, mac_mode, mac_mode_mask;
2630         void (*write_op)(struct bnx_softc *, uint32_t, uint32_t);
2631         int i, val = 0;
2632         uint16_t devctl;
2633
2634         mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
2635         if (sc->bnx_mfw_flags & BNX_MFW_ON_APE)
2636                 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2637         mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
2638
2639         write_op = bnx_writemem_direct;
2640
2641         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
2642         for (i = 0; i < 8000; i++) {
2643                 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
2644                         break;
2645                 DELAY(20);
2646         }
2647         if (i == 8000)
2648                 if_printf(&sc->arpcom.ac_if, "NVRAM lock timedout!\n");
2649
2650         /* Take APE lock when performing reset. */
2651         bnx_ape_lock(sc, BGE_APE_LOCK_GRC);
2652
2653         /* Save some important PCI state. */
2654         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2655         command = pci_read_config(dev, BGE_PCI_CMD, 4);
2656
2657         pci_write_config(dev, BGE_PCI_MISC_CTL,
2658             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2659             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2660             BGE_PCIMISCCTL_TAGGED_STATUS, 4);
2661
2662         /* Disable fastboot on controllers that support it. */
2663         if (bootverbose)
2664                 if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2665         CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2666
2667         /*
2668          * Write the magic number to SRAM at offset 0xB50.
2669          * When firmware finishes its initialization it will
2670          * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
2671          */
2672         bnx_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2673
2674         reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2675
2676         /* XXX: Broadcom Linux driver. */
2677         /* Force PCI-E 1.0a mode */
2678         if (!BNX_IS_57765_PLUS(sc) &&
2679             CSR_READ_4(sc, BGE_PCIE_PHY_TSTCTL) ==
2680             (BGE_PCIE_PHY_TSTCTL_PSCRAM |
2681              BGE_PCIE_PHY_TSTCTL_PCIE10)) {
2682                 CSR_WRITE_4(sc, BGE_PCIE_PHY_TSTCTL,
2683                     BGE_PCIE_PHY_TSTCTL_PSCRAM);
2684         }
2685         if (sc->bnx_chipid != BGE_CHIPID_BCM5750_A0) {
2686                 /* Prevent PCIE link training during global reset */
2687                 CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2688                 reset |= (1<<29);
2689         }
2690
2691         /* 
2692          * Set GPHY Power Down Override to leave GPHY
2693          * powered up in D0 uninitialized.
2694          */
2695         if ((sc->bnx_flags & BNX_FLAG_CPMU) == 0)
2696                 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
2697
2698         /* Issue global reset */
2699         write_op(sc, BGE_MISC_CFG, reset);
2700
2701         DELAY(100 * 1000);
2702
2703         /* XXX: Broadcom Linux driver. */
2704         if (sc->bnx_chipid == BGE_CHIPID_BCM5750_A0) {
2705                 uint32_t v;
2706
2707                 DELAY(500000); /* wait for link training to complete */
2708                 v = pci_read_config(dev, 0xc4, 4);
2709                 pci_write_config(dev, 0xc4, v | (1<<15), 4);
2710         }
2711
2712         devctl = pci_read_config(dev, sc->bnx_pciecap + PCIER_DEVCTRL, 2);
2713
2714         /* Disable no snoop and disable relaxed ordering. */
2715         devctl &= ~(PCIEM_DEVCTL_RELAX_ORDER | PCIEM_DEVCTL_NOSNOOP);
2716
2717         /* Old PCI-E chips only support 128 bytes Max PayLoad Size. */
2718         if ((sc->bnx_flags & BNX_FLAG_CPMU) == 0) {
2719                 devctl &= ~PCIEM_DEVCTL_MAX_PAYLOAD_MASK;
2720                 devctl |= PCIEM_DEVCTL_MAX_PAYLOAD_128;
2721         }
2722
2723         pci_write_config(dev, sc->bnx_pciecap + PCIER_DEVCTRL,
2724             devctl, 2);
2725
2726         /* Clear error status. */
2727         pci_write_config(dev, sc->bnx_pciecap + PCIER_DEVSTS,
2728             PCIEM_DEVSTS_CORR_ERR |
2729             PCIEM_DEVSTS_NFATAL_ERR |
2730             PCIEM_DEVSTS_FATAL_ERR |
2731             PCIEM_DEVSTS_UNSUPP_REQ, 2);
2732
2733         /* Reset some of the PCI state that got zapped by reset */
2734         pci_write_config(dev, BGE_PCI_MISC_CTL,
2735             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2736             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2737             BGE_PCIMISCCTL_TAGGED_STATUS, 4);
2738         val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
2739         if (sc->bnx_mfw_flags & BNX_MFW_ON_APE) {
2740                 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
2741                     BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
2742                     BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
2743         }
2744         pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
2745         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2746         pci_write_config(dev, BGE_PCI_CMD, command, 4);
2747
2748         /* Enable memory arbiter */
2749         CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2750
2751         /* Fix up byte swapping */
2752         CSR_WRITE_4(sc, BGE_MODE_CTL, bnx_dma_swap_options(sc));
2753
2754         val = CSR_READ_4(sc, BGE_MAC_MODE);
2755         val = (val & ~mac_mode_mask) | mac_mode;
2756         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2757         DELAY(40);
2758
2759         bnx_ape_unlock(sc, BGE_APE_LOCK_GRC);
2760
2761         /*
2762          * Poll until we see the 1's complement of the magic number.
2763          * This indicates that the firmware initialization is complete.
2764          */
2765         for (i = 0; i < BNX_FIRMWARE_TIMEOUT; i++) {
2766                 val = bnx_readmem_ind(sc, BGE_SRAM_FW_MB);
2767                 if (val == ~BGE_SRAM_FW_MB_MAGIC)
2768                         break;
2769                 DELAY(10);
2770         }
2771         if (i == BNX_FIRMWARE_TIMEOUT) {
2772                 if_printf(&sc->arpcom.ac_if, "firmware handshake "
2773                           "timed out, found 0x%08x\n", val);
2774         }
2775
2776         /* BCM57765 A0 needs additional time before accessing. */
2777         if (sc->bnx_chipid == BGE_CHIPID_BCM57765_A0)
2778                 DELAY(10 * 1000);
2779
2780         /*
2781          * The 5704 in TBI mode apparently needs some special
2782          * adjustment to insure the SERDES drive level is set
2783          * to 1.2V.
2784          */
2785         if (sc->bnx_asicrev == BGE_ASICREV_BCM5704 &&
2786             (sc->bnx_flags & BNX_FLAG_TBI)) {
2787                 uint32_t serdescfg;
2788
2789                 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2790                 serdescfg = (serdescfg & ~0xFFF) | 0x880;
2791                 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2792         }
2793
2794         CSR_WRITE_4(sc, BGE_MI_MODE,
2795             sc->bnx_mi_mode & ~BGE_MIMODE_AUTOPOLL);
2796         DELAY(80);
2797
2798         /* XXX: Broadcom Linux driver. */
2799         if (!BNX_IS_57765_PLUS(sc)) {
2800                 uint32_t v;
2801
2802                 /* Enable Data FIFO protection. */
2803                 v = CSR_READ_4(sc, BGE_PCIE_TLDLPL_PORT);
2804                 CSR_WRITE_4(sc, BGE_PCIE_TLDLPL_PORT, v | (1 << 25));
2805         }
2806
2807         DELAY(10000);
2808
2809         if (sc->bnx_asicrev == BGE_ASICREV_BCM5720) {
2810                 BNX_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
2811                     CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
2812         }
2813 }
2814
2815 /*
2816  * Frame reception handling. This is called if there's a frame
2817  * on the receive return list.
2818  *
2819  * Note: we have to be able to handle two possibilities here:
2820  * 1) the frame is from the jumbo recieve ring
2821  * 2) the frame is from the standard receive ring
2822  */
2823
2824 static void
2825 bnx_rxeof(struct bnx_rx_ret_ring *ret, uint16_t rx_prod, int count)
2826 {
2827         struct bnx_softc *sc = ret->bnx_sc;
2828         struct bnx_rx_std_ring *std = ret->bnx_std;
2829         struct ifnet *ifp = &sc->arpcom.ac_if;
2830         int std_used = 0, cpuid = mycpuid;
2831
2832         while (ret->bnx_rx_saved_considx != rx_prod && count != 0) {
2833                 struct pktinfo pi0, *pi = NULL;
2834                 struct bge_rx_bd *cur_rx;
2835                 struct bnx_rx_buf *rb;
2836                 uint32_t rxidx;
2837                 struct mbuf *m = NULL;
2838                 uint16_t vlan_tag = 0;
2839                 int have_tag = 0;
2840
2841                 --count;
2842
2843                 cur_rx = &ret->bnx_rx_ret_ring[ret->bnx_rx_saved_considx];
2844
2845                 rxidx = cur_rx->bge_idx;
2846                 KKASSERT(rxidx < BGE_STD_RX_RING_CNT);
2847
2848                 BNX_INC(ret->bnx_rx_saved_considx, BNX_RETURN_RING_CNT);
2849 #ifdef BNX_RSS_DEBUG
2850                 ret->bnx_rx_pkt++;
2851 #endif
2852
2853                 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2854                         have_tag = 1;
2855                         vlan_tag = cur_rx->bge_vlan_tag;
2856                 }
2857
2858                 if (ret->bnx_rx_cnt >= ret->bnx_rx_cntmax) {
2859                         atomic_add_int(&std->bnx_rx_std_used, std_used);
2860                         std_used = 0;
2861
2862                         bnx_rx_std_refill_sched(ret, std);
2863                 }
2864                 ret->bnx_rx_cnt++;
2865                 ++std_used;
2866
2867                 rb = &std->bnx_rx_std_buf[rxidx];
2868                 m = rb->bnx_rx_mbuf;
2869                 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2870                         IFNET_STAT_INC(ifp, ierrors, 1);
2871                         cpu_sfence();
2872                         rb->bnx_rx_refilled = 1;
2873                         continue;
2874                 }
2875                 if (bnx_newbuf_std(ret, rxidx, 0)) {
2876                         IFNET_STAT_INC(ifp, ierrors, 1);
2877                         continue;
2878                 }
2879
2880                 IFNET_STAT_INC(ifp, ipackets, 1);
2881                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2882                 m->m_pkthdr.rcvif = ifp;
2883
2884                 if ((ifp->if_capenable & IFCAP_RXCSUM) &&
2885                     (cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
2886                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
2887                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2888                                 if ((cur_rx->bge_error_flag &
2889                                     BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
2890                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2891                         }
2892                         if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2893                                 m->m_pkthdr.csum_data =
2894                                     cur_rx->bge_tcp_udp_csum;
2895                                 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
2896                                     CSUM_PSEUDO_HDR;
2897                         }
2898                 }
2899                 if (ifp->if_capenable & IFCAP_RSS) {
2900                         pi = bnx_rss_info(&pi0, cur_rx);
2901                         if (pi != NULL &&
2902                             (cur_rx->bge_flags & BGE_RXBDFLAG_RSS_HASH)) {
2903                                 m->m_flags |= M_HASH;
2904                                 m->m_pkthdr.hash =
2905                                     toeplitz_hash(cur_rx->bge_hash);
2906                         }
2907                 }
2908
2909                 /*
2910                  * If we received a packet with a vlan tag, pass it
2911                  * to vlan_input() instead of ether_input().
2912                  */
2913                 if (have_tag) {
2914                         m->m_flags |= M_VLANTAG;
2915                         m->m_pkthdr.ether_vlantag = vlan_tag;
2916                 }
2917                 ifp->if_input(ifp, m, pi, cpuid);
2918         }
2919         bnx_writembx(sc, ret->bnx_rx_mbx, ret->bnx_rx_saved_considx);
2920
2921         if (std_used > 0) {
2922                 int cur_std_used;
2923
2924                 cur_std_used = atomic_fetchadd_int(&std->bnx_rx_std_used,
2925                     std_used);
2926                 if (cur_std_used + std_used >= (BGE_STD_RX_RING_CNT / 2)) {
2927 #ifdef BNX_RSS_DEBUG
2928                         ret->bnx_rx_force_sched++;
2929 #endif
2930                         bnx_rx_std_refill_sched(ret, std);
2931                 }
2932         }
2933 }
2934
2935 static void
2936 bnx_txeof(struct bnx_tx_ring *txr, uint16_t tx_cons)
2937 {
2938         struct ifnet *ifp = &txr->bnx_sc->arpcom.ac_if;
2939
2940         /*
2941          * Go through our tx ring and free mbufs for those
2942          * frames that have been sent.
2943          */
2944         while (txr->bnx_tx_saved_considx != tx_cons) {
2945                 struct bnx_tx_buf *buf;
2946                 uint32_t idx = 0;
2947
2948                 idx = txr->bnx_tx_saved_considx;
2949                 buf = &txr->bnx_tx_buf[idx];
2950                 if (buf->bnx_tx_mbuf != NULL) {
2951                         IFNET_STAT_INC(ifp, opackets, 1);
2952 #ifdef BNX_TSS_DEBUG
2953                         txr->bnx_tx_pkt++;
2954 #endif
2955                         bus_dmamap_unload(txr->bnx_tx_mtag,
2956                             buf->bnx_tx_dmamap);
2957                         m_freem(buf->bnx_tx_mbuf);
2958                         buf->bnx_tx_mbuf = NULL;
2959                 }
2960                 txr->bnx_tx_cnt--;
2961                 BNX_INC(txr->bnx_tx_saved_considx, BGE_TX_RING_CNT);
2962         }
2963
2964         if ((BGE_TX_RING_CNT - txr->bnx_tx_cnt) >=
2965             (BNX_NSEG_RSVD + BNX_NSEG_SPARE))
2966                 ifsq_clr_oactive(txr->bnx_ifsq);
2967
2968         if (txr->bnx_tx_cnt == 0)
2969                 txr->bnx_tx_watchdog.wd_timer = 0;
2970
2971         if (!ifsq_is_empty(txr->bnx_ifsq))
2972                 ifsq_devstart(txr->bnx_ifsq);
2973 }
2974
2975 static int
2976 bnx_handle_status(struct bnx_softc *sc)
2977 {
2978         uint32_t status;
2979         int handle = 0;
2980
2981         status = *sc->bnx_hw_status;
2982
2983         if (status & BGE_STATFLAG_ERROR) {
2984                 uint32_t val;
2985                 int reset = 0;
2986
2987                 sc->bnx_errors++;
2988
2989                 val = CSR_READ_4(sc, BGE_FLOW_ATTN);
2990                 if (val & ~BGE_FLOWATTN_MB_LOWAT) {
2991                         if_printf(&sc->arpcom.ac_if,
2992                             "flow attn 0x%08x\n", val);
2993                         reset = 1;
2994                 }
2995
2996                 val = CSR_READ_4(sc, BGE_MSI_STATUS);
2997                 if (val & ~BGE_MSISTAT_MSI_PCI_REQ) {
2998                         if_printf(&sc->arpcom.ac_if,
2999                             "msi status 0x%08x\n", val);
3000                         reset = 1;
3001                 }
3002
3003                 val = CSR_READ_4(sc, BGE_RDMA_STATUS);
3004                 if (val) {
3005                         if_printf(&sc->arpcom.ac_if,
3006                             "rmda status 0x%08x\n", val);
3007                         reset = 1;
3008                 }
3009
3010                 val = CSR_READ_4(sc, BGE_WDMA_STATUS);
3011                 if (val) {
3012                         if_printf(&sc->arpcom.ac_if,
3013                             "wdma status 0x%08x\n", val);
3014                         reset = 1;
3015                 }
3016
3017                 if (reset) {
3018                         bnx_serialize_skipmain(sc);
3019                         bnx_init(sc);
3020                         bnx_deserialize_skipmain(sc);
3021                 }
3022                 handle = 1;
3023         }
3024
3025         if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) || sc->bnx_link_evt) {
3026                 if (bootverbose) {
3027                         if_printf(&sc->arpcom.ac_if, "link change, "
3028                             "link_evt %d\n", sc->bnx_link_evt);
3029                 }
3030                 bnx_link_poll(sc);
3031                 handle = 1;
3032         }
3033
3034         return handle;
3035 }
3036
3037 #ifdef IFPOLL_ENABLE
3038
3039 static void
3040 bnx_npoll_rx(struct ifnet *ifp __unused, void *xret, int cycle)
3041 {
3042         struct bnx_rx_ret_ring *ret = xret;
3043         uint16_t rx_prod;
3044
3045         ASSERT_SERIALIZED(&ret->bnx_rx_ret_serialize);
3046
3047         ret->bnx_saved_status_tag = *ret->bnx_hw_status_tag;
3048         cpu_lfence();
3049
3050         rx_prod = *ret->bnx_rx_considx;
3051         if (ret->bnx_rx_saved_considx != rx_prod)
3052                 bnx_rxeof(ret, rx_prod, cycle);
3053 }
3054
3055 static void
3056 bnx_npoll_tx_notag(struct ifnet *ifp __unused, void *xtxr, int cycle __unused)
3057 {
3058         struct bnx_tx_ring *txr = xtxr;
3059         uint16_t tx_cons;
3060
3061         ASSERT_SERIALIZED(&txr->bnx_tx_serialize);
3062
3063         tx_cons = *txr->bnx_tx_considx;
3064         if (txr->bnx_tx_saved_considx != tx_cons)
3065                 bnx_txeof(txr, tx_cons);
3066 }
3067
3068 static void
3069 bnx_npoll_tx(struct ifnet *ifp, void *xtxr, int cycle)
3070 {
3071         struct bnx_tx_ring *txr = xtxr;
3072
3073         ASSERT_SERIALIZED(&txr->bnx_tx_serialize);
3074
3075         txr->bnx_saved_status_tag = *txr->bnx_hw_status_tag;
3076         cpu_lfence();
3077         bnx_npoll_tx_notag(ifp, txr, cycle);
3078 }
3079
3080 static void
3081 bnx_npoll_status_notag(struct ifnet *ifp)
3082 {
3083         struct bnx_softc *sc = ifp->if_softc;
3084
3085         ASSERT_SERIALIZED(&sc->bnx_main_serialize);
3086
3087         if (bnx_handle_status(sc)) {
3088                 /*
3089                  * Status changes are handled; force the chip to
3090                  * update the status block to reflect whether there
3091                  * are more status changes or not, else staled status
3092                  * changes are always seen.
3093                  */
3094                 BNX_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3095         }
3096 }
3097
3098 static void
3099 bnx_npoll_status(struct ifnet *ifp)
3100 {
3101         struct bnx_softc *sc = ifp->if_softc;
3102
3103         ASSERT_SERIALIZED(&sc->bnx_main_serialize);
3104
3105         sc->bnx_saved_status_tag = *sc->bnx_hw_status_tag;
3106         cpu_lfence();
3107         bnx_npoll_status_notag(ifp);
3108 }
3109
3110 static void
3111 bnx_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3112 {
3113         struct bnx_softc *sc = ifp->if_softc;
3114         int i;
3115
3116         ASSERT_IFNET_SERIALIZED_ALL(ifp);
3117
3118         if (info != NULL) {
3119                 if (sc->bnx_flags & BNX_FLAG_STATUS_HASTAG)
3120                         info->ifpi_status.status_func = bnx_npoll_status;
3121                 else
3122                         info->ifpi_status.status_func = bnx_npoll_status_notag;
3123                 info->ifpi_status.serializer = &sc->bnx_main_serialize;
3124
3125                 for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
3126                         struct bnx_tx_ring *txr = &sc->bnx_tx_ring[i];
3127                         int idx = i + sc->bnx_npoll_txoff;
3128
3129                         KKASSERT(idx < ncpus2);
3130                         if (sc->bnx_flags & BNX_FLAG_RXTX_BUNDLE) {
3131                                 info->ifpi_tx[idx].poll_func =
3132                                     bnx_npoll_tx_notag;
3133                         } else {
3134                                 info->ifpi_tx[idx].poll_func = bnx_npoll_tx;
3135                         }
3136                         info->ifpi_tx[idx].arg = txr;
3137                         info->ifpi_tx[idx].serializer = &txr->bnx_tx_serialize;
3138                         ifsq_set_cpuid(txr->bnx_ifsq, idx);
3139                 }
3140
3141                 for (i = 0; i < sc->bnx_rx_retcnt; ++i) {
3142                         struct bnx_rx_ret_ring *ret = &sc->bnx_rx_ret_ring[i];
3143                         int idx = i + sc->bnx_npoll_rxoff;
3144
3145                         KKASSERT(idx < ncpus2);
3146                         info->ifpi_rx[idx].poll_func = bnx_npoll_rx;
3147                         info->ifpi_rx[idx].arg = ret;
3148                         info->ifpi_rx[idx].serializer =
3149                             &ret->bnx_rx_ret_serialize;
3150                 }
3151
3152                 if (ifp->if_flags & IFF_RUNNING) {
3153                         bnx_disable_intr(sc);
3154                         bnx_set_tick_cpuid(sc, TRUE);
3155
3156                         sc->bnx_coal_chg = BNX_TX_COAL_BDS_CHG |
3157                             BNX_RX_COAL_BDS_CHG;
3158                         bnx_coal_change(sc);
3159                 }
3160         } else {
3161                 for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
3162                         ifsq_set_cpuid(sc->bnx_tx_ring[i].bnx_ifsq,
3163                             sc->bnx_tx_ring[i].bnx_tx_cpuid);
3164                 }
3165                 if (ifp->if_flags & IFF_RUNNING) {
3166                         sc->bnx_coal_chg = BNX_TX_COAL_BDS_CHG |
3167                             BNX_RX_COAL_BDS_CHG;
3168                         bnx_coal_change(sc);
3169
3170                         bnx_enable_intr(sc);
3171                         bnx_set_tick_cpuid(sc, FALSE);
3172                 }
3173         }
3174 }
3175
3176 #endif  /* IFPOLL_ENABLE */
3177
3178 static void
3179 bnx_intr_legacy(void *xsc)
3180 {
3181         struct bnx_softc *sc = xsc;
3182         struct bnx_rx_ret_ring *ret = &sc->bnx_rx_ret_ring[0];
3183
3184         if (ret->bnx_saved_status_tag == *ret->bnx_hw_status_tag) {
3185                 uint32_t val;
3186
3187                 val = pci_read_config(sc->bnx_dev, BGE_PCI_PCISTATE, 4);
3188                 if (val & BGE_PCISTAT_INTR_NOTACT)
3189                         return;
3190         }
3191
3192         /*
3193          * NOTE:
3194          * Interrupt will have to be disabled if tagged status
3195          * is used, else interrupt will always be asserted on
3196          * certain chips (at least on BCM5750 AX/BX).
3197          */
3198         bnx_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3199
3200         bnx_intr(sc);
3201 }
3202
3203 static void
3204 bnx_msi(void *xsc)
3205 {
3206         bnx_intr(xsc);
3207 }
3208
3209 static void
3210 bnx_intr(struct bnx_softc *sc)
3211 {
3212         struct ifnet *ifp = &sc->arpcom.ac_if;
3213         struct bnx_rx_ret_ring *ret = &sc->bnx_rx_ret_ring[0];
3214
3215         ASSERT_SERIALIZED(&sc->bnx_main_serialize);
3216
3217         ret->bnx_saved_status_tag = *ret->bnx_hw_status_tag;
3218         /*
3219          * Use a load fence to ensure that status_tag is saved 
3220          * before rx_prod, tx_cons and status.
3221          */
3222         cpu_lfence();
3223
3224         bnx_handle_status(sc);
3225
3226         if (ifp->if_flags & IFF_RUNNING) {
3227                 struct bnx_tx_ring *txr = &sc->bnx_tx_ring[0];
3228                 uint16_t rx_prod, tx_cons;
3229
3230                 lwkt_serialize_enter(&ret->bnx_rx_ret_serialize);
3231                 rx_prod = *ret->bnx_rx_considx;
3232                 if (ret->bnx_rx_saved_considx != rx_prod)
3233                         bnx_rxeof(ret, rx_prod, -1);
3234                 lwkt_serialize_exit(&ret->bnx_rx_ret_serialize);
3235
3236                 lwkt_serialize_enter(&txr->bnx_tx_serialize);
3237                 tx_cons = *txr->bnx_tx_considx;
3238                 if (txr->bnx_tx_saved_considx != tx_cons)
3239                         bnx_txeof(txr, tx_cons);
3240                 lwkt_serialize_exit(&txr->bnx_tx_serialize);
3241         }
3242
3243         bnx_writembx(sc, BGE_MBX_IRQ0_LO, ret->bnx_saved_status_tag << 24);
3244 }
3245
3246 static void
3247 bnx_msix_tx_status(void *xtxr)
3248 {
3249         struct bnx_tx_ring *txr = xtxr;
3250         struct bnx_softc *sc = txr->bnx_sc;
3251         struct ifnet *ifp = &sc->arpcom.ac_if;
3252
3253         ASSERT_SERIALIZED(&sc->bnx_main_serialize);
3254
3255         txr->bnx_saved_status_tag = *txr->bnx_hw_status_tag;
3256         /*
3257          * Use a load fence to ensure that status_tag is saved 
3258          * before tx_cons and status.
3259          */
3260         cpu_lfence();
3261
3262         bnx_handle_status(sc);
3263
3264         if (ifp->if_flags & IFF_RUNNING) {
3265                 uint16_t tx_cons;
3266
3267                 lwkt_serialize_enter(&txr->bnx_tx_serialize);
3268                 tx_cons = *txr->bnx_tx_considx;
3269                 if (txr->bnx_tx_saved_considx != tx_cons)
3270                         bnx_txeof(txr, tx_cons);
3271                 lwkt_serialize_exit(&txr->bnx_tx_serialize);
3272         }
3273
3274         bnx_writembx(sc, BGE_MBX_IRQ0_LO, txr->bnx_saved_status_tag << 24);
3275 }
3276
3277 static void
3278 bnx_msix_rx(void *xret)
3279 {
3280         struct bnx_rx_ret_ring *ret = xret;
3281         uint16_t rx_prod;
3282
3283         ASSERT_SERIALIZED(&ret->bnx_rx_ret_serialize);
3284
3285         ret->bnx_saved_status_tag = *ret->bnx_hw_status_tag;
3286         /*
3287          * Use a load fence to ensure that status_tag is saved
3288          * before rx_prod.
3289          */
3290         cpu_lfence();
3291
3292         rx_prod = *ret->bnx_rx_considx;
3293         if (ret->bnx_rx_saved_considx != rx_prod)
3294                 bnx_rxeof(ret, rx_prod, -1);
3295
3296         bnx_writembx(ret->bnx_sc, ret->bnx_msix_mbx,
3297             ret->bnx_saved_status_tag << 24);
3298 }
3299
3300 static void
3301 bnx_msix_rxtx(void *xret)
3302 {
3303         struct bnx_rx_ret_ring *ret = xret;
3304         struct bnx_tx_ring *txr = ret->bnx_txr;
3305         uint16_t rx_prod, tx_cons;
3306
3307         ASSERT_SERIALIZED(&ret->bnx_rx_ret_serialize);
3308
3309         ret->bnx_saved_status_tag = *ret->bnx_hw_status_tag;
3310         /*
3311          * Use a load fence to ensure that status_tag is saved
3312          * before rx_prod and tx_cons.
3313          */
3314         cpu_lfence();
3315
3316         rx_prod = *ret->bnx_rx_considx;
3317         if (ret->bnx_rx_saved_considx != rx_prod)
3318                 bnx_rxeof(ret, rx_prod, -1);
3319
3320         lwkt_serialize_enter(&txr->bnx_tx_serialize);
3321         tx_cons = *txr->bnx_tx_considx;
3322         if (txr->bnx_tx_saved_considx != tx_cons)
3323                 bnx_txeof(txr, tx_cons);
3324         lwkt_serialize_exit(&txr->bnx_tx_serialize);
3325
3326         bnx_writembx(ret->bnx_sc, ret->bnx_msix_mbx,
3327             ret->bnx_saved_status_tag << 24);
3328 }
3329
3330 static void
3331 bnx_msix_status(void *xsc)
3332 {
3333         struct bnx_softc *sc = xsc;
3334
3335         ASSERT_SERIALIZED(&sc->bnx_main_serialize);
3336
3337         sc->bnx_saved_status_tag = *sc->bnx_hw_status_tag;
3338         /*
3339          * Use a load fence to ensure that status_tag is saved
3340          * before status.
3341          */
3342         cpu_lfence();
3343
3344         bnx_handle_status(sc);
3345
3346         bnx_writembx(sc, BGE_MBX_IRQ0_LO, sc->bnx_saved_status_tag << 24);
3347 }
3348
3349 static void
3350 bnx_tick(void *xsc)
3351 {
3352         struct bnx_softc *sc = xsc;
3353
3354         lwkt_serialize_enter(&sc->bnx_main_serialize);
3355
3356         bnx_stats_update_regs(sc);
3357
3358         if (sc->bnx_flags & BNX_FLAG_TBI) {
3359                 /*
3360                  * Since in TBI mode auto-polling can't be used we should poll
3361                  * link status manually. Here we register pending link event
3362                  * and trigger interrupt.
3363                  */
3364                 sc->bnx_link_evt++;
3365                 BNX_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3366         } else if (!sc->bnx_link) {
3367                 mii_tick(device_get_softc(sc->bnx_miibus));
3368         }
3369
3370         callout_reset_bycpu(&sc->bnx_tick_timer, hz, bnx_tick, sc,
3371             sc->bnx_tick_cpuid);
3372
3373         lwkt_serialize_exit(&sc->bnx_main_serialize);
3374 }
3375
3376 static void
3377 bnx_stats_update_regs(struct bnx_softc *sc)
3378 {
3379         struct ifnet *ifp = &sc->arpcom.ac_if;
3380         struct bge_mac_stats_regs stats;
3381         uint32_t *s, val;
3382         int i;
3383
3384         s = (uint32_t *)&stats;
3385         for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
3386                 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
3387                 s++;
3388         }
3389
3390         IFNET_STAT_SET(ifp, collisions,
3391            (stats.dot3StatsSingleCollisionFrames +
3392            stats.dot3StatsMultipleCollisionFrames +
3393            stats.dot3StatsExcessiveCollisions +
3394            stats.dot3StatsLateCollisions));
3395
3396         val = CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
3397         sc->bnx_norxbds += val;
3398 }
3399
3400 /*
3401  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3402  * pointers to descriptors.
3403  */
3404 static int
3405 bnx_encap(struct bnx_tx_ring *txr, struct mbuf **m_head0, uint32_t *txidx,
3406     int *segs_used)
3407 {
3408         struct bge_tx_bd *d = NULL;
3409         uint16_t csum_flags = 0, vlan_tag = 0, mss = 0;
3410         bus_dma_segment_t segs[BNX_NSEG_NEW];
3411         bus_dmamap_t map;
3412         int error, maxsegs, nsegs, idx, i;
3413         struct mbuf *m_head = *m_head0, *m_new;
3414
3415         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3416 #ifdef BNX_TSO_DEBUG
3417                 int tso_nsegs;
3418 #endif
3419
3420                 error = bnx_setup_tso(txr, m_head0, &mss, &csum_flags);
3421                 if (error)
3422                         return error;
3423                 m_head = *m_head0;
3424
3425 #ifdef BNX_TSO_DEBUG
3426                 tso_nsegs = (m_head->m_pkthdr.len /
3427                     m_head->m_pkthdr.tso_segsz) - 1;
3428                 if (tso_nsegs > (BNX_TSO_NSTATS - 1))
3429                         tso_nsegs = BNX_TSO_NSTATS - 1;
3430                 else if (tso_nsegs < 0)
3431                         tso_nsegs = 0;
3432                 txr->bnx_sc->bnx_tsosegs[tso_nsegs]++;
3433 #endif
3434         } else if (m_head->m_pkthdr.csum_flags & BNX_CSUM_FEATURES) {
3435                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3436                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3437                 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3438                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3439                 if (m_head->m_flags & M_LASTFRAG)
3440                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
3441                 else if (m_head->m_flags & M_FRAG)
3442                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
3443         }
3444         if (m_head->m_flags & M_VLANTAG) {
3445                 csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
3446                 vlan_tag = m_head->m_pkthdr.ether_vlantag;
3447         }
3448
3449         idx = *txidx;
3450         map = txr->bnx_tx_buf[idx].bnx_tx_dmamap;
3451
3452         maxsegs = (BGE_TX_RING_CNT - txr->bnx_tx_cnt) - BNX_NSEG_RSVD;
3453         KASSERT(maxsegs >= BNX_NSEG_SPARE,
3454                 ("not enough segments %d", maxsegs));
3455
3456         if (maxsegs > BNX_NSEG_NEW)
3457                 maxsegs = BNX_NSEG_NEW;
3458
3459         /*
3460          * Pad outbound frame to BGE_MIN_FRAMELEN for an unusual reason.
3461          * The bge hardware will pad out Tx runts to BGE_MIN_FRAMELEN,
3462          * but when such padded frames employ the bge IP/TCP checksum
3463          * offload, the hardware checksum assist gives incorrect results
3464          * (possibly from incorporating its own padding into the UDP/TCP
3465          * checksum; who knows).  If we pad such runts with zeros, the
3466          * onboard checksum comes out correct.
3467          */
3468         if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
3469             m_head->m_pkthdr.len < BNX_MIN_FRAMELEN) {
3470                 error = m_devpad(m_head, BNX_MIN_FRAMELEN);
3471                 if (error)
3472                         goto back;
3473         }
3474
3475         if ((txr->bnx_tx_flags & BNX_TX_FLAG_SHORTDMA) &&
3476             m_head->m_next != NULL) {
3477                 m_new = bnx_defrag_shortdma(m_head);
3478                 if (m_new == NULL) {
3479                         error = ENOBUFS;
3480                         goto back;
3481                 }
3482                 *m_head0 = m_head = m_new;
3483         }
3484         if ((m_head->m_pkthdr.csum_flags & CSUM_TSO) == 0 &&
3485             (txr->bnx_tx_flags & BNX_TX_FLAG_FORCE_DEFRAG) &&
3486             m_head->m_next != NULL) {
3487                 /*
3488                  * Forcefully defragment mbuf chain to overcome hardware
3489                  * limitation which only support a single outstanding
3490                  * DMA read operation.  If it fails, keep moving on using
3491                  * the original mbuf chain.
3492                  */
3493                 m_new = m_defrag(m_head, MB_DONTWAIT);
3494                 if (m_new != NULL)
3495                         *m_head0 = m_head = m_new;
3496         }
3497
3498         error = bus_dmamap_load_mbuf_defrag(txr->bnx_tx_mtag, map,
3499             m_head0, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3500         if (error)
3501                 goto back;
3502         *segs_used += nsegs;
3503
3504         m_head = *m_head0;
3505         bus_dmamap_sync(txr->bnx_tx_mtag, map, BUS_DMASYNC_PREWRITE);
3506
3507         for (i = 0; ; i++) {
3508                 d = &txr->bnx_tx_ring[idx];
3509
3510                 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
3511                 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
3512                 d->bge_len = segs[i].ds_len;
3513                 d->bge_flags = csum_flags;
3514                 d->bge_vlan_tag = vlan_tag;
3515                 d->bge_mss = mss;
3516
3517                 if (i == nsegs - 1)
3518                         break;
3519                 BNX_INC(idx, BGE_TX_RING_CNT);
3520         }
3521         /* Mark the last segment as end of packet... */
3522         d->bge_flags |= BGE_TXBDFLAG_END;
3523
3524         /*
3525          * Insure that the map for this transmission is placed at
3526          * the array index of the last descriptor in this chain.
3527          */
3528         txr->bnx_tx_buf[*txidx].bnx_tx_dmamap = txr->bnx_tx_buf[idx].bnx_tx_dmamap;
3529         txr->bnx_tx_buf[idx].bnx_tx_dmamap = map;
3530         txr->bnx_tx_buf[idx].bnx_tx_mbuf = m_head;
3531         txr->bnx_tx_cnt += nsegs;
3532
3533         BNX_INC(idx, BGE_TX_RING_CNT);
3534         *txidx = idx;
3535 back:
3536         if (error) {
3537                 m_freem(*m_head0);
3538                 *m_head0 = NULL;
3539         }
3540         return error;
3541 }
3542
3543 /*
3544  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3545  * to the mbuf data regions directly in the transmit descriptors.
3546  */
3547 static void
3548 bnx_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3549 {
3550         struct bnx_tx_ring *txr = ifsq_get_priv(ifsq);
3551         struct mbuf *m_head = NULL;
3552         uint32_t prodidx;
3553         int nsegs = 0;
3554
3555         KKASSERT(txr->bnx_ifsq == ifsq);
3556         ASSERT_SERIALIZED(&txr->bnx_tx_serialize);
3557
3558         if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
3559                 return;
3560
3561         prodidx = txr->bnx_tx_prodidx;
3562
3563         while (txr->bnx_tx_buf[prodidx].bnx_tx_mbuf == NULL) {
3564                 /*
3565                  * Sanity check: avoid coming within BGE_NSEG_RSVD
3566                  * descriptors of the end of the ring.  Also make
3567                  * sure there are BGE_NSEG_SPARE descriptors for
3568                  * jumbo buffers' or TSO segments' defragmentation.
3569                  */
3570                 if ((BGE_TX_RING_CNT - txr->bnx_tx_cnt) <
3571                     (BNX_NSEG_RSVD + BNX_NSEG_SPARE)) {
3572                         ifsq_set_oactive(ifsq);
3573                         break;
3574                 }
3575
3576                 m_head = ifsq_dequeue(ifsq);
3577                 if (m_head == NULL)
3578                         break;
3579
3580                 /*
3581                  * Pack the data into the transmit ring. If we
3582                  * don't have room, set the OACTIVE flag and wait
3583                  * for the NIC to drain the ring.
3584                  */
3585                 if (bnx_encap(txr, &m_head, &prodidx, &nsegs)) {
3586                         ifsq_set_oactive(ifsq);
3587                         IFNET_STAT_INC(ifp, oerrors, 1);
3588                         break;
3589                 }
3590
3591                 if (nsegs >= txr->bnx_tx_wreg) {
3592                         /* Transmit */
3593                         bnx_writembx(txr->bnx_sc, txr->bnx_tx_mbx, prodidx);
3594                         nsegs = 0;
3595                 }
3596
3597                 ETHER_BPF_MTAP(ifp, m_head);
3598
3599                 /*
3600                  * Set a timeout in case the chip goes out to lunch.
3601                  */
3602                 txr->bnx_tx_watchdog.wd_timer = 5;
3603         }
3604
3605         if (nsegs > 0) {
3606                 /* Transmit */
3607                 bnx_writembx(txr->bnx_sc, txr->bnx_tx_mbx, prodidx);
3608         }
3609         txr->bnx_tx_prodidx = prodidx;
3610 }
3611
3612 static void
3613 bnx_init(void *xsc)
3614 {
3615         struct bnx_softc *sc = xsc;
3616         struct ifnet *ifp = &sc->arpcom.ac_if;
3617         uint16_t *m;
3618         uint32_t mode;
3619         int i;
3620         boolean_t polling;
3621
3622         ASSERT_IFNET_SERIALIZED_ALL(ifp);
3623
3624         /* Cancel pending I/O and flush buffers. */
3625         bnx_stop(sc);
3626
3627         bnx_sig_pre_reset(sc, BNX_RESET_START);
3628         bnx_reset(sc);
3629         bnx_sig_post_reset(sc, BNX_RESET_START);
3630
3631         bnx_chipinit(sc);
3632
3633         /*
3634          * Init the various state machines, ring
3635          * control blocks and firmware.
3636          */
3637         if (bnx_blockinit(sc)) {
3638                 if_printf(ifp, "initialization failure\n");
3639                 bnx_stop(sc);
3640                 return;
3641         }
3642
3643         /* Specify MTU. */
3644         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3645             ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
3646
3647         /* Load our MAC address. */
3648         m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
3649         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3650         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3651
3652         /* Enable or disable promiscuous mode as needed. */
3653         bnx_setpromisc(sc);
3654
3655         /* Program multicast filter. */
3656         bnx_setmulti(sc);
3657
3658         /* Init RX ring. */
3659         if (bnx_init_rx_ring_std(&sc->bnx_rx_std_ring)) {
3660                 if_printf(ifp, "RX ring initialization failed\n");
3661                 bnx_stop(sc);
3662                 return;
3663         }
3664
3665         /* Init jumbo RX ring. */
3666         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) {
3667                 if (bnx_init_rx_ring_jumbo(sc)) {
3668                         if_printf(ifp, "Jumbo RX ring initialization failed\n");
3669                         bnx_stop(sc);
3670                         return;
3671                 }
3672         }
3673
3674         /* Init our RX return ring index */
3675         for (i = 0; i < sc->bnx_rx_retcnt; ++i) {
3676                 struct bnx_rx_ret_ring *ret = &sc->bnx_rx_ret_ring[i];
3677
3678                 ret->bnx_rx_saved_considx = 0;
3679                 ret->bnx_rx_cnt = 0;
3680         }
3681
3682         /* Init TX ring. */
3683         for (i = 0; i < sc->bnx_tx_ringcnt; ++i)
3684                 bnx_init_tx_ring(&sc->bnx_tx_ring[i]);
3685
3686         /* Enable TX MAC state machine lockup fix. */
3687         mode = CSR_READ_4(sc, BGE_TX_MODE);
3688         mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
3689         if (sc->bnx_asicrev == BGE_ASICREV_BCM5720 ||
3690             sc->bnx_asicrev == BGE_ASICREV_BCM5762) {
3691                 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
3692                 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
3693                     (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
3694         }
3695         /* Turn on transmitter */
3696         CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
3697         DELAY(100);
3698
3699         /* Initialize RSS */
3700         mode = BGE_RXMODE_ENABLE | BGE_RXMODE_IPV6_ENABLE;
3701         if (BNX_RSS_ENABLED(sc)) {
3702                 bnx_init_rss(sc);
3703                 mode |= BGE_RXMODE_RSS_ENABLE |
3704                     BGE_RXMODE_RSS_HASH_MASK_BITS |
3705                     BGE_RXMODE_RSS_IPV4_HASH |
3706                     BGE_RXMODE_RSS_TCP_IPV4_HASH;
3707         }
3708         /* Turn on receiver */
3709         BNX_SETBIT(sc, BGE_RX_MODE, mode);
3710         DELAY(10);
3711
3712         /*
3713          * Set the number of good frames to receive after RX MBUF
3714          * Low Watermark has been reached.  After the RX MAC receives
3715          * this number of frames, it will drop subsequent incoming
3716          * frames until the MBUF High Watermark is reached.
3717          */
3718         if (BNX_IS_57765_FAMILY(sc))
3719                 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
3720         else
3721                 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3722
3723         if (sc->bnx_intr_type == PCI_INTR_TYPE_MSI ||
3724             sc->bnx_intr_type == PCI_INTR_TYPE_MSIX) {
3725                 if (bootverbose) {
3726                         if_printf(ifp, "MSI_MODE: %#x\n",
3727                             CSR_READ_4(sc, BGE_MSI_MODE));
3728                 }
3729         }
3730
3731         /* Tell firmware we're alive. */
3732         BNX_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3733
3734         /* Enable host interrupts if polling(4) is not enabled. */
3735         PCI_SETBIT(sc->bnx_dev, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA, 4);
3736
3737         polling = FALSE;
3738 #ifdef IFPOLL_ENABLE
3739         if (ifp->if_flags & IFF_NPOLLING)
3740                 polling = TRUE;
3741 #endif
3742         if (polling)
3743                 bnx_disable_intr(sc);
3744         else
3745                 bnx_enable_intr(sc);
3746         bnx_set_tick_cpuid(sc, polling);
3747
3748         ifp->if_flags |= IFF_RUNNING;
3749         for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
3750                 struct bnx_tx_ring *txr = &sc->bnx_tx_ring[i];
3751
3752                 ifsq_clr_oactive(txr->bnx_ifsq);
3753                 ifsq_watchdog_start(&txr->bnx_tx_watchdog);
3754         }
3755
3756         bnx_ifmedia_upd(ifp);
3757
3758         callout_reset_bycpu(&sc->bnx_tick_timer, hz, bnx_tick, sc,
3759             sc->bnx_tick_cpuid);
3760 }
3761
3762 /*
3763  * Set media options.
3764  */
3765 static int
3766 bnx_ifmedia_upd(struct ifnet *ifp)
3767 {
3768         struct bnx_softc *sc = ifp->if_softc;
3769
3770         /* If this is a 1000baseX NIC, enable the TBI port. */
3771         if (sc->bnx_flags & BNX_FLAG_TBI) {
3772                 struct ifmedia *ifm = &sc->bnx_ifmedia;
3773
3774                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3775                         return(EINVAL);
3776
3777                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3778                 case IFM_AUTO:
3779                         break;
3780
3781                 case IFM_1000_SX:
3782                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3783                                 BNX_CLRBIT(sc, BGE_MAC_MODE,
3784                                     BGE_MACMODE_HALF_DUPLEX);
3785                         } else {
3786                                 BNX_SETBIT(sc, BGE_MAC_MODE,
3787                                     BGE_MACMODE_HALF_DUPLEX);
3788                         }
3789                         DELAY(40);
3790                         break;
3791                 default:
3792                         return(EINVAL);
3793                 }
3794         } else {
3795                 struct mii_data *mii = device_get_softc(sc->bnx_miibus);
3796
3797                 sc->bnx_link_evt++;
3798                 sc->bnx_link = 0;
3799                 if (mii->mii_instance) {
3800                         struct mii_softc *miisc;
3801
3802                         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3803                                 mii_phy_reset(miisc);
3804                 }
3805                 mii_mediachg(mii);
3806
3807                 /*
3808                  * Force an interrupt so that we will call bnx_link_upd
3809                  * if needed and clear any pending link state attention.
3810                  * Without this we are not getting any further interrupts
3811                  * for link state changes and thus will not UP the link and
3812                  * not be able to send in bnx_start.  The only way to get
3813                  * things working was to receive a packet and get an RX
3814                  * intr.
3815                  *
3816                  * bnx_tick should help for fiber cards and we might not
3817                  * need to do this here if BNX_FLAG_TBI is set but as
3818                  * we poll for fiber anyway it should not harm.
3819                  */
3820                 BNX_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3821         }
3822         return(0);
3823 }
3824
3825 /*
3826  * Report current media status.
3827  */
3828 static void
3829 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3830 {
3831         struct bnx_softc *sc = ifp->if_softc;
3832
3833         if ((ifp->if_flags & IFF_RUNNING) == 0)
3834                 return;
3835
3836         if (sc->bnx_flags & BNX_FLAG_TBI) {
3837                 ifmr->ifm_status = IFM_AVALID;
3838                 ifmr->ifm_active = IFM_ETHER;
3839                 if (CSR_READ_4(sc, BGE_MAC_STS) &
3840                     BGE_MACSTAT_TBI_PCS_SYNCHED) {
3841                         ifmr->ifm_status |= IFM_ACTIVE;
3842                 } else {
3843                         ifmr->ifm_active |= IFM_NONE;
3844                         return;
3845                 }
3846
3847                 ifmr->ifm_active |= IFM_1000_SX;
3848                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3849                         ifmr->ifm_active |= IFM_HDX;    
3850                 else
3851                         ifmr->ifm_active |= IFM_FDX;
3852         } else {
3853                 struct mii_data *mii = device_get_softc(sc->bnx_miibus);
3854
3855                 mii_pollstat(mii);
3856                 ifmr->ifm_active = mii->mii_media_active;
3857                 ifmr->ifm_status = mii->mii_media_status;
3858         }
3859 }
3860
3861 static int
3862 bnx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3863 {
3864         struct bnx_softc *sc = ifp->if_softc;
3865         struct ifreq *ifr = (struct ifreq *)data;
3866         int mask, error = 0;
3867
3868         ASSERT_IFNET_SERIALIZED_ALL(ifp);
3869
3870         switch (command) {
3871         case SIOCSIFMTU:
3872                 if ((!BNX_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
3873                     (BNX_IS_JUMBO_CAPABLE(sc) &&
3874                      ifr->ifr_mtu > BNX_JUMBO_MTU)) {
3875                         error = EINVAL;
3876                 } else if (ifp->if_mtu != ifr->ifr_mtu) {
3877                         ifp->if_mtu = ifr->ifr_mtu;
3878                         if (ifp->if_flags & IFF_RUNNING)
3879                                 bnx_init(sc);
3880                 }
3881                 break;
3882         case SIOCSIFFLAGS:
3883                 if (ifp->if_flags & IFF_UP) {
3884                         if (ifp->if_flags & IFF_RUNNING) {
3885                                 mask = ifp->if_flags ^ sc->bnx_if_flags;
3886
3887                                 /*
3888                                  * If only the state of the PROMISC flag
3889                                  * changed, then just use the 'set promisc
3890                                  * mode' command instead of reinitializing
3891                                  * the entire NIC. Doing a full re-init
3892                                  * means reloading the firmware and waiting
3893                                  * for it to start up, which may take a
3894                                  * second or two.  Similarly for ALLMULTI.
3895                                  */
3896                                 if (mask & IFF_PROMISC)
3897                                         bnx_setpromisc(sc);
3898                                 if (mask & IFF_ALLMULTI)
3899                                         bnx_setmulti(sc);
3900                         } else {
3901                                 bnx_init(sc);
3902                         }
3903                 } else if (ifp->if_flags & IFF_RUNNING) {
3904                         bnx_stop(sc);
3905                 }
3906                 sc->bnx_if_flags = ifp->if_flags;
3907                 break;
3908         case SIOCADDMULTI:
3909         case SIOCDELMULTI:
3910                 if (ifp->if_flags & IFF_RUNNING)
3911                         bnx_setmulti(sc);
3912                 break;
3913         case SIOCSIFMEDIA:
3914         case SIOCGIFMEDIA:
3915                 if (sc->bnx_flags & BNX_FLAG_TBI) {
3916                         error = ifmedia_ioctl(ifp, ifr,
3917                             &sc->bnx_ifmedia, command);
3918                 } else {
3919                         struct mii_data *mii;
3920
3921                         mii = device_get_softc(sc->bnx_miibus);
3922                         error = ifmedia_ioctl(ifp, ifr,
3923                                               &mii->mii_media, command);
3924                 }
3925                 break;
3926         case SIOCSIFCAP:
3927                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3928                 if (mask & IFCAP_HWCSUM) {
3929                         ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
3930                         if (ifp->if_capenable & IFCAP_TXCSUM)
3931                                 ifp->if_hwassist |= BNX_CSUM_FEATURES;
3932                         else
3933                                 ifp->if_hwassist &= ~BNX_CSUM_FEATURES;
3934                 }
3935                 if (mask & IFCAP_TSO) {
3936                         ifp->if_capenable ^= (mask & IFCAP_TSO);
3937                         if (ifp->if_capenable & IFCAP_TSO)
3938                                 ifp->if_hwassist |= CSUM_TSO;
3939                         else
3940                                 ifp->if_hwassist &= ~CSUM_TSO;
3941                 }
3942                 if (mask & IFCAP_RSS)
3943                         ifp->if_capenable ^= IFCAP_RSS;
3944                 break;
3945         default:
3946                 error = ether_ioctl(ifp, command, data);
3947                 break;
3948         }
3949         return error;
3950 }
3951
3952 static void
3953 bnx_watchdog(struct ifaltq_subque *ifsq)
3954 {
3955         struct ifnet *ifp = ifsq_get_ifp(ifsq);
3956         struct bnx_softc *sc = ifp->if_softc;
3957         int i;
3958
3959         ASSERT_IFNET_SERIALIZED_ALL(ifp);
3960
3961         if_printf(ifp, "watchdog timeout -- resetting\n");
3962
3963         bnx_init(sc);
3964
3965         IFNET_STAT_INC(ifp, oerrors, 1);
3966
3967         for (i = 0; i < sc->bnx_tx_ringcnt; ++i)
3968                 ifsq_devstart_sched(sc->bnx_tx_ring[i].bnx_ifsq);
3969 }
3970
3971 /*
3972  * Stop the adapter and free any mbufs allocated to the
3973  * RX and TX lists.
3974  */
3975 static void
3976 bnx_stop(struct bnx_softc *sc)
3977 {
3978         struct ifnet *ifp = &sc->arpcom.ac_if;
3979         int i;
3980
3981         ASSERT_IFNET_SERIALIZED_ALL(ifp);
3982
3983         callout_stop(&sc->bnx_tick_timer);
3984
3985         /* Disable host interrupts. */
3986         bnx_disable_intr(sc);
3987
3988         /*
3989          * Tell firmware we're shutting down.
3990          */
3991         bnx_sig_pre_reset(sc, BNX_RESET_SHUTDOWN);
3992
3993         /*
3994          * Disable all of the receiver blocks
3995          */
3996         bnx_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3997         bnx_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3998         bnx_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3999         bnx_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4000         bnx_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4001         bnx_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4002
4003         /*
4004          * Disable all of the transmit blocks
4005          */
4006         bnx_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4007         bnx_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4008         bnx_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4009         bnx_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4010         bnx_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4011         bnx_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4012
4013         /*
4014          * Shut down all of the memory managers and related
4015          * state machines.
4016          */
4017         bnx_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4018         bnx_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4019         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4020         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4021
4022         bnx_reset(sc);
4023         bnx_sig_post_reset(sc, BNX_RESET_SHUTDOWN);
4024
4025         /*
4026          * Tell firmware we're shutting down.
4027          */
4028         BNX_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4029
4030         /* Free the RX lists. */
4031         bnx_free_rx_ring_std(&sc->bnx_rx_std_ring);
4032
4033         /* Free jumbo RX list. */
4034         if (BNX_IS_JUMBO_CAPABLE(sc))
4035                 bnx_free_rx_ring_jumbo(sc);
4036
4037         /* Free TX buffers. */
4038         for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
4039                 struct bnx_tx_ring *txr = &sc->bnx_tx_ring[i];
4040
4041                 txr->bnx_saved_status_tag = 0;
4042                 bnx_free_tx_ring(txr);
4043         }
4044
4045         /* Clear saved status tag */
4046         for (i = 0; i < sc->bnx_rx_retcnt; ++i)
4047                 sc->bnx_rx_ret_ring[i].bnx_saved_status_tag = 0;
4048
4049         sc->bnx_link = 0;
4050         sc->bnx_coal_chg = 0;
4051
4052         ifp->if_flags &= ~IFF_RUNNING;
4053         for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
4054                 struct bnx_tx_ring *txr = &sc->bnx_tx_ring[i];
4055
4056                 ifsq_clr_oactive(txr->bnx_ifsq);
4057                 ifsq_watchdog_stop(&txr->bnx_tx_watchdog);
4058         }
4059 }
4060
4061 /*
4062  * Stop all chip I/O so that the kernel's probe routines don't
4063  * get confused by errant DMAs when rebooting.
4064  */
4065 static void
4066 bnx_shutdown(device_t dev)
4067 {
4068         struct bnx_softc *sc = device_get_softc(dev);
4069         struct ifnet *ifp = &sc->arpcom.ac_if;
4070
4071         ifnet_serialize_all(ifp);
4072         bnx_stop(sc);
4073         ifnet_deserialize_all(ifp);
4074 }
4075
4076 static int
4077 bnx_suspend(device_t dev)
4078 {
4079         struct bnx_softc *sc = device_get_softc(dev);
4080         struct ifnet *ifp = &sc->arpcom.ac_if;
4081
4082         ifnet_serialize_all(ifp);
4083         bnx_stop(sc);
4084         ifnet_deserialize_all(ifp);
4085
4086         return 0;
4087 }
4088
4089 static int
4090 bnx_resume(device_t dev)
4091 {
4092         struct bnx_softc *sc = device_get_softc(dev);
4093         struct ifnet *ifp = &sc->arpcom.ac_if;
4094
4095         ifnet_serialize_all(ifp);
4096
4097         if (ifp->if_flags & IFF_UP) {
4098                 int i;
4099
4100                 bnx_init(sc);
4101                 for (i = 0; i < sc->bnx_tx_ringcnt; ++i)
4102                         ifsq_devstart_sched(sc->bnx_tx_ring[i].bnx_ifsq);
4103         }
4104
4105         ifnet_deserialize_all(ifp);
4106
4107         return 0;
4108 }
4109
4110 static void
4111 bnx_setpromisc(struct bnx_softc *sc)
4112 {
4113         struct ifnet *ifp = &sc->arpcom.ac_if;
4114
4115         if (ifp->if_flags & IFF_PROMISC)
4116                 BNX_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4117         else
4118                 BNX_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4119 }
4120
4121 static void
4122 bnx_dma_free(struct bnx_softc *sc)
4123 {
4124         struct bnx_rx_std_ring *std = &sc->bnx_rx_std_ring;
4125         int i;
4126
4127         /* Destroy RX return rings */
4128         if (sc->bnx_rx_ret_ring != NULL) {
4129                 for (i = 0; i < sc->bnx_rx_retcnt; ++i)
4130                         bnx_destroy_rx_ret_ring(&sc->bnx_rx_ret_ring[i]);
4131                 kfree(sc->bnx_rx_ret_ring, M_DEVBUF);
4132         }
4133
4134         /* Destroy RX mbuf DMA stuffs. */
4135         if (std->bnx_rx_mtag != NULL) {
4136                 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4137                         KKASSERT(std->bnx_rx_std_buf[i].bnx_rx_mbuf == NULL);
4138                         bus_dmamap_destroy(std->bnx_rx_mtag,
4139                             std->bnx_rx_std_buf[i].bnx_rx_dmamap);
4140                 }
4141                 bus_dma_tag_destroy(std->bnx_rx_mtag);
4142         }
4143
4144         /* Destroy standard RX ring */
4145         bnx_dma_block_free(std->bnx_rx_std_ring_tag,
4146             std->bnx_rx_std_ring_map, std->bnx_rx_std_ring);
4147
4148         /* Destroy TX rings */
4149         if (sc->bnx_tx_ring != NULL) {
4150                 for (i = 0; i < sc->bnx_tx_ringcnt; ++i)
4151                         bnx_destroy_tx_ring(&sc->bnx_tx_ring[i]);
4152                 kfree(sc->bnx_tx_ring, M_DEVBUF);
4153         }
4154
4155         if (BNX_IS_JUMBO_CAPABLE(sc))
4156                 bnx_free_jumbo_mem(sc);
4157
4158         /* Destroy status blocks */
4159         for (i = 0; i < sc->bnx_intr_cnt; ++i) {
4160                 struct bnx_intr_data *intr = &sc->bnx_intr_data[i];
4161
4162                 bnx_dma_block_free(intr->bnx_status_tag,
4163                     intr->bnx_status_map, intr->bnx_status_block);
4164         }
4165
4166         /* Destroy the parent tag */
4167         if (sc->bnx_cdata.bnx_parent_tag != NULL)
4168                 bus_dma_tag_destroy(sc->bnx_cdata.bnx_parent_tag);
4169 }
4170
4171 static int
4172 bnx_dma_alloc(device_t dev)
4173 {
4174         struct bnx_softc *sc = device_get_softc(dev);
4175         struct bnx_rx_std_ring *std = &sc->bnx_rx_std_ring;
4176         int i, error, mbx;
4177
4178         /*
4179          * Allocate the parent bus DMA tag appropriate for PCI.
4180          *
4181          * All of the NetExtreme/NetLink controllers have 4GB boundary
4182          * DMA bug.
4183          * Whenever an address crosses a multiple of the 4GB boundary
4184          * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
4185          * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
4186          * state machine will lockup and cause the device to hang.
4187          */
4188         error = bus_dma_tag_create(NULL, 1, BGE_DMA_BOUNDARY_4G,
4189             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
4190             BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
4191             0, &sc->bnx_cdata.bnx_parent_tag);
4192         if (error) {
4193                 device_printf(dev, "could not create parent DMA tag\n");
4194                 return error;
4195         }
4196
4197         /*
4198          * Create DMA stuffs for status blocks.
4199          */
4200         for (i = 0; i < sc->bnx_intr_cnt; ++i) {
4201                 struct bnx_intr_data *intr = &sc->bnx_intr_data[i];
4202
4203                 error = bnx_dma_block_alloc(sc,
4204                     __VM_CACHELINE_ALIGN(BGE_STATUS_BLK_SZ),
4205                     &intr->bnx_status_tag, &intr->bnx_status_map,
4206                     (void *)&intr->bnx_status_block,
4207                     &intr->bnx_status_block_paddr);
4208                 if (error) {
4209                         device_printf(dev,
4210                             "could not create %dth status block\n", i);
4211                         return error;
4212                 }
4213         }
4214         sc->bnx_hw_status = &sc->bnx_intr_data[0].bnx_status_block->bge_status;
4215         if (sc->bnx_flags & BNX_FLAG_STATUS_HASTAG) {
4216                 sc->bnx_hw_status_tag =
4217                     &sc->bnx_intr_data[0].bnx_status_block->bge_status_tag;
4218         }
4219
4220         /*
4221          * Create DMA tag and maps for RX mbufs.
4222          */
4223         std->bnx_sc = sc;
4224         lwkt_serialize_init(&std->bnx_rx_std_serialize);
4225         error = bus_dma_tag_create(sc->bnx_cdata.bnx_parent_tag, 1, 0,
4226             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4227             NULL, NULL, MCLBYTES, 1, MCLBYTES,
4228             BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK, &std->bnx_rx_mtag);
4229         if (error) {
4230                 device_printf(dev, "could not create RX mbuf DMA tag\n");
4231                 return error;
4232         }
4233
4234         for (i = 0; i < BGE_STD_RX_RING_CNT; ++i) {
4235                 error = bus_dmamap_create(std->bnx_rx_mtag, BUS_DMA_WAITOK,
4236                     &std->bnx_rx_std_buf[i].bnx_rx_dmamap);
4237                 if (error) {
4238                         int j;
4239
4240                         for (j = 0; j < i; ++j) {
4241                                 bus_dmamap_destroy(std->bnx_rx_mtag,
4242                                     std->bnx_rx_std_buf[j].bnx_rx_dmamap);
4243                         }
4244                         bus_dma_tag_destroy(std->bnx_rx_mtag);
4245                         std->bnx_rx_mtag = NULL;
4246
4247                         device_printf(dev,
4248                             "could not create %dth RX mbuf DMA map\n", i);
4249                         return error;
4250                 }
4251         }
4252
4253         /*
4254          * Create DMA stuffs for standard RX ring.
4255          */
4256         error = bnx_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
4257             &std->bnx_rx_std_ring_tag,
4258             &std->bnx_rx_std_ring_map,
4259             (void *)&std->bnx_rx_std_ring,
4260             &std->bnx_rx_std_ring_paddr);
4261         if (error) {
4262                 device_printf(dev, "could not create std RX ring\n");
4263                 return error;
4264         }
4265
4266         /*
4267          * Create RX return rings
4268          */
4269         mbx = BGE_MBX_RX_CONS0_LO;
4270         sc->bnx_rx_ret_ring = kmalloc_cachealign(
4271             sizeof(struct bnx_rx_ret_ring) * sc->bnx_rx_retcnt, M_DEVBUF,
4272             M_WAITOK | M_ZERO);
4273         for (i = 0; i < sc->bnx_rx_retcnt; ++i) {
4274                 struct bnx_rx_ret_ring *ret = &sc->bnx_rx_ret_ring[i];
4275                 struct bnx_intr_data *intr;
4276
4277                 ret->bnx_sc = sc;
4278                 ret->bnx_std = std;
4279                 ret->bnx_rx_mbx = mbx;
4280                 ret->bnx_rx_cntmax = (BGE_STD_RX_RING_CNT / 4) /
4281                     sc->bnx_rx_retcnt;
4282                 ret->bnx_rx_mask = 1 << i;
4283
4284                 if (!BNX_RSS_ENABLED(sc)) {
4285                         intr = &sc->bnx_intr_data[0];
4286                 } else {
4287                         KKASSERT(i + 1 < sc->bnx_intr_cnt);
4288                         intr = &sc->bnx_intr_data[i + 1];
4289                 }
4290
4291                 if (i == 0) {
4292                         ret->bnx_rx_considx =
4293                             &intr->bnx_status_block->bge_idx[0].bge_rx_prod_idx;
4294                 } else if (i == 1) {
4295                         ret->bnx_rx_considx =
4296                             &intr->bnx_status_block->bge_rx_jumbo_cons_idx;
4297                 } else if (i == 2) {
4298                         ret->bnx_rx_considx =
4299                             &intr->bnx_status_block->bge_rsvd1;
4300                 } else if (i == 3) {
4301                         ret->bnx_rx_considx =
4302                             &intr->bnx_status_block->bge_rx_mini_cons_idx;
4303                 } else {
4304                         panic("unknown RX return ring %d\n", i);
4305                 }
4306                 ret->bnx_hw_status_tag =
4307                     &intr->bnx_status_block->bge_status_tag;
4308
4309                 error = bnx_create_rx_ret_ring(ret);
4310                 if (error) {
4311                         device_printf(dev,
4312                             "could not create %dth RX ret ring\n", i);
4313                         return error;
4314                 }
4315                 mbx += 8;
4316         }
4317
4318         /*
4319          * Create TX rings
4320          */
4321         sc->bnx_tx_ring = kmalloc_cachealign(
4322             sizeof(struct bnx_tx_ring) * sc->bnx_tx_ringcnt, M_DEVBUF,
4323             M_WAITOK | M_ZERO);
4324         for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
4325                 struct bnx_tx_ring *txr = &sc->bnx_tx_ring[i];
4326                 struct bnx_intr_data *intr;
4327
4328                 txr->bnx_sc = sc;
4329                 txr->bnx_tx_mbx = bnx_tx_mailbox[i];
4330
4331                 if (sc->bnx_tx_ringcnt == 1) {
4332                         intr = &sc->bnx_intr_data[0];
4333                 } else {
4334                         KKASSERT(i + 1 < sc->bnx_intr_cnt);
4335                         intr = &sc->bnx_intr_data[i + 1];
4336                 }
4337
4338                 if ((sc->bnx_flags & BNX_FLAG_RXTX_BUNDLE) == 0) {
4339                         txr->bnx_hw_status_tag =
4340                             &intr->bnx_status_block->bge_status_tag;
4341                 }
4342                 txr->bnx_tx_considx =
4343                     &intr->bnx_status_block->bge_idx[0].bge_tx_cons_idx;
4344
4345                 error = bnx_create_tx_ring(txr);
4346                 if (error) {
4347                         device_printf(dev,
4348                             "could not create %dth TX ring\n", i);
4349                         return error;
4350                 }
4351         }
4352
4353         /*
4354          * Create jumbo buffer pool.
4355          */
4356         if (BNX_IS_JUMBO_CAPABLE(sc)) {
4357                 error = bnx_alloc_jumbo_mem(sc);
4358                 if (error) {
4359                         device_printf(dev,
4360                             "could not create jumbo buffer pool\n");
4361                         return error;
4362                 }
4363         }
4364
4365         return 0;
4366 }
4367
4368 static int
4369 bnx_dma_block_alloc(struct bnx_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
4370                     bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
4371 {
4372         bus_dmamem_t dmem;
4373         int error;
4374
4375         error = bus_dmamem_coherent(sc->bnx_cdata.bnx_parent_tag, PAGE_SIZE, 0,
4376                                     BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4377                                     size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
4378         if (error)
4379                 return error;
4380
4381         *tag = dmem.dmem_tag;
4382         *map = dmem.dmem_map;
4383         *addr = dmem.dmem_addr;
4384         *paddr = dmem.dmem_busaddr;
4385
4386         return 0;
4387 }
4388
4389 static void
4390 bnx_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
4391 {
4392         if (tag != NULL) {
4393                 bus_dmamap_unload(tag, map);
4394                 bus_dmamem_free(tag, addr, map);
4395                 bus_dma_tag_destroy(tag);
4396         }
4397 }
4398
4399 static void
4400 bnx_tbi_link_upd(struct bnx_softc *sc, uint32_t status)
4401 {
4402         struct ifnet *ifp = &sc->arpcom.ac_if;
4403
4404 #define PCS_ENCODE_ERR  (BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
4405
4406         /*
4407          * Sometimes PCS encoding errors are detected in
4408          * TBI mode (on fiber NICs), and for some reason
4409          * the chip will signal them as link changes.
4410          * If we get a link change event, but the 'PCS
4411          * encoding error' bit in the MAC status register
4412          * is set, don't bother doing a link check.
4413          * This avoids spurious "gigabit link up" messages
4414          * that sometimes appear on fiber NICs during
4415          * periods of heavy traffic.
4416          */
4417         if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4418                 if (!sc->bnx_link) {
4419                         sc->bnx_link++;
4420                         if (sc->bnx_asicrev == BGE_ASICREV_BCM5704) {
4421                                 BNX_CLRBIT(sc, BGE_MAC_MODE,
4422                                     BGE_MACMODE_TBI_SEND_CFGS);
4423                                 DELAY(40);
4424                         }
4425                         CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4426
4427                         if (bootverbose)
4428                                 if_printf(ifp, "link UP\n");
4429
4430                         ifp->if_link_state = LINK_STATE_UP;
4431                         if_link_state_change(ifp);
4432                 }
4433         } else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
4434                 if (sc->bnx_link) {
4435                         sc->bnx_link = 0;
4436
4437                         if (bootverbose)
4438                                 if_printf(ifp, "link DOWN\n");
4439
4440                         ifp->if_link_state = LINK_STATE_DOWN;
4441                         if_link_state_change(ifp);
4442                 }
4443         }
4444
4445 #undef PCS_ENCODE_ERR
4446
4447         /* Clear the attention. */
4448         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4449             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4450             BGE_MACSTAT_LINK_CHANGED);
4451 }
4452
4453 static void
4454 bnx_copper_link_upd(struct bnx_softc *sc, uint32_t status __unused)
4455 {
4456         struct ifnet *ifp = &sc->arpcom.ac_if;
4457         struct mii_data *mii = device_get_softc(sc->bnx_miibus);
4458
4459         mii_pollstat(mii);
4460         bnx_miibus_statchg(sc->bnx_dev);
4461
4462         if (bootverbose) {
4463                 if (sc->bnx_link)
4464                         if_printf(ifp, "link UP\n");
4465                 else
4466                         if_printf(ifp, "link DOWN\n");
4467         }
4468
4469         /* Clear the attention. */
4470         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4471             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4472             BGE_MACSTAT_LINK_CHANGED);
4473 }
4474
4475 static void
4476 bnx_autopoll_link_upd(struct bnx_softc *sc, uint32_t status __unused)
4477 {
4478         struct ifnet *ifp = &sc->arpcom.ac_if;
4479         struct mii_data *mii = device_get_softc(sc->bnx_miibus);
4480
4481         mii_pollstat(mii);
4482
4483         if (!sc->bnx_link &&
4484             (mii->mii_media_status & IFM_ACTIVE) &&
4485             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4486                 sc->bnx_link++;
4487                 if (bootverbose)
4488                         if_printf(ifp, "link UP\n");
4489         } else if (sc->bnx_link &&
4490             (!(mii->mii_media_status & IFM_ACTIVE) ||
4491             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4492                 sc->bnx_link = 0;
4493                 if (bootverbose)
4494                         if_printf(ifp, "link DOWN\n");
4495         }
4496
4497         /* Clear the attention. */
4498         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4499             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4500             BGE_MACSTAT_LINK_CHANGED);
4501 }
4502
4503 static int
4504 bnx_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
4505 {
4506         struct bnx_softc *sc = arg1;
4507
4508         return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
4509             &sc->bnx_rx_coal_ticks,
4510             BNX_RX_COAL_TICKS_MIN, BNX_RX_COAL_TICKS_MAX,
4511             BNX_RX_COAL_TICKS_CHG);
4512 }
4513
4514 static int
4515 bnx_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
4516 {
4517         struct bnx_softc *sc = arg1;
4518
4519         return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
4520             &sc->bnx_tx_coal_ticks,
4521             BNX_TX_COAL_TICKS_MIN, BNX_TX_COAL_TICKS_MAX,
4522             BNX_TX_COAL_TICKS_CHG);
4523 }
4524
4525 static int
4526 bnx_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS)
4527 {
4528         struct bnx_softc *sc = arg1;
4529
4530         return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
4531             &sc->bnx_rx_coal_bds,
4532             BNX_RX_COAL_BDS_MIN, BNX_RX_COAL_BDS_MAX,
4533             BNX_RX_COAL_BDS_CHG);
4534 }
4535
4536 static int
4537 bnx_sysctl_rx_coal_bds_poll(SYSCTL_HANDLER_ARGS)
4538 {
4539         struct bnx_softc *sc = arg1;
4540
4541         return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
4542             &sc->bnx_rx_coal_bds_poll,
4543             BNX_RX_COAL_BDS_MIN, BNX_RX_COAL_BDS_MAX,
4544             BNX_RX_COAL_BDS_CHG);
4545 }
4546
4547 static int
4548 bnx_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS)
4549 {
4550         struct bnx_softc *sc = arg1;
4551
4552         return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
4553             &sc->bnx_tx_coal_bds,
4554             BNX_TX_COAL_BDS_MIN, BNX_TX_COAL_BDS_MAX,
4555             BNX_TX_COAL_BDS_CHG);
4556 }
4557
4558 static int
4559 bnx_sysctl_tx_coal_bds_poll(SYSCTL_HANDLER_ARGS)
4560 {
4561         struct bnx_softc *sc = arg1;
4562
4563         return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
4564             &sc->bnx_tx_coal_bds_poll,
4565             BNX_TX_COAL_BDS_MIN, BNX_TX_COAL_BDS_MAX,
4566             BNX_TX_COAL_BDS_CHG);
4567 }
4568
4569 static int
4570 bnx_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4571 {
4572         struct bnx_softc *sc = arg1;
4573
4574         return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
4575             &sc->bnx_rx_coal_bds_int,
4576             BNX_RX_COAL_BDS_MIN, BNX_RX_COAL_BDS_MAX,
4577             BNX_RX_COAL_BDS_INT_CHG);
4578 }
4579
4580 static int
4581 bnx_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4582 {
4583         struct bnx_softc *sc = arg1;
4584
4585         return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
4586             &sc->bnx_tx_coal_bds_int,
4587             BNX_TX_COAL_BDS_MIN, BNX_TX_COAL_BDS_MAX,
4588             BNX_TX_COAL_BDS_INT_CHG);
4589 }
4590
4591 static int
4592 bnx_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
4593     int coal_min, int coal_max, uint32_t coal_chg_mask)
4594 {
4595         struct bnx_softc *sc = arg1;
4596         struct ifnet *ifp = &sc->arpcom.ac_if;
4597         int error = 0, v;
4598
4599         ifnet_serialize_all(ifp);
4600
4601         v = *coal;
4602         error = sysctl_handle_int(oidp, &v, 0, req);
4603         if (!error && req->newptr != NULL) {
4604                 if (v < coal_min || v > coal_max) {
4605                         error = EINVAL;
4606                 } else {
4607                         *coal = v;
4608                         sc->bnx_coal_chg |= coal_chg_mask;
4609
4610                         /* Commit changes */
4611                         bnx_coal_change(sc);
4612                 }
4613         }
4614
4615         ifnet_deserialize_all(ifp);
4616         return error;
4617 }
4618
4619 static void
4620 bnx_coal_change(struct bnx_softc *sc)
4621 {
4622         struct ifnet *ifp = &sc->arpcom.ac_if;
4623         int i;
4624
4625         ASSERT_IFNET_SERIALIZED_ALL(ifp);
4626
4627         if (sc->bnx_coal_chg & BNX_RX_COAL_TICKS_CHG) {
4628                 if (sc->bnx_rx_retcnt == 1) {
4629                         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
4630                             sc->bnx_rx_coal_ticks);
4631                         i = 0;
4632                 } else {
4633                         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, 0);
4634                         for (i = 0; i < sc->bnx_rx_retcnt; ++i) {
4635                                 CSR_WRITE_4(sc, BGE_VEC1_RX_COAL_TICKS +
4636                                     (i * BGE_VEC_COALSET_SIZE),
4637                                     sc->bnx_rx_coal_ticks);
4638                         }
4639                 }
4640                 for (; i < BNX_INTR_MAX - 1; ++i) {
4641                         CSR_WRITE_4(sc, BGE_VEC1_RX_COAL_TICKS +
4642                             (i * BGE_VEC_COALSET_SIZE), 0);
4643                 }
4644                 if (bootverbose) {
4645                         if_printf(ifp, "rx_coal_ticks -> %u\n",
4646                             sc->bnx_rx_coal_ticks);
4647                 }
4648         }
4649
4650         if (sc->bnx_coal_chg & BNX_TX_COAL_TICKS_CHG) {
4651                 if (sc->bnx_tx_ringcnt == 1) {
4652                         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
4653                             sc->bnx_tx_coal_ticks);
4654                         i = 0;
4655                 } else {
4656                         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, 0);
4657                         for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
4658                                 CSR_WRITE_4(sc, BGE_VEC1_TX_COAL_TICKS +
4659                                     (i * BGE_VEC_COALSET_SIZE),
4660                                     sc->bnx_tx_coal_ticks);
4661                         }
4662                 }
4663                 for (; i < BNX_INTR_MAX - 1; ++i) {
4664                         CSR_WRITE_4(sc, BGE_VEC1_TX_COAL_TICKS +
4665                             (i * BGE_VEC_COALSET_SIZE), 0);
4666                 }
4667                 if (bootverbose) {
4668                         if_printf(ifp, "tx_coal_ticks -> %u\n",
4669                             sc->bnx_tx_coal_ticks);
4670                 }
4671         }
4672
4673         if (sc->bnx_coal_chg & BNX_RX_COAL_BDS_CHG) {
4674                 uint32_t rx_coal_bds;
4675
4676                 if (ifp->if_flags & IFF_NPOLLING)
4677                         rx_coal_bds = sc->bnx_rx_coal_bds_poll;
4678                 else
4679                         rx_coal_bds = sc->bnx_rx_coal_bds;
4680
4681                 if (sc->bnx_rx_retcnt == 1) {
4682                         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_coal_bds);
4683                         i = 0;
4684                 } else {
4685                         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, 0);
4686                         for (i = 0; i < sc->bnx_rx_retcnt; ++i) {
4687                                 CSR_WRITE_4(sc, BGE_VEC1_RX_MAX_COAL_BDS +
4688                                     (i * BGE_VEC_COALSET_SIZE), rx_coal_bds);
4689                         }
4690                 }
4691                 for (; i < BNX_INTR_MAX - 1; ++i) {
4692                         CSR_WRITE_4(sc, BGE_VEC1_RX_MAX_COAL_BDS +
4693                             (i * BGE_VEC_COALSET_SIZE), 0);
4694                 }
4695                 if (bootverbose) {
4696                         if_printf(ifp, "%srx_coal_bds -> %u\n",
4697                             (ifp->if_flags & IFF_NPOLLING) ? "polling " : "",
4698                             rx_coal_bds);
4699                 }
4700         }
4701
4702         if (sc->bnx_coal_chg & BNX_TX_COAL_BDS_CHG) {
4703                 uint32_t tx_coal_bds;
4704
4705                 if (ifp->if_flags & IFF_NPOLLING)
4706                         tx_coal_bds = sc->bnx_tx_coal_bds_poll;
4707                 else
4708                         tx_coal_bds = sc->bnx_tx_coal_bds;
4709
4710                 if (sc->bnx_tx_ringcnt == 1) {
4711                         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, tx_coal_bds);
4712                         i = 0;
4713                 } else {
4714                         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, 0);
4715                         for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
4716                                 CSR_WRITE_4(sc, BGE_VEC1_TX_MAX_COAL_BDS +
4717                                     (i * BGE_VEC_COALSET_SIZE), tx_coal_bds);
4718                         }
4719                 }
4720                 for (; i < BNX_INTR_MAX - 1; ++i) {
4721                         CSR_WRITE_4(sc, BGE_VEC1_TX_MAX_COAL_BDS +
4722                             (i * BGE_VEC_COALSET_SIZE), 0);
4723                 }
4724                 if (bootverbose) {
4725                         if_printf(ifp, "%stx_coal_bds -> %u\n",
4726                             (ifp->if_flags & IFF_NPOLLING) ? "polling " : "",
4727                             tx_coal_bds);
4728                 }
4729         }
4730
4731         if (sc->bnx_coal_chg & BNX_RX_COAL_BDS_INT_CHG) {
4732                 if (sc->bnx_rx_retcnt == 1) {
4733                         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT,
4734                             sc->bnx_rx_coal_bds_int);
4735                         i = 0;
4736                 } else {
4737                         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
4738                         for (i = 0; i < sc->bnx_rx_retcnt; ++i) {
4739                                 CSR_WRITE_4(sc, BGE_VEC1_RX_MAX_COAL_BDS_INT +
4740                                     (i * BGE_VEC_COALSET_SIZE),
4741                                     sc->bnx_rx_coal_bds_int);
4742                         }
4743                 }
4744                 for (; i < BNX_INTR_MAX - 1; ++i) {
4745                         CSR_WRITE_4(sc, BGE_VEC1_RX_MAX_COAL_BDS_INT +
4746                             (i * BGE_VEC_COALSET_SIZE), 0);
4747                 }
4748                 if (bootverbose) {
4749                         if_printf(ifp, "rx_coal_bds_int -> %u\n",
4750                             sc->bnx_rx_coal_bds_int);
4751                 }
4752         }
4753
4754         if (sc->bnx_coal_chg & BNX_TX_COAL_BDS_INT_CHG) {
4755                 if (sc->bnx_tx_ringcnt == 1) {
4756                         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT,
4757                             sc->bnx_tx_coal_bds_int);
4758                         i = 0;
4759                 } else {
4760                         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
4761                         for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
4762                                 CSR_WRITE_4(sc, BGE_VEC1_TX_MAX_COAL_BDS_INT +
4763                                     (i * BGE_VEC_COALSET_SIZE),
4764                                     sc->bnx_tx_coal_bds_int);
4765                         }
4766                 }
4767                 for (; i < BNX_INTR_MAX - 1; ++i) {
4768                         CSR_WRITE_4(sc, BGE_VEC1_TX_MAX_COAL_BDS_INT +
4769                             (i * BGE_VEC_COALSET_SIZE), 0);
4770                 }
4771                 if (bootverbose) {
4772                         if_printf(ifp, "tx_coal_bds_int -> %u\n",
4773                             sc->bnx_tx_coal_bds_int);
4774                 }
4775         }
4776
4777         sc->bnx_coal_chg = 0;
4778 }
4779
4780 static void
4781 bnx_check_intr_rxtx(void *xintr)
4782 {
4783         struct bnx_intr_data *intr = xintr;
4784         struct bnx_rx_ret_ring *ret;
4785         struct bnx_tx_ring *txr;
4786         struct ifnet *ifp;
4787
4788         lwkt_serialize_enter(intr->bnx_intr_serialize);
4789
4790         KKASSERT(mycpuid == intr->bnx_intr_cpuid);
4791
4792         ifp = &intr->bnx_sc->arpcom.ac_if;
4793         if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) != IFF_RUNNING) {
4794                 lwkt_serialize_exit(intr->bnx_intr_serialize);
4795                 return;
4796         }
4797
4798         txr = intr->bnx_txr;
4799         ret = intr->bnx_ret;
4800
4801         if (*ret->bnx_rx_considx != ret->bnx_rx_saved_considx ||
4802             *txr->bnx_tx_considx != txr->bnx_tx_saved_considx) {
4803                 if (intr->bnx_rx_check_considx == ret->bnx_rx_saved_considx &&
4804                     intr->bnx_tx_check_considx == txr->bnx_tx_saved_considx) {
4805                         if (!intr->bnx_intr_maylose) {
4806                                 intr->bnx_intr_maylose = TRUE;
4807                                 goto done;
4808                         }
4809                         if (bootverbose)
4810                                 if_printf(ifp, "lost interrupt\n");
4811                         intr->bnx_intr_func(intr->bnx_intr_arg);
4812                 }
4813         }
4814         intr->bnx_intr_maylose = FALSE;
4815         intr->bnx_rx_check_considx = ret->bnx_rx_saved_considx;
4816         intr->bnx_tx_check_considx = txr->bnx_tx_saved_considx;
4817
4818 done:
4819         callout_reset(&intr->bnx_intr_timer, BNX_INTR_CKINTVL,
4820             intr->bnx_intr_check, intr);
4821         lwkt_serialize_exit(intr->bnx_intr_serialize);
4822 }
4823
4824 static void
4825 bnx_check_intr_tx(void *xintr)
4826 {
4827         struct bnx_intr_data *intr = xintr;
4828         struct bnx_tx_ring *txr;
4829         struct ifnet *ifp;
4830
4831         lwkt_serialize_enter(intr->bnx_intr_serialize);
4832
4833         KKASSERT(mycpuid == intr->bnx_intr_cpuid);
4834
4835         ifp = &intr->bnx_sc->arpcom.ac_if;
4836         if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) != IFF_RUNNING) {
4837                 lwkt_serialize_exit(intr->bnx_intr_serialize);
4838                 return;
4839         }
4840
4841         txr = intr->bnx_txr;
4842
4843         if (*txr->bnx_tx_considx != txr->bnx_tx_saved_considx) {
4844                 if (intr->bnx_tx_check_considx == txr->bnx_tx_saved_considx) {
4845                         if (!intr->bnx_intr_maylose) {
4846                                 intr->bnx_intr_maylose = TRUE;
4847                                 goto done;
4848                         }
4849                         if (bootverbose)
4850                                 if_printf(ifp, "lost interrupt\n");
4851                         intr->bnx_intr_func(intr->bnx_intr_arg);
4852                 }
4853         }
4854         intr->bnx_intr_maylose = FALSE;
4855         intr->bnx_tx_check_considx = txr->bnx_tx_saved_considx;
4856
4857 done:
4858         callout_reset(&intr->bnx_intr_timer, BNX_INTR_CKINTVL,
4859             intr->bnx_intr_check, intr);
4860         lwkt_serialize_exit(intr->bnx_intr_serialize);
4861 }
4862
4863 static void
4864 bnx_check_intr_rx(void *xintr)
4865 {
4866         struct bnx_intr_data *intr = xintr;
4867         struct bnx_rx_ret_ring *ret;
4868         struct ifnet *ifp;
4869
4870         lwkt_serialize_enter(intr->bnx_intr_serialize);
4871
4872         KKASSERT(mycpuid == intr->bnx_intr_cpuid);
4873
4874         ifp = &intr->bnx_sc->arpcom.ac_if;
4875         if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) != IFF_RUNNING) {
4876                 lwkt_serialize_exit(intr->bnx_intr_serialize);
4877                 return;
4878         }
4879
4880         ret = intr->bnx_ret;
4881
4882         if (*ret->bnx_rx_considx != ret->bnx_rx_saved_considx) {
4883                 if (intr->bnx_rx_check_considx == ret->bnx_rx_saved_considx) {
4884                         if (!intr->bnx_intr_maylose) {
4885                                 intr->bnx_intr_maylose = TRUE;
4886                                 goto done;
4887                         }
4888                         if (bootverbose)
4889                                 if_printf(ifp, "lost interrupt\n");
4890                         intr->bnx_intr_func(intr->bnx_intr_arg);
4891                 }
4892         }
4893         intr->bnx_intr_maylose = FALSE;
4894         intr->bnx_rx_check_considx = ret->bnx_rx_saved_considx;
4895
4896 done:
4897         callout_reset(&intr->bnx_intr_timer, BNX_INTR_CKINTVL,
4898             intr->bnx_intr_check, intr);
4899         lwkt_serialize_exit(intr->bnx_intr_serialize);
4900 }
4901
4902 static void
4903 bnx_enable_intr(struct bnx_softc *sc)
4904 {
4905         struct ifnet *ifp = &sc->arpcom.ac_if;
4906         int i;
4907
4908         for (i = 0; i < sc->bnx_intr_cnt; ++i) {
4909                 lwkt_serialize_handler_enable(
4910                     sc->bnx_intr_data[i].bnx_intr_serialize);
4911         }
4912
4913         /*
4914          * Enable interrupt.
4915          */
4916         for (i = 0; i < sc->bnx_intr_cnt; ++i) {
4917                 struct bnx_intr_data *intr = &sc->bnx_intr_data[i];
4918
4919                 bnx_writembx(sc, intr->bnx_intr_mbx,
4920                     (*intr->bnx_saved_status_tag) << 24);
4921                 /* XXX Linux driver */
4922                 bnx_writembx(sc, intr->bnx_intr_mbx,
4923                     (*intr->bnx_saved_status_tag) << 24);
4924         }
4925
4926         /*
4927          * Unmask the interrupt when we stop polling.
4928          */
4929         PCI_CLRBIT(sc->bnx_dev, BGE_PCI_MISC_CTL,
4930             BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4931
4932         /*
4933          * Trigger another interrupt, since above writing
4934          * to interrupt mailbox0 may acknowledge pending
4935          * interrupt.
4936          */
4937         BNX_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4938
4939         if (sc->bnx_flags & BNX_FLAG_STATUSTAG_BUG) {
4940                 if (bootverbose)
4941                         if_printf(ifp, "status tag bug workaround\n");
4942
4943                 for (i = 0; i < sc->bnx_intr_cnt; ++i) {
4944                         struct bnx_intr_data *intr = &sc->bnx_intr_data[i];
4945
4946                         if (intr->bnx_intr_check == NULL)
4947                                 continue;
4948                         intr->bnx_intr_maylose = FALSE;
4949                         intr->bnx_rx_check_considx = 0;
4950                         intr->bnx_tx_check_considx = 0;
4951                         callout_reset_bycpu(&intr->bnx_intr_timer,
4952                             BNX_INTR_CKINTVL, intr->bnx_intr_check, intr,
4953                             intr->bnx_intr_cpuid);
4954                 }
4955         }
4956 }
4957
4958 static void
4959 bnx_disable_intr(struct bnx_softc *sc)
4960 {
4961         int i;
4962
4963         for (i = 0; i < sc->bnx_intr_cnt; ++i) {
4964                 struct bnx_intr_data *intr = &sc->bnx_intr_data[i];
4965
4966                 callout_stop(&intr->bnx_intr_timer);
4967                 intr->bnx_intr_maylose = FALSE;
4968                 intr->bnx_rx_check_considx = 0;
4969                 intr->bnx_tx_check_considx = 0;
4970         }
4971
4972         /*
4973          * Mask the interrupt when we start polling.
4974          */
4975         PCI_SETBIT(sc->bnx_dev, BGE_PCI_MISC_CTL,
4976             BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4977
4978         /*
4979          * Acknowledge possible asserted interrupt.
4980          */
4981         for (i = 0; i < BNX_INTR_MAX; ++i)
4982                 bnx_writembx(sc, sc->bnx_intr_data[i].bnx_intr_mbx, 1);
4983
4984         for (i = 0; i < sc->bnx_intr_cnt; ++i) {
4985                 lwkt_serialize_handler_disable(
4986                     sc->bnx_intr_data[i].bnx_intr_serialize);
4987         }
4988 }
4989
4990 static int
4991 bnx_get_eaddr_mem(struct bnx_softc *sc, uint8_t ether_addr[])
4992 {
4993         uint32_t mac_addr;
4994         int ret = 1;
4995
4996         mac_addr = bnx_readmem_ind(sc, 0x0c14);
4997         if ((mac_addr >> 16) == 0x484b) {
4998                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
4999                 ether_addr[1] = (uint8_t)mac_addr;
5000                 mac_addr = bnx_readmem_ind(sc, 0x0c18);
5001                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
5002                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
5003                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
5004                 ether_addr[5] = (uint8_t)mac_addr;
5005                 ret = 0;
5006         }
5007         return ret;
5008 }
5009
5010 static int
5011 bnx_get_eaddr_nvram(struct bnx_softc *sc, uint8_t ether_addr[])
5012 {
5013         int mac_offset = BGE_EE_MAC_OFFSET;
5014
5015         if (BNX_IS_5717_PLUS(sc)) {
5016                 int f;
5017
5018                 f = pci_get_function(sc->bnx_dev);
5019                 if (f & 1)
5020                         mac_offset = BGE_EE_MAC_OFFSET_5717;
5021                 if (f > 1)
5022                         mac_offset += BGE_EE_MAC_OFFSET_5717_OFF;
5023         }
5024
5025         return bnx_read_nvram(sc, ether_addr, mac_offset + 2, ETHER_ADDR_LEN);
5026 }
5027
5028 static int
5029 bnx_get_eaddr_eeprom(struct bnx_softc *sc, uint8_t ether_addr[])
5030 {
5031         if (sc->bnx_flags & BNX_FLAG_NO_EEPROM)
5032                 return 1;
5033
5034         return bnx_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
5035                                ETHER_ADDR_LEN);
5036 }
5037
5038 static int
5039 bnx_get_eaddr(struct bnx_softc *sc, uint8_t eaddr[])
5040 {
5041         static const bnx_eaddr_fcn_t bnx_eaddr_funcs[] = {
5042                 /* NOTE: Order is critical */
5043                 bnx_get_eaddr_mem,
5044                 bnx_get_eaddr_nvram,
5045                 bnx_get_eaddr_eeprom,
5046                 NULL
5047         };
5048         const bnx_eaddr_fcn_t *func;
5049
5050         for (func = bnx_eaddr_funcs; *func != NULL; ++func) {
5051                 if ((*func)(sc, eaddr) == 0)
5052                         break;
5053         }
5054         return (*func == NULL ? ENXIO : 0);
5055 }
5056
5057 /*
5058  * NOTE: 'm' is not freed upon failure
5059  */
5060 struct mbuf *
5061 bnx_defrag_shortdma(struct mbuf *m)
5062 {
5063         struct mbuf *n;
5064         int found;
5065
5066         /*
5067          * If device receive two back-to-back send BDs with less than
5068          * or equal to 8 total bytes then the device may hang.  The two
5069          * back-to-back send BDs must in the same frame for this failure
5070          * to occur.  Scan mbuf chains and see whether two back-to-back
5071          * send BDs are there.  If this is the case, allocate new mbuf
5072          * and copy the frame to workaround the silicon bug.
5073          */
5074         for (n = m, found = 0; n != NULL; n = n->m_next) {
5075                 if (n->m_len < 8) {
5076                         found++;
5077                         if (found > 1)
5078                                 break;
5079                         continue;
5080                 }
5081                 found = 0;
5082         }
5083
5084         if (found > 1)
5085                 n = m_defrag(m, MB_DONTWAIT);
5086         else
5087                 n = m;
5088         return n;
5089 }
5090
5091 static void
5092 bnx_stop_block(struct bnx_softc *sc, bus_size_t reg, uint32_t bit)
5093 {
5094         int i;
5095
5096         BNX_CLRBIT(sc, reg, bit);
5097         for (i = 0; i < BNX_TIMEOUT; i++) {
5098                 if ((CSR_READ_4(sc, reg) & bit) == 0)
5099                         return;
5100                 DELAY(100);
5101         }
5102 }
5103
5104 static void
5105 bnx_link_poll(struct bnx_softc *sc)
5106 {
5107         uint32_t status;
5108
5109         status = CSR_READ_4(sc, BGE_MAC_STS);
5110         if ((status & sc->bnx_link_chg) || sc->bnx_link_evt) {
5111                 sc->bnx_link_evt = 0;
5112                 sc->bnx_link_upd(sc, status);
5113         }
5114 }
5115
5116 static void
5117 bnx_enable_msi(struct bnx_softc *sc, boolean_t is_msix)
5118 {
5119         uint32_t msi_mode;
5120
5121         msi_mode = CSR_READ_4(sc, BGE_MSI_MODE);
5122         msi_mode |= BGE_MSIMODE_ENABLE;
5123         /*
5124          * NOTE:
5125          * 5718-PG105-R says that "one shot" mode does not work
5126          * if MSI is used, however, it obviously works.
5127          */
5128         msi_mode &= ~BGE_MSIMODE_ONESHOT_DISABLE;
5129         if (is_msix)
5130                 msi_mode |= BGE_MSIMODE_MSIX_MULTIMODE;
5131         else
5132                 msi_mode &= ~BGE_MSIMODE_MSIX_MULTIMODE;
5133         CSR_WRITE_4(sc, BGE_MSI_MODE, msi_mode);
5134 }
5135
5136 static uint32_t
5137 bnx_dma_swap_options(struct bnx_softc *sc)
5138 {
5139         uint32_t dma_options;
5140
5141         dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
5142             BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
5143 #if BYTE_ORDER == BIG_ENDIAN
5144         dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
5145 #endif
5146         return dma_options;
5147 }
5148
5149 static int
5150 bnx_setup_tso(struct bnx_tx_ring *txr, struct mbuf **mp,
5151     uint16_t *mss0, uint16_t *flags0)
5152 {
5153         struct mbuf *m;
5154         struct ip *ip;
5155         struct tcphdr *th;
5156         int thoff, iphlen, hoff, hlen;
5157         uint16_t flags, mss;
5158
5159         m = *mp;
5160         KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
5161
5162         hoff = m->m_pkthdr.csum_lhlen;
5163         iphlen = m->m_pkthdr.csum_iphlen;
5164         thoff = m->m_pkthdr.csum_thlen;
5165
5166         KASSERT(hoff > 0, ("invalid ether header len"));
5167         KASSERT(iphlen > 0, ("invalid ip header len"));
5168         KASSERT(thoff > 0, ("invalid tcp header len"));
5169
5170         if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
5171                 m = m_pullup(m, hoff + iphlen + thoff);
5172                 if (m == NULL) {
5173                         *mp = NULL;
5174                         return ENOBUFS;
5175                 }
5176                 *mp = m;
5177         }
5178         ip = mtodoff(m, struct ip *, hoff);
5179         th = mtodoff(m, struct tcphdr *, hoff + iphlen);
5180
5181         mss = m->m_pkthdr.tso_segsz;
5182         flags = BGE_TXBDFLAG_CPU_PRE_DMA | BGE_TXBDFLAG_CPU_POST_DMA;
5183
5184         ip->ip_len = htons(mss + iphlen + thoff);
5185         th->th_sum = 0;
5186
5187         hlen = (iphlen + thoff) >> 2;
5188         mss |= ((hlen & 0x3) << 14);
5189         flags |= ((hlen & 0xf8) << 7) | ((hlen & 0x4) << 2);
5190
5191         *mss0 = mss;
5192         *flags0 = flags;
5193
5194         return 0;
5195 }
5196
5197 static int
5198 bnx_create_tx_ring(struct bnx_tx_ring *txr)
5199 {
5200         bus_size_t txmaxsz, txmaxsegsz;
5201         int i, error;
5202
5203         lwkt_serialize_init(&txr->bnx_tx_serialize);
5204
5205         /*
5206          * Create DMA tag and maps for TX mbufs.
5207          */
5208         if (txr->bnx_sc->bnx_flags & BNX_FLAG_TSO)
5209                 txmaxsz = IP_MAXPACKET + sizeof(struct ether_vlan_header);
5210         else
5211                 txmaxsz = BNX_JUMBO_FRAMELEN;
5212         if (txr->bnx_sc->bnx_asicrev == BGE_ASICREV_BCM57766)
5213                 txmaxsegsz = MCLBYTES;
5214         else
5215                 txmaxsegsz = PAGE_SIZE;
5216         error = bus_dma_tag_create(txr->bnx_sc->bnx_cdata.bnx_parent_tag,
5217             1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
5218             txmaxsz, BNX_NSEG_NEW, txmaxsegsz,
5219             BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
5220             &txr->bnx_tx_mtag);
5221         if (error) {
5222                 device_printf(txr->bnx_sc->bnx_dev,
5223                     "could not create TX mbuf DMA tag\n");
5224                 return error;
5225         }
5226
5227         for (i = 0; i < BGE_TX_RING_CNT; i++) {
5228                 error = bus_dmamap_create(txr->bnx_tx_mtag,
5229                     BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
5230                     &txr->bnx_tx_buf[i].bnx_tx_dmamap);
5231                 if (error) {
5232                         int j;
5233
5234                         for (j = 0; j < i; ++j) {
5235                                 bus_dmamap_destroy(txr->bnx_tx_mtag,
5236                                     txr->bnx_tx_buf[j].bnx_tx_dmamap);
5237                         }
5238                         bus_dma_tag_destroy(txr->bnx_tx_mtag);
5239                         txr->bnx_tx_mtag = NULL;
5240
5241                         device_printf(txr->bnx_sc->bnx_dev,
5242                             "could not create TX mbuf DMA map\n");
5243                         return error;
5244                 }
5245         }
5246
5247         /*
5248          * Create DMA stuffs for TX ring.
5249          */
5250         error = bnx_dma_block_alloc(txr->bnx_sc, BGE_TX_RING_SZ,
5251             &txr->bnx_tx_ring_tag,
5252             &txr->bnx_tx_ring_map,
5253             (void *)&txr->bnx_tx_ring,
5254             &txr->bnx_tx_ring_paddr);
5255         if (error) {
5256                 device_printf(txr->bnx_sc->bnx_dev,
5257                     "could not create TX ring\n");
5258                 return error;
5259         }
5260
5261         txr->bnx_tx_flags |= BNX_TX_FLAG_SHORTDMA;
5262         txr->bnx_tx_wreg = BNX_TX_WREG_NSEGS;
5263
5264         return 0;
5265 }
5266
5267 static void
5268 bnx_destroy_tx_ring(struct bnx_tx_ring *txr)
5269 {
5270         /* Destroy TX mbuf DMA stuffs. */
5271         if (txr->bnx_tx_mtag != NULL) {
5272                 int i;
5273
5274                 for (i = 0; i < BGE_TX_RING_CNT; i++) {
5275                         KKASSERT(txr->bnx_tx_buf[i].bnx_tx_mbuf == NULL);
5276                         bus_dmamap_destroy(txr->bnx_tx_mtag,
5277                             txr->bnx_tx_buf[i].bnx_tx_dmamap);
5278                 }
5279                 bus_dma_tag_destroy(txr->bnx_tx_mtag);
5280         }
5281
5282         /* Destroy TX ring */
5283         bnx_dma_block_free(txr->bnx_tx_ring_tag,
5284             txr->bnx_tx_ring_map, txr->bnx_tx_ring);
5285 }
5286
5287 static int
5288 bnx_sysctl_force_defrag(SYSCTL_HANDLER_ARGS)
5289 {
5290         struct bnx_softc *sc = (void *)arg1;
5291         struct ifnet *ifp = &sc->arpcom.ac_if;
5292         struct bnx_tx_ring *txr = &sc->bnx_tx_ring[0];
5293         int error, defrag, i;
5294
5295         if (txr->bnx_tx_flags & BNX_TX_FLAG_FORCE_DEFRAG)
5296                 defrag = 1;
5297         else
5298                 defrag = 0;
5299
5300         error = sysctl_handle_int(oidp, &defrag, 0, req);
5301         if (error || req->newptr == NULL)
5302                 return error;
5303
5304         ifnet_serialize_all(ifp);
5305         for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
5306                 txr = &sc->bnx_tx_ring[i];
5307                 if (defrag)
5308                         txr->bnx_tx_flags |= BNX_TX_FLAG_FORCE_DEFRAG;
5309                 else
5310                         txr->bnx_tx_flags &= ~BNX_TX_FLAG_FORCE_DEFRAG;
5311         }
5312         ifnet_deserialize_all(ifp);
5313
5314         return 0;
5315 }
5316
5317 static int
5318 bnx_sysctl_tx_wreg(SYSCTL_HANDLER_ARGS)
5319 {
5320         struct bnx_softc *sc = (void *)arg1;
5321         struct ifnet *ifp = &sc->arpcom.ac_if;
5322         struct bnx_tx_ring *txr = &sc->bnx_tx_ring[0];
5323         int error, tx_wreg, i;
5324
5325         tx_wreg = txr->bnx_tx_wreg;
5326         error = sysctl_handle_int(oidp, &tx_wreg, 0, req);
5327         if (error || req->newptr == NULL)
5328                 return error;
5329
5330         ifnet_serialize_all(ifp);
5331         for (i = 0; i < sc->bnx_tx_ringcnt; ++i)
5332                 sc->bnx_tx_ring[i].bnx_tx_wreg = tx_wreg;
5333         ifnet_deserialize_all(ifp);
5334
5335         return 0;
5336 }
5337
5338 static int
5339 bnx_create_rx_ret_ring(struct bnx_rx_ret_ring *ret)
5340 {
5341         int error;
5342
5343         lwkt_serialize_init(&ret->bnx_rx_ret_serialize);
5344
5345         /*
5346          * Create DMA stuffs for RX return ring.
5347          */
5348         error = bnx_dma_block_alloc(ret->bnx_sc,
5349             BGE_RX_RTN_RING_SZ(BNX_RETURN_RING_CNT),
5350             &ret->bnx_rx_ret_ring_tag,
5351             &ret->bnx_rx_ret_ring_map,
5352             (void *)&ret->bnx_rx_ret_ring,
5353             &ret->bnx_rx_ret_ring_paddr);
5354         if (error) {
5355                 device_printf(ret->bnx_sc->bnx_dev,
5356                     "could not create RX ret ring\n");
5357                 return error;
5358         }
5359
5360         /* Shadow standard ring's RX mbuf DMA tag */
5361         ret->bnx_rx_mtag = ret->bnx_std->bnx_rx_mtag;
5362
5363         /*
5364          * Create tmp DMA map for RX mbufs.
5365          */
5366         error = bus_dmamap_create(ret->bnx_rx_mtag, BUS_DMA_WAITOK,
5367             &ret->bnx_rx_tmpmap);
5368         if (error) {
5369                 device_printf(ret->bnx_sc->bnx_dev,
5370                     "could not create tmp RX mbuf DMA map\n");
5371                 ret->bnx_rx_mtag = NULL;
5372                 return error;
5373         }
5374         return 0;
5375 }
5376
5377 static void
5378 bnx_destroy_rx_ret_ring(struct bnx_rx_ret_ring *ret)
5379 {
5380         /* Destroy tmp RX mbuf DMA map */
5381         if (ret->bnx_rx_mtag != NULL)
5382                 bus_dmamap_destroy(ret->bnx_rx_mtag, ret->bnx_rx_tmpmap);
5383
5384         /* Destroy RX return ring */
5385         bnx_dma_block_free(ret->bnx_rx_ret_ring_tag,
5386             ret->bnx_rx_ret_ring_map, ret->bnx_rx_ret_ring);
5387 }
5388
5389 static int
5390 bnx_alloc_intr(struct bnx_softc *sc)
5391 {
5392         struct bnx_intr_data *intr;
5393         u_int intr_flags;
5394         int error;
5395
5396         if (sc->bnx_intr_cnt > 1) {
5397                 error = bnx_alloc_msix(sc);
5398                 if (error)
5399                         return error;
5400                 KKASSERT(sc->bnx_intr_type == PCI_INTR_TYPE_MSIX);
5401                 return 0;
5402         }
5403
5404         KKASSERT(sc->bnx_intr_cnt == 1);
5405
5406         intr = &sc->bnx_intr_data[0];
5407         intr->bnx_ret = &sc->bnx_rx_ret_ring[0];
5408         intr->bnx_txr = &sc->bnx_tx_ring[0];
5409         intr->bnx_intr_serialize = &sc->bnx_main_serialize;
5410         intr->bnx_intr_check = bnx_check_intr_rxtx;
5411         intr->bnx_saved_status_tag = &intr->bnx_ret->bnx_saved_status_tag;
5412
5413         sc->bnx_intr_type = pci_alloc_1intr(sc->bnx_dev, bnx_msi_enable,
5414             &intr->bnx_intr_rid, &intr_flags);
5415
5416         intr->bnx_intr_res = bus_alloc_resource_any(sc->bnx_dev, SYS_RES_IRQ,
5417             &intr->bnx_intr_rid, intr_flags);
5418         if (intr->bnx_intr_res == NULL) {
5419                 device_printf(sc->bnx_dev, "could not alloc interrupt\n");
5420                 return ENXIO;
5421         }
5422
5423         if (sc->bnx_intr_type == PCI_INTR_TYPE_MSI) {
5424                 bnx_enable_msi(sc, FALSE);
5425                 intr->bnx_intr_func = bnx_msi;
5426                 if (bootverbose)
5427                         device_printf(sc->bnx_dev, "oneshot MSI\n");
5428         } else {
5429                 intr->bnx_intr_func = bnx_intr_legacy;
5430         }
5431         intr->bnx_intr_arg = sc;
5432         intr->bnx_intr_cpuid = rman_get_cpuid(intr->bnx_intr_res);
5433
5434         intr->bnx_txr->bnx_tx_cpuid = intr->bnx_intr_cpuid;
5435
5436         return 0;
5437 }
5438
5439 static int
5440 bnx_setup_intr(struct bnx_softc *sc)
5441 {
5442         int error, i;
5443
5444         for (i = 0; i < sc->bnx_intr_cnt; ++i) {
5445                 struct bnx_intr_data *intr = &sc->bnx_intr_data[i];
5446
5447                 error = bus_setup_intr_descr(sc->bnx_dev, intr->bnx_intr_res,
5448                     INTR_MPSAFE, intr->bnx_intr_func, intr->bnx_intr_arg,
5449                     &intr->bnx_intr_hand, intr->bnx_intr_serialize,
5450                     intr->bnx_intr_desc);
5451                 if (error) {
5452                         device_printf(sc->bnx_dev,
5453                             "could not set up %dth intr\n", i);
5454                         bnx_teardown_intr(sc, i);
5455                         return error;
5456                 }
5457         }
5458         return 0;
5459 }
5460
5461 static void
5462 bnx_teardown_intr(struct bnx_softc *sc, int cnt)
5463 {
5464         int i;
5465
5466         for (i = 0; i < cnt; ++i) {
5467                 struct bnx_intr_data *intr = &sc->bnx_intr_data[i];
5468
5469                 bus_teardown_intr(sc->bnx_dev, intr->bnx_intr_res,
5470                     intr->bnx_intr_hand);
5471         }
5472 }
5473
5474 static void
5475 bnx_free_intr(struct bnx_softc *sc)
5476 {
5477         if (sc->bnx_intr_type != PCI_INTR_TYPE_MSIX) {
5478                 struct bnx_intr_data *intr;
5479
5480                 KKASSERT(sc->bnx_intr_cnt <= 1);
5481                 intr = &sc->bnx_intr_data[0];
5482
5483                 if (intr->bnx_intr_res != NULL) {
5484                         bus_release_resource(sc->bnx_dev, SYS_RES_IRQ,
5485                             intr->bnx_intr_rid, intr->bnx_intr_res);
5486                 }
5487                 if (sc->bnx_intr_type == PCI_INTR_TYPE_MSI)
5488                         pci_release_msi(sc->bnx_dev);
5489         } else {
5490                 bnx_free_msix(sc, TRUE);
5491         }
5492 }
5493
5494 static void
5495 bnx_setup_serialize(struct bnx_softc *sc)
5496 {
5497         int i, j;
5498
5499         /*
5500          * Allocate serializer array
5501          */
5502
5503         /* Main + RX STD + TX + RX RET */
5504         sc->bnx_serialize_cnt = 1 + 1 + sc->bnx_tx_ringcnt + sc->bnx_rx_retcnt;
5505
5506         sc->bnx_serialize =
5507             kmalloc(sc->bnx_serialize_cnt * sizeof(struct lwkt_serialize *),
5508                 M_DEVBUF, M_WAITOK | M_ZERO);
5509
5510         /*
5511          * Setup serializers
5512          *
5513          * NOTE: Order is critical
5514          */
5515
5516         i = 0;
5517
5518         KKASSERT(i < sc->bnx_serialize_cnt);
5519         sc->bnx_serialize[i++] = &sc->bnx_main_serialize;
5520
5521         KKASSERT(i < sc->bnx_serialize_cnt);
5522         sc->bnx_serialize[i++] = &sc->bnx_rx_std_ring.bnx_rx_std_serialize;
5523
5524         for (j = 0; j < sc->bnx_rx_retcnt; ++j) {
5525                 KKASSERT(i < sc->bnx_serialize_cnt);
5526                 sc->bnx_serialize[i++] =
5527                     &sc->bnx_rx_ret_ring[j].bnx_rx_ret_serialize;
5528         }
5529
5530         for (j = 0; j < sc->bnx_tx_ringcnt; ++j) {
5531                 KKASSERT(i < sc->bnx_serialize_cnt);
5532                 sc->bnx_serialize[i++] =
5533                     &sc->bnx_tx_ring[j].bnx_tx_serialize;
5534         }
5535
5536         KKASSERT(i == sc->bnx_serialize_cnt);
5537 }
5538
5539 static void
5540 bnx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
5541 {
5542         struct bnx_softc *sc = ifp->if_softc;
5543
5544         ifnet_serialize_array_enter(sc->bnx_serialize,
5545             sc->bnx_serialize_cnt, slz);
5546 }
5547
5548 static void
5549 bnx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
5550 {
5551         struct bnx_softc *sc = ifp->if_softc;
5552
5553         ifnet_serialize_array_exit(sc->bnx_serialize,
5554             sc->bnx_serialize_cnt, slz);
5555 }
5556
5557 static int
5558 bnx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
5559 {
5560         struct bnx_softc *sc = ifp->if_softc;
5561
5562         return ifnet_serialize_array_try(sc->bnx_serialize,
5563             sc->bnx_serialize_cnt, slz);
5564 }
5565
5566 #ifdef INVARIANTS
5567
5568 static void
5569 bnx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
5570     boolean_t serialized)
5571 {
5572         struct bnx_softc *sc = ifp->if_softc;
5573
5574         ifnet_serialize_array_assert(sc->bnx_serialize, sc->bnx_serialize_cnt,
5575             slz, serialized);
5576 }
5577
5578 #endif  /* INVARIANTS */
5579
5580 #ifdef IFPOLL_ENABLE
5581
5582 static int
5583 bnx_sysctl_npoll_offset(SYSCTL_HANDLER_ARGS)
5584 {
5585         struct bnx_softc *sc = (void *)arg1;
5586         struct ifnet *ifp = &sc->arpcom.ac_if;
5587         int error, off;
5588
5589         off = sc->bnx_npoll_rxoff;
5590         error = sysctl_handle_int(oidp, &off, 0, req);
5591         if (error || req->newptr == NULL)
5592                 return error;
5593         if (off < 0)
5594                 return EINVAL;
5595
5596         ifnet_serialize_all(ifp);
5597         if (off >= ncpus2 || off % sc->bnx_rx_retcnt != 0) {
5598                 error = EINVAL;
5599         } else {
5600                 error = 0;
5601                 sc->bnx_npoll_txoff = off;
5602                 sc->bnx_npoll_rxoff = off;
5603         }
5604         ifnet_deserialize_all(ifp);
5605
5606         return error;
5607 }
5608
5609 static int
5610 bnx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
5611 {
5612         struct bnx_softc *sc = (void *)arg1;
5613         struct ifnet *ifp = &sc->arpcom.ac_if;
5614         int error, off;
5615
5616         off = sc->bnx_npoll_rxoff;
5617         error = sysctl_handle_int(oidp, &off, 0, req);
5618         if (error || req->newptr == NULL)
5619                 return error;
5620         if (off < 0)
5621                 return EINVAL;
5622
5623         ifnet_serialize_all(ifp);
5624         if (off >= ncpus2 || off % sc->bnx_rx_retcnt != 0) {
5625                 error = EINVAL;
5626         } else {
5627                 error = 0;
5628                 sc->bnx_npoll_rxoff = off;
5629         }
5630         ifnet_deserialize_all(ifp);
5631
5632         return error;
5633 }
5634
5635 static int
5636 bnx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
5637 {
5638         struct bnx_softc *sc = (void *)arg1;
5639         struct ifnet *ifp = &sc->arpcom.ac_if;
5640         int error, off;
5641
5642         off = sc->bnx_npoll_txoff;
5643         error = sysctl_handle_int(oidp, &off, 0, req);
5644         if (error || req->newptr == NULL)
5645                 return error;
5646         if (off < 0)
5647                 return EINVAL;
5648
5649         ifnet_serialize_all(ifp);
5650         if (off >= ncpus2) {
5651                 error = EINVAL;
5652         } else {
5653                 error = 0;
5654                 sc->bnx_npoll_txoff = off;
5655         }
5656         ifnet_deserialize_all(ifp);
5657
5658         return error;
5659 }
5660
5661 #endif  /* IFPOLL_ENABLE */
5662
5663 static void
5664 bnx_set_tick_cpuid(struct bnx_softc *sc, boolean_t polling)
5665 {
5666         if (polling)
5667                 sc->bnx_tick_cpuid = 0; /* XXX */
5668         else
5669                 sc->bnx_tick_cpuid = sc->bnx_intr_data[0].bnx_intr_cpuid;
5670 }
5671
5672 static void
5673 bnx_rx_std_refill_ithread(void *xstd)
5674 {
5675         struct bnx_rx_std_ring *std = xstd;
5676         struct globaldata *gd = mycpu;
5677
5678         crit_enter_gd(gd);
5679
5680         while (!std->bnx_rx_std_stop) {
5681                 if (std->bnx_rx_std_refill) {
5682                         lwkt_serialize_handler_call(
5683                             &std->bnx_rx_std_serialize,
5684                             bnx_rx_std_refill, std, NULL);
5685                 }
5686
5687                 crit_exit_gd(gd);
5688                 crit_enter_gd(gd);
5689
5690                 atomic_poll_release_int(&std->bnx_rx_std_running);
5691                 cpu_mfence();
5692
5693                 if (!std->bnx_rx_std_refill && !std->bnx_rx_std_stop) {
5694                         lwkt_deschedule_self(gd->gd_curthread);
5695                         lwkt_switch();
5696                 }
5697         }
5698
5699         crit_exit_gd(gd);
5700
5701         wakeup(std);
5702
5703         lwkt_exit();
5704 }
5705
5706 static void
5707 bnx_rx_std_refill(void *xstd, void *frame __unused)
5708 {
5709         struct bnx_rx_std_ring *std = xstd;
5710         int cnt, refill_mask;
5711
5712 again:
5713         cnt = 0;
5714
5715         cpu_lfence();
5716         refill_mask = std->bnx_rx_std_refill;
5717         atomic_clear_int(&std->bnx_rx_std_refill, refill_mask);
5718
5719         while (refill_mask) {
5720                 uint16_t check_idx = std->bnx_rx_std;
5721                 int ret_idx;
5722
5723                 ret_idx = bsfl(refill_mask);
5724                 for (;;) {
5725                         struct bnx_rx_buf *rb;
5726                         int refilled;
5727
5728                         BNX_INC(check_idx, BGE_STD_RX_RING_CNT);
5729                         rb = &std->bnx_rx_std_buf[check_idx];
5730                         refilled = rb->bnx_rx_refilled;
5731                         cpu_lfence();
5732                         if (refilled) {
5733                                 bnx_setup_rxdesc_std(std, check_idx);
5734                                 std->bnx_rx_std = check_idx;
5735                                 ++cnt;
5736                                 if (cnt >= 8) {
5737                                         atomic_subtract_int(
5738                                             &std->bnx_rx_std_used, cnt);
5739                                         bnx_writembx(std->bnx_sc,
5740                                             BGE_MBX_RX_STD_PROD_LO,
5741                                             std->bnx_rx_std);
5742                                         cnt = 0;
5743                                 }
5744                         } else {
5745                                 break;
5746                         }
5747                 }
5748                 refill_mask &= ~(1 << ret_idx);
5749         }
5750
5751         if (cnt) {
5752                 atomic_subtract_int(&std->bnx_rx_std_used, cnt);
5753                 bnx_writembx(std->bnx_sc, BGE_MBX_RX_STD_PROD_LO,
5754                     std->bnx_rx_std);
5755         }
5756
5757         if (std->bnx_rx_std_refill)
5758                 goto again;
5759
5760         atomic_poll_release_int(&std->bnx_rx_std_running);
5761         cpu_mfence();
5762
5763         if (std->bnx_rx_std_refill)
5764                 goto again;
5765 }
5766
5767 static int
5768 bnx_sysctl_std_refill(SYSCTL_HANDLER_ARGS)
5769 {
5770         struct bnx_softc *sc = (void *)arg1;
5771         struct ifnet *ifp = &sc->arpcom.ac_if;
5772         struct bnx_rx_ret_ring *ret = &sc->bnx_rx_ret_ring[0];
5773         int error, cntmax, i;
5774
5775         cntmax = ret->bnx_rx_cntmax;
5776         error = sysctl_handle_int(oidp, &cntmax, 0, req);
5777         if (error || req->newptr == NULL)
5778                 return error;
5779
5780         ifnet_serialize_all(ifp);
5781
5782         if ((cntmax * sc->bnx_rx_retcnt) >= BGE_STD_RX_RING_CNT / 2) {
5783                 error = EINVAL;
5784                 goto back;
5785         }
5786
5787         for (i = 0; i < sc->bnx_tx_ringcnt; ++i)
5788                 sc->bnx_rx_ret_ring[i].bnx_rx_cntmax = cntmax;
5789         error = 0;
5790
5791 back:
5792         ifnet_deserialize_all(ifp);
5793
5794         return error;
5795 }
5796
5797 static void
5798 bnx_init_rss(struct bnx_softc *sc)
5799 {
5800         uint8_t key[BGE_RSS_KEYREG_CNT * BGE_RSS_KEYREG_SIZE];
5801         int i, j, r;
5802
5803         KKASSERT(BNX_RSS_ENABLED(sc));
5804
5805         /*
5806          * Configure RSS redirect table in following fashion:
5807          * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
5808          */
5809         r = 0;
5810         for (j = 0; j < BGE_RSS_INDIR_TBL_CNT; ++j) {
5811                 uint32_t tbl = 0;
5812
5813                 for (i = 0; i < BGE_RSS_INDIR_TBLENT_CNT; ++i) {
5814                         uint32_t q;
5815
5816                         q = r % sc->bnx_rx_retcnt;
5817                         tbl |= q << (BGE_RSS_INDIR_TBLENT_SHIFT *
5818                             (BGE_RSS_INDIR_TBLENT_CNT - i - 1));
5819                         ++r;
5820                 }
5821
5822                 BNX_RSS_DPRINTF(sc, 1, "tbl%d %08x\n", j, tbl);
5823                 CSR_WRITE_4(sc, BGE_RSS_INDIR_TBL(j), tbl);
5824         }
5825
5826         toeplitz_get_key(key, sizeof(key));
5827         for (i = 0; i < BGE_RSS_KEYREG_CNT; ++i) {
5828                 uint32_t keyreg;
5829
5830                 keyreg = BGE_RSS_KEYREG_VAL(key, i);
5831
5832                 BNX_RSS_DPRINTF(sc, 1, "key%d %08x\n", i, keyreg);
5833                 CSR_WRITE_4(sc, BGE_RSS_KEYREG(i), keyreg);
5834         }
5835 }
5836
5837 static void
5838 bnx_setup_ring_cnt(struct bnx_softc *sc)
5839 {
5840         int msix_enable, i, msix_cnt, msix_cnt2, ring_max;
5841
5842         sc->bnx_tx_ringcnt = 1;
5843         sc->bnx_rx_retcnt = 1;
5844         sc->bnx_intr_cnt = 1;
5845
5846         msix_enable = device_getenv_int(sc->bnx_dev, "msix.enable",
5847             bnx_msix_enable);
5848         if (!msix_enable)
5849                 return;
5850
5851         if (ncpus2 == 1)
5852                 return;
5853
5854         msix_cnt = pci_msix_count(sc->bnx_dev);
5855         if (msix_cnt <= 1)
5856                 return;
5857
5858         i = 0;
5859         while ((1 << (i + 1)) <= msix_cnt)
5860                 ++i;
5861         msix_cnt2 = 1 << i;
5862
5863         /*
5864          * One MSI-X vector is dedicated to status or single TX queue,
5865          * so make sure that there are enough MSI-X vectors.
5866          */
5867         if (msix_cnt == msix_cnt2) {
5868                 /*
5869                  * XXX
5870                  * This probably will not happen; 57785/5718 families
5871                  * come with at least 5 MSI-X vectors.
5872                  */
5873                 msix_cnt2 >>= 1;
5874                 if (msix_cnt2 <= 1) {
5875                         device_printf(sc->bnx_dev,
5876                             "MSI-X count %d could not be used\n", msix_cnt);
5877                         return;
5878                 }
5879                 device_printf(sc->bnx_dev, "MSI-X count %d is power of 2\n",
5880                     msix_cnt);
5881         }
5882
5883         /*
5884          * Setup RX ring count
5885          */
5886         ring_max = BNX_RX_RING_MAX;
5887         if (ring_max > msix_cnt2)
5888                 ring_max = msix_cnt2;
5889         sc->bnx_rx_retcnt = device_getenv_int(sc->bnx_dev, "rx_rings",
5890             bnx_rx_rings);
5891         sc->bnx_rx_retcnt = if_ring_count2(sc->bnx_rx_retcnt, ring_max);
5892
5893         if (sc->bnx_rx_retcnt == 1)
5894                 return;
5895
5896         /*
5897          * We need one extra MSI-X vector for link status or
5898          * TX ring (if only one TX ring is enabled).
5899          */
5900         sc->bnx_intr_cnt = sc->bnx_rx_retcnt + 1;
5901
5902         /*
5903          * Setup TX ring count
5904          *
5905          * Currently only BCM5719 and BCM5720 support multiple TX rings
5906          * and the TX ring count must be less than the RX ring count.
5907          */
5908         if (sc->bnx_asicrev == BGE_ASICREV_BCM5719 ||
5909             sc->bnx_asicrev == BGE_ASICREV_BCM5720) {
5910                 ring_max = BNX_TX_RING_MAX;
5911                 if (ring_max > msix_cnt2)
5912                         ring_max = msix_cnt2;
5913                 if (ring_max > sc->bnx_rx_retcnt)
5914                         ring_max = sc->bnx_rx_retcnt;
5915                 sc->bnx_tx_ringcnt = device_getenv_int(sc->bnx_dev, "tx_rings",
5916                     bnx_tx_rings);
5917                 sc->bnx_tx_ringcnt = if_ring_count2(sc->bnx_tx_ringcnt,
5918                     ring_max);
5919         }
5920 }
5921
5922 static int
5923 bnx_alloc_msix(struct bnx_softc *sc)
5924 {
5925         struct bnx_intr_data *intr;
5926         boolean_t setup = FALSE;
5927         int error, i, offset, offset_def;
5928
5929         KKASSERT(sc->bnx_intr_cnt > 1);
5930         KKASSERT(sc->bnx_intr_cnt == sc->bnx_rx_retcnt + 1);
5931
5932         if (sc->bnx_flags & BNX_FLAG_RXTX_BUNDLE) {
5933                 /*
5934                  * Link status
5935                  */
5936                 intr = &sc->bnx_intr_data[0];
5937
5938                 intr->bnx_intr_serialize = &sc->bnx_main_serialize;
5939                 intr->bnx_saved_status_tag = &sc->bnx_saved_status_tag;
5940
5941                 intr->bnx_intr_func = bnx_msix_status;
5942                 intr->bnx_intr_arg = sc;
5943                 intr->bnx_intr_cpuid = 0; /* XXX */
5944
5945                 ksnprintf(intr->bnx_intr_desc0, sizeof(intr->bnx_intr_desc0),
5946                     "%s sts", device_get_nameunit(sc->bnx_dev));
5947                 intr->bnx_intr_desc = intr->bnx_intr_desc0;
5948
5949                 /*
5950                  * RX/TX rings
5951                  */
5952                 if (sc->bnx_rx_retcnt == ncpus2) {
5953                         offset = 0;
5954                 } else {
5955                         offset_def = (sc->bnx_rx_retcnt *
5956                             device_get_unit(sc->bnx_dev)) % ncpus2;
5957
5958                         offset = device_getenv_int(sc->bnx_dev,
5959                             "msix.offset", offset_def);
5960                         if (offset >= ncpus2 ||
5961                             offset % sc->bnx_rx_retcnt != 0) {
5962                                 device_printf(sc->bnx_dev,
5963                                     "invalid msix.offset %d, use %d\n",
5964                                     offset, offset_def);
5965                                 offset = offset_def;
5966                         }
5967                 }
5968
5969                 for (i = 1; i < sc->bnx_intr_cnt; ++i) {
5970                         int idx = i - 1;
5971
5972                         intr = &sc->bnx_intr_data[i];
5973
5974                         KKASSERT(idx < sc->bnx_rx_retcnt);
5975                         intr->bnx_ret = &sc->bnx_rx_ret_ring[idx];
5976                         if (idx < sc->bnx_tx_ringcnt) {
5977                                 intr->bnx_txr = &sc->bnx_tx_ring[idx];
5978                                 intr->bnx_ret->bnx_txr = intr->bnx_txr;
5979                         }
5980
5981                         intr->bnx_intr_serialize =
5982                             &intr->bnx_ret->bnx_rx_ret_serialize;
5983                         intr->bnx_saved_status_tag =
5984                             &intr->bnx_ret->bnx_saved_status_tag;
5985
5986                         intr->bnx_intr_arg = intr->bnx_ret;
5987                         KKASSERT(idx + offset < ncpus2);
5988                         intr->bnx_intr_cpuid = idx + offset;
5989
5990                         if (intr->bnx_txr == NULL) {
5991                                 intr->bnx_intr_check = bnx_check_intr_rx;
5992                                 intr->bnx_intr_func = bnx_msix_rx;
5993                                 ksnprintf(intr->bnx_intr_desc0,
5994                                     sizeof(intr->bnx_intr_desc0), "%s rx%d",
5995                                     device_get_nameunit(sc->bnx_dev), idx);
5996                         } else {
5997                                 intr->bnx_intr_check = bnx_check_intr_rxtx;
5998                                 intr->bnx_intr_func = bnx_msix_rxtx;
5999                                 ksnprintf(intr->bnx_intr_desc0,
6000                                     sizeof(intr->bnx_intr_desc0), "%s rxtx%d",
6001                                     device_get_nameunit(sc->bnx_dev), idx);
6002
6003                                 intr->bnx_txr->bnx_tx_cpuid =
6004                                     intr->bnx_intr_cpuid;
6005                         }
6006                         intr->bnx_intr_desc = intr->bnx_intr_desc0;
6007
6008                         intr->bnx_ret->bnx_msix_mbx = intr->bnx_intr_mbx;
6009                 }
6010         } else {
6011                 /*
6012                  * TX ring and link status
6013                  */
6014                 offset_def = device_get_unit(sc->bnx_dev) % ncpus2;
6015                 offset = device_getenv_int(sc->bnx_dev, "msix.txoff",
6016                     offset_def);
6017                 if (offset >= ncpus2) {
6018                         device_printf(sc->bnx_dev,
6019                             "invalid msix.txoff %d, use %d\n",
6020                             offset, offset_def);
6021                         offset = offset_def;
6022                 }
6023
6024                 intr = &sc->bnx_intr_data[0];
6025
6026                 intr->bnx_txr = &sc->bnx_tx_ring[0];
6027                 intr->bnx_intr_serialize = &sc->bnx_main_serialize;
6028                 intr->bnx_intr_check = bnx_check_intr_tx;
6029                 intr->bnx_saved_status_tag =
6030                     &intr->bnx_txr->bnx_saved_status_tag;
6031
6032                 intr->bnx_intr_func = bnx_msix_tx_status;
6033                 intr->bnx_intr_arg = intr->bnx_txr;
6034                 intr->bnx_intr_cpuid = offset;
6035
6036                 ksnprintf(intr->bnx_intr_desc0, sizeof(intr->bnx_intr_desc0),
6037                     "%s ststx", device_get_nameunit(sc->bnx_dev));
6038                 intr->bnx_intr_desc = intr->bnx_intr_desc0;
6039
6040                 intr->bnx_txr->bnx_tx_cpuid = intr->bnx_intr_cpuid;
6041
6042                 /*
6043                  * RX rings
6044                  */
6045                 if (sc->bnx_rx_retcnt == ncpus2) {
6046                         offset = 0;
6047                 } else {
6048                         offset_def = (sc->bnx_rx_retcnt *
6049                             device_get_unit(sc->bnx_dev)) % ncpus2;
6050
6051                         offset = device_getenv_int(sc->bnx_dev,
6052                             "msix.rxoff", offset_def);
6053                         if (offset >= ncpus2 ||
6054                             offset % sc->bnx_rx_retcnt != 0) {
6055                                 device_printf(sc->bnx_dev,
6056                                     "invalid msix.rxoff %d, use %d\n",
6057                                     offset, offset_def);
6058                                 offset = offset_def;
6059                         }
6060                 }
6061
6062                 for (i = 1; i < sc->bnx_intr_cnt; ++i) {
6063                         int idx = i - 1;
6064
6065                         intr = &sc->bnx_intr_data[i];
6066
6067                         KKASSERT(idx < sc->bnx_rx_retcnt);
6068                         intr->bnx_ret = &sc->bnx_rx_ret_ring[idx];
6069                         intr->bnx_intr_serialize =
6070                             &intr->bnx_ret->bnx_rx_ret_serialize;
6071                         intr->bnx_intr_check = bnx_check_intr_rx;
6072                         intr->bnx_saved_status_tag =
6073                             &intr->bnx_ret->bnx_saved_status_tag;
6074
6075                         intr->bnx_intr_func = bnx_msix_rx;
6076                         intr->bnx_intr_arg = intr->bnx_ret;
6077                         KKASSERT(idx + offset < ncpus2);
6078                         intr->bnx_intr_cpuid = idx + offset;
6079
6080                         ksnprintf(intr->bnx_intr_desc0,
6081                             sizeof(intr->bnx_intr_desc0), "%s rx%d",
6082                             device_get_nameunit(sc->bnx_dev), idx);
6083                         intr->bnx_intr_desc = intr->bnx_intr_desc0;
6084
6085                         intr->bnx_ret->bnx_msix_mbx = intr->bnx_intr_mbx;
6086                 }
6087         }
6088
6089         if (BNX_IS_5717_PLUS(sc)) {
6090                 sc->bnx_msix_mem_rid = PCIR_BAR(4);
6091         } else {
6092                 if (sc->bnx_res2 == NULL)
6093                         sc->bnx_msix_mem_rid = PCIR_BAR(2);
6094         }
6095         if (sc->bnx_msix_mem_rid != 0) {
6096                 sc->bnx_msix_mem_res = bus_alloc_resource_any(sc->bnx_dev,
6097                     SYS_RES_MEMORY, &sc->bnx_msix_mem_rid, RF_ACTIVE);
6098                 if (sc->bnx_msix_mem_res == NULL) {
6099                         device_printf(sc->bnx_dev,
6100                             "could not alloc MSI-X table\n");
6101                         return ENXIO;
6102                 }
6103         }
6104
6105         bnx_enable_msi(sc, TRUE);
6106
6107         error = pci_setup_msix(sc->bnx_dev);
6108         if (error) {
6109                 device_printf(sc->bnx_dev, "could not setup MSI-X\n");
6110                 goto back;
6111         }
6112         setup = TRUE;
6113
6114         for (i = 0; i < sc->bnx_intr_cnt; ++i) {
6115                 intr = &sc->bnx_intr_data[i];
6116
6117                 error = pci_alloc_msix_vector(sc->bnx_dev, i,
6118                     &intr->bnx_intr_rid, intr->bnx_intr_cpuid);
6119                 if (error) {
6120                         device_printf(sc->bnx_dev,
6121                             "could not alloc MSI-X %d on cpu%d\n",
6122                             i, intr->bnx_intr_cpuid);
6123                         goto back;
6124                 }
6125
6126                 intr->bnx_intr_res = bus_alloc_resource_any(sc->bnx_dev,
6127                     SYS_RES_IRQ, &intr->bnx_intr_rid, RF_ACTIVE);
6128                 if (intr->bnx_intr_res == NULL) {
6129                         device_printf(sc->bnx_dev,
6130                             "could not alloc MSI-X %d resource\n", i);
6131                         error = ENXIO;
6132                         goto back;
6133                 }
6134         }
6135
6136         pci_enable_msix(sc->bnx_dev);
6137         sc->bnx_intr_type = PCI_INTR_TYPE_MSIX;
6138 back:
6139         if (error)
6140                 bnx_free_msix(sc, setup);
6141         return error;
6142 }
6143
6144 static void
6145 bnx_free_msix(struct bnx_softc *sc, boolean_t setup)
6146 {
6147         int i;
6148
6149         KKASSERT(sc->bnx_intr_cnt > 1);
6150
6151         for (i = 0; i < sc->bnx_intr_cnt; ++i) {
6152                 struct bnx_intr_data *intr = &sc->bnx_intr_data[i];
6153
6154                 if (intr->bnx_intr_res != NULL) {
6155                         bus_release_resource(sc->bnx_dev, SYS_RES_IRQ,
6156                             intr->bnx_intr_rid, intr->bnx_intr_res);
6157                 }
6158                 if (intr->bnx_intr_rid >= 0) {
6159                         pci_release_msix_vector(sc->bnx_dev,
6160                             intr->bnx_intr_rid);
6161                 }
6162         }
6163         if (setup)
6164                 pci_teardown_msix(sc->bnx_dev);
6165 }
6166
6167 static void
6168 bnx_rx_std_refill_sched_ipi(void *xret)
6169 {
6170         struct bnx_rx_ret_ring *ret = xret;
6171         struct bnx_rx_std_ring *std = ret->bnx_std;
6172         struct globaldata *gd = mycpu;
6173
6174         crit_enter_gd(gd);
6175
6176         atomic_set_int(&std->bnx_rx_std_refill, ret->bnx_rx_mask);
6177         cpu_sfence();
6178
6179         KKASSERT(std->bnx_rx_std_ithread.td_gd == gd);
6180         lwkt_schedule(&std->bnx_rx_std_ithread);
6181
6182         crit_exit_gd(gd);
6183 }
6184
6185 static void
6186 bnx_rx_std_refill_stop(void *xstd)
6187 {
6188         struct bnx_rx_std_ring *std = xstd;
6189         struct globaldata *gd = mycpu;
6190
6191         crit_enter_gd(gd);
6192
6193         std->bnx_rx_std_stop = 1;
6194         cpu_sfence();
6195
6196         KKASSERT(std->bnx_rx_std_ithread.td_gd == gd);
6197         lwkt_schedule(&std->bnx_rx_std_ithread);
6198
6199         crit_exit_gd(gd);
6200 }
6201
6202 static void
6203 bnx_serialize_skipmain(struct bnx_softc *sc)
6204 {
6205         lwkt_serialize_array_enter(sc->bnx_serialize,
6206             sc->bnx_serialize_cnt, 1);
6207 }
6208
6209 static void
6210 bnx_deserialize_skipmain(struct bnx_softc *sc)
6211 {
6212         lwkt_serialize_array_exit(sc->bnx_serialize,
6213             sc->bnx_serialize_cnt, 1);
6214 }
6215
6216 static void
6217 bnx_rx_std_refill_sched(struct bnx_rx_ret_ring *ret,
6218     struct bnx_rx_std_ring *std)
6219 {
6220         struct globaldata *gd = mycpu;
6221
6222         ret->bnx_rx_cnt = 0;
6223         cpu_sfence();
6224
6225         crit_enter_gd(gd);
6226
6227         atomic_set_int(&std->bnx_rx_std_refill, ret->bnx_rx_mask);
6228         cpu_sfence();
6229         if (atomic_poll_acquire_int(&std->bnx_rx_std_running)) {
6230                 if (std->bnx_rx_std_ithread.td_gd == gd) {
6231                         lwkt_schedule(&std->bnx_rx_std_ithread);
6232                 } else {
6233                         lwkt_send_ipiq(
6234                             std->bnx_rx_std_ithread.td_gd,
6235                             bnx_rx_std_refill_sched_ipi, ret);
6236                 }
6237         }
6238
6239         crit_exit_gd(gd);
6240 }
6241
6242 static struct pktinfo *
6243 bnx_rss_info(struct pktinfo *pi, const struct bge_rx_bd *cur_rx)
6244 {
6245         /* Don't pick up IPv6 packet */
6246         if (cur_rx->bge_flags & BGE_RXBDFLAG_IPV6)
6247                 return NULL;
6248
6249         /* Don't pick up IP packet w/o IP checksum */
6250         if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) == 0 ||
6251             (cur_rx->bge_error_flag & BGE_RXERRFLAG_IP_CSUM_NOK))
6252                 return NULL;
6253
6254         /* Don't pick up IP packet w/o TCP/UDP checksum */
6255         if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) == 0)
6256                 return NULL;
6257
6258         /* May be IP fragment */
6259         if (cur_rx->bge_tcp_udp_csum != 0xffff)
6260                 return NULL;
6261
6262         if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_IS_TCP)
6263                 pi->pi_l3proto = IPPROTO_TCP;
6264         else
6265                 pi->pi_l3proto = IPPROTO_UDP;
6266         pi->pi_netisr = NETISR_IP;
6267         pi->pi_flags = 0;
6268
6269         return pi;
6270 }
6271
6272 static void
6273 bnx_sig_pre_reset(struct bnx_softc *sc, int type)
6274 {
6275         if (type == BNX_RESET_START || type == BNX_RESET_SUSPEND)
6276                 bnx_ape_driver_state_change(sc, type);
6277 }
6278
6279 static void
6280 bnx_sig_post_reset(struct bnx_softc *sc, int type)
6281 {
6282         if (type == BNX_RESET_SHUTDOWN)
6283                 bnx_ape_driver_state_change(sc, type);
6284 }
6285
6286 /*
6287  * Clear all stale locks and select the lock for this driver instance.
6288  */
6289 static void
6290 bnx_ape_lock_init(struct bnx_softc *sc)
6291 {
6292         uint32_t bit, regbase;
6293         int i;
6294
6295         regbase = BGE_APE_PER_LOCK_GRANT;
6296
6297         /* Clear any stale locks. */
6298         for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
6299                 switch (i) {
6300                 case BGE_APE_LOCK_PHY0:
6301                 case BGE_APE_LOCK_PHY1:
6302                 case BGE_APE_LOCK_PHY2:
6303                 case BGE_APE_LOCK_PHY3:
6304                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
6305                         break;
6306
6307                 default:
6308                         if (sc->bnx_func_addr == 0)
6309                                 bit = BGE_APE_LOCK_GRANT_DRIVER0;
6310                         else
6311                                 bit = 1 << sc->bnx_func_addr;
6312                         break;
6313                 }
6314                 APE_WRITE_4(sc, regbase + 4 * i, bit);
6315         }
6316
6317         /* Select the PHY lock based on the device's function number. */
6318         switch (sc->bnx_func_addr) {
6319         case 0:
6320                 sc->bnx_phy_ape_lock = BGE_APE_LOCK_PHY0;
6321                 break;
6322
6323         case 1:
6324                 sc->bnx_phy_ape_lock = BGE_APE_LOCK_PHY1;
6325                 break;
6326
6327         case 2:
6328                 sc->bnx_phy_ape_lock = BGE_APE_LOCK_PHY2;
6329                 break;
6330
6331         case 3:
6332                 sc->bnx_phy_ape_lock = BGE_APE_LOCK_PHY3;
6333                 break;
6334
6335         default:
6336                 device_printf(sc->bnx_dev,
6337                     "PHY lock not supported on this function\n");
6338                 break;
6339         }
6340 }
6341
6342 /*
6343  * Check for APE firmware, set flags, and print version info.
6344  */
6345 static void
6346 bnx_ape_read_fw_ver(struct bnx_softc *sc)
6347 {
6348         const char *fwtype;
6349         uint32_t apedata, features;
6350
6351         /* Check for a valid APE signature in shared memory. */
6352         apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
6353         if (apedata != BGE_APE_SEG_SIG_MAGIC) {
6354                 device_printf(sc->bnx_dev, "no APE signature\n");
6355                 sc->bnx_mfw_flags &= ~BNX_MFW_ON_APE;
6356                 return;
6357         }
6358
6359         /* Check if APE firmware is running. */
6360         apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
6361         if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
6362                 device_printf(sc->bnx_dev, "APE signature found "
6363                     "but FW status not ready! 0x%08x\n", apedata);
6364                 return;
6365         }
6366
6367         sc->bnx_mfw_flags |= BNX_MFW_ON_APE;
6368
6369         /* Fetch the APE firwmare type and version. */
6370         apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
6371         features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
6372         if (features & BGE_APE_FW_FEATURE_NCSI) {
6373                 sc->bnx_mfw_flags |= BNX_MFW_TYPE_NCSI;
6374                 fwtype = "NCSI";
6375         } else if (features & BGE_APE_FW_FEATURE_DASH) {
6376                 sc->bnx_mfw_flags |= BNX_MFW_TYPE_DASH;
6377                 fwtype = "DASH";
6378         } else {
6379                 fwtype = "UNKN";
6380         }
6381
6382         /* Print the APE firmware version. */
6383         device_printf(sc->bnx_dev, "APE FW version: %s v%d.%d.%d.%d\n",
6384             fwtype,
6385             (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
6386             (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
6387             (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
6388             (apedata & BGE_APE_FW_VERSION_BLDMSK));
6389 }
6390
6391 static int
6392 bnx_ape_lock(struct bnx_softc *sc, int locknum)
6393 {
6394         uint32_t bit, gnt, req, status;
6395         int i, off;
6396
6397         if ((sc->bnx_mfw_flags & BNX_MFW_ON_APE) == 0)
6398                 return 0;
6399
6400         /* Lock request/grant registers have different bases. */
6401         req = BGE_APE_PER_LOCK_REQ;
6402         gnt = BGE_APE_PER_LOCK_GRANT;
6403
6404         off = 4 * locknum;
6405
6406         switch (locknum) {
6407         case BGE_APE_LOCK_GPIO:
6408                 /* Lock required when using GPIO. */
6409                 if (sc->bnx_func_addr == 0)
6410                         bit = BGE_APE_LOCK_REQ_DRIVER0;
6411                 else
6412                         bit = 1 << sc->bnx_func_addr;
6413                 break;
6414
6415         case BGE_APE_LOCK_GRC:
6416                 /* Lock required to reset the device. */
6417                 if (sc->bnx_func_addr == 0)
6418                         bit = BGE_APE_LOCK_REQ_DRIVER0;
6419                 else
6420                         bit = 1 << sc->bnx_func_addr;
6421                 break;
6422
6423         case BGE_APE_LOCK_MEM:
6424                 /* Lock required when accessing certain APE memory. */
6425                 if (sc->bnx_func_addr == 0)
6426                         bit = BGE_APE_LOCK_REQ_DRIVER0;
6427                 else
6428                         bit = 1 << sc->bnx_func_addr;
6429                 break;
6430
6431         case BGE_APE_LOCK_PHY0:
6432         case BGE_APE_LOCK_PHY1:
6433         case BGE_APE_LOCK_PHY2:
6434         case BGE_APE_LOCK_PHY3:
6435                 /* Lock required when accessing PHYs. */
6436                 bit = BGE_APE_LOCK_REQ_DRIVER0;
6437                 break;
6438
6439         default:
6440                 return EINVAL;
6441         }
6442
6443         /* Request a lock. */
6444         APE_WRITE_4(sc, req + off, bit);
6445
6446         /* Wait up to 1 second to acquire lock. */
6447         for (i = 0; i < 20000; i++) {
6448                 status = APE_READ_4(sc, gnt + off);
6449                 if (status == bit)
6450                         break;
6451                 DELAY(50);
6452         }
6453
6454         /* Handle any errors. */
6455         if (status != bit) {
6456                 if_printf(&sc->arpcom.ac_if, "APE lock %d request failed! "
6457                     "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
6458                     locknum, req + off, bit & 0xFFFF, gnt + off,
6459                     status & 0xFFFF);
6460                 /* Revoke the lock request. */
6461                 APE_WRITE_4(sc, gnt + off, bit);
6462                 return EBUSY;
6463         }
6464
6465         return 0;
6466 }
6467
6468 static void
6469 bnx_ape_unlock(struct bnx_softc *sc, int locknum)
6470 {
6471         uint32_t bit, gnt;
6472         int off;
6473
6474         if ((sc->bnx_mfw_flags & BNX_MFW_ON_APE) == 0)
6475                 return;
6476
6477         gnt = BGE_APE_PER_LOCK_GRANT;
6478
6479         off = 4 * locknum;
6480
6481         switch (locknum) {
6482         case BGE_APE_LOCK_GPIO:
6483                 if (sc->bnx_func_addr == 0)
6484                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
6485                 else
6486                         bit = 1 << sc->bnx_func_addr;
6487                 break;
6488
6489         case BGE_APE_LOCK_GRC:
6490                 if (sc->bnx_func_addr == 0)
6491                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
6492                 else
6493                         bit = 1 << sc->bnx_func_addr;
6494                 break;
6495
6496         case BGE_APE_LOCK_MEM:
6497                 if (sc->bnx_func_addr == 0)
6498                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
6499                 else
6500                         bit = 1 << sc->bnx_func_addr;
6501                 break;
6502
6503         case BGE_APE_LOCK_PHY0:
6504         case BGE_APE_LOCK_PHY1:
6505         case BGE_APE_LOCK_PHY2:
6506         case BGE_APE_LOCK_PHY3:
6507                 bit = BGE_APE_LOCK_GRANT_DRIVER0;
6508                 break;
6509
6510         default:
6511                 return;
6512         }
6513
6514         APE_WRITE_4(sc, gnt + off, bit);
6515 }
6516
6517 /*
6518  * Send an event to the APE firmware.
6519  */
6520 static void
6521 bnx_ape_send_event(struct bnx_softc *sc, uint32_t event)
6522 {
6523         uint32_t apedata;
6524         int i;
6525
6526         /* NCSI does not support APE events. */
6527         if ((sc->bnx_mfw_flags & BNX_MFW_ON_APE) == 0)
6528                 return;
6529
6530         /* Wait up to 1ms for APE to service previous event. */
6531         for (i = 10; i > 0; i--) {
6532                 if (bnx_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
6533                         break;
6534                 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
6535                 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
6536                         APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
6537                             BGE_APE_EVENT_STATUS_EVENT_PENDING);
6538                         bnx_ape_unlock(sc, BGE_APE_LOCK_MEM);
6539                         APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
6540                         break;
6541                 }
6542                 bnx_ape_unlock(sc, BGE_APE_LOCK_MEM);
6543                 DELAY(100);
6544         }
6545         if (i == 0) {
6546                 if_printf(&sc->arpcom.ac_if,
6547                     "APE event 0x%08x send timed out\n", event);
6548         }
6549 }
6550
6551 static void
6552 bnx_ape_driver_state_change(struct bnx_softc *sc, int kind)
6553 {
6554         uint32_t apedata, event;
6555
6556         if ((sc->bnx_mfw_flags & BNX_MFW_ON_APE) == 0)
6557                 return;
6558
6559         switch (kind) {
6560         case BNX_RESET_START:
6561                 /* If this is the first load, clear the load counter. */
6562                 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
6563                 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC) {
6564                         APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
6565                 } else {
6566                         apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
6567                         APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
6568                 }
6569                 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
6570                     BGE_APE_HOST_SEG_SIG_MAGIC);
6571                 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
6572                     BGE_APE_HOST_SEG_LEN_MAGIC);
6573
6574                 /* Add some version info if bnx(4) supports it. */
6575                 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
6576                     BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
6577                 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
6578                     BGE_APE_HOST_BEHAV_NO_PHYLOCK);
6579                 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
6580                     BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
6581                 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
6582                     BGE_APE_HOST_DRVR_STATE_START);
6583                 event = BGE_APE_EVENT_STATUS_STATE_START;
6584                 break;
6585
6586         case BNX_RESET_SHUTDOWN:
6587                 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
6588                     BGE_APE_HOST_DRVR_STATE_UNLOAD);
6589                 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
6590                 break;
6591
6592         case BNX_RESET_SUSPEND:
6593                 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
6594                 break;
6595
6596         default:
6597                 return;
6598         }
6599
6600         bnx_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
6601             BGE_APE_EVENT_STATUS_STATE_CHNGE);
6602 }