bge: Add MSI support
[dragonfly.git] / sys / dev / netif / bge / if_bge.c
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34  */
35
36 /*
37  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
38  * 
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Engineer, Wind River Systems
41  */
42
43 /*
44  * The Broadcom BCM5700 is based on technology originally developed by
45  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
46  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
47  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
48  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
49  * frames, highly configurable RX filtering, and 16 RX and TX queues
50  * (which, along with RX filter rules, can be used for QOS applications).
51  * Other features, such as TCP segmentation, may be available as part
52  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
53  * firmware images can be stored in hardware and need not be compiled
54  * into the driver.
55  *
56  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
57  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
58  * 
59  * The BCM5701 is a single-chip solution incorporating both the BCM5700
60  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
61  * does not support external SSRAM.
62  *
63  * Broadcom also produces a variation of the BCM5700 under the "Altima"
64  * brand name, which is functionally similar but lacks PCI-X support.
65  *
66  * Without external SSRAM, you can only have at most 4 TX rings,
67  * and the use of the mini RX ring is disabled. This seems to imply
68  * that these features are simply not available on the BCM5701. As a
69  * result, this driver does not implement any support for the mini RX
70  * ring.
71  */
72
73 #include "opt_polling.h"
74
75 #include <sys/param.h>
76 #include <sys/bus.h>
77 #include <sys/endian.h>
78 #include <sys/kernel.h>
79 #include <sys/ktr.h>
80 #include <sys/interrupt.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/queue.h>
84 #include <sys/rman.h>
85 #include <sys/serialize.h>
86 #include <sys/socket.h>
87 #include <sys/sockio.h>
88 #include <sys/sysctl.h>
89
90 #include <net/bpf.h>
91 #include <net/ethernet.h>
92 #include <net/if.h>
93 #include <net/if_arp.h>
94 #include <net/if_dl.h>
95 #include <net/if_media.h>
96 #include <net/if_types.h>
97 #include <net/ifq_var.h>
98 #include <net/vlan/if_vlan_var.h>
99 #include <net/vlan/if_vlan_ether.h>
100
101 #include <dev/netif/mii_layer/mii.h>
102 #include <dev/netif/mii_layer/miivar.h>
103 #include <dev/netif/mii_layer/brgphyreg.h>
104
105 #include <bus/pci/pcidevs.h>
106 #include <bus/pci/pcireg.h>
107 #include <bus/pci/pcivar.h>
108
109 #include <dev/netif/bge/if_bgereg.h>
110 #include <dev/netif/bge/if_bgevar.h>
111
112 /* "device miibus" required.  See GENERIC if you get errors here. */
113 #include "miibus_if.h"
114
115 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP)
116
117 static const struct bge_type {
118         uint16_t                bge_vid;
119         uint16_t                bge_did;
120         char                    *bge_name;
121 } bge_devs[] = {
122         { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996,
123                 "3COM 3C996 Gigabit Ethernet" },
124
125         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
126                 "Alteon BCM5700 Gigabit Ethernet" },
127         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
128                 "Alteon BCM5701 Gigabit Ethernet" },
129
130         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
131                 "Altima AC1000 Gigabit Ethernet" },
132         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
133                 "Altima AC1002 Gigabit Ethernet" },
134         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
135                 "Altima AC9100 Gigabit Ethernet" },
136
137         { PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701,
138                 "Apple BCM5701 Gigabit Ethernet" },
139
140         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
141                 "Broadcom BCM5700 Gigabit Ethernet" },
142         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
143                 "Broadcom BCM5701 Gigabit Ethernet" },
144         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702,
145                 "Broadcom BCM5702 Gigabit Ethernet" },
146         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
147                 "Broadcom BCM5702X Gigabit Ethernet" },
148         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
149                 "Broadcom BCM5702 Gigabit Ethernet" },
150         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703,
151                 "Broadcom BCM5703 Gigabit Ethernet" },
152         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
153                 "Broadcom BCM5703X Gigabit Ethernet" },
154         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
155                 "Broadcom BCM5703 Gigabit Ethernet" },
156         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
157                 "Broadcom BCM5704C Dual Gigabit Ethernet" },
158         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
159                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
160         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT,
161                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
162         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
163                 "Broadcom BCM5705 Gigabit Ethernet" },
164         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F,
165                 "Broadcom BCM5705F Gigabit Ethernet" },
166         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
167                 "Broadcom BCM5705K Gigabit Ethernet" },
168         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
169                 "Broadcom BCM5705M Gigabit Ethernet" },
170         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
171                 "Broadcom BCM5705M Gigabit Ethernet" },
172         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
173                 "Broadcom BCM5714C Gigabit Ethernet" },
174         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S,
175                 "Broadcom BCM5714S Gigabit Ethernet" },
176         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715,
177                 "Broadcom BCM5715 Gigabit Ethernet" },
178         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S,
179                 "Broadcom BCM5715S Gigabit Ethernet" },
180         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720,
181                 "Broadcom BCM5720 Gigabit Ethernet" },
182         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
183                 "Broadcom BCM5721 Gigabit Ethernet" },
184         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722,
185                 "Broadcom BCM5722 Gigabit Ethernet" },
186         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5723,
187                 "Broadcom BCM5723 Gigabit Ethernet" },
188         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
189                 "Broadcom BCM5750 Gigabit Ethernet" },
190         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
191                 "Broadcom BCM5750M Gigabit Ethernet" },
192         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
193                 "Broadcom BCM5751 Gigabit Ethernet" },
194         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F,
195                 "Broadcom BCM5751F Gigabit Ethernet" },
196         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
197                 "Broadcom BCM5751M Gigabit Ethernet" },
198         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
199                 "Broadcom BCM5752 Gigabit Ethernet" },
200         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M,
201                 "Broadcom BCM5752M Gigabit Ethernet" },
202         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753,
203                 "Broadcom BCM5753 Gigabit Ethernet" },
204         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F,
205                 "Broadcom BCM5753F Gigabit Ethernet" },
206         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M,
207                 "Broadcom BCM5753M Gigabit Ethernet" },
208         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754,
209                 "Broadcom BCM5754 Gigabit Ethernet" },
210         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M,
211                 "Broadcom BCM5754M Gigabit Ethernet" },
212         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755,
213                 "Broadcom BCM5755 Gigabit Ethernet" },
214         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M,
215                 "Broadcom BCM5755M Gigabit Ethernet" },
216         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756,
217                 "Broadcom BCM5756 Gigabit Ethernet" },
218         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761,
219                 "Broadcom BCM5761 Gigabit Ethernet" },
220         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761E,
221                 "Broadcom BCM5761E Gigabit Ethernet" },
222         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761S,
223                 "Broadcom BCM5761S Gigabit Ethernet" },
224         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761SE,
225                 "Broadcom BCM5761SE Gigabit Ethernet" },
226         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5764,
227                 "Broadcom BCM5764 Gigabit Ethernet" },
228         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780,
229                 "Broadcom BCM5780 Gigabit Ethernet" },
230         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S,
231                 "Broadcom BCM5780S Gigabit Ethernet" },
232         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781,
233                 "Broadcom BCM5781 Gigabit Ethernet" },
234         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
235                 "Broadcom BCM5782 Gigabit Ethernet" },
236         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5784,
237                 "Broadcom BCM5784 Gigabit Ethernet" },
238         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785F,
239                 "Broadcom BCM5785F Gigabit Ethernet" },
240         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785G,
241                 "Broadcom BCM5785G Gigabit Ethernet" },
242         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786,
243                 "Broadcom BCM5786 Gigabit Ethernet" },
244         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787,
245                 "Broadcom BCM5787 Gigabit Ethernet" },
246         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F,
247                 "Broadcom BCM5787F Gigabit Ethernet" },
248         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M,
249                 "Broadcom BCM5787M Gigabit Ethernet" },
250         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
251                 "Broadcom BCM5788 Gigabit Ethernet" },
252         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
253                 "Broadcom BCM5789 Gigabit Ethernet" },
254         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
255                 "Broadcom BCM5901 Fast Ethernet" },
256         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
257                 "Broadcom BCM5901A2 Fast Ethernet" },
258         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M,
259                 "Broadcom BCM5903M Fast Ethernet" },
260         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906,
261                 "Broadcom BCM5906 Fast Ethernet"},
262         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906M,
263                 "Broadcom BCM5906M Fast Ethernet"},
264         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57760,
265                 "Broadcom BCM57760 Gigabit Ethernet"},
266         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57780,
267                 "Broadcom BCM57780 Gigabit Ethernet"},
268         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57788,
269                 "Broadcom BCM57788 Gigabit Ethernet"},
270         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57790,
271                 "Broadcom BCM57790 Gigabit Ethernet"},
272         { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
273                 "SysKonnect Gigabit Ethernet" },
274
275         { 0, 0, NULL }
276 };
277
278 #define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGE_FLAG_JUMBO)
279 #define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
280 #define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
281 #define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
282 #define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
283 #define BGE_IS_5755_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5755_PLUS)
284 #define BGE_IS_5788(sc)                 ((sc)->bge_flags & BGE_FLAG_5788)
285
286 #define BGE_IS_CRIPPLED(sc)             \
287         (BGE_IS_5788((sc)) || (sc)->bge_asicrev == BGE_ASICREV_BCM5700)
288
289 typedef int     (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
290
291 static int      bge_probe(device_t);
292 static int      bge_attach(device_t);
293 static int      bge_detach(device_t);
294 static void     bge_txeof(struct bge_softc *, uint16_t);
295 static void     bge_rxeof(struct bge_softc *, uint16_t);
296
297 static void     bge_tick(void *);
298 static void     bge_stats_update(struct bge_softc *);
299 static void     bge_stats_update_regs(struct bge_softc *);
300 static struct mbuf *
301                 bge_defrag_shortdma(struct mbuf *);
302 static int      bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
303
304 #ifdef DEVICE_POLLING
305 static void     bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
306 #endif
307 static void     bge_intr_crippled(void *);
308 static void     bge_intr_legacy(void *);
309 static void     bge_msi(void *);
310 static void     bge_msi_oneshot(void *);
311 static void     bge_intr(struct bge_softc *);
312 static void     bge_enable_intr(struct bge_softc *);
313 static void     bge_disable_intr(struct bge_softc *);
314 static void     bge_start(struct ifnet *);
315 static int      bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
316 static void     bge_init(void *);
317 static void     bge_stop(struct bge_softc *);
318 static void     bge_watchdog(struct ifnet *);
319 static void     bge_shutdown(device_t);
320 static int      bge_suspend(device_t);
321 static int      bge_resume(device_t);
322 static int      bge_ifmedia_upd(struct ifnet *);
323 static void     bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
324
325 static uint8_t  bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
326 static int      bge_read_nvram(struct bge_softc *, caddr_t, int, int);
327
328 static uint8_t  bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
329 static int      bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
330
331 static void     bge_setmulti(struct bge_softc *);
332 static void     bge_setpromisc(struct bge_softc *);
333 static void     bge_enable_msi(struct bge_softc *sc);
334
335 static int      bge_alloc_jumbo_mem(struct bge_softc *);
336 static void     bge_free_jumbo_mem(struct bge_softc *);
337 static struct bge_jslot
338                 *bge_jalloc(struct bge_softc *);
339 static void     bge_jfree(void *);
340 static void     bge_jref(void *);
341 static int      bge_newbuf_std(struct bge_softc *, int, int);
342 static int      bge_newbuf_jumbo(struct bge_softc *, int, int);
343 static void     bge_setup_rxdesc_std(struct bge_softc *, int);
344 static void     bge_setup_rxdesc_jumbo(struct bge_softc *, int);
345 static int      bge_init_rx_ring_std(struct bge_softc *);
346 static void     bge_free_rx_ring_std(struct bge_softc *);
347 static int      bge_init_rx_ring_jumbo(struct bge_softc *);
348 static void     bge_free_rx_ring_jumbo(struct bge_softc *);
349 static void     bge_free_tx_ring(struct bge_softc *);
350 static int      bge_init_tx_ring(struct bge_softc *);
351
352 static int      bge_chipinit(struct bge_softc *);
353 static int      bge_blockinit(struct bge_softc *);
354 static void     bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
355
356 static uint32_t bge_readmem_ind(struct bge_softc *, uint32_t);
357 static void     bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
358 #ifdef notdef
359 static uint32_t bge_readreg_ind(struct bge_softc *, uint32_t);
360 #endif
361 static void     bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
362 static void     bge_writemem_direct(struct bge_softc *, uint32_t, uint32_t);
363 static void     bge_writembx(struct bge_softc *, int, int);
364
365 static int      bge_miibus_readreg(device_t, int, int);
366 static int      bge_miibus_writereg(device_t, int, int, int);
367 static void     bge_miibus_statchg(device_t);
368 static void     bge_bcm5700_link_upd(struct bge_softc *, uint32_t);
369 static void     bge_tbi_link_upd(struct bge_softc *, uint32_t);
370 static void     bge_copper_link_upd(struct bge_softc *, uint32_t);
371 static void     bge_autopoll_link_upd(struct bge_softc *, uint32_t);
372 static void     bge_link_poll(struct bge_softc *);
373
374 static void     bge_reset(struct bge_softc *);
375
376 static int      bge_dma_alloc(struct bge_softc *);
377 static void     bge_dma_free(struct bge_softc *);
378 static int      bge_dma_block_alloc(struct bge_softc *, bus_size_t,
379                                     bus_dma_tag_t *, bus_dmamap_t *,
380                                     void **, bus_addr_t *);
381 static void     bge_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
382
383 static int      bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
384 static int      bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
385 static int      bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
386 static int      bge_get_eaddr(struct bge_softc *, uint8_t[]);
387
388 static void     bge_coal_change(struct bge_softc *);
389 static int      bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
390 static int      bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
391 static int      bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS);
392 static int      bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS);
393 static int      bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
394 static int      bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
395 static int      bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS);
396 static int      bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS);
397 static int      bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *,
398                     int, int, uint32_t);
399
400 /*
401  * Set following tunable to 1 for some IBM blade servers with the DNLK
402  * switch module. Auto negotiation is broken for those configurations.
403  */
404 static int      bge_fake_autoneg = 0;
405 TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
406
407 static int      bge_msi_enable = 1;
408 TUNABLE_INT("hw.bge.msi.enable", &bge_msi_enable);
409
410 #if !defined(KTR_IF_BGE)
411 #define KTR_IF_BGE      KTR_ALL
412 #endif
413 KTR_INFO_MASTER(if_bge);
414 KTR_INFO(KTR_IF_BGE, if_bge, intr, 0, "intr");
415 KTR_INFO(KTR_IF_BGE, if_bge, rx_pkt, 1, "rx_pkt");
416 KTR_INFO(KTR_IF_BGE, if_bge, tx_pkt, 2, "tx_pkt");
417 #define logif(name)     KTR_LOG(if_bge_ ## name)
418
419 static device_method_t bge_methods[] = {
420         /* Device interface */
421         DEVMETHOD(device_probe,         bge_probe),
422         DEVMETHOD(device_attach,        bge_attach),
423         DEVMETHOD(device_detach,        bge_detach),
424         DEVMETHOD(device_shutdown,      bge_shutdown),
425         DEVMETHOD(device_suspend,       bge_suspend),
426         DEVMETHOD(device_resume,        bge_resume),
427
428         /* bus interface */
429         DEVMETHOD(bus_print_child,      bus_generic_print_child),
430         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
431
432         /* MII interface */
433         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
434         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
435         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
436
437         { 0, 0 }
438 };
439
440 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
441 static devclass_t bge_devclass;
442
443 DECLARE_DUMMY_MODULE(if_bge);
444 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, NULL, NULL);
445 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, NULL, NULL);
446
447 static uint32_t
448 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
449 {
450         device_t dev = sc->bge_dev;
451         uint32_t val;
452
453         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
454             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
455                 return 0;
456
457         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
458         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
459         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
460         return (val);
461 }
462
463 static void
464 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
465 {
466         device_t dev = sc->bge_dev;
467
468         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
469             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
470                 return;
471
472         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
473         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
474         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
475 }
476
477 #ifdef notdef
478 static uint32_t
479 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
480 {
481         device_t dev = sc->bge_dev;
482
483         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
484         return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
485 }
486 #endif
487
488 static void
489 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
490 {
491         device_t dev = sc->bge_dev;
492
493         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
494         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
495 }
496
497 static void
498 bge_writemem_direct(struct bge_softc *sc, uint32_t off, uint32_t val)
499 {
500         CSR_WRITE_4(sc, off, val);
501 }
502
503 static void
504 bge_writembx(struct bge_softc *sc, int off, int val)
505 {
506         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
507                 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
508
509         CSR_WRITE_4(sc, off, val);
510         if (sc->bge_mbox_reorder)
511                 CSR_READ_4(sc, off);
512 }
513
514 static uint8_t
515 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
516 {
517         uint32_t access, byte = 0;
518         int i;
519
520         /* Lock. */
521         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
522         for (i = 0; i < 8000; i++) {
523                 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
524                         break;
525                 DELAY(20);
526         }
527         if (i == 8000)
528                 return (1);
529
530         /* Enable access. */
531         access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
532         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
533
534         CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
535         CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
536         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
537                 DELAY(10);
538                 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
539                         DELAY(10);
540                         break;
541                 }
542         }
543
544         if (i == BGE_TIMEOUT * 10) {
545                 if_printf(&sc->arpcom.ac_if, "nvram read timed out\n");
546                 return (1);
547         }
548
549         /* Get result. */
550         byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
551
552         *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
553
554         /* Disable access. */
555         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
556
557         /* Unlock. */
558         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
559         CSR_READ_4(sc, BGE_NVRAM_SWARB);
560
561         return (0);
562 }
563
564 /*
565  * Read a sequence of bytes from NVRAM.
566  */
567 static int
568 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
569 {
570         int err = 0, i;
571         uint8_t byte = 0;
572
573         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
574                 return (1);
575
576         for (i = 0; i < cnt; i++) {
577                 err = bge_nvram_getbyte(sc, off + i, &byte);
578                 if (err)
579                         break;
580                 *(dest + i) = byte;
581         }
582
583         return (err ? 1 : 0);
584 }
585
586 /*
587  * Read a byte of data stored in the EEPROM at address 'addr.' The
588  * BCM570x supports both the traditional bitbang interface and an
589  * auto access interface for reading the EEPROM. We use the auto
590  * access method.
591  */
592 static uint8_t
593 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
594 {
595         int i;
596         uint32_t byte = 0;
597
598         /*
599          * Enable use of auto EEPROM access so we can avoid
600          * having to use the bitbang method.
601          */
602         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
603
604         /* Reset the EEPROM, load the clock period. */
605         CSR_WRITE_4(sc, BGE_EE_ADDR,
606             BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
607         DELAY(20);
608
609         /* Issue the read EEPROM command. */
610         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
611
612         /* Wait for completion */
613         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
614                 DELAY(10);
615                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
616                         break;
617         }
618
619         if (i == BGE_TIMEOUT) {
620                 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
621                 return(1);
622         }
623
624         /* Get result. */
625         byte = CSR_READ_4(sc, BGE_EE_DATA);
626
627         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
628
629         return(0);
630 }
631
632 /*
633  * Read a sequence of bytes from the EEPROM.
634  */
635 static int
636 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
637 {
638         size_t i;
639         int err;
640         uint8_t byte;
641
642         for (byte = 0, err = 0, i = 0; i < len; i++) {
643                 err = bge_eeprom_getbyte(sc, off + i, &byte);
644                 if (err)
645                         break;
646                 *(dest + i) = byte;
647         }
648
649         return(err ? 1 : 0);
650 }
651
652 static int
653 bge_miibus_readreg(device_t dev, int phy, int reg)
654 {
655         struct bge_softc *sc = device_get_softc(dev);
656         uint32_t val;
657         int i;
658
659         KASSERT(phy == sc->bge_phyno,
660             ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
661
662         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
663         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
664                 CSR_WRITE_4(sc, BGE_MI_MODE,
665                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
666                 DELAY(80);
667         }
668
669         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
670             BGE_MIPHY(phy) | BGE_MIREG(reg));
671
672         /* Poll for the PHY register access to complete. */
673         for (i = 0; i < BGE_TIMEOUT; i++) {
674                 DELAY(10);
675                 val = CSR_READ_4(sc, BGE_MI_COMM);
676                 if ((val & BGE_MICOMM_BUSY) == 0) {
677                         DELAY(5);
678                         val = CSR_READ_4(sc, BGE_MI_COMM);
679                         break;
680                 }
681         }
682         if (i == BGE_TIMEOUT) {
683                 if_printf(&sc->arpcom.ac_if, "PHY read timed out "
684                     "(phy %d, reg %d, val 0x%08x)\n", phy, reg, val);
685                 val = 0;
686         }
687
688         /* Restore the autopoll bit if necessary. */
689         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
690                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
691                 DELAY(80);
692         }
693
694         if (val & BGE_MICOMM_READFAIL)
695                 return 0;
696
697         return (val & 0xFFFF);
698 }
699
700 static int
701 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
702 {
703         struct bge_softc *sc = device_get_softc(dev);
704         int i;
705
706         KASSERT(phy == sc->bge_phyno,
707             ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
708
709         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
710             (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
711                return 0;
712
713         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
714         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
715                 CSR_WRITE_4(sc, BGE_MI_MODE,
716                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
717                 DELAY(80);
718         }
719
720         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
721             BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
722
723         for (i = 0; i < BGE_TIMEOUT; i++) {
724                 DELAY(10);
725                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
726                         DELAY(5);
727                         CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
728                         break;
729                 }
730         }
731         if (i == BGE_TIMEOUT) {
732                 if_printf(&sc->arpcom.ac_if, "PHY write timed out "
733                     "(phy %d, reg %d, val %d)\n", phy, reg, val);
734         }
735
736         /* Restore the autopoll bit if necessary. */
737         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
738                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
739                 DELAY(80);
740         }
741
742         return 0;
743 }
744
745 static void
746 bge_miibus_statchg(device_t dev)
747 {
748         struct bge_softc *sc;
749         struct mii_data *mii;
750
751         sc = device_get_softc(dev);
752         mii = device_get_softc(sc->bge_miibus);
753
754         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
755             (IFM_ACTIVE | IFM_AVALID)) {
756                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
757                 case IFM_10_T:
758                 case IFM_100_TX:
759                         sc->bge_link = 1;
760                         break;
761                 case IFM_1000_T:
762                 case IFM_1000_SX:
763                 case IFM_2500_SX:
764                         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
765                                 sc->bge_link = 1;
766                         else
767                                 sc->bge_link = 0;
768                         break;
769                 default:
770                         sc->bge_link = 0;
771                         break;
772                 }
773         } else {
774                 sc->bge_link = 0;
775         }
776         if (sc->bge_link == 0)
777                 return;
778
779         BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
780         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
781             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
782                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
783         } else {
784                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
785         }
786
787         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
788                 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
789         } else {
790                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
791         }
792 }
793
794 /*
795  * Memory management for jumbo frames.
796  */
797 static int
798 bge_alloc_jumbo_mem(struct bge_softc *sc)
799 {
800         struct ifnet *ifp = &sc->arpcom.ac_if;
801         struct bge_jslot *entry;
802         uint8_t *ptr;
803         bus_addr_t paddr;
804         int i, error;
805
806         /*
807          * Create tag for jumbo mbufs.
808          * This is really a bit of a kludge. We allocate a special
809          * jumbo buffer pool which (thanks to the way our DMA
810          * memory allocation works) will consist of contiguous
811          * pages. This means that even though a jumbo buffer might
812          * be larger than a page size, we don't really need to
813          * map it into more than one DMA segment. However, the
814          * default mbuf tag will result in multi-segment mappings,
815          * so we have to create a special jumbo mbuf tag that
816          * lets us get away with mapping the jumbo buffers as
817          * a single segment. I think eventually the driver should
818          * be changed so that it uses ordinary mbufs and cluster
819          * buffers, i.e. jumbo frames can span multiple DMA
820          * descriptors. But that's a project for another day.
821          */
822
823         /*
824          * Create DMA stuffs for jumbo RX ring.
825          */
826         error = bge_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
827                                     &sc->bge_cdata.bge_rx_jumbo_ring_tag,
828                                     &sc->bge_cdata.bge_rx_jumbo_ring_map,
829                                     (void *)&sc->bge_ldata.bge_rx_jumbo_ring,
830                                     &sc->bge_ldata.bge_rx_jumbo_ring_paddr);
831         if (error) {
832                 if_printf(ifp, "could not create jumbo RX ring\n");
833                 return error;
834         }
835
836         /*
837          * Create DMA stuffs for jumbo buffer block.
838          */
839         error = bge_dma_block_alloc(sc, BGE_JMEM,
840                                     &sc->bge_cdata.bge_jumbo_tag,
841                                     &sc->bge_cdata.bge_jumbo_map,
842                                     (void **)&sc->bge_ldata.bge_jumbo_buf,
843                                     &paddr);
844         if (error) {
845                 if_printf(ifp, "could not create jumbo buffer\n");
846                 return error;
847         }
848
849         SLIST_INIT(&sc->bge_jfree_listhead);
850
851         /*
852          * Now divide it up into 9K pieces and save the addresses
853          * in an array. Note that we play an evil trick here by using
854          * the first few bytes in the buffer to hold the the address
855          * of the softc structure for this interface. This is because
856          * bge_jfree() needs it, but it is called by the mbuf management
857          * code which will not pass it to us explicitly.
858          */
859         for (i = 0, ptr = sc->bge_ldata.bge_jumbo_buf; i < BGE_JSLOTS; i++) {
860                 entry = &sc->bge_cdata.bge_jslots[i];
861                 entry->bge_sc = sc;
862                 entry->bge_buf = ptr;
863                 entry->bge_paddr = paddr;
864                 entry->bge_inuse = 0;
865                 entry->bge_slot = i;
866                 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
867
868                 ptr += BGE_JLEN;
869                 paddr += BGE_JLEN;
870         }
871         return 0;
872 }
873
874 static void
875 bge_free_jumbo_mem(struct bge_softc *sc)
876 {
877         /* Destroy jumbo RX ring. */
878         bge_dma_block_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
879                            sc->bge_cdata.bge_rx_jumbo_ring_map,
880                            sc->bge_ldata.bge_rx_jumbo_ring);
881
882         /* Destroy jumbo buffer block. */
883         bge_dma_block_free(sc->bge_cdata.bge_jumbo_tag,
884                            sc->bge_cdata.bge_jumbo_map,
885                            sc->bge_ldata.bge_jumbo_buf);
886 }
887
888 /*
889  * Allocate a jumbo buffer.
890  */
891 static struct bge_jslot *
892 bge_jalloc(struct bge_softc *sc)
893 {
894         struct bge_jslot *entry;
895
896         lwkt_serialize_enter(&sc->bge_jslot_serializer);
897         entry = SLIST_FIRST(&sc->bge_jfree_listhead);
898         if (entry) {
899                 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
900                 entry->bge_inuse = 1;
901         } else {
902                 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
903         }
904         lwkt_serialize_exit(&sc->bge_jslot_serializer);
905         return(entry);
906 }
907
908 /*
909  * Adjust usage count on a jumbo buffer.
910  */
911 static void
912 bge_jref(void *arg)
913 {
914         struct bge_jslot *entry = (struct bge_jslot *)arg;
915         struct bge_softc *sc = entry->bge_sc;
916
917         if (sc == NULL)
918                 panic("bge_jref: can't find softc pointer!");
919
920         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
921                 panic("bge_jref: asked to reference buffer "
922                     "that we don't manage!");
923         } else if (entry->bge_inuse == 0) {
924                 panic("bge_jref: buffer already free!");
925         } else {
926                 atomic_add_int(&entry->bge_inuse, 1);
927         }
928 }
929
930 /*
931  * Release a jumbo buffer.
932  */
933 static void
934 bge_jfree(void *arg)
935 {
936         struct bge_jslot *entry = (struct bge_jslot *)arg;
937         struct bge_softc *sc = entry->bge_sc;
938
939         if (sc == NULL)
940                 panic("bge_jfree: can't find softc pointer!");
941
942         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
943                 panic("bge_jfree: asked to free buffer that we don't manage!");
944         } else if (entry->bge_inuse == 0) {
945                 panic("bge_jfree: buffer already free!");
946         } else {
947                 /*
948                  * Possible MP race to 0, use the serializer.  The atomic insn
949                  * is still needed for races against bge_jref().
950                  */
951                 lwkt_serialize_enter(&sc->bge_jslot_serializer);
952                 atomic_subtract_int(&entry->bge_inuse, 1);
953                 if (entry->bge_inuse == 0) {
954                         SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, 
955                                           entry, jslot_link);
956                 }
957                 lwkt_serialize_exit(&sc->bge_jslot_serializer);
958         }
959 }
960
961
962 /*
963  * Intialize a standard receive ring descriptor.
964  */
965 static int
966 bge_newbuf_std(struct bge_softc *sc, int i, int init)
967 {
968         struct mbuf *m_new = NULL;
969         bus_dma_segment_t seg;
970         bus_dmamap_t map;
971         int error, nsegs;
972
973         m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
974         if (m_new == NULL)
975                 return ENOBUFS;
976         m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
977
978         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
979                 m_adj(m_new, ETHER_ALIGN);
980
981         error = bus_dmamap_load_mbuf_segment(sc->bge_cdata.bge_rx_mtag,
982                         sc->bge_cdata.bge_rx_tmpmap, m_new,
983                         &seg, 1, &nsegs, BUS_DMA_NOWAIT);
984         if (error) {
985                 m_freem(m_new);
986                 return error;
987         }
988
989         if (!init) {
990                 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
991                                 sc->bge_cdata.bge_rx_std_dmamap[i],
992                                 BUS_DMASYNC_POSTREAD);
993                 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
994                         sc->bge_cdata.bge_rx_std_dmamap[i]);
995         }
996
997         map = sc->bge_cdata.bge_rx_tmpmap;
998         sc->bge_cdata.bge_rx_tmpmap = sc->bge_cdata.bge_rx_std_dmamap[i];
999         sc->bge_cdata.bge_rx_std_dmamap[i] = map;
1000
1001         sc->bge_cdata.bge_rx_std_chain[i].bge_mbuf = m_new;
1002         sc->bge_cdata.bge_rx_std_chain[i].bge_paddr = seg.ds_addr;
1003
1004         bge_setup_rxdesc_std(sc, i);
1005         return 0;
1006 }
1007
1008 static void
1009 bge_setup_rxdesc_std(struct bge_softc *sc, int i)
1010 {
1011         struct bge_rxchain *rc;
1012         struct bge_rx_bd *r;
1013
1014         rc = &sc->bge_cdata.bge_rx_std_chain[i];
1015         r = &sc->bge_ldata.bge_rx_std_ring[i];
1016
1017         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1018         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1019         r->bge_len = rc->bge_mbuf->m_len;
1020         r->bge_idx = i;
1021         r->bge_flags = BGE_RXBDFLAG_END;
1022 }
1023
1024 /*
1025  * Initialize a jumbo receive ring descriptor. This allocates
1026  * a jumbo buffer from the pool managed internally by the driver.
1027  */
1028 static int
1029 bge_newbuf_jumbo(struct bge_softc *sc, int i, int init)
1030 {
1031         struct mbuf *m_new = NULL;
1032         struct bge_jslot *buf;
1033         bus_addr_t paddr;
1034
1035         /* Allocate the mbuf. */
1036         MGETHDR(m_new, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1037         if (m_new == NULL)
1038                 return ENOBUFS;
1039
1040         /* Allocate the jumbo buffer */
1041         buf = bge_jalloc(sc);
1042         if (buf == NULL) {
1043                 m_freem(m_new);
1044                 return ENOBUFS;
1045         }
1046
1047         /* Attach the buffer to the mbuf. */
1048         m_new->m_ext.ext_arg = buf;
1049         m_new->m_ext.ext_buf = buf->bge_buf;
1050         m_new->m_ext.ext_free = bge_jfree;
1051         m_new->m_ext.ext_ref = bge_jref;
1052         m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1053
1054         m_new->m_flags |= M_EXT;
1055
1056         m_new->m_data = m_new->m_ext.ext_buf;
1057         m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
1058
1059         paddr = buf->bge_paddr;
1060         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) {
1061                 m_adj(m_new, ETHER_ALIGN);
1062                 paddr += ETHER_ALIGN;
1063         }
1064
1065         /* Save necessary information */
1066         sc->bge_cdata.bge_rx_jumbo_chain[i].bge_mbuf = m_new;
1067         sc->bge_cdata.bge_rx_jumbo_chain[i].bge_paddr = paddr;
1068
1069         /* Set up the descriptor. */
1070         bge_setup_rxdesc_jumbo(sc, i);
1071         return 0;
1072 }
1073
1074 static void
1075 bge_setup_rxdesc_jumbo(struct bge_softc *sc, int i)
1076 {
1077         struct bge_rx_bd *r;
1078         struct bge_rxchain *rc;
1079
1080         r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
1081         rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1082
1083         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1084         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1085         r->bge_len = rc->bge_mbuf->m_len;
1086         r->bge_idx = i;
1087         r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1088 }
1089
1090 static int
1091 bge_init_rx_ring_std(struct bge_softc *sc)
1092 {
1093         int i, error;
1094
1095         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1096                 error = bge_newbuf_std(sc, i, 1);
1097                 if (error)
1098                         return error;
1099         };
1100
1101         sc->bge_std = BGE_STD_RX_RING_CNT - 1;
1102         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1103
1104         return(0);
1105 }
1106
1107 static void
1108 bge_free_rx_ring_std(struct bge_softc *sc)
1109 {
1110         int i;
1111
1112         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1113                 struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_std_chain[i];
1114
1115                 if (rc->bge_mbuf != NULL) {
1116                         bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1117                                           sc->bge_cdata.bge_rx_std_dmamap[i]);
1118                         m_freem(rc->bge_mbuf);
1119                         rc->bge_mbuf = NULL;
1120                 }
1121                 bzero(&sc->bge_ldata.bge_rx_std_ring[i],
1122                     sizeof(struct bge_rx_bd));
1123         }
1124 }
1125
1126 static int
1127 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1128 {
1129         struct bge_rcb *rcb;
1130         int i, error;
1131
1132         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1133                 error = bge_newbuf_jumbo(sc, i, 1);
1134                 if (error)
1135                         return error;
1136         };
1137
1138         sc->bge_jumbo = BGE_JUMBO_RX_RING_CNT - 1;
1139
1140         rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1141         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
1142         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1143
1144         bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1145
1146         return(0);
1147 }
1148
1149 static void
1150 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1151 {
1152         int i;
1153
1154         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1155                 struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1156
1157                 if (rc->bge_mbuf != NULL) {
1158                         m_freem(rc->bge_mbuf);
1159                         rc->bge_mbuf = NULL;
1160                 }
1161                 bzero(&sc->bge_ldata.bge_rx_jumbo_ring[i],
1162                     sizeof(struct bge_rx_bd));
1163         }
1164 }
1165
1166 static void
1167 bge_free_tx_ring(struct bge_softc *sc)
1168 {
1169         int i;
1170
1171         for (i = 0; i < BGE_TX_RING_CNT; i++) {
1172                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1173                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1174                                           sc->bge_cdata.bge_tx_dmamap[i]);
1175                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
1176                         sc->bge_cdata.bge_tx_chain[i] = NULL;
1177                 }
1178                 bzero(&sc->bge_ldata.bge_tx_ring[i],
1179                     sizeof(struct bge_tx_bd));
1180         }
1181 }
1182
1183 static int
1184 bge_init_tx_ring(struct bge_softc *sc)
1185 {
1186         sc->bge_txcnt = 0;
1187         sc->bge_tx_saved_considx = 0;
1188         sc->bge_tx_prodidx = 0;
1189
1190         /* Initialize transmit producer index for host-memory send ring. */
1191         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1192
1193         /* 5700 b2 errata */
1194         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1195                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1196
1197         bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1198         /* 5700 b2 errata */
1199         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1200                 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1201
1202         return(0);
1203 }
1204
1205 static void
1206 bge_setmulti(struct bge_softc *sc)
1207 {
1208         struct ifnet *ifp;
1209         struct ifmultiaddr *ifma;
1210         uint32_t hashes[4] = { 0, 0, 0, 0 };
1211         int h, i;
1212
1213         ifp = &sc->arpcom.ac_if;
1214
1215         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1216                 for (i = 0; i < 4; i++)
1217                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1218                 return;
1219         }
1220
1221         /* First, zot all the existing filters. */
1222         for (i = 0; i < 4; i++)
1223                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1224
1225         /* Now program new ones. */
1226         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1227                 if (ifma->ifma_addr->sa_family != AF_LINK)
1228                         continue;
1229                 h = ether_crc32_le(
1230                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1231                     ETHER_ADDR_LEN) & 0x7f;
1232                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1233         }
1234
1235         for (i = 0; i < 4; i++)
1236                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1237 }
1238
1239 /*
1240  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1241  * self-test results.
1242  */
1243 static int
1244 bge_chipinit(struct bge_softc *sc)
1245 {
1246         int i;
1247         uint32_t dma_rw_ctl;
1248         uint16_t val;
1249
1250         /* Set endian type before we access any non-PCI registers. */
1251         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
1252             BGE_INIT | sc->bge_pci_miscctl, 4);
1253
1254         /* Clear the MAC control register */
1255         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1256
1257         /*
1258          * Clear the MAC statistics block in the NIC's
1259          * internal memory.
1260          */
1261         for (i = BGE_STATS_BLOCK;
1262             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1263                 BGE_MEMWIN_WRITE(sc, i, 0);
1264
1265         for (i = BGE_STATUS_BLOCK;
1266             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1267                 BGE_MEMWIN_WRITE(sc, i, 0);
1268
1269         if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1270                 /*
1271                  * Fix data corruption caused by non-qword write with WB.
1272                  * Fix master abort in PCI mode.
1273                  * Fix PCI latency timer.
1274                  */
1275                 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1276                 val |= (1 << 10) | (1 << 12) | (1 << 13);
1277                 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1278         }
1279
1280         /* Set up the PCI DMA control register. */
1281         if (sc->bge_flags & BGE_FLAG_PCIE) {
1282                 /* PCI Express */
1283                 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1284                     (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1285                     (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1286         } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1287                 /* PCI-X bus */
1288                 if (BGE_IS_5714_FAMILY(sc)) {
1289                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
1290                         dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1291                         /* XXX magic values, Broadcom-supplied Linux driver */
1292                         if (sc->bge_asicrev == BGE_ASICREV_BCM5780) {
1293                                 dma_rw_ctl |= (1 << 20) | (1 << 18) | 
1294                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1295                         } else {
1296                                 dma_rw_ctl |= (1 << 20) | (1 << 18) | (1 << 15);
1297                         }
1298                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1299                         /*
1300                          * In the BCM5703, the DMA read watermark should
1301                          * be set to less than or equal to the maximum
1302                          * memory read byte count of the PCI-X command
1303                          * register.
1304                          */
1305                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1306                             (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1307                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1308                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1309                         /*
1310                          * The 5704 uses a different encoding of read/write
1311                          * watermarks.
1312                          */
1313                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1314                             (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1315                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1316                 } else {
1317                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1318                             (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1319                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1320                             (0x0F);
1321                 }
1322
1323                 /*
1324                  * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1325                  * for hardware bugs.
1326                  */
1327                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1328                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1329                         uint32_t tmp;
1330
1331                         tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1332                         if (tmp == 0x6 || tmp == 0x7)
1333                                 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1334                 }
1335         } else {
1336                 /* Conventional PCI bus */
1337                 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1338                     (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1339                     (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1340                     (0x0F);
1341         }
1342
1343         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1344             sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
1345             sc->bge_asicrev == BGE_ASICREV_BCM5705)
1346                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1347         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1348
1349         /*
1350          * Set up general mode register.
1351          */
1352         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1353             BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1354             BGE_MODECTL_TX_NO_PHDR_CSUM);
1355
1356         /*
1357          * BCM5701 B5 have a bug causing data corruption when using
1358          * 64-bit DMA reads, which can be terminated early and then
1359          * completed later as 32-bit accesses, in combination with
1360          * certain bridges.
1361          */
1362         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1363             sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1364                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1365
1366         /*
1367          * Disable memory write invalidate.  Apparently it is not supported
1368          * properly by these devices.  Also ensure that INTx isn't disabled,
1369          * as these chips need it even when using MSI.
1370          */
1371         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1372             (PCIM_CMD_MWRICEN | PCIM_CMD_INTxDIS), 4);
1373
1374         /* Set the timer prescaler (always 66Mhz) */
1375         CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1376
1377         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1378                 DELAY(40);      /* XXX */
1379
1380                 /* Put PHY into ready state */
1381                 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1382                 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1383                 DELAY(40);
1384         }
1385
1386         return(0);
1387 }
1388
1389 static int
1390 bge_blockinit(struct bge_softc *sc)
1391 {
1392         struct bge_rcb *rcb;
1393         bus_size_t vrcb;
1394         bge_hostaddr taddr;
1395         uint32_t val;
1396         int i, limit;
1397
1398         /*
1399          * Initialize the memory window pointer register so that
1400          * we can access the first 32K of internal NIC RAM. This will
1401          * allow us to set up the TX send ring RCBs and the RX return
1402          * ring RCBs, plus other things which live in NIC memory.
1403          */
1404         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1405
1406         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1407
1408         if (!BGE_IS_5705_PLUS(sc)) {
1409                 /* Configure mbuf memory pool */
1410                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1411                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1412                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1413                 else
1414                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1415
1416                 /* Configure DMA resource pool */
1417                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1418                     BGE_DMA_DESCRIPTORS);
1419                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1420         }
1421
1422         /* Configure mbuf pool watermarks */
1423         if (!BGE_IS_5705_PLUS(sc)) {
1424                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1425                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1426                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1427         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1428                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1429                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1430                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1431         } else {
1432                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1433                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1434                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1435         }
1436
1437         /* Configure DMA resource watermarks */
1438         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1439         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1440
1441         /* Enable buffer manager */
1442         CSR_WRITE_4(sc, BGE_BMAN_MODE,
1443             BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1444
1445         /* Poll for buffer manager start indication */
1446         for (i = 0; i < BGE_TIMEOUT; i++) {
1447                 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1448                         break;
1449                 DELAY(10);
1450         }
1451
1452         if (i == BGE_TIMEOUT) {
1453                 if_printf(&sc->arpcom.ac_if,
1454                           "buffer manager failed to start\n");
1455                 return(ENXIO);
1456         }
1457
1458         /* Enable flow-through queues */
1459         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1460         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1461
1462         /* Wait until queue initialization is complete */
1463         for (i = 0; i < BGE_TIMEOUT; i++) {
1464                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1465                         break;
1466                 DELAY(10);
1467         }
1468
1469         if (i == BGE_TIMEOUT) {
1470                 if_printf(&sc->arpcom.ac_if,
1471                           "flow-through queue init failed\n");
1472                 return(ENXIO);
1473         }
1474
1475         /*
1476          * Summary of rings supported by the controller:
1477          *
1478          * Standard Receive Producer Ring
1479          * - This ring is used to feed receive buffers for "standard"
1480          *   sized frames (typically 1536 bytes) to the controller.
1481          *
1482          * Jumbo Receive Producer Ring
1483          * - This ring is used to feed receive buffers for jumbo sized
1484          *   frames (i.e. anything bigger than the "standard" frames)
1485          *   to the controller.
1486          *
1487          * Mini Receive Producer Ring
1488          * - This ring is used to feed receive buffers for "mini"
1489          *   sized frames to the controller.
1490          * - This feature required external memory for the controller
1491          *   but was never used in a production system.  Should always
1492          *   be disabled.
1493          *
1494          * Receive Return Ring
1495          * - After the controller has placed an incoming frame into a
1496          *   receive buffer that buffer is moved into a receive return
1497          *   ring.  The driver is then responsible to passing the
1498          *   buffer up to the stack.  Many versions of the controller
1499          *   support multiple RR rings.
1500          *
1501          * Send Ring
1502          * - This ring is used for outgoing frames.  Many versions of
1503          *   the controller support multiple send rings.
1504          */
1505
1506         /* Initialize the standard receive producer ring control block. */
1507         rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1508         rcb->bge_hostaddr.bge_addr_lo =
1509             BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1510         rcb->bge_hostaddr.bge_addr_hi =
1511             BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1512         if (BGE_IS_5705_PLUS(sc)) {
1513                 /*
1514                  * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1515                  * Bits 15-2 : Reserved (should be 0)
1516                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1517                  * Bit 0     : Reserved
1518                  */
1519                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1520         } else {
1521                 /*
1522                  * Ring size is always XXX entries
1523                  * Bits 31-16: Maximum RX frame size
1524                  * Bits 15-2 : Reserved (should be 0)
1525                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1526                  * Bit 0     : Reserved
1527                  */
1528                 rcb->bge_maxlen_flags =
1529                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1530         }
1531         rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1532         /* Write the standard receive producer ring control block. */
1533         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1534         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1535         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1536         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1537         /* Reset the standard receive producer ring producer index. */
1538         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1539
1540         /*
1541          * Initialize the jumbo RX producer ring control
1542          * block.  We set the 'ring disabled' bit in the
1543          * flags field until we're actually ready to start
1544          * using this ring (i.e. once we set the MTU
1545          * high enough to require it).
1546          */
1547         if (BGE_IS_JUMBO_CAPABLE(sc)) {
1548                 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1549                 /* Get the jumbo receive producer ring RCB parameters. */
1550                 rcb->bge_hostaddr.bge_addr_lo =
1551                     BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1552                 rcb->bge_hostaddr.bge_addr_hi =
1553                     BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1554                 rcb->bge_maxlen_flags =
1555                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1556                     BGE_RCB_FLAG_RING_DISABLED);
1557                 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1558                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1559                     rcb->bge_hostaddr.bge_addr_hi);
1560                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1561                     rcb->bge_hostaddr.bge_addr_lo);
1562                 /* Program the jumbo receive producer ring RCB parameters. */
1563                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1564                     rcb->bge_maxlen_flags);
1565                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1566                 /* Reset the jumbo receive producer ring producer index. */
1567                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1568         }
1569
1570         /* Disable the mini receive producer ring RCB. */
1571         if (BGE_IS_5700_FAMILY(sc)) {
1572                 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1573                 rcb->bge_maxlen_flags =
1574                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1575                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1576                     rcb->bge_maxlen_flags);
1577                 /* Reset the mini receive producer ring producer index. */
1578                 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1579         }
1580
1581         /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
1582         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1583             (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
1584              sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
1585              sc->bge_chipid == BGE_CHIPID_BCM5906_A2)) {
1586                 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
1587                     (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
1588         }
1589
1590         /*
1591          * The BD ring replenish thresholds control how often the
1592          * hardware fetches new BD's from the producer rings in host
1593          * memory.  Setting the value too low on a busy system can
1594          * starve the hardware and recue the throughpout.
1595          *
1596          * Set the BD ring replentish thresholds. The recommended
1597          * values are 1/8th the number of descriptors allocated to
1598          * each ring.
1599          */
1600         if (BGE_IS_5705_PLUS(sc))
1601                 val = 8;
1602         else
1603                 val = BGE_STD_RX_RING_CNT / 8;
1604         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1605         if (BGE_IS_JUMBO_CAPABLE(sc)) {
1606                 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1607                     BGE_JUMBO_RX_RING_CNT/8);
1608         }
1609
1610         /*
1611          * Disable all send rings by setting the 'ring disabled' bit
1612          * in the flags field of all the TX send ring control blocks,
1613          * located in NIC memory.
1614          */
1615         if (!BGE_IS_5705_PLUS(sc)) {
1616                 /* 5700 to 5704 had 16 send rings. */
1617                 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
1618         } else {
1619                 limit = 1;
1620         }
1621         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1622         for (i = 0; i < limit; i++) {
1623                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1624                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1625                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1626                 vrcb += sizeof(struct bge_rcb);
1627         }
1628
1629         /* Configure send ring RCB 0 (we use only the first ring) */
1630         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1631         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1632         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1633         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1634         RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1635             BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1636         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1637             BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1638
1639         /*
1640          * Disable all receive return rings by setting the
1641          * 'ring diabled' bit in the flags field of all the receive
1642          * return ring control blocks, located in NIC memory.
1643          */
1644         if (!BGE_IS_5705_PLUS(sc))
1645                 limit = BGE_RX_RINGS_MAX;
1646         else if (sc->bge_asicrev == BGE_ASICREV_BCM5755)
1647                 limit = 4;
1648         else
1649                 limit = 1;
1650         /* Disable all receive return rings. */
1651         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1652         for (i = 0; i < limit; i++) {
1653                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1654                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1655                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1656                     BGE_RCB_FLAG_RING_DISABLED);
1657                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1658                 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1659                     (i * (sizeof(uint64_t))), 0);
1660                 vrcb += sizeof(struct bge_rcb);
1661         }
1662
1663         /*
1664          * Set up receive return ring 0.  Note that the NIC address
1665          * for RX return rings is 0x0.  The return rings live entirely
1666          * within the host, so the nicaddr field in the RCB isn't used.
1667          */
1668         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1669         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1670         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1671         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1672         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1673         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1674             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1675
1676         /* Set random backoff seed for TX */
1677         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1678             sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1679             sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1680             sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1681             BGE_TX_BACKOFF_SEED_MASK);
1682
1683         /* Set inter-packet gap */
1684         CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1685
1686         /*
1687          * Specify which ring to use for packets that don't match
1688          * any RX rules.
1689          */
1690         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1691
1692         /*
1693          * Configure number of RX lists. One interrupt distribution
1694          * list, sixteen active lists, one bad frames class.
1695          */
1696         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1697
1698         /* Inialize RX list placement stats mask. */
1699         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1700         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1701
1702         /* Disable host coalescing until we get it set up */
1703         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1704
1705         /* Poll to make sure it's shut down. */
1706         for (i = 0; i < BGE_TIMEOUT; i++) {
1707                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1708                         break;
1709                 DELAY(10);
1710         }
1711
1712         if (i == BGE_TIMEOUT) {
1713                 if_printf(&sc->arpcom.ac_if,
1714                           "host coalescing engine failed to idle\n");
1715                 return(ENXIO);
1716         }
1717
1718         /* Set up host coalescing defaults */
1719         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1720         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1721         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_coal_bds);
1722         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_coal_bds);
1723         if (!BGE_IS_5705_PLUS(sc)) {
1724                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
1725                     sc->bge_rx_coal_ticks_int);
1726                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
1727                     sc->bge_tx_coal_ticks_int);
1728         }
1729         /*
1730          * NOTE:
1731          * The datasheet (57XX-PG105-R) says BCM5705+ do not
1732          * have following two registers; obviously it is wrong.
1733          */
1734         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, sc->bge_rx_coal_bds_int);
1735         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, sc->bge_tx_coal_bds_int);
1736
1737         /* Set up address of statistics block */
1738         if (!BGE_IS_5705_PLUS(sc)) {
1739                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1740                     BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1741                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1742                     BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1743
1744                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1745                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1746                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1747         }
1748
1749         /* Set up address of status block */
1750         bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
1751         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1752             BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1753         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1754             BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1755
1756         /*
1757          * Set up status block partail update size.
1758          *
1759          * Because only single TX ring, RX produce ring and Rx return ring
1760          * are used, ask device to update only minimum part of status block
1761          * except for BCM5700 AX/BX, whose status block partial update size
1762          * can't be configured.
1763          */
1764         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1765             sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
1766                 /* XXX Actually reserved on BCM5700 AX/BX */
1767                 val = BGE_STATBLKSZ_FULL;
1768         } else {
1769                 val = BGE_STATBLKSZ_32BYTE;
1770         }
1771 #if 0
1772         /*
1773          * Does not seem to have visible effect in both
1774          * bulk data (1472B UDP datagram) and tiny data
1775          * (18B UDP datagram) TX tests.
1776          */
1777         if (!BGE_IS_CRIPPLED(sc))
1778                 val |= BGE_HCCMODE_CLRTICK_TX;
1779 #endif
1780
1781         /* Turn on host coalescing state machine */
1782         CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1783
1784         /* Turn on RX BD completion state machine and enable attentions */
1785         CSR_WRITE_4(sc, BGE_RBDC_MODE,
1786             BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1787
1788         /* Turn on RX list placement state machine */
1789         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1790
1791         /* Turn on RX list selector state machine. */
1792         if (!BGE_IS_5705_PLUS(sc))
1793                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1794
1795         val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1796             BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1797             BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1798             BGE_MACMODE_FRMHDR_DMA_ENB;
1799
1800         if (sc->bge_flags & BGE_FLAG_TBI)
1801                 val |= BGE_PORTMODE_TBI;
1802         else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
1803                 val |= BGE_PORTMODE_GMII;
1804         else
1805                 val |= BGE_PORTMODE_MII;
1806
1807         /* Turn on DMA, clear stats */
1808         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1809
1810         /* Set misc. local control, enable interrupts on attentions */
1811         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1812
1813 #ifdef notdef
1814         /* Assert GPIO pins for PHY reset */
1815         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1816             BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1817         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1818             BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1819 #endif
1820
1821         /* Turn on DMA completion state machine */
1822         if (!BGE_IS_5705_PLUS(sc))
1823                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1824
1825         /* Turn on write DMA state machine */
1826         val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1827         if (BGE_IS_5755_PLUS(sc)) {
1828                 /* Enable host coalescing bug fix. */
1829                 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1830         }
1831         if (sc->bge_asicrev == BGE_ASICREV_BCM5785) {
1832                 /* Request larger DMA burst size to get better performance. */
1833                 val |= BGE_WDMAMODE_BURST_ALL_DATA;
1834         }
1835         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1836         DELAY(40);
1837
1838         if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
1839             sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1840             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1841             sc->bge_asicrev == BGE_ASICREV_BCM57780) {
1842                 /*
1843                  * Enable fix for read DMA FIFO overruns.
1844                  * The fix is to limit the number of RX BDs
1845                  * the hardware would fetch at a fime.
1846                  */
1847                 val = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
1848                 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL,
1849                     val| BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
1850         }
1851
1852         /* Turn on read DMA state machine */
1853         val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1854         if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1855             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1856             sc->bge_asicrev == BGE_ASICREV_BCM57780)
1857                 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1858                   BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1859                   BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1860         if (sc->bge_flags & BGE_FLAG_PCIE)
1861                 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1862         CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1863         DELAY(40);
1864
1865         /* Turn on RX data completion state machine */
1866         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1867
1868         /* Turn on RX BD initiator state machine */
1869         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1870
1871         /* Turn on RX data and RX BD initiator state machine */
1872         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1873
1874         /* Turn on Mbuf cluster free state machine */
1875         if (!BGE_IS_5705_PLUS(sc))
1876                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1877
1878         /* Turn on send BD completion state machine */
1879         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1880
1881         /* Turn on send data completion state machine */
1882         val = BGE_SDCMODE_ENABLE;
1883         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
1884                 val |= BGE_SDCMODE_CDELAY; 
1885         CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1886
1887         /* Turn on send data initiator state machine */
1888         CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1889
1890         /* Turn on send BD initiator state machine */
1891         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1892
1893         /* Turn on send BD selector state machine */
1894         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1895
1896         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1897         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1898             BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1899
1900         /* ack/clear link change events */
1901         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1902             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1903             BGE_MACSTAT_LINK_CHANGED);
1904         CSR_WRITE_4(sc, BGE_MI_STS, 0);
1905
1906         /*
1907          * Enable attention when the link has changed state for
1908          * devices that use auto polling.
1909          */
1910         if (sc->bge_flags & BGE_FLAG_TBI) {
1911                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1912         } else {
1913                 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
1914                         CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1915                         DELAY(80);
1916                 }
1917                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1918                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1919                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1920                             BGE_EVTENB_MI_INTERRUPT);
1921                 }
1922         }
1923
1924         /*
1925          * Clear any pending link state attention.
1926          * Otherwise some link state change events may be lost until attention
1927          * is cleared by bge_intr() -> bge_softc.bge_link_upd() sequence.
1928          * It's not necessary on newer BCM chips - perhaps enabling link
1929          * state change attentions implies clearing pending attention.
1930          */
1931         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1932             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1933             BGE_MACSTAT_LINK_CHANGED);
1934
1935         /* Enable link state change attentions. */
1936         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1937
1938         return(0);
1939 }
1940
1941 /*
1942  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1943  * against our list and return its name if we find a match. Note
1944  * that since the Broadcom controller contains VPD support, we
1945  * can get the device name string from the controller itself instead
1946  * of the compiled-in string. This is a little slow, but it guarantees
1947  * we'll always announce the right product name.
1948  */
1949 static int
1950 bge_probe(device_t dev)
1951 {
1952         const struct bge_type *t;
1953         uint16_t product, vendor;
1954
1955         product = pci_get_device(dev);
1956         vendor = pci_get_vendor(dev);
1957
1958         for (t = bge_devs; t->bge_name != NULL; t++) {
1959                 if (vendor == t->bge_vid && product == t->bge_did)
1960                         break;
1961         }
1962         if (t->bge_name == NULL)
1963                 return(ENXIO);
1964
1965         device_set_desc(dev, t->bge_name);
1966         return(0);
1967 }
1968
1969 static int
1970 bge_attach(device_t dev)
1971 {
1972         struct ifnet *ifp;
1973         struct bge_softc *sc;
1974         uint32_t hwcfg = 0, misccfg;
1975         int error = 0, rid, capmask;
1976         uint8_t ether_addr[ETHER_ADDR_LEN];
1977         uint16_t product, vendor;
1978         driver_intr_t *intr_func;
1979         uintptr_t mii_priv = 0;
1980         u_int intr_flags;
1981         int msi_enable;
1982
1983         sc = device_get_softc(dev);
1984         sc->bge_dev = dev;
1985         callout_init(&sc->bge_stat_timer);
1986         lwkt_serialize_init(&sc->bge_jslot_serializer);
1987
1988 #ifndef BURN_BRIDGES
1989         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1990                 uint32_t irq, mem;
1991
1992                 irq = pci_read_config(dev, PCIR_INTLINE, 4);
1993                 mem = pci_read_config(dev, BGE_PCI_BAR0, 4);
1994
1995                 device_printf(dev, "chip is in D%d power mode "
1996                     "-- setting to D0\n", pci_get_powerstate(dev));
1997
1998                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1999
2000                 pci_write_config(dev, PCIR_INTLINE, irq, 4);
2001                 pci_write_config(dev, BGE_PCI_BAR0, mem, 4);
2002         }
2003 #endif  /* !BURN_BRIDGE */
2004
2005         /*
2006          * Map control/status registers.
2007          */
2008         pci_enable_busmaster(dev);
2009
2010         rid = BGE_PCI_BAR0;
2011         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2012             RF_ACTIVE);
2013
2014         if (sc->bge_res == NULL) {
2015                 device_printf(dev, "couldn't map memory\n");
2016                 return ENXIO;
2017         }
2018
2019         sc->bge_btag = rman_get_bustag(sc->bge_res);
2020         sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
2021
2022         /* Save various chip information */
2023         sc->bge_chipid =
2024             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2025             BGE_PCIMISCCTL_ASICREV_SHIFT;
2026         if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG)
2027                 sc->bge_chipid = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2028         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2029         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2030
2031         /* Save chipset family. */
2032         switch (sc->bge_asicrev) {
2033         case BGE_ASICREV_BCM5755:
2034         case BGE_ASICREV_BCM5761:
2035         case BGE_ASICREV_BCM5784:
2036         case BGE_ASICREV_BCM5785:
2037         case BGE_ASICREV_BCM5787:
2038         case BGE_ASICREV_BCM57780:
2039             sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
2040                 BGE_FLAG_5705_PLUS;
2041             break;
2042
2043         case BGE_ASICREV_BCM5700:
2044         case BGE_ASICREV_BCM5701:
2045         case BGE_ASICREV_BCM5703:
2046         case BGE_ASICREV_BCM5704:
2047                 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2048                 break;
2049
2050         case BGE_ASICREV_BCM5714_A0:
2051         case BGE_ASICREV_BCM5780:
2052         case BGE_ASICREV_BCM5714:
2053                 sc->bge_flags |= BGE_FLAG_5714_FAMILY;
2054                 /* Fall through */
2055
2056         case BGE_ASICREV_BCM5750:
2057         case BGE_ASICREV_BCM5752:
2058         case BGE_ASICREV_BCM5906:
2059                 sc->bge_flags |= BGE_FLAG_575X_PLUS;
2060                 /* Fall through */
2061
2062         case BGE_ASICREV_BCM5705:
2063                 sc->bge_flags |= BGE_FLAG_5705_PLUS;
2064                 break;
2065         }
2066
2067         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2068                 sc->bge_flags |= BGE_FLAG_NO_EEPROM;
2069
2070         misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
2071         if (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2072             (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2073              misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2074                 sc->bge_flags |= BGE_FLAG_5788;
2075
2076         /* BCM5755 or higher and BCM5906 have short DMA bug. */
2077         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
2078                 sc->bge_flags |= BGE_FLAG_SHORTDMA;
2079
2080         /*
2081          * Check if this is a PCI-X or PCI Express device.
2082          */
2083         if (BGE_IS_5705_PLUS(sc)) {
2084                 if (pci_is_pcie(dev)) {
2085                         sc->bge_flags |= BGE_FLAG_PCIE;
2086                         sc->bge_pciecap = pci_get_pciecap_ptr(sc->bge_dev);
2087                         pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_4096);
2088                 }
2089         } else {
2090                 /*
2091                  * Check if the device is in PCI-X Mode.
2092                  * (This bit is not valid on PCI Express controllers.)
2093                  */
2094                 if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
2095                     BGE_PCISTATE_PCI_BUSMODE) == 0) {
2096                         sc->bge_flags |= BGE_FLAG_PCIX;
2097                         sc->bge_pcixcap = pci_get_pcixcap_ptr(sc->bge_dev);
2098                         sc->bge_mbox_reorder = device_getenv_int(sc->bge_dev,
2099                             "mbox_reorder", 0);
2100                 }
2101         }
2102         device_printf(dev, "CHIP ID 0x%08x; "
2103                       "ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
2104                       sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
2105                       (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X"
2106                       : ((sc->bge_flags & BGE_FLAG_PCIE) ?
2107                         "PCI-E" : "PCI"));
2108
2109         /*
2110          * The 40bit DMA bug applies to the 5714/5715 controllers and is
2111          * not actually a MAC controller bug but an issue with the embedded
2112          * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
2113          */
2114         if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
2115                 sc->bge_flags |= BGE_FLAG_MAXADDR_40BIT;
2116
2117         /* Identify the chips that use an CPMU. */
2118         if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2119             sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2120             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2121             sc->bge_asicrev == BGE_ASICREV_BCM57780)
2122                 sc->bge_flags |= BGE_FLAG_CPMU;
2123
2124         /*
2125          * When using the BCM5701 in PCI-X mode, data corruption has
2126          * been observed in the first few bytes of some received packets.
2127          * Aligning the packet buffer in memory eliminates the corruption.
2128          * Unfortunately, this misaligns the packet payloads.  On platforms
2129          * which do not support unaligned accesses, we will realign the
2130          * payloads by copying the received packets.
2131          */
2132         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
2133             (sc->bge_flags & BGE_FLAG_PCIX))
2134                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
2135
2136         if (!BGE_IS_CRIPPLED(sc)) {
2137                 if (device_getenv_int(dev, "status_tag", 1)) {
2138                         sc->bge_flags |= BGE_FLAG_STATUS_TAG;
2139                         sc->bge_pci_miscctl = BGE_PCIMISCCTL_TAGGED_STATUS;
2140                         if (bootverbose)
2141                                 device_printf(dev, "enable status tag\n");
2142                 }
2143         }
2144
2145         /*
2146          * Set various PHY quirk flags.
2147          */
2148         product = pci_get_device(dev);
2149         vendor = pci_get_vendor(dev);
2150
2151         if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2152              sc->bge_asicrev == BGE_ASICREV_BCM5701) &&
2153             pci_get_subvendor(dev) == PCI_VENDOR_DELL)
2154                 mii_priv |= BRGPHY_FLAG_NO_3LED;
2155
2156         capmask = MII_CAPMASK_DEFAULT;
2157         if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
2158              (misccfg == 0x4000 || misccfg == 0x8000)) ||
2159             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2160              vendor == PCI_VENDOR_BROADCOM &&
2161              (product == PCI_PRODUCT_BROADCOM_BCM5901 ||
2162               product == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2163               product == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2164             (vendor == PCI_VENDOR_BROADCOM &&
2165              (product == PCI_PRODUCT_BROADCOM_BCM5751F ||
2166               product == PCI_PRODUCT_BROADCOM_BCM5753F ||
2167               product == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2168             product == PCI_PRODUCT_BROADCOM_BCM57790 ||
2169             sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2170                 /* 10/100 only */
2171                 capmask &= ~BMSR_EXTSTAT;
2172         }
2173
2174         mii_priv |= BRGPHY_FLAG_WIRESPEED;
2175         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2176             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2177              (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2178               sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2179             sc->bge_asicrev == BGE_ASICREV_BCM5906)
2180                 mii_priv &= ~BRGPHY_FLAG_WIRESPEED;
2181
2182         if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2183             sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2184                 mii_priv |= BRGPHY_FLAG_CRC_BUG;
2185
2186         if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2187             sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2188                 mii_priv |= BRGPHY_FLAG_ADC_BUG;
2189
2190         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2191                 mii_priv |= BRGPHY_FLAG_5704_A0;
2192
2193         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2194                 mii_priv |= BRGPHY_FLAG_5906;
2195
2196         if (BGE_IS_5705_PLUS(sc) &&
2197             sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2198             /* sc->bge_asicrev != BGE_ASICREV_BCM5717 && */
2199             sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2200             /* sc->bge_asicrev != BGE_ASICREV_BCM57765 && */
2201             sc->bge_asicrev != BGE_ASICREV_BCM57780) {
2202                 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2203                     sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2204                     sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2205                     sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2206                         if (product != PCI_PRODUCT_BROADCOM_BCM5722 &&
2207                             product != PCI_PRODUCT_BROADCOM_BCM5756)
2208                                 mii_priv |= BRGPHY_FLAG_JITTER_BUG;
2209                         if (product == PCI_PRODUCT_BROADCOM_BCM5755M)
2210                                 mii_priv |= BRGPHY_FLAG_ADJUST_TRIM;
2211                 } else {
2212                         mii_priv |= BRGPHY_FLAG_BER_BUG;
2213                 }
2214         }
2215
2216         /*
2217          * Allocate interrupt
2218          */
2219         msi_enable = bge_msi_enable;
2220         if ((sc->bge_flags & BGE_FLAG_STATUS_TAG) == 0) {
2221                 /* If "tagged status" is disabled, don't enable MSI */
2222                 msi_enable = 0;
2223         } else if (msi_enable) {
2224                 msi_enable = 0; /* Disable by default */
2225                 if (BGE_IS_575X_PLUS(sc)) {
2226                         msi_enable = 1;
2227                         /* XXX we filter all 5714 chips */
2228                         if (sc->bge_asicrev == BGE_ASICREV_BCM5714 ||
2229                             (sc->bge_asicrev == BGE_ASICREV_BCM5750 &&
2230                              (sc->bge_chiprev == BGE_CHIPREV_5750_AX ||
2231                               sc->bge_chiprev == BGE_CHIPREV_5750_BX)))
2232                                 msi_enable = 0;
2233                         else if (BGE_IS_5755_PLUS(sc) ||
2234                             sc->bge_asicrev == BGE_ASICREV_BCM5906)
2235                                 sc->bge_flags |= BGE_FLAG_ONESHOT_MSI;
2236                 }
2237         }
2238         if (msi_enable) {
2239                 if (pci_find_extcap(dev, PCIY_MSI, &sc->bge_msicap)) {
2240                         device_printf(dev, "no MSI capability\n");
2241                         msi_enable = 0;
2242                 }
2243         }
2244
2245         sc->bge_irq_type = pci_alloc_1intr(dev, msi_enable, &sc->bge_irq_rid,
2246             &intr_flags);
2247
2248         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->bge_irq_rid,
2249             intr_flags);
2250         if (sc->bge_irq == NULL) {
2251                 device_printf(dev, "couldn't map interrupt\n");
2252                 error = ENXIO;
2253                 goto fail;
2254         }
2255
2256         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2257                 bge_enable_msi(sc);
2258         else
2259                 sc->bge_flags &= ~BGE_FLAG_ONESHOT_MSI;
2260
2261         /* Initialize if_name earlier, so if_printf could be used */
2262         ifp = &sc->arpcom.ac_if;
2263         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2264
2265         /* Try to reset the chip. */
2266         bge_reset(sc);
2267
2268         if (bge_chipinit(sc)) {
2269                 device_printf(dev, "chip initialization failed\n");
2270                 error = ENXIO;
2271                 goto fail;
2272         }
2273
2274         /*
2275          * Get station address
2276          */
2277         error = bge_get_eaddr(sc, ether_addr);
2278         if (error) {
2279                 device_printf(dev, "failed to read station address\n");
2280                 goto fail;
2281         }
2282
2283         /* 5705/5750 limits RX return ring to 512 entries. */
2284         if (BGE_IS_5705_PLUS(sc))
2285                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2286         else
2287                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2288
2289         error = bge_dma_alloc(sc);
2290         if (error)
2291                 goto fail;
2292
2293         /* Set default tuneable values. */
2294         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2295         sc->bge_rx_coal_ticks = BGE_RX_COAL_TICKS_DEF;
2296         sc->bge_tx_coal_ticks = BGE_TX_COAL_TICKS_DEF;
2297         sc->bge_rx_coal_bds = BGE_RX_COAL_BDS_DEF;
2298         sc->bge_tx_coal_bds = BGE_TX_COAL_BDS_DEF;
2299         if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2300                 sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_DEF;
2301                 sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_DEF;
2302                 sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_DEF;
2303                 sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_DEF;
2304         } else {
2305                 sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_MIN;
2306                 sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_MIN;
2307                 sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_MIN;
2308                 sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_MIN;
2309         }
2310
2311         /* Set up ifnet structure */
2312         ifp->if_softc = sc;
2313         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2314         ifp->if_ioctl = bge_ioctl;
2315         ifp->if_start = bge_start;
2316 #ifdef DEVICE_POLLING
2317         ifp->if_poll = bge_poll;
2318 #endif
2319         ifp->if_watchdog = bge_watchdog;
2320         ifp->if_init = bge_init;
2321         ifp->if_mtu = ETHERMTU;
2322         ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2323         ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
2324         ifq_set_ready(&ifp->if_snd);
2325
2326         /*
2327          * 5700 B0 chips do not support checksumming correctly due
2328          * to hardware bugs.
2329          */
2330         if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) {
2331                 ifp->if_capabilities |= IFCAP_HWCSUM;
2332                 ifp->if_hwassist = BGE_CSUM_FEATURES;
2333         }
2334         ifp->if_capenable = ifp->if_capabilities;
2335
2336         /*
2337          * Figure out what sort of media we have by checking the
2338          * hardware config word in the first 32k of NIC internal memory,
2339          * or fall back to examining the EEPROM if necessary.
2340          * Note: on some BCM5700 cards, this value appears to be unset.
2341          * If that's the case, we have to rely on identifying the NIC
2342          * by its PCI subsystem ID, as we do below for the SysKonnect
2343          * SK-9D41.
2344          */
2345         if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2346                 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2347         } else {
2348                 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2349                                     sizeof(hwcfg))) {
2350                         device_printf(dev, "failed to read EEPROM\n");
2351                         error = ENXIO;
2352                         goto fail;
2353                 }
2354                 hwcfg = ntohl(hwcfg);
2355         }
2356
2357         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2358         if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41 ||
2359             (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2360                 if (BGE_IS_5714_FAMILY(sc))
2361                         sc->bge_flags |= BGE_FLAG_MII_SERDES;
2362                 else
2363                         sc->bge_flags |= BGE_FLAG_TBI;
2364         }
2365
2366         /* Setup MI MODE */
2367         if (sc->bge_flags & BGE_FLAG_CPMU)
2368                 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
2369         else
2370                 sc->bge_mi_mode = BGE_MIMODE_BASE;
2371         if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705) {
2372                 /* Enable auto polling for BCM570[0-5]. */
2373                 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
2374         }
2375
2376         /* Setup link status update stuffs */
2377         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2378             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
2379                 sc->bge_link_upd = bge_bcm5700_link_upd;
2380                 sc->bge_link_chg = BGE_MACSTAT_MI_INTERRUPT;
2381         } else if (sc->bge_flags & BGE_FLAG_TBI) {
2382                 sc->bge_link_upd = bge_tbi_link_upd;
2383                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2384         } else if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2385                 sc->bge_link_upd = bge_autopoll_link_upd;
2386                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2387         } else {
2388                 sc->bge_link_upd = bge_copper_link_upd;
2389                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2390         }
2391
2392         /*
2393          * Broadcom's own driver always assumes the internal
2394          * PHY is at GMII address 1.  On some chips, the PHY responds
2395          * to accesses at all addresses, which could cause us to
2396          * bogusly attach the PHY 32 times at probe type.  Always
2397          * restricting the lookup to address 1 is simpler than
2398          * trying to figure out which chips revisions should be
2399          * special-cased.
2400          */
2401         sc->bge_phyno = 1;
2402
2403         if (sc->bge_flags & BGE_FLAG_TBI) {
2404                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
2405                     bge_ifmedia_upd, bge_ifmedia_sts);
2406                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2407                 ifmedia_add(&sc->bge_ifmedia,
2408                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2409                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2410                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2411                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2412         } else {
2413                 struct mii_probe_args mii_args;
2414
2415                 mii_probe_args_init(&mii_args, bge_ifmedia_upd, bge_ifmedia_sts);
2416                 mii_args.mii_probemask = 1 << sc->bge_phyno;
2417                 mii_args.mii_capmask = capmask;
2418                 mii_args.mii_privtag = MII_PRIVTAG_BRGPHY;
2419                 mii_args.mii_priv = mii_priv;
2420
2421                 error = mii_probe(dev, &sc->bge_miibus, &mii_args);
2422                 if (error) {
2423                         device_printf(dev, "MII without any PHY!\n");
2424                         goto fail;
2425                 }
2426         }
2427
2428         /*
2429          * Create sysctl nodes.
2430          */
2431         sysctl_ctx_init(&sc->bge_sysctl_ctx);
2432         sc->bge_sysctl_tree = SYSCTL_ADD_NODE(&sc->bge_sysctl_ctx,
2433                                               SYSCTL_STATIC_CHILDREN(_hw),
2434                                               OID_AUTO,
2435                                               device_get_nameunit(dev),
2436                                               CTLFLAG_RD, 0, "");
2437         if (sc->bge_sysctl_tree == NULL) {
2438                 device_printf(dev, "can't add sysctl node\n");
2439                 error = ENXIO;
2440                 goto fail;
2441         }
2442
2443         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2444                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2445                         OID_AUTO, "rx_coal_ticks",
2446                         CTLTYPE_INT | CTLFLAG_RW,
2447                         sc, 0, bge_sysctl_rx_coal_ticks, "I",
2448                         "Receive coalescing ticks (usec).");
2449         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2450                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2451                         OID_AUTO, "tx_coal_ticks",
2452                         CTLTYPE_INT | CTLFLAG_RW,
2453                         sc, 0, bge_sysctl_tx_coal_ticks, "I",
2454                         "Transmit coalescing ticks (usec).");
2455         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2456                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2457                         OID_AUTO, "rx_coal_bds",
2458                         CTLTYPE_INT | CTLFLAG_RW,
2459                         sc, 0, bge_sysctl_rx_coal_bds, "I",
2460                         "Receive max coalesced BD count.");
2461         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2462                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2463                         OID_AUTO, "tx_coal_bds",
2464                         CTLTYPE_INT | CTLFLAG_RW,
2465                         sc, 0, bge_sysctl_tx_coal_bds, "I",
2466                         "Transmit max coalesced BD count.");
2467         if (sc->bge_flags & BGE_FLAG_PCIE) {
2468                 /*
2469                  * A common design characteristic for many Broadcom
2470                  * client controllers is that they only support a
2471                  * single outstanding DMA read operation on the PCIe
2472                  * bus. This means that it will take twice as long to
2473                  * fetch a TX frame that is split into header and
2474                  * payload buffers as it does to fetch a single,
2475                  * contiguous TX frame (2 reads vs. 1 read). For these
2476                  * controllers, coalescing buffers to reduce the number
2477                  * of memory reads is effective way to get maximum
2478                  * performance(about 940Mbps).  Without collapsing TX
2479                  * buffers the maximum TCP bulk transfer performance
2480                  * is about 850Mbps. However forcing coalescing mbufs
2481                  * consumes a lot of CPU cycles, so leave it off by
2482                  * default.
2483                  */
2484                 SYSCTL_ADD_INT(&sc->bge_sysctl_ctx,
2485                                SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2486                                OID_AUTO, "force_defrag", CTLFLAG_RW,
2487                                &sc->bge_force_defrag, 0,
2488                                "Force defragment on TX path");
2489         }
2490         if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2491                 if (!BGE_IS_5705_PLUS(sc)) {
2492                         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2493                             SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2494                             "rx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2495                             sc, 0, bge_sysctl_rx_coal_ticks_int, "I",
2496                             "Receive coalescing ticks "
2497                             "during interrupt (usec).");
2498                         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2499                             SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2500                             "tx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2501                             sc, 0, bge_sysctl_tx_coal_ticks_int, "I",
2502                             "Transmit coalescing ticks "
2503                             "during interrupt (usec).");
2504                 }
2505                 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2506                     SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2507                     "rx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2508                     sc, 0, bge_sysctl_rx_coal_bds_int, "I",
2509                     "Receive max coalesced BD count during interrupt.");
2510                 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2511                     SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2512                     "tx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2513                     sc, 0, bge_sysctl_tx_coal_bds_int, "I",
2514                     "Transmit max coalesced BD count during interrupt.");
2515         }
2516
2517         /*
2518          * Call MI attach routine.
2519          */
2520         ether_ifattach(ifp, ether_addr, NULL);
2521
2522         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2523                 if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
2524                         intr_func = bge_msi_oneshot;
2525                         if (bootverbose)
2526                                 device_printf(dev, "oneshot MSI\n");
2527                 } else {
2528                         intr_func = bge_msi;
2529                 }
2530         } else if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2531                 intr_func = bge_intr_legacy;
2532         } else {
2533                 intr_func = bge_intr_crippled;
2534         }
2535         error = bus_setup_intr(dev, sc->bge_irq, INTR_MPSAFE, intr_func, sc,
2536             &sc->bge_intrhand, ifp->if_serializer);
2537         if (error) {
2538                 ether_ifdetach(ifp);
2539                 device_printf(dev, "couldn't set up irq\n");
2540                 goto fail;
2541         }
2542
2543         ifp->if_cpuid = rman_get_cpuid(sc->bge_irq);
2544         KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
2545
2546         return(0);
2547 fail:
2548         bge_detach(dev);
2549         return(error);
2550 }
2551
2552 static int
2553 bge_detach(device_t dev)
2554 {
2555         struct bge_softc *sc = device_get_softc(dev);
2556
2557         if (device_is_attached(dev)) {
2558                 struct ifnet *ifp = &sc->arpcom.ac_if;
2559
2560                 lwkt_serialize_enter(ifp->if_serializer);
2561                 bge_stop(sc);
2562                 bge_reset(sc);
2563                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
2564                 lwkt_serialize_exit(ifp->if_serializer);
2565
2566                 ether_ifdetach(ifp);
2567         }
2568
2569         if (sc->bge_flags & BGE_FLAG_TBI)
2570                 ifmedia_removeall(&sc->bge_ifmedia);
2571         if (sc->bge_miibus)
2572                 device_delete_child(dev, sc->bge_miibus);
2573         bus_generic_detach(dev);
2574
2575         if (sc->bge_irq != NULL) {
2576                 bus_release_resource(dev, SYS_RES_IRQ, sc->bge_irq_rid,
2577                     sc->bge_irq);
2578         }
2579         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2580                 pci_release_msi(dev);
2581
2582         if (sc->bge_res != NULL) {
2583                 bus_release_resource(dev, SYS_RES_MEMORY,
2584                     BGE_PCI_BAR0, sc->bge_res);
2585         }
2586
2587         if (sc->bge_sysctl_tree != NULL)
2588                 sysctl_ctx_free(&sc->bge_sysctl_ctx);
2589
2590         bge_dma_free(sc);
2591
2592         return 0;
2593 }
2594
2595 static void
2596 bge_reset(struct bge_softc *sc)
2597 {
2598         device_t dev;
2599         uint32_t cachesize, command, pcistate, reset;
2600         void (*write_op)(struct bge_softc *, uint32_t, uint32_t);
2601         int i, val = 0;
2602
2603         dev = sc->bge_dev;
2604
2605         if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
2606             sc->bge_asicrev != BGE_ASICREV_BCM5906) {
2607                 if (sc->bge_flags & BGE_FLAG_PCIE)
2608                         write_op = bge_writemem_direct;
2609                 else
2610                         write_op = bge_writemem_ind;
2611         } else {
2612                 write_op = bge_writereg_ind;
2613         }
2614
2615         /* Save some important PCI state. */
2616         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2617         command = pci_read_config(dev, BGE_PCI_CMD, 4);
2618         pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2619
2620         pci_write_config(dev, BGE_PCI_MISC_CTL,
2621             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2622             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2623             sc->bge_pci_miscctl, 4);
2624
2625         /* Disable fastboot on controllers that support it. */
2626         if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2627             BGE_IS_5755_PLUS(sc)) {
2628                 if (bootverbose)
2629                         if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2630                 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2631         }
2632
2633         /*
2634          * Write the magic number to SRAM at offset 0xB50.
2635          * When firmware finishes its initialization it will
2636          * write ~BGE_MAGIC_NUMBER to the same location.
2637          */
2638         bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2639
2640         reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2641
2642         /* XXX: Broadcom Linux driver. */
2643         if (sc->bge_flags & BGE_FLAG_PCIE) {
2644                 if (CSR_READ_4(sc, 0x7e2c) == 0x60)     /* PCIE 1.0 */
2645                         CSR_WRITE_4(sc, 0x7e2c, 0x20);
2646                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2647                         /* Prevent PCIE link training during global reset */
2648                         CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2649                         reset |= (1<<29);
2650                 }
2651         }
2652
2653         /* 
2654          * Set GPHY Power Down Override to leave GPHY
2655          * powered up in D0 uninitialized.
2656          */
2657         if (BGE_IS_5705_PLUS(sc) && (sc->bge_flags & BGE_FLAG_CPMU) == 0)
2658                 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
2659
2660         /* Issue global reset */
2661         write_op(sc, BGE_MISC_CFG, reset);
2662
2663         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2664                 uint32_t status, ctrl;
2665
2666                 status = CSR_READ_4(sc, BGE_VCPU_STATUS);
2667                 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2668                     status | BGE_VCPU_STATUS_DRV_RESET);
2669                 ctrl = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2670                 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2671                     ctrl & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2672         }
2673
2674         DELAY(1000);
2675
2676         /* XXX: Broadcom Linux driver. */
2677         if (sc->bge_flags & BGE_FLAG_PCIE) {
2678                 uint16_t devctl;
2679
2680                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2681                         uint32_t v;
2682
2683                         DELAY(500000); /* wait for link training to complete */
2684                         v = pci_read_config(dev, 0xc4, 4);
2685                         pci_write_config(dev, 0xc4, v | (1<<15), 4);
2686                 }
2687
2688                 /* Clear enable no snoop and disable relaxed ordering. */
2689                 devctl = pci_read_config(dev,
2690                     sc->bge_pciecap + PCIER_DEVCTRL, 2);
2691                 devctl &= ~(PCIEM_DEVCTL_RELAX_ORDER | PCIEM_DEVCTL_NOSNOOP);
2692                 pci_write_config(dev, sc->bge_pciecap + PCIER_DEVCTRL,
2693                     devctl, 2);
2694
2695                 /* Clear error status. */
2696                 pci_write_config(dev, sc->bge_pciecap + PCIER_DEVSTS,
2697                     PCIEM_DEVSTS_CORR_ERR |
2698                     PCIEM_DEVSTS_NFATAL_ERR |
2699                     PCIEM_DEVSTS_FATAL_ERR |
2700                     PCIEM_DEVSTS_UNSUPP_REQ, 2);
2701         }
2702
2703         /* Reset some of the PCI state that got zapped by reset */
2704         pci_write_config(dev, BGE_PCI_MISC_CTL,
2705             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2706             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2707             sc->bge_pci_miscctl, 4);
2708         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2709         pci_write_config(dev, BGE_PCI_CMD, command, 4);
2710         write_op(sc, BGE_MISC_CFG, (65 << 1));
2711
2712         /*
2713          * Disable PCI-X relaxed ordering to ensure status block update
2714          * comes first then packet buffer DMA. Otherwise driver may
2715          * read stale status block.
2716          */
2717         if (sc->bge_flags & BGE_FLAG_PCIX) {
2718                 uint16_t devctl;
2719
2720                 devctl = pci_read_config(dev,
2721                     sc->bge_pcixcap + PCIXR_COMMAND, 2);
2722                 devctl &= ~PCIXM_COMMAND_ERO;
2723                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
2724                         devctl &= ~PCIXM_COMMAND_MAX_READ;
2725                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
2726                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2727                         devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
2728                             PCIXM_COMMAND_MAX_READ);
2729                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
2730                 }
2731                 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
2732                     devctl, 2);
2733         }
2734
2735         /*
2736          * Enable memory arbiter and re-enable MSI if necessary.
2737          */
2738         if (BGE_IS_5714_FAMILY(sc)) {
2739                 uint32_t val;
2740
2741                 if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2742                         /*
2743                          * Resetting BCM5714 family will clear MSI
2744                          * enable bit; restore it after resetting.
2745                          */
2746                         PCI_SETBIT(sc->bge_dev, sc->bge_msicap + PCIR_MSI_CTRL,
2747                             PCIM_MSICTRL_MSI_ENABLE, 2);
2748                         BGE_SETBIT(sc, BGE_MSI_MODE, BGE_MSIMODE_ENABLE);
2749                 }
2750                 val = CSR_READ_4(sc, BGE_MARB_MODE);
2751                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2752         } else {
2753                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2754         }
2755
2756         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2757                 for (i = 0; i < BGE_TIMEOUT; i++) {
2758                         val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2759                         if (val & BGE_VCPU_STATUS_INIT_DONE)
2760                                 break;
2761                         DELAY(100);
2762                 }
2763                 if (i == BGE_TIMEOUT) {
2764                         if_printf(&sc->arpcom.ac_if, "reset timed out\n");
2765                         return;
2766                 }
2767         } else {
2768                 /*
2769                  * Poll until we see the 1's complement of the magic number.
2770                  * This indicates that the firmware initialization
2771                  * is complete.
2772                  */
2773                 for (i = 0; i < BGE_FIRMWARE_TIMEOUT; i++) {
2774                         val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2775                         if (val == ~BGE_MAGIC_NUMBER)
2776                                 break;
2777                         DELAY(10);
2778                 }
2779                 if (i == BGE_FIRMWARE_TIMEOUT) {
2780                         if_printf(&sc->arpcom.ac_if, "firmware handshake "
2781                                   "timed out, found 0x%08x\n", val);
2782                         return;
2783                 }
2784         }
2785
2786         /*
2787          * XXX Wait for the value of the PCISTATE register to
2788          * return to its original pre-reset state. This is a
2789          * fairly good indicator of reset completion. If we don't
2790          * wait for the reset to fully complete, trying to read
2791          * from the device's non-PCI registers may yield garbage
2792          * results.
2793          */
2794         for (i = 0; i < BGE_TIMEOUT; i++) {
2795                 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2796                         break;
2797                 DELAY(10);
2798         }
2799
2800         /* Fix up byte swapping */
2801         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
2802             BGE_MODECTL_BYTESWAP_DATA);
2803
2804         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2805
2806         /*
2807          * The 5704 in TBI mode apparently needs some special
2808          * adjustment to insure the SERDES drive level is set
2809          * to 1.2V.
2810          */
2811         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
2812             (sc->bge_flags & BGE_FLAG_TBI)) {
2813                 uint32_t serdescfg;
2814
2815                 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2816                 serdescfg = (serdescfg & ~0xFFF) | 0x880;
2817                 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2818         }
2819
2820         /* XXX: Broadcom Linux driver. */
2821         if ((sc->bge_flags & BGE_FLAG_PCIE) &&
2822             sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
2823             sc->bge_asicrev != BGE_ASICREV_BCM5785) {
2824                 uint32_t v;
2825
2826                 /* Enable Data FIFO protection. */
2827                 v = CSR_READ_4(sc, 0x7c00);
2828                 CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
2829         }
2830
2831         DELAY(10000);
2832 }
2833
2834 /*
2835  * Frame reception handling. This is called if there's a frame
2836  * on the receive return list.
2837  *
2838  * Note: we have to be able to handle two possibilities here:
2839  * 1) the frame is from the jumbo recieve ring
2840  * 2) the frame is from the standard receive ring
2841  */
2842
2843 static void
2844 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod)
2845 {
2846         struct ifnet *ifp;
2847         int stdcnt = 0, jumbocnt = 0;
2848
2849         ifp = &sc->arpcom.ac_if;
2850
2851         while (sc->bge_rx_saved_considx != rx_prod) {
2852                 struct bge_rx_bd        *cur_rx;
2853                 uint32_t                rxidx;
2854                 struct mbuf             *m = NULL;
2855                 uint16_t                vlan_tag = 0;
2856                 int                     have_tag = 0;
2857
2858                 cur_rx =
2859             &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
2860
2861                 rxidx = cur_rx->bge_idx;
2862                 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2863                 logif(rx_pkt);
2864
2865                 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2866                         have_tag = 1;
2867                         vlan_tag = cur_rx->bge_vlan_tag;
2868                 }
2869
2870                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2871                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2872                         jumbocnt++;
2873
2874                         if (rxidx != sc->bge_jumbo) {
2875                                 ifp->if_ierrors++;
2876                                 if_printf(ifp, "sw jumbo index(%d) "
2877                                     "and hw jumbo index(%d) mismatch, drop!\n",
2878                                     sc->bge_jumbo, rxidx);
2879                                 bge_setup_rxdesc_jumbo(sc, rxidx);
2880                                 continue;
2881                         }
2882
2883                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx].bge_mbuf;
2884                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2885                                 ifp->if_ierrors++;
2886                                 bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
2887                                 continue;
2888                         }
2889                         if (bge_newbuf_jumbo(sc, sc->bge_jumbo, 0)) {
2890                                 ifp->if_ierrors++;
2891                                 bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
2892                                 continue;
2893                         }
2894                 } else {
2895                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2896                         stdcnt++;
2897
2898                         if (rxidx != sc->bge_std) {
2899                                 ifp->if_ierrors++;
2900                                 if_printf(ifp, "sw std index(%d) "
2901                                     "and hw std index(%d) mismatch, drop!\n",
2902                                     sc->bge_std, rxidx);
2903                                 bge_setup_rxdesc_std(sc, rxidx);
2904                                 continue;
2905                         }
2906
2907                         m = sc->bge_cdata.bge_rx_std_chain[rxidx].bge_mbuf;
2908                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2909                                 ifp->if_ierrors++;
2910                                 bge_setup_rxdesc_std(sc, sc->bge_std);
2911                                 continue;
2912                         }
2913                         if (bge_newbuf_std(sc, sc->bge_std, 0)) {
2914                                 ifp->if_ierrors++;
2915                                 bge_setup_rxdesc_std(sc, sc->bge_std);
2916                                 continue;
2917                         }
2918                 }
2919
2920                 ifp->if_ipackets++;
2921 #if !defined(__i386__) && !defined(__x86_64__)
2922                 /*
2923                  * The x86 allows unaligned accesses, but for other
2924                  * platforms we must make sure the payload is aligned.
2925                  */
2926                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
2927                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
2928                             cur_rx->bge_len);
2929                         m->m_data += ETHER_ALIGN;
2930                 }
2931 #endif
2932                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2933                 m->m_pkthdr.rcvif = ifp;
2934
2935                 if (ifp->if_capenable & IFCAP_RXCSUM) {
2936                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
2937                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2938                                 if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2939                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2940                         }
2941                         if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) &&
2942                             m->m_pkthdr.len >= BGE_MIN_FRAMELEN) {
2943                                 m->m_pkthdr.csum_data =
2944                                         cur_rx->bge_tcp_udp_csum;
2945                                 m->m_pkthdr.csum_flags |=
2946                                         CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2947                         }
2948                 }
2949
2950                 /*
2951                  * If we received a packet with a vlan tag, pass it
2952                  * to vlan_input() instead of ether_input().
2953                  */
2954                 if (have_tag) {
2955                         m->m_flags |= M_VLANTAG;
2956                         m->m_pkthdr.ether_vlantag = vlan_tag;
2957                         have_tag = vlan_tag = 0;
2958                 }
2959                 ifp->if_input(ifp, m);
2960         }
2961
2962         bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2963         if (stdcnt)
2964                 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2965         if (jumbocnt)
2966                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2967 }
2968
2969 static void
2970 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
2971 {
2972         struct bge_tx_bd *cur_tx = NULL;
2973         struct ifnet *ifp;
2974
2975         ifp = &sc->arpcom.ac_if;
2976
2977         /*
2978          * Go through our tx ring and free mbufs for those
2979          * frames that have been sent.
2980          */
2981         while (sc->bge_tx_saved_considx != tx_cons) {
2982                 uint32_t idx = 0;
2983
2984                 idx = sc->bge_tx_saved_considx;
2985                 cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
2986                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2987                         ifp->if_opackets++;
2988                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
2989                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
2990                             sc->bge_cdata.bge_tx_dmamap[idx]);
2991                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2992                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
2993                 }
2994                 sc->bge_txcnt--;
2995                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2996                 logif(tx_pkt);
2997         }
2998
2999         if (cur_tx != NULL &&
3000             (BGE_TX_RING_CNT - sc->bge_txcnt) >=
3001             (BGE_NSEG_RSVD + BGE_NSEG_SPARE))
3002                 ifp->if_flags &= ~IFF_OACTIVE;
3003
3004         if (sc->bge_txcnt == 0)
3005                 ifp->if_timer = 0;
3006
3007         if (!ifq_is_empty(&ifp->if_snd))
3008                 if_devstart(ifp);
3009 }
3010
3011 #ifdef DEVICE_POLLING
3012
3013 static void
3014 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3015 {
3016         struct bge_softc *sc = ifp->if_softc;
3017         struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3018         uint16_t rx_prod, tx_cons;
3019
3020         switch(cmd) {
3021         case POLL_REGISTER:
3022                 bge_disable_intr(sc);
3023                 break;
3024         case POLL_DEREGISTER:
3025                 bge_enable_intr(sc);
3026                 break;
3027         case POLL_AND_CHECK_STATUS:
3028                 /*
3029                  * Process link state changes.
3030                  */
3031                 bge_link_poll(sc);
3032                 /* Fall through */
3033         case POLL_ONLY:
3034                 if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
3035                         sc->bge_status_tag = sblk->bge_status_tag;
3036                         /*
3037                          * Use a load fence to ensure that status_tag
3038                          * is saved  before rx_prod and tx_cons.
3039                          */
3040                         cpu_lfence();
3041                 }
3042                 rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3043                 tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3044                 if (ifp->if_flags & IFF_RUNNING) {
3045                         rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3046                         if (sc->bge_rx_saved_considx != rx_prod)
3047                                 bge_rxeof(sc, rx_prod);
3048
3049                         tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3050                         if (sc->bge_tx_saved_considx != tx_cons)
3051                                 bge_txeof(sc, tx_cons);
3052                 }
3053                 break;
3054         }
3055 }
3056
3057 #endif
3058
3059 static void
3060 bge_intr_crippled(void *xsc)
3061 {
3062         struct bge_softc *sc = xsc;
3063         struct ifnet *ifp = &sc->arpcom.ac_if;
3064
3065         logif(intr);
3066
3067         /*
3068          * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
3069          * disable interrupts by writing nonzero like we used to, since with
3070          * our current organization this just gives complications and
3071          * pessimizations for re-enabling interrupts.  We used to have races
3072          * instead of the necessary complications.  Disabling interrupts
3073          * would just reduce the chance of a status update while we are
3074          * running (by switching to the interrupt-mode coalescence
3075          * parameters), but this chance is already very low so it is more
3076          * efficient to get another interrupt than prevent it.
3077          *
3078          * We do the ack first to ensure another interrupt if there is a
3079          * status update after the ack.  We don't check for the status
3080          * changing later because it is more efficient to get another
3081          * interrupt than prevent it, not quite as above (not checking is
3082          * a smaller optimization than not toggling the interrupt enable,
3083          * since checking doesn't involve PCI accesses and toggling require
3084          * the status check).  So toggling would probably be a pessimization
3085          * even with MSI.  It would only be needed for using a task queue.
3086          */
3087         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3088
3089         /*
3090          * Process link state changes.
3091          */
3092         bge_link_poll(sc);
3093
3094         if (ifp->if_flags & IFF_RUNNING) {
3095                 struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3096                 uint16_t rx_prod, tx_cons;
3097
3098                 rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3099                 if (sc->bge_rx_saved_considx != rx_prod)
3100                         bge_rxeof(sc, rx_prod);
3101
3102                 tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3103                 if (sc->bge_tx_saved_considx != tx_cons)
3104                         bge_txeof(sc, tx_cons);
3105         }
3106
3107         if (sc->bge_coal_chg)
3108                 bge_coal_change(sc);
3109 }
3110
3111 static void
3112 bge_intr_legacy(void *xsc)
3113 {
3114         struct bge_softc *sc = xsc;
3115         struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3116
3117         if (sc->bge_status_tag == sblk->bge_status_tag) {
3118                 uint32_t val;
3119
3120                 val = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3121                 if (val & BGE_PCISTAT_INTR_NOTACT)
3122                         return;
3123         }
3124
3125         /*
3126          * NOTE:
3127          * Interrupt will have to be disabled if tagged status
3128          * is used, else interrupt will always be asserted on
3129          * certain chips (at least on BCM5750 AX/BX).
3130          */
3131         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3132
3133         bge_intr(sc);
3134 }
3135
3136 static void
3137 bge_msi(void *xsc)
3138 {
3139         struct bge_softc *sc = xsc;
3140
3141         /* Disable interrupt first */
3142         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3143         bge_intr(sc);
3144 }
3145
3146 static void
3147 bge_msi_oneshot(void *xsc)
3148 {
3149         bge_intr(xsc);
3150 }
3151
3152 static void
3153 bge_intr(struct bge_softc *sc)
3154 {
3155         struct ifnet *ifp = &sc->arpcom.ac_if;
3156         struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3157         uint16_t rx_prod, tx_cons;
3158         uint32_t status;
3159
3160         sc->bge_status_tag = sblk->bge_status_tag;
3161         /*
3162          * Use a load fence to ensure that status_tag is saved 
3163          * before rx_prod, tx_cons and status.
3164          */
3165         cpu_lfence();
3166
3167         rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3168         tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3169         status = sblk->bge_status;
3170
3171         if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) || sc->bge_link_evt)
3172                 bge_link_poll(sc);
3173
3174         if (ifp->if_flags & IFF_RUNNING) {
3175                 if (sc->bge_rx_saved_considx != rx_prod)
3176                         bge_rxeof(sc, rx_prod);
3177
3178                 if (sc->bge_tx_saved_considx != tx_cons)
3179                         bge_txeof(sc, tx_cons);
3180         }
3181
3182         bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
3183
3184         if (sc->bge_coal_chg)
3185                 bge_coal_change(sc);
3186 }
3187
3188 static void
3189 bge_tick(void *xsc)
3190 {
3191         struct bge_softc *sc = xsc;
3192         struct ifnet *ifp = &sc->arpcom.ac_if;
3193
3194         lwkt_serialize_enter(ifp->if_serializer);
3195
3196         if (BGE_IS_5705_PLUS(sc))
3197                 bge_stats_update_regs(sc);
3198         else
3199                 bge_stats_update(sc);
3200
3201         if (sc->bge_flags & BGE_FLAG_TBI) {
3202                 /*
3203                  * Since in TBI mode auto-polling can't be used we should poll
3204                  * link status manually. Here we register pending link event
3205                  * and trigger interrupt.
3206                  */
3207                 sc->bge_link_evt++;
3208                 if (BGE_IS_CRIPPLED(sc))
3209                         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3210                 else
3211                         BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3212         } else if (!sc->bge_link) {
3213                 mii_tick(device_get_softc(sc->bge_miibus));
3214         }
3215
3216         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3217
3218         lwkt_serialize_exit(ifp->if_serializer);
3219 }
3220
3221 static void
3222 bge_stats_update_regs(struct bge_softc *sc)
3223 {
3224         struct ifnet *ifp = &sc->arpcom.ac_if;
3225         struct bge_mac_stats_regs stats;
3226         uint32_t *s;
3227         int i;
3228
3229         s = (uint32_t *)&stats;
3230         for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
3231                 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
3232                 s++;
3233         }
3234
3235         ifp->if_collisions +=
3236            (stats.dot3StatsSingleCollisionFrames +
3237            stats.dot3StatsMultipleCollisionFrames +
3238            stats.dot3StatsExcessiveCollisions +
3239            stats.dot3StatsLateCollisions) -
3240            ifp->if_collisions;
3241 }
3242
3243 static void
3244 bge_stats_update(struct bge_softc *sc)
3245 {
3246         struct ifnet *ifp = &sc->arpcom.ac_if;
3247         bus_size_t stats;
3248
3249         stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3250
3251 #define READ_STAT(sc, stats, stat)      \
3252         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3253
3254         ifp->if_collisions +=
3255            (READ_STAT(sc, stats,
3256                 txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) +
3257             READ_STAT(sc, stats,
3258                 txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3259             READ_STAT(sc, stats,
3260                 txstats.dot3StatsExcessiveCollisions.bge_addr_lo) +
3261             READ_STAT(sc, stats,
3262                 txstats.dot3StatsLateCollisions.bge_addr_lo)) -
3263            ifp->if_collisions;
3264
3265 #undef READ_STAT
3266
3267 #ifdef notdef
3268         ifp->if_collisions +=
3269            (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3270            sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3271            sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3272            sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3273            ifp->if_collisions;
3274 #endif
3275 }
3276
3277 /*
3278  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3279  * pointers to descriptors.
3280  */
3281 static int
3282 bge_encap(struct bge_softc *sc, struct mbuf **m_head0, uint32_t *txidx)
3283 {
3284         struct bge_tx_bd *d = NULL;
3285         uint16_t csum_flags = 0;
3286         bus_dma_segment_t segs[BGE_NSEG_NEW];
3287         bus_dmamap_t map;
3288         int error, maxsegs, nsegs, idx, i;
3289         struct mbuf *m_head = *m_head0, *m_new;
3290
3291         if (m_head->m_pkthdr.csum_flags) {
3292                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3293                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3294                 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3295                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3296                 if (m_head->m_flags & M_LASTFRAG)
3297                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
3298                 else if (m_head->m_flags & M_FRAG)
3299                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
3300         }
3301
3302         idx = *txidx;
3303         map = sc->bge_cdata.bge_tx_dmamap[idx];
3304
3305         maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - BGE_NSEG_RSVD;
3306         KASSERT(maxsegs >= BGE_NSEG_SPARE,
3307                 ("not enough segments %d", maxsegs));
3308
3309         if (maxsegs > BGE_NSEG_NEW)
3310                 maxsegs = BGE_NSEG_NEW;
3311
3312         /*
3313          * Pad outbound frame to BGE_MIN_FRAMELEN for an unusual reason.
3314          * The bge hardware will pad out Tx runts to BGE_MIN_FRAMELEN,
3315          * but when such padded frames employ the bge IP/TCP checksum
3316          * offload, the hardware checksum assist gives incorrect results
3317          * (possibly from incorporating its own padding into the UDP/TCP
3318          * checksum; who knows).  If we pad such runts with zeros, the
3319          * onboard checksum comes out correct.
3320          */
3321         if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
3322             m_head->m_pkthdr.len < BGE_MIN_FRAMELEN) {
3323                 error = m_devpad(m_head, BGE_MIN_FRAMELEN);
3324                 if (error)
3325                         goto back;
3326         }
3327
3328         if ((sc->bge_flags & BGE_FLAG_SHORTDMA) && m_head->m_next != NULL) {
3329                 m_new = bge_defrag_shortdma(m_head);
3330                 if (m_new == NULL) {
3331                         error = ENOBUFS;
3332                         goto back;
3333                 }
3334                 *m_head0 = m_head = m_new;
3335         }
3336         if (sc->bge_force_defrag && (sc->bge_flags & BGE_FLAG_PCIE) &&
3337             m_head->m_next != NULL) {
3338                 /*
3339                  * Forcefully defragment mbuf chain to overcome hardware
3340                  * limitation which only support a single outstanding
3341                  * DMA read operation.  If it fails, keep moving on using
3342                  * the original mbuf chain.
3343                  */
3344                 m_new = m_defrag(m_head, MB_DONTWAIT);
3345                 if (m_new != NULL)
3346                         *m_head0 = m_head = m_new;
3347         }
3348
3349         error = bus_dmamap_load_mbuf_defrag(sc->bge_cdata.bge_tx_mtag, map,
3350                         m_head0, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3351         if (error)
3352                 goto back;
3353
3354         m_head = *m_head0;
3355         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
3356
3357         for (i = 0; ; i++) {
3358                 d = &sc->bge_ldata.bge_tx_ring[idx];
3359
3360                 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
3361                 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
3362                 d->bge_len = segs[i].ds_len;
3363                 d->bge_flags = csum_flags;
3364
3365                 if (i == nsegs - 1)
3366                         break;
3367                 BGE_INC(idx, BGE_TX_RING_CNT);
3368         }
3369         /* Mark the last segment as end of packet... */
3370         d->bge_flags |= BGE_TXBDFLAG_END;
3371
3372         /* Set vlan tag to the first segment of the packet. */
3373         d = &sc->bge_ldata.bge_tx_ring[*txidx];
3374         if (m_head->m_flags & M_VLANTAG) {
3375                 d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3376                 d->bge_vlan_tag = m_head->m_pkthdr.ether_vlantag;
3377         } else {
3378                 d->bge_vlan_tag = 0;
3379         }
3380
3381         /*
3382          * Insure that the map for this transmission is placed at
3383          * the array index of the last descriptor in this chain.
3384          */
3385         sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
3386         sc->bge_cdata.bge_tx_dmamap[idx] = map;
3387         sc->bge_cdata.bge_tx_chain[idx] = m_head;
3388         sc->bge_txcnt += nsegs;
3389
3390         BGE_INC(idx, BGE_TX_RING_CNT);
3391         *txidx = idx;
3392 back:
3393         if (error) {
3394                 m_freem(*m_head0);
3395                 *m_head0 = NULL;
3396         }
3397         return error;
3398 }
3399
3400 /*
3401  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3402  * to the mbuf data regions directly in the transmit descriptors.
3403  */
3404 static void
3405 bge_start(struct ifnet *ifp)
3406 {
3407         struct bge_softc *sc = ifp->if_softc;
3408         struct mbuf *m_head = NULL;
3409         uint32_t prodidx;
3410         int need_trans;
3411
3412         if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3413                 return;
3414
3415         prodidx = sc->bge_tx_prodidx;
3416
3417         need_trans = 0;
3418         while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3419                 m_head = ifq_dequeue(&ifp->if_snd, NULL);
3420                 if (m_head == NULL)
3421                         break;
3422
3423                 /*
3424                  * XXX
3425                  * The code inside the if() block is never reached since we
3426                  * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
3427                  * requests to checksum TCP/UDP in a fragmented packet.
3428                  * 
3429                  * XXX
3430                  * safety overkill.  If this is a fragmented packet chain
3431                  * with delayed TCP/UDP checksums, then only encapsulate
3432                  * it if we have enough descriptors to handle the entire
3433                  * chain at once.
3434                  * (paranoia -- may not actually be needed)
3435                  */
3436                 if ((m_head->m_flags & M_FIRSTFRAG) &&
3437                     (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA)) {
3438                         if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3439                             m_head->m_pkthdr.csum_data + BGE_NSEG_RSVD) {
3440                                 ifp->if_flags |= IFF_OACTIVE;
3441                                 ifq_prepend(&ifp->if_snd, m_head);
3442                                 break;
3443                         }
3444                 }
3445
3446                 /*
3447                  * Sanity check: avoid coming within BGE_NSEG_RSVD
3448                  * descriptors of the end of the ring.  Also make
3449                  * sure there are BGE_NSEG_SPARE descriptors for
3450                  * jumbo buffers' defragmentation.
3451                  */
3452                 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3453                     (BGE_NSEG_RSVD + BGE_NSEG_SPARE)) {
3454                         ifp->if_flags |= IFF_OACTIVE;
3455                         ifq_prepend(&ifp->if_snd, m_head);
3456                         break;
3457                 }
3458
3459                 /*
3460                  * Pack the data into the transmit ring. If we
3461                  * don't have room, set the OACTIVE flag and wait
3462                  * for the NIC to drain the ring.
3463                  */
3464                 if (bge_encap(sc, &m_head, &prodidx)) {
3465                         ifp->if_flags |= IFF_OACTIVE;
3466                         ifp->if_oerrors++;
3467                         break;
3468                 }
3469                 need_trans = 1;
3470
3471                 ETHER_BPF_MTAP(ifp, m_head);
3472         }
3473
3474         if (!need_trans)
3475                 return;
3476
3477         /* Transmit */
3478         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3479         /* 5700 b2 errata */
3480         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
3481                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3482
3483         sc->bge_tx_prodidx = prodidx;
3484
3485         /*
3486          * Set a timeout in case the chip goes out to lunch.
3487          */
3488         ifp->if_timer = 5;
3489 }
3490
3491 static void
3492 bge_init(void *xsc)
3493 {
3494         struct bge_softc *sc = xsc;
3495         struct ifnet *ifp = &sc->arpcom.ac_if;
3496         uint16_t *m;
3497         uint32_t mode;
3498
3499         ASSERT_SERIALIZED(ifp->if_serializer);
3500
3501         /* Cancel pending I/O and flush buffers. */
3502         bge_stop(sc);
3503         bge_reset(sc);
3504         bge_chipinit(sc);
3505
3506         /*
3507          * Init the various state machines, ring
3508          * control blocks and firmware.
3509          */
3510         if (bge_blockinit(sc)) {
3511                 if_printf(ifp, "initialization failure\n");
3512                 bge_stop(sc);
3513                 return;
3514         }
3515
3516         /* Specify MTU. */
3517         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3518             ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
3519
3520         /* Load our MAC address. */
3521         m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
3522         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3523         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3524
3525         /* Enable or disable promiscuous mode as needed. */
3526         bge_setpromisc(sc);
3527
3528         /* Program multicast filter. */
3529         bge_setmulti(sc);
3530
3531         /* Init RX ring. */
3532         if (bge_init_rx_ring_std(sc)) {
3533                 if_printf(ifp, "RX ring initialization failed\n");
3534                 bge_stop(sc);
3535                 return;
3536         }
3537
3538         /*
3539          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
3540          * memory to insure that the chip has in fact read the first
3541          * entry of the ring.
3542          */
3543         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
3544                 uint32_t                v, i;
3545                 for (i = 0; i < 10; i++) {
3546                         DELAY(20);
3547                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
3548                         if (v == (MCLBYTES - ETHER_ALIGN))
3549                                 break;
3550                 }
3551                 if (i == 10)
3552                         if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
3553         }
3554
3555         /* Init jumbo RX ring. */
3556         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) {
3557                 if (bge_init_rx_ring_jumbo(sc)) {
3558                         if_printf(ifp, "Jumbo RX ring initialization failed\n");
3559                         bge_stop(sc);
3560                         return;
3561                 }
3562         }
3563
3564         /* Init our RX return ring index */
3565         sc->bge_rx_saved_considx = 0;
3566
3567         /* Init TX ring. */
3568         bge_init_tx_ring(sc);
3569
3570         /* Enable TX MAC state machine lockup fix. */
3571         mode = CSR_READ_4(sc, BGE_TX_MODE);
3572         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3573                 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
3574         /* Turn on transmitter */
3575         CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
3576
3577         /* Turn on receiver */
3578         BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3579
3580         /*
3581          * Set the number of good frames to receive after RX MBUF
3582          * Low Watermark has been reached.  After the RX MAC receives
3583          * this number of frames, it will drop subsequent incoming
3584          * frames until the MBUF High Watermark is reached.
3585          */
3586         CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3587
3588         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
3589                 if (bootverbose) {
3590                         if_printf(ifp, "MSI_MODE: %#x\n",
3591                             CSR_READ_4(sc, BGE_MSI_MODE));
3592                 }
3593
3594                 /*
3595                  * XXX
3596                  * Linux driver turns it on for all chips supporting MSI?!
3597                  */
3598                 if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
3599                         /*
3600                          * XXX
3601                          * According to 5722-PG101-R,
3602                          * BGE_PCIE_TRANSACT_ONESHOT_MSI applies only to
3603                          * BCM5906.
3604                          */
3605                         BGE_SETBIT(sc, BGE_PCIE_TRANSACT,
3606                             BGE_PCIE_TRANSACT_ONESHOT_MSI);
3607                 }
3608         }
3609
3610         /* Tell firmware we're alive. */
3611         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3612
3613         /* Enable host interrupts if polling(4) is not enabled. */
3614         PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA, 4);
3615 #ifdef DEVICE_POLLING
3616         if (ifp->if_flags & IFF_POLLING)
3617                 bge_disable_intr(sc);
3618         else
3619 #endif
3620         bge_enable_intr(sc);
3621
3622         bge_ifmedia_upd(ifp);
3623
3624         ifp->if_flags |= IFF_RUNNING;
3625         ifp->if_flags &= ~IFF_OACTIVE;
3626
3627         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3628 }
3629
3630 /*
3631  * Set media options.
3632  */
3633 static int
3634 bge_ifmedia_upd(struct ifnet *ifp)
3635 {
3636         struct bge_softc *sc = ifp->if_softc;
3637
3638         /* If this is a 1000baseX NIC, enable the TBI port. */
3639         if (sc->bge_flags & BGE_FLAG_TBI) {
3640                 struct ifmedia *ifm = &sc->bge_ifmedia;
3641
3642                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3643                         return(EINVAL);
3644
3645                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3646                 case IFM_AUTO:
3647                         /*
3648                          * The BCM5704 ASIC appears to have a special
3649                          * mechanism for programming the autoneg
3650                          * advertisement registers in TBI mode.
3651                          */
3652                         if (!bge_fake_autoneg &&
3653                             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3654                                 uint32_t sgdig;
3655
3656                                 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
3657                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
3658                                 sgdig |= BGE_SGDIGCFG_AUTO |
3659                                          BGE_SGDIGCFG_PAUSE_CAP |
3660                                          BGE_SGDIGCFG_ASYM_PAUSE;
3661                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
3662                                             sgdig | BGE_SGDIGCFG_SEND);
3663                                 DELAY(5);
3664                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
3665                         }
3666                         break;
3667                 case IFM_1000_SX:
3668                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3669                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
3670                                     BGE_MACMODE_HALF_DUPLEX);
3671                         } else {
3672                                 BGE_SETBIT(sc, BGE_MAC_MODE,
3673                                     BGE_MACMODE_HALF_DUPLEX);
3674                         }
3675                         break;
3676                 default:
3677                         return(EINVAL);
3678                 }
3679         } else {
3680                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3681
3682                 sc->bge_link_evt++;
3683                 sc->bge_link = 0;
3684                 if (mii->mii_instance) {
3685                         struct mii_softc *miisc;
3686
3687                         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3688                                 mii_phy_reset(miisc);
3689                 }
3690                 mii_mediachg(mii);
3691
3692                 /*
3693                  * Force an interrupt so that we will call bge_link_upd
3694                  * if needed and clear any pending link state attention.
3695                  * Without this we are not getting any further interrupts
3696                  * for link state changes and thus will not UP the link and
3697                  * not be able to send in bge_start.  The only way to get
3698                  * things working was to receive a packet and get an RX
3699                  * intr.
3700                  *
3701                  * bge_tick should help for fiber cards and we might not
3702                  * need to do this here if BGE_FLAG_TBI is set but as
3703                  * we poll for fiber anyway it should not harm.
3704                  */
3705                 if (BGE_IS_CRIPPLED(sc))
3706                         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3707                 else
3708                         BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3709         }
3710         return(0);
3711 }
3712
3713 /*
3714  * Report current media status.
3715  */
3716 static void
3717 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3718 {
3719         struct bge_softc *sc = ifp->if_softc;
3720
3721         if (sc->bge_flags & BGE_FLAG_TBI) {
3722                 ifmr->ifm_status = IFM_AVALID;
3723                 ifmr->ifm_active = IFM_ETHER;
3724                 if (CSR_READ_4(sc, BGE_MAC_STS) &
3725                     BGE_MACSTAT_TBI_PCS_SYNCHED) {
3726                         ifmr->ifm_status |= IFM_ACTIVE;
3727                 } else {
3728                         ifmr->ifm_active |= IFM_NONE;
3729                         return;
3730                 }
3731
3732                 ifmr->ifm_active |= IFM_1000_SX;
3733                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3734                         ifmr->ifm_active |= IFM_HDX;    
3735                 else
3736                         ifmr->ifm_active |= IFM_FDX;
3737         } else {
3738                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3739
3740                 mii_pollstat(mii);
3741                 ifmr->ifm_active = mii->mii_media_active;
3742                 ifmr->ifm_status = mii->mii_media_status;
3743         }
3744 }
3745
3746 static int
3747 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3748 {
3749         struct bge_softc *sc = ifp->if_softc;
3750         struct ifreq *ifr = (struct ifreq *)data;
3751         int mask, error = 0;
3752
3753         ASSERT_SERIALIZED(ifp->if_serializer);
3754
3755         switch (command) {
3756         case SIOCSIFMTU:
3757                 if ((!BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
3758                     (BGE_IS_JUMBO_CAPABLE(sc) &&
3759                      ifr->ifr_mtu > BGE_JUMBO_MTU)) {
3760                         error = EINVAL;
3761                 } else if (ifp->if_mtu != ifr->ifr_mtu) {
3762                         ifp->if_mtu = ifr->ifr_mtu;
3763                         if (ifp->if_flags & IFF_RUNNING)
3764                                 bge_init(sc);
3765                 }
3766                 break;
3767         case SIOCSIFFLAGS:
3768                 if (ifp->if_flags & IFF_UP) {
3769                         if (ifp->if_flags & IFF_RUNNING) {
3770                                 mask = ifp->if_flags ^ sc->bge_if_flags;
3771
3772                                 /*
3773                                  * If only the state of the PROMISC flag
3774                                  * changed, then just use the 'set promisc
3775                                  * mode' command instead of reinitializing
3776                                  * the entire NIC. Doing a full re-init
3777                                  * means reloading the firmware and waiting
3778                                  * for it to start up, which may take a
3779                                  * second or two.  Similarly for ALLMULTI.
3780                                  */
3781                                 if (mask & IFF_PROMISC)
3782                                         bge_setpromisc(sc);
3783                                 if (mask & IFF_ALLMULTI)
3784                                         bge_setmulti(sc);
3785                         } else {
3786                                 bge_init(sc);
3787                         }
3788                 } else if (ifp->if_flags & IFF_RUNNING) {
3789                         bge_stop(sc);
3790                 }
3791                 sc->bge_if_flags = ifp->if_flags;
3792                 break;
3793         case SIOCADDMULTI:
3794         case SIOCDELMULTI:
3795                 if (ifp->if_flags & IFF_RUNNING)
3796                         bge_setmulti(sc);
3797                 break;
3798         case SIOCSIFMEDIA:
3799         case SIOCGIFMEDIA:
3800                 if (sc->bge_flags & BGE_FLAG_TBI) {
3801                         error = ifmedia_ioctl(ifp, ifr,
3802                             &sc->bge_ifmedia, command);
3803                 } else {
3804                         struct mii_data *mii;
3805
3806                         mii = device_get_softc(sc->bge_miibus);
3807                         error = ifmedia_ioctl(ifp, ifr,
3808                                               &mii->mii_media, command);
3809                 }
3810                 break;
3811         case SIOCSIFCAP:
3812                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3813                 if (mask & IFCAP_HWCSUM) {
3814                         ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
3815                         if (IFCAP_HWCSUM & ifp->if_capenable)
3816                                 ifp->if_hwassist = BGE_CSUM_FEATURES;
3817                         else
3818                                 ifp->if_hwassist = 0;
3819                 }
3820                 break;
3821         default:
3822                 error = ether_ioctl(ifp, command, data);
3823                 break;
3824         }
3825         return error;
3826 }
3827
3828 static void
3829 bge_watchdog(struct ifnet *ifp)
3830 {
3831         struct bge_softc *sc = ifp->if_softc;
3832
3833         if_printf(ifp, "watchdog timeout -- resetting\n");
3834
3835         bge_init(sc);
3836
3837         ifp->if_oerrors++;
3838
3839         if (!ifq_is_empty(&ifp->if_snd))
3840                 if_devstart(ifp);
3841 }
3842
3843 /*
3844  * Stop the adapter and free any mbufs allocated to the
3845  * RX and TX lists.
3846  */
3847 static void
3848 bge_stop(struct bge_softc *sc)
3849 {
3850         struct ifnet *ifp = &sc->arpcom.ac_if;
3851
3852         ASSERT_SERIALIZED(ifp->if_serializer);
3853
3854         callout_stop(&sc->bge_stat_timer);
3855
3856         /*
3857          * Disable all of the receiver blocks
3858          */
3859         bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3860         bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3861         bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3862         if (BGE_IS_5700_FAMILY(sc))
3863                 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3864         bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3865         bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3866         bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3867
3868         /*
3869          * Disable all of the transmit blocks
3870          */
3871         bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3872         bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3873         bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3874         bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3875         bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3876         if (BGE_IS_5700_FAMILY(sc))
3877                 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3878         bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3879
3880         /*
3881          * Shut down all of the memory managers and related
3882          * state machines.
3883          */
3884         bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3885         bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3886         if (BGE_IS_5700_FAMILY(sc))
3887                 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3888         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3889         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3890         if (!BGE_IS_5705_PLUS(sc)) {
3891                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3892                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3893         }
3894
3895         /* Disable host interrupts. */
3896         bge_disable_intr(sc);
3897
3898         /*
3899          * Tell firmware we're shutting down.
3900          */
3901         BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3902
3903         /* Free the RX lists. */
3904         bge_free_rx_ring_std(sc);
3905
3906         /* Free jumbo RX list. */
3907         if (BGE_IS_JUMBO_CAPABLE(sc))
3908                 bge_free_rx_ring_jumbo(sc);
3909
3910         /* Free TX buffers. */
3911         bge_free_tx_ring(sc);
3912
3913         sc->bge_status_tag = 0;
3914         sc->bge_link = 0;
3915         sc->bge_coal_chg = 0;
3916
3917         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3918
3919         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3920         ifp->if_timer = 0;
3921 }
3922
3923 /*
3924  * Stop all chip I/O so that the kernel's probe routines don't
3925  * get confused by errant DMAs when rebooting.
3926  */
3927 static void
3928 bge_shutdown(device_t dev)
3929 {
3930         struct bge_softc *sc = device_get_softc(dev);
3931         struct ifnet *ifp = &sc->arpcom.ac_if;
3932
3933         lwkt_serialize_enter(ifp->if_serializer);
3934         bge_stop(sc);
3935         bge_reset(sc);
3936         lwkt_serialize_exit(ifp->if_serializer);
3937 }
3938
3939 static int
3940 bge_suspend(device_t dev)
3941 {
3942         struct bge_softc *sc = device_get_softc(dev);
3943         struct ifnet *ifp = &sc->arpcom.ac_if;
3944
3945         lwkt_serialize_enter(ifp->if_serializer);
3946         bge_stop(sc);
3947         lwkt_serialize_exit(ifp->if_serializer);
3948
3949         return 0;
3950 }
3951
3952 static int
3953 bge_resume(device_t dev)
3954 {
3955         struct bge_softc *sc = device_get_softc(dev);
3956         struct ifnet *ifp = &sc->arpcom.ac_if;
3957
3958         lwkt_serialize_enter(ifp->if_serializer);
3959
3960         if (ifp->if_flags & IFF_UP) {
3961                 bge_init(sc);
3962
3963                 if (!ifq_is_empty(&ifp->if_snd))
3964                         if_devstart(ifp);
3965         }
3966
3967         lwkt_serialize_exit(ifp->if_serializer);
3968
3969         return 0;
3970 }
3971
3972 static void
3973 bge_setpromisc(struct bge_softc *sc)
3974 {
3975         struct ifnet *ifp = &sc->arpcom.ac_if;
3976
3977         if (ifp->if_flags & IFF_PROMISC)
3978                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3979         else
3980                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3981 }
3982
3983 static void
3984 bge_dma_free(struct bge_softc *sc)
3985 {
3986         int i;
3987
3988         /* Destroy RX mbuf DMA stuffs. */
3989         if (sc->bge_cdata.bge_rx_mtag != NULL) {
3990                 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3991                         bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
3992                             sc->bge_cdata.bge_rx_std_dmamap[i]);
3993                 }
3994                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
3995                                    sc->bge_cdata.bge_rx_tmpmap);
3996                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
3997         }
3998
3999         /* Destroy TX mbuf DMA stuffs. */
4000         if (sc->bge_cdata.bge_tx_mtag != NULL) {
4001                 for (i = 0; i < BGE_TX_RING_CNT; i++) {
4002                         bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4003                             sc->bge_cdata.bge_tx_dmamap[i]);
4004                 }
4005                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4006         }
4007
4008         /* Destroy standard RX ring */
4009         bge_dma_block_free(sc->bge_cdata.bge_rx_std_ring_tag,
4010                            sc->bge_cdata.bge_rx_std_ring_map,
4011                            sc->bge_ldata.bge_rx_std_ring);
4012
4013         if (BGE_IS_JUMBO_CAPABLE(sc))
4014                 bge_free_jumbo_mem(sc);
4015
4016         /* Destroy RX return ring */
4017         bge_dma_block_free(sc->bge_cdata.bge_rx_return_ring_tag,
4018                            sc->bge_cdata.bge_rx_return_ring_map,
4019                            sc->bge_ldata.bge_rx_return_ring);
4020
4021         /* Destroy TX ring */
4022         bge_dma_block_free(sc->bge_cdata.bge_tx_ring_tag,
4023                            sc->bge_cdata.bge_tx_ring_map,
4024                            sc->bge_ldata.bge_tx_ring);
4025
4026         /* Destroy status block */
4027         bge_dma_block_free(sc->bge_cdata.bge_status_tag,
4028                            sc->bge_cdata.bge_status_map,
4029                            sc->bge_ldata.bge_status_block);
4030
4031         /* Destroy statistics block */
4032         bge_dma_block_free(sc->bge_cdata.bge_stats_tag,
4033                            sc->bge_cdata.bge_stats_map,
4034                            sc->bge_ldata.bge_stats);
4035
4036         /* Destroy the parent tag */
4037         if (sc->bge_cdata.bge_parent_tag != NULL)
4038                 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
4039 }
4040
4041 static int
4042 bge_dma_alloc(struct bge_softc *sc)
4043 {
4044         struct ifnet *ifp = &sc->arpcom.ac_if;
4045         int i, error;
4046         bus_addr_t lowaddr;
4047
4048         lowaddr = BUS_SPACE_MAXADDR;
4049         if (sc->bge_flags & BGE_FLAG_MAXADDR_40BIT)
4050                 lowaddr = BGE_DMA_MAXADDR_40BIT;
4051
4052         /*
4053          * Allocate the parent bus DMA tag appropriate for PCI.
4054          *
4055          * All of the NetExtreme/NetLink controllers have 4GB boundary
4056          * DMA bug.
4057          * Whenever an address crosses a multiple of the 4GB boundary
4058          * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
4059          * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
4060          * state machine will lockup and cause the device to hang.
4061          */
4062         error = bus_dma_tag_create(NULL, 1, BGE_DMA_BOUNDARY_4G,
4063                                    lowaddr, BUS_SPACE_MAXADDR,
4064                                    NULL, NULL,
4065                                    BUS_SPACE_MAXSIZE_32BIT, 0,
4066                                    BUS_SPACE_MAXSIZE_32BIT,
4067                                    0, &sc->bge_cdata.bge_parent_tag);
4068         if (error) {
4069                 if_printf(ifp, "could not allocate parent dma tag\n");
4070                 return error;
4071         }
4072
4073         /*
4074          * Create DMA tag and maps for RX mbufs.
4075          */
4076         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4077                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4078                                    NULL, NULL, MCLBYTES, 1, MCLBYTES,
4079                                    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
4080                                    &sc->bge_cdata.bge_rx_mtag);
4081         if (error) {
4082                 if_printf(ifp, "could not allocate RX mbuf dma tag\n");
4083                 return error;
4084         }
4085
4086         error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4087                                   BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_tmpmap);
4088         if (error) {
4089                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4090                 sc->bge_cdata.bge_rx_mtag = NULL;
4091                 return error;
4092         }
4093
4094         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4095                 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4096                                           BUS_DMA_WAITOK,
4097                                           &sc->bge_cdata.bge_rx_std_dmamap[i]);
4098                 if (error) {
4099                         int j;
4100
4101                         for (j = 0; j < i; ++j) {
4102                                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4103                                         sc->bge_cdata.bge_rx_std_dmamap[j]);
4104                         }
4105                         bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4106                         sc->bge_cdata.bge_rx_mtag = NULL;
4107
4108                         if_printf(ifp, "could not create DMA map for RX\n");
4109                         return error;
4110                 }
4111         }
4112
4113         /*
4114          * Create DMA tag and maps for TX mbufs.
4115          */
4116         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4117                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4118                                    NULL, NULL,
4119                                    BGE_JUMBO_FRAMELEN, BGE_NSEG_NEW, MCLBYTES,
4120                                    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
4121                                    BUS_DMA_ONEBPAGE,
4122                                    &sc->bge_cdata.bge_tx_mtag);
4123         if (error) {
4124                 if_printf(ifp, "could not allocate TX mbuf dma tag\n");
4125                 return error;
4126         }
4127
4128         for (i = 0; i < BGE_TX_RING_CNT; i++) {
4129                 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag,
4130                                           BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
4131                                           &sc->bge_cdata.bge_tx_dmamap[i]);
4132                 if (error) {
4133                         int j;
4134
4135                         for (j = 0; j < i; ++j) {
4136                                 bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4137                                         sc->bge_cdata.bge_tx_dmamap[j]);
4138                         }
4139                         bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4140                         sc->bge_cdata.bge_tx_mtag = NULL;
4141
4142                         if_printf(ifp, "could not create DMA map for TX\n");
4143                         return error;
4144                 }
4145         }
4146
4147         /*
4148          * Create DMA stuffs for standard RX ring.
4149          */
4150         error = bge_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
4151                                     &sc->bge_cdata.bge_rx_std_ring_tag,
4152                                     &sc->bge_cdata.bge_rx_std_ring_map,
4153                                     (void *)&sc->bge_ldata.bge_rx_std_ring,
4154                                     &sc->bge_ldata.bge_rx_std_ring_paddr);
4155         if (error) {
4156                 if_printf(ifp, "could not create std RX ring\n");
4157                 return error;
4158         }
4159
4160         /*
4161          * Create jumbo buffer pool.
4162          */
4163         if (BGE_IS_JUMBO_CAPABLE(sc)) {
4164                 error = bge_alloc_jumbo_mem(sc);
4165                 if (error) {
4166                         if_printf(ifp, "could not create jumbo buffer pool\n");
4167                         return error;
4168                 }
4169         }
4170
4171         /*
4172          * Create DMA stuffs for RX return ring.
4173          */
4174         error = bge_dma_block_alloc(sc,
4175             BGE_RX_RTN_RING_SZ(sc->bge_return_ring_cnt),
4176             &sc->bge_cdata.bge_rx_return_ring_tag,
4177             &sc->bge_cdata.bge_rx_return_ring_map,
4178             (void *)&sc->bge_ldata.bge_rx_return_ring,
4179             &sc->bge_ldata.bge_rx_return_ring_paddr);
4180         if (error) {
4181                 if_printf(ifp, "could not create RX ret ring\n");
4182                 return error;
4183         }
4184
4185         /*
4186          * Create DMA stuffs for TX ring.
4187          */
4188         error = bge_dma_block_alloc(sc, BGE_TX_RING_SZ,
4189                                     &sc->bge_cdata.bge_tx_ring_tag,
4190                                     &sc->bge_cdata.bge_tx_ring_map,
4191                                     (void *)&sc->bge_ldata.bge_tx_ring,
4192                                     &sc->bge_ldata.bge_tx_ring_paddr);
4193         if (error) {
4194                 if_printf(ifp, "could not create TX ring\n");
4195                 return error;
4196         }
4197
4198         /*
4199          * Create DMA stuffs for status block.
4200          */
4201         error = bge_dma_block_alloc(sc, BGE_STATUS_BLK_SZ,
4202                                     &sc->bge_cdata.bge_status_tag,
4203                                     &sc->bge_cdata.bge_status_map,
4204                                     (void *)&sc->bge_ldata.bge_status_block,
4205                                     &sc->bge_ldata.bge_status_block_paddr);
4206         if (error) {
4207                 if_printf(ifp, "could not create status block\n");
4208                 return error;
4209         }
4210
4211         /*
4212          * Create DMA stuffs for statistics block.
4213          */
4214         error = bge_dma_block_alloc(sc, BGE_STATS_SZ,
4215                                     &sc->bge_cdata.bge_stats_tag,
4216                                     &sc->bge_cdata.bge_stats_map,
4217                                     (void *)&sc->bge_ldata.bge_stats,
4218                                     &sc->bge_ldata.bge_stats_paddr);
4219         if (error) {
4220                 if_printf(ifp, "could not create stats block\n");
4221                 return error;
4222         }
4223         return 0;
4224 }
4225
4226 static int
4227 bge_dma_block_alloc(struct bge_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
4228                     bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
4229 {
4230         bus_dmamem_t dmem;
4231         int error;
4232
4233         error = bus_dmamem_coherent(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0,
4234                                     BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4235                                     size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
4236         if (error)
4237                 return error;
4238
4239         *tag = dmem.dmem_tag;
4240         *map = dmem.dmem_map;
4241         *addr = dmem.dmem_addr;
4242         *paddr = dmem.dmem_busaddr;
4243
4244         return 0;
4245 }
4246
4247 static void
4248 bge_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
4249 {
4250         if (tag != NULL) {
4251                 bus_dmamap_unload(tag, map);
4252                 bus_dmamem_free(tag, addr, map);
4253                 bus_dma_tag_destroy(tag);
4254         }
4255 }
4256
4257 /*
4258  * Grrr. The link status word in the status block does
4259  * not work correctly on the BCM5700 rev AX and BX chips,
4260  * according to all available information. Hence, we have
4261  * to enable MII interrupts in order to properly obtain
4262  * async link changes. Unfortunately, this also means that
4263  * we have to read the MAC status register to detect link
4264  * changes, thereby adding an additional register access to
4265  * the interrupt handler.
4266  *
4267  * XXX: perhaps link state detection procedure used for
4268  * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
4269  */
4270 static void
4271 bge_bcm5700_link_upd(struct bge_softc *sc, uint32_t status __unused)
4272 {
4273         struct ifnet *ifp = &sc->arpcom.ac_if;
4274         struct mii_data *mii = device_get_softc(sc->bge_miibus);
4275
4276         mii_pollstat(mii);
4277
4278         if (!sc->bge_link &&
4279             (mii->mii_media_status & IFM_ACTIVE) &&
4280             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4281                 sc->bge_link++;
4282                 if (bootverbose)
4283                         if_printf(ifp, "link UP\n");
4284         } else if (sc->bge_link &&
4285             (!(mii->mii_media_status & IFM_ACTIVE) ||
4286             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4287                 sc->bge_link = 0;
4288                 if (bootverbose)
4289                         if_printf(ifp, "link DOWN\n");
4290         }
4291
4292         /* Clear the interrupt. */
4293         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT);
4294         bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4295         bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS);
4296 }
4297
4298 static void
4299 bge_tbi_link_upd(struct bge_softc *sc, uint32_t status)
4300 {
4301         struct ifnet *ifp = &sc->arpcom.ac_if;
4302
4303 #define PCS_ENCODE_ERR  (BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
4304
4305         /*
4306          * Sometimes PCS encoding errors are detected in
4307          * TBI mode (on fiber NICs), and for some reason
4308          * the chip will signal them as link changes.
4309          * If we get a link change event, but the 'PCS
4310          * encoding error' bit in the MAC status register
4311          * is set, don't bother doing a link check.
4312          * This avoids spurious "gigabit link up" messages
4313          * that sometimes appear on fiber NICs during
4314          * periods of heavy traffic.
4315          */
4316         if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4317                 if (!sc->bge_link) {
4318                         sc->bge_link++;
4319                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4320                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
4321                                     BGE_MACMODE_TBI_SEND_CFGS);
4322                         }
4323                         CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4324
4325                         if (bootverbose)
4326                                 if_printf(ifp, "link UP\n");
4327
4328                         ifp->if_link_state = LINK_STATE_UP;
4329                         if_link_state_change(ifp);
4330                 }
4331         } else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
4332                 if (sc->bge_link) {
4333                         sc->bge_link = 0;
4334
4335                         if (bootverbose)
4336                                 if_printf(ifp, "link DOWN\n");
4337
4338                         ifp->if_link_state = LINK_STATE_DOWN;
4339                         if_link_state_change(ifp);
4340                 }
4341         }
4342
4343 #undef PCS_ENCODE_ERR
4344
4345         /* Clear the attention. */
4346         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4347             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4348             BGE_MACSTAT_LINK_CHANGED);
4349 }
4350
4351 static void
4352 bge_copper_link_upd(struct bge_softc *sc, uint32_t status __unused)
4353 {
4354         struct ifnet *ifp = &sc->arpcom.ac_if;
4355         struct mii_data *mii = device_get_softc(sc->bge_miibus);
4356
4357         mii_pollstat(mii);
4358         bge_miibus_statchg(sc->bge_dev);
4359
4360         if (bootverbose) {
4361                 if (sc->bge_link)
4362                         if_printf(ifp, "link UP\n");
4363                 else
4364                         if_printf(ifp, "link DOWN\n");
4365         }
4366
4367         /* Clear the attention. */
4368         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4369             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4370             BGE_MACSTAT_LINK_CHANGED);
4371 }
4372
4373 static void
4374 bge_autopoll_link_upd(struct bge_softc *sc, uint32_t status __unused)
4375 {
4376         struct ifnet *ifp = &sc->arpcom.ac_if;
4377         struct mii_data *mii = device_get_softc(sc->bge_miibus);
4378
4379         mii_pollstat(mii);
4380
4381         if (!sc->bge_link &&
4382             (mii->mii_media_status & IFM_ACTIVE) &&
4383             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4384                 sc->bge_link++;
4385                 if (bootverbose)
4386                         if_printf(ifp, "link UP\n");
4387         } else if (sc->bge_link &&
4388             (!(mii->mii_media_status & IFM_ACTIVE) ||
4389             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4390                 sc->bge_link = 0;
4391                 if (bootverbose)
4392                         if_printf(ifp, "link DOWN\n");
4393         }
4394
4395         /* Clear the attention. */
4396         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4397             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4398             BGE_MACSTAT_LINK_CHANGED);
4399 }
4400
4401 static int
4402 bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
4403 {
4404         struct bge_softc *sc = arg1;
4405
4406         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4407             &sc->bge_rx_coal_ticks,
4408             BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4409             BGE_RX_COAL_TICKS_CHG);
4410 }
4411
4412 static int
4413 bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
4414 {
4415         struct bge_softc *sc = arg1;
4416
4417         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4418             &sc->bge_tx_coal_ticks,
4419             BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4420             BGE_TX_COAL_TICKS_CHG);
4421 }
4422
4423 static int
4424 bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS)
4425 {
4426         struct bge_softc *sc = arg1;
4427
4428         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4429             &sc->bge_rx_coal_bds,
4430             BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4431             BGE_RX_COAL_BDS_CHG);
4432 }
4433
4434 static int
4435 bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS)
4436 {
4437         struct bge_softc *sc = arg1;
4438
4439         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4440             &sc->bge_tx_coal_bds,
4441             BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4442             BGE_TX_COAL_BDS_CHG);
4443 }
4444
4445 static int
4446 bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4447 {
4448         struct bge_softc *sc = arg1;
4449
4450         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4451             &sc->bge_rx_coal_ticks_int,
4452             BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4453             BGE_RX_COAL_TICKS_INT_CHG);
4454 }
4455
4456 static int
4457 bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4458 {
4459         struct bge_softc *sc = arg1;
4460
4461         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4462             &sc->bge_tx_coal_ticks_int,
4463             BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4464             BGE_TX_COAL_TICKS_INT_CHG);
4465 }
4466
4467 static int
4468 bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4469 {
4470         struct bge_softc *sc = arg1;
4471
4472         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4473             &sc->bge_rx_coal_bds_int,
4474             BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4475             BGE_RX_COAL_BDS_INT_CHG);
4476 }
4477
4478 static int
4479 bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4480 {
4481         struct bge_softc *sc = arg1;
4482
4483         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4484             &sc->bge_tx_coal_bds_int,
4485             BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4486             BGE_TX_COAL_BDS_INT_CHG);
4487 }
4488
4489 static int
4490 bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
4491     int coal_min, int coal_max, uint32_t coal_chg_mask)
4492 {
4493         struct bge_softc *sc = arg1;
4494         struct ifnet *ifp = &sc->arpcom.ac_if;
4495         int error = 0, v;
4496
4497         lwkt_serialize_enter(ifp->if_serializer);
4498
4499         v = *coal;
4500         error = sysctl_handle_int(oidp, &v, 0, req);
4501         if (!error && req->newptr != NULL) {
4502                 if (v < coal_min || v > coal_max) {
4503                         error = EINVAL;
4504                 } else {
4505                         *coal = v;
4506                         sc->bge_coal_chg |= coal_chg_mask;
4507                 }
4508         }
4509
4510         lwkt_serialize_exit(ifp->if_serializer);
4511         return error;
4512 }
4513
4514 static void
4515 bge_coal_change(struct bge_softc *sc)
4516 {
4517         struct ifnet *ifp = &sc->arpcom.ac_if;
4518         uint32_t val;
4519
4520         ASSERT_SERIALIZED(ifp->if_serializer);
4521
4522         if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_CHG) {
4523                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
4524                             sc->bge_rx_coal_ticks);
4525                 DELAY(10);
4526                 val = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4527
4528                 if (bootverbose) {
4529                         if_printf(ifp, "rx_coal_ticks -> %u\n",
4530                                   sc->bge_rx_coal_ticks);
4531                 }
4532         }
4533
4534         if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_CHG) {
4535                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
4536                             sc->bge_tx_coal_ticks);
4537                 DELAY(10);
4538                 val = CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS);
4539
4540                 if (bootverbose) {
4541                         if_printf(ifp, "tx_coal_ticks -> %u\n",
4542                                   sc->bge_tx_coal_ticks);
4543                 }
4544         }
4545
4546         if (sc->bge_coal_chg & BGE_RX_COAL_BDS_CHG) {
4547                 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS,
4548                             sc->bge_rx_coal_bds);
4549                 DELAY(10);
4550                 val = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4551
4552                 if (bootverbose) {
4553                         if_printf(ifp, "rx_coal_bds -> %u\n",
4554                                   sc->bge_rx_coal_bds);
4555                 }
4556         }
4557
4558         if (sc->bge_coal_chg & BGE_TX_COAL_BDS_CHG) {
4559                 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS,
4560                             sc->bge_tx_coal_bds);
4561                 DELAY(10);
4562                 val = CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS);
4563
4564                 if (bootverbose) {
4565                         if_printf(ifp, "tx_max_coal_bds -> %u\n",
4566                                   sc->bge_tx_coal_bds);
4567                 }
4568         }
4569
4570         if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_INT_CHG) {
4571                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
4572                     sc->bge_rx_coal_ticks_int);
4573                 DELAY(10);
4574                 val = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS_INT);
4575
4576                 if (bootverbose) {
4577                         if_printf(ifp, "rx_coal_ticks_int -> %u\n",
4578                             sc->bge_rx_coal_ticks_int);
4579                 }
4580         }
4581
4582         if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_INT_CHG) {
4583                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
4584                     sc->bge_tx_coal_ticks_int);
4585                 DELAY(10);
4586                 val = CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS_INT);
4587
4588                 if (bootverbose) {
4589                         if_printf(ifp, "tx_coal_ticks_int -> %u\n",
4590                             sc->bge_tx_coal_ticks_int);
4591                 }
4592         }
4593
4594         if (sc->bge_coal_chg & BGE_RX_COAL_BDS_INT_CHG) {
4595                 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT,
4596                     sc->bge_rx_coal_bds_int);
4597                 DELAY(10);
4598                 val = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT);
4599
4600                 if (bootverbose) {
4601                         if_printf(ifp, "rx_coal_bds_int -> %u\n",
4602                             sc->bge_rx_coal_bds_int);
4603                 }
4604         }
4605
4606         if (sc->bge_coal_chg & BGE_TX_COAL_BDS_INT_CHG) {
4607                 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT,
4608                     sc->bge_tx_coal_bds_int);
4609                 DELAY(10);
4610                 val = CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT);
4611
4612                 if (bootverbose) {
4613                         if_printf(ifp, "tx_coal_bds_int -> %u\n",
4614                             sc->bge_tx_coal_bds_int);
4615                 }
4616         }
4617
4618         sc->bge_coal_chg = 0;
4619 }
4620
4621 static void
4622 bge_enable_intr(struct bge_softc *sc)
4623 {
4624         struct ifnet *ifp = &sc->arpcom.ac_if;
4625
4626         lwkt_serialize_handler_enable(ifp->if_serializer);
4627
4628         /*
4629          * Enable interrupt.
4630          */
4631         bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4632         if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
4633                 /* XXX Linux driver */
4634                 bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4635         }
4636
4637         /*
4638          * Unmask the interrupt when we stop polling.
4639          */
4640         PCI_CLRBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4641             BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4642
4643         /*
4644          * Trigger another interrupt, since above writing
4645          * to interrupt mailbox0 may acknowledge pending
4646          * interrupt.
4647          */
4648         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4649 }
4650
4651 static void
4652 bge_disable_intr(struct bge_softc *sc)
4653 {
4654         struct ifnet *ifp = &sc->arpcom.ac_if;
4655
4656         /*
4657          * Mask the interrupt when we start polling.
4658          */
4659         PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4660             BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4661
4662         /*
4663          * Acknowledge possible asserted interrupt.
4664          */
4665         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4666
4667         lwkt_serialize_handler_disable(ifp->if_serializer);
4668 }
4669
4670 static int
4671 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4672 {
4673         uint32_t mac_addr;
4674         int ret = 1;
4675
4676         mac_addr = bge_readmem_ind(sc, 0x0c14);
4677         if ((mac_addr >> 16) == 0x484b) {
4678                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
4679                 ether_addr[1] = (uint8_t)mac_addr;
4680                 mac_addr = bge_readmem_ind(sc, 0x0c18);
4681                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
4682                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
4683                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
4684                 ether_addr[5] = (uint8_t)mac_addr;
4685                 ret = 0;
4686         }
4687         return ret;
4688 }
4689
4690 static int
4691 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
4692 {
4693         int mac_offset = BGE_EE_MAC_OFFSET;
4694
4695         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
4696                 mac_offset = BGE_EE_MAC_OFFSET_5906;
4697
4698         return bge_read_nvram(sc, ether_addr, mac_offset + 2, ETHER_ADDR_LEN);
4699 }
4700
4701 static int
4702 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
4703 {
4704         if (sc->bge_flags & BGE_FLAG_NO_EEPROM)
4705                 return 1;
4706
4707         return bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4708                                ETHER_ADDR_LEN);
4709 }
4710
4711 static int
4712 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
4713 {
4714         static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4715                 /* NOTE: Order is critical */
4716                 bge_get_eaddr_mem,
4717                 bge_get_eaddr_nvram,
4718                 bge_get_eaddr_eeprom,
4719                 NULL
4720         };
4721         const bge_eaddr_fcn_t *func;
4722
4723         for (func = bge_eaddr_funcs; *func != NULL; ++func) {
4724                 if ((*func)(sc, eaddr) == 0)
4725                         break;
4726         }
4727         return (*func == NULL ? ENXIO : 0);
4728 }
4729
4730 /*
4731  * NOTE: 'm' is not freed upon failure
4732  */
4733 struct mbuf *
4734 bge_defrag_shortdma(struct mbuf *m)
4735 {
4736         struct mbuf *n;
4737         int found;
4738
4739         /*
4740          * If device receive two back-to-back send BDs with less than
4741          * or equal to 8 total bytes then the device may hang.  The two
4742          * back-to-back send BDs must in the same frame for this failure
4743          * to occur.  Scan mbuf chains and see whether two back-to-back
4744          * send BDs are there.  If this is the case, allocate new mbuf
4745          * and copy the frame to workaround the silicon bug.
4746          */
4747         for (n = m, found = 0; n != NULL; n = n->m_next) {
4748                 if (n->m_len < 8) {
4749                         found++;
4750                         if (found > 1)
4751                                 break;
4752                         continue;
4753                 }
4754                 found = 0;
4755         }
4756
4757         if (found > 1)
4758                 n = m_defrag(m, MB_DONTWAIT);
4759         else
4760                 n = m;
4761         return n;
4762 }
4763
4764 static void
4765 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
4766 {
4767         int i;
4768
4769         BGE_CLRBIT(sc, reg, bit);
4770         for (i = 0; i < BGE_TIMEOUT; i++) {
4771                 if ((CSR_READ_4(sc, reg) & bit) == 0)
4772                         return;
4773                 DELAY(100);
4774         }
4775 }
4776
4777 static void
4778 bge_link_poll(struct bge_softc *sc)
4779 {
4780         uint32_t status;
4781
4782         status = CSR_READ_4(sc, BGE_MAC_STS);
4783         if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
4784                 sc->bge_link_evt = 0;
4785                 sc->bge_link_upd(sc, status);
4786         }
4787 }
4788
4789 static void
4790 bge_enable_msi(struct bge_softc *sc)
4791 {
4792         uint32_t msi_mode;
4793
4794         msi_mode = CSR_READ_4(sc, BGE_MSI_MODE);
4795         msi_mode |= BGE_MSIMODE_ENABLE;
4796         if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
4797                 /*
4798                  * According to all of the datasheets that are publicly
4799                  * available, bit 5 of the MSI_MODE is defined to be
4800                  * "MSI FIFO Underrun Attn" for BCM5755+ and BCM5906, on
4801                  * which "oneshot MSI" is enabled.  However, it is always
4802                  * safe to clear it here.
4803                  */
4804                 msi_mode &= ~BGE_MSIMODE_ONESHOT_DISABLE;
4805         }
4806         CSR_WRITE_4(sc, BGE_MSI_MODE, msi_mode);
4807 }