drm/i915: Use dev->pdev to get PCI device revisions
[dragonfly.git] / sys / dev / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  * Copyright (c) 2011 The FreeBSD Foundation
27  * All rights reserved.
28  *
29  * This software was developed by Konstantin Belousov under sponsorship from
30  * the FreeBSD Foundation.
31  *
32  * Redistribution and use in source and binary forms, with or without
33  * modification, are permitted provided that the following conditions
34  * are met:
35  * 1. Redistributions of source code must retain the above copyright
36  *    notice, this list of conditions and the following disclaimer.
37  * 2. Redistributions in binary form must reproduce the above copyright
38  *    notice, this list of conditions and the following disclaimer in the
39  *    documentation and/or other materials provided with the distribution.
40  *
41  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  */
54
55 #include <machine/md_var.h>
56
57 #include <drm/drmP.h>
58 #include <drm/drm_vma_manager.h>
59 #include <drm/i915_drm.h>
60 #include "i915_drv.h"
61 #include "i915_trace.h"
62 #include "intel_drv.h"
63 #include <linux/shmem_fs.h>
64 #include <linux/slab.h>
65 #include <linux/swap.h>
66 #include <linux/pci.h>
67
68 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
69 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
70 static __must_check int
71 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
72                                bool readonly);
73 static void
74 i915_gem_object_retire(struct drm_i915_gem_object *obj);
75
76 static void i915_gem_write_fence(struct drm_device *dev, int reg,
77                                  struct drm_i915_gem_object *obj);
78 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
79                                          struct drm_i915_fence_reg *fence,
80                                          bool enable);
81
82 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
83
84 static bool cpu_cache_is_coherent(struct drm_device *dev,
85                                   enum i915_cache_level level)
86 {
87         return HAS_LLC(dev) || level != I915_CACHE_NONE;
88 }
89
90 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
91 {
92         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
93                 return true;
94
95         return obj->pin_display;
96 }
97
98 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
99 {
100         if (obj->tiling_mode)
101                 i915_gem_release_mmap(obj);
102
103         /* As we do not have an associated fence register, we will force
104          * a tiling change if we ever need to acquire one.
105          */
106         obj->fence_dirty = false;
107         obj->fence_reg = I915_FENCE_REG_NONE;
108 }
109
110 /* some bookkeeping */
111 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
112                                   size_t size)
113 {
114         spin_lock(&dev_priv->mm.object_stat_lock);
115         dev_priv->mm.object_count++;
116         dev_priv->mm.object_memory += size;
117         spin_unlock(&dev_priv->mm.object_stat_lock);
118 }
119
120 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
121                                      size_t size)
122 {
123         spin_lock(&dev_priv->mm.object_stat_lock);
124         dev_priv->mm.object_count--;
125         dev_priv->mm.object_memory -= size;
126         spin_unlock(&dev_priv->mm.object_stat_lock);
127 }
128
129 static int
130 i915_gem_wait_for_error(struct i915_gpu_error *error)
131 {
132         int ret;
133
134 #define EXIT_COND (!i915_reset_in_progress(error) || \
135                    i915_terminally_wedged(error))
136         if (EXIT_COND)
137                 return 0;
138
139         /*
140          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
141          * userspace. If it takes that long something really bad is going on and
142          * we should simply try to bail out and fail as gracefully as possible.
143          */
144         ret = wait_event_interruptible_timeout(error->reset_queue,
145                                                EXIT_COND,
146                                                10*HZ);
147         if (ret == 0) {
148                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
149                 return -EIO;
150         } else if (ret < 0) {
151                 return ret;
152         }
153 #undef EXIT_COND
154
155         return 0;
156 }
157
158 int i915_mutex_lock_interruptible(struct drm_device *dev)
159 {
160         struct drm_i915_private *dev_priv = dev->dev_private;
161         int ret;
162
163         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
164         if (ret)
165                 return ret;
166
167         ret = mutex_lock_interruptible(&dev->struct_mutex);
168         if (ret)
169                 return ret;
170
171         WARN_ON(i915_verify_lists(dev));
172         return 0;
173 }
174
175 int
176 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
177                             struct drm_file *file)
178 {
179         struct drm_i915_private *dev_priv = dev->dev_private;
180         struct drm_i915_gem_get_aperture *args = data;
181         struct drm_i915_gem_object *obj;
182         size_t pinned;
183
184         pinned = 0;
185         mutex_lock(&dev->struct_mutex);
186         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
187                 if (i915_gem_obj_is_pinned(obj))
188                         pinned += i915_gem_obj_ggtt_size(obj);
189         mutex_unlock(&dev->struct_mutex);
190
191         args->aper_size = dev_priv->gtt.base.total;
192         args->aper_available_size = args->aper_size - pinned;
193
194         return 0;
195 }
196
197 #if 0
198 static int
199 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
200 {
201         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
202         char *vaddr = obj->phys_handle->vaddr;
203         struct sg_table *st;
204         struct scatterlist *sg;
205         int i;
206
207         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
208                 return -EINVAL;
209
210         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
211                 struct vm_page *page;
212                 char *src;
213
214                 page = shmem_read_mapping_page(mapping, i);
215                 if (IS_ERR(page))
216                         return PTR_ERR(page);
217
218                 src = kmap_atomic(page);
219                 memcpy(vaddr, src, PAGE_SIZE);
220                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
221                 kunmap_atomic(src);
222
223                 page_cache_release(page);
224                 vaddr += PAGE_SIZE;
225         }
226
227         i915_gem_chipset_flush(obj->base.dev);
228
229         st = kmalloc(sizeof(*st), GFP_KERNEL);
230         if (st == NULL)
231                 return -ENOMEM;
232
233         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
234                 kfree(st);
235                 return -ENOMEM;
236         }
237
238         sg = st->sgl;
239         sg->offset = 0;
240         sg->length = obj->base.size;
241
242         sg_dma_address(sg) = obj->phys_handle->busaddr;
243         sg_dma_len(sg) = obj->base.size;
244
245         obj->pages = st;
246         obj->has_dma_mapping = true;
247         return 0;
248 }
249
250 static void
251 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
252 {
253         int ret;
254
255         BUG_ON(obj->madv == __I915_MADV_PURGED);
256
257         ret = i915_gem_object_set_to_cpu_domain(obj, true);
258         if (ret) {
259                 /* In the event of a disaster, abandon all caches and
260                  * hope for the best.
261                  */
262                 WARN_ON(ret != -EIO);
263                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
264         }
265
266         if (obj->madv == I915_MADV_DONTNEED)
267                 obj->dirty = 0;
268
269         if (obj->dirty) {
270                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
271                 char *vaddr = obj->phys_handle->vaddr;
272                 int i;
273
274                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
275                         struct page *page;
276                         char *dst;
277
278                         page = shmem_read_mapping_page(mapping, i);
279                         if (IS_ERR(page))
280                                 continue;
281
282                         dst = kmap_atomic(page);
283                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
284                         memcpy(dst, vaddr, PAGE_SIZE);
285                         kunmap_atomic(dst);
286
287                         set_page_dirty(page);
288                         if (obj->madv == I915_MADV_WILLNEED)
289                                 mark_page_accessed(page);
290                         page_cache_release(page);
291                         vaddr += PAGE_SIZE;
292                 }
293                 obj->dirty = 0;
294         }
295
296         sg_free_table(obj->pages);
297         kfree(obj->pages);
298
299         obj->has_dma_mapping = false;
300 }
301
302 static void
303 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
304 {
305         drm_pci_free(obj->base.dev, obj->phys_handle);
306 }
307
308 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
309         .get_pages = i915_gem_object_get_pages_phys,
310         .put_pages = i915_gem_object_put_pages_phys,
311         .release = i915_gem_object_release_phys,
312 };
313 #endif
314
315 static int
316 drop_pages(struct drm_i915_gem_object *obj)
317 {
318         struct i915_vma *vma, *next;
319         int ret;
320
321         drm_gem_object_reference(&obj->base);
322         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
323                 if (i915_vma_unbind(vma))
324                         break;
325
326         ret = i915_gem_object_put_pages(obj);
327         drm_gem_object_unreference(&obj->base);
328
329         return ret;
330 }
331
332 int
333 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
334                             int align)
335 {
336         drm_dma_handle_t *phys;
337         int ret;
338
339         if (obj->phys_handle) {
340                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
341                         return -EBUSY;
342
343                 return 0;
344         }
345
346         if (obj->madv != I915_MADV_WILLNEED)
347                 return -EFAULT;
348
349 #if 0
350         if (obj->base.filp == NULL)
351                 return -EINVAL;
352 #endif
353
354         ret = drop_pages(obj);
355         if (ret)
356                 return ret;
357
358         /* create a new object */
359         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
360         if (!phys)
361                 return -ENOMEM;
362
363         obj->phys_handle = phys;
364 #if 0
365         obj->ops = &i915_gem_phys_ops;
366 #endif
367
368         return i915_gem_object_get_pages(obj);
369 }
370
371 static int
372 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
373                      struct drm_i915_gem_pwrite *args,
374                      struct drm_file *file_priv)
375 {
376         struct drm_device *dev = obj->base.dev;
377         void *vaddr = (char *)obj->phys_handle->vaddr + args->offset;
378         char __user *user_data = to_user_ptr(args->data_ptr);
379         int ret;
380
381         /* We manually control the domain here and pretend that it
382          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
383          */
384         ret = i915_gem_object_wait_rendering(obj, false);
385         if (ret)
386                 return ret;
387
388         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
389                 unsigned long unwritten;
390
391                 /* The physical object once assigned is fixed for the lifetime
392                  * of the obj, so we can safely drop the lock and continue
393                  * to access vaddr.
394                  */
395                 mutex_unlock(&dev->struct_mutex);
396                 unwritten = copy_from_user(vaddr, user_data, args->size);
397                 mutex_lock(&dev->struct_mutex);
398                 if (unwritten)
399                         return -EFAULT;
400         }
401
402         drm_clflush_virt_range(vaddr, args->size);
403         i915_gem_chipset_flush(dev);
404         return 0;
405 }
406
407 void *i915_gem_object_alloc(struct drm_device *dev)
408 {
409         return kmalloc(sizeof(struct drm_i915_gem_object),
410             M_DRM, M_WAITOK | M_ZERO);
411 }
412
413 void i915_gem_object_free(struct drm_i915_gem_object *obj)
414 {
415         kfree(obj);
416 }
417
418 static int
419 i915_gem_create(struct drm_file *file,
420                 struct drm_device *dev,
421                 uint64_t size,
422                 uint32_t *handle_p)
423 {
424         struct drm_i915_gem_object *obj;
425         int ret;
426         u32 handle;
427
428         size = roundup(size, PAGE_SIZE);
429         if (size == 0)
430                 return -EINVAL;
431
432         /* Allocate the new object */
433         obj = i915_gem_alloc_object(dev, size);
434         if (obj == NULL)
435                 return -ENOMEM;
436
437         ret = drm_gem_handle_create(file, &obj->base, &handle);
438         /* drop reference from allocate - handle holds it now */
439         drm_gem_object_unreference_unlocked(&obj->base);
440         if (ret)
441                 return ret;
442
443         *handle_p = handle;
444         return 0;
445 }
446
447 int
448 i915_gem_dumb_create(struct drm_file *file,
449                      struct drm_device *dev,
450                      struct drm_mode_create_dumb *args)
451 {
452         /* have to work out size/pitch and return them */
453         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
454         args->size = args->pitch * args->height;
455         return i915_gem_create(file, dev,
456                                args->size, &args->handle);
457 }
458
459 /**
460  * Creates a new mm object and returns a handle to it.
461  */
462 int
463 i915_gem_create_ioctl(struct drm_device *dev, void *data,
464                       struct drm_file *file)
465 {
466         struct drm_i915_gem_create *args = data;
467
468         return i915_gem_create(file, dev,
469                                args->size, &args->handle);
470 }
471
472 static inline int
473 __copy_to_user_swizzled(char __user *cpu_vaddr,
474                         const char *gpu_vaddr, int gpu_offset,
475                         int length)
476 {
477         int ret, cpu_offset = 0;
478
479         while (length > 0) {
480                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
481                 int this_length = min(cacheline_end - gpu_offset, length);
482                 int swizzled_gpu_offset = gpu_offset ^ 64;
483
484                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
485                                      gpu_vaddr + swizzled_gpu_offset,
486                                      this_length);
487                 if (ret)
488                         return ret + length;
489
490                 cpu_offset += this_length;
491                 gpu_offset += this_length;
492                 length -= this_length;
493         }
494
495         return 0;
496 }
497
498 static inline int
499 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
500                           const char __user *cpu_vaddr,
501                           int length)
502 {
503         int ret, cpu_offset = 0;
504
505         while (length > 0) {
506                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
507                 int this_length = min(cacheline_end - gpu_offset, length);
508                 int swizzled_gpu_offset = gpu_offset ^ 64;
509
510                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
511                                        cpu_vaddr + cpu_offset,
512                                        this_length);
513                 if (ret)
514                         return ret + length;
515
516                 cpu_offset += this_length;
517                 gpu_offset += this_length;
518                 length -= this_length;
519         }
520
521         return 0;
522 }
523
524 /*
525  * Pins the specified object's pages and synchronizes the object with
526  * GPU accesses. Sets needs_clflush to non-zero if the caller should
527  * flush the object from the CPU cache.
528  */
529 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
530                                     int *needs_clflush)
531 {
532         int ret;
533
534         *needs_clflush = 0;
535
536 #if 0
537         if (!obj->base.filp)
538                 return -EINVAL;
539 #endif
540
541         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
542                 /* If we're not in the cpu read domain, set ourself into the gtt
543                  * read domain and manually flush cachelines (if required). This
544                  * optimizes for the case when the gpu will dirty the data
545                  * anyway again before the next pread happens. */
546                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
547                                                         obj->cache_level);
548                 ret = i915_gem_object_wait_rendering(obj, true);
549                 if (ret)
550                         return ret;
551
552                 i915_gem_object_retire(obj);
553         }
554
555         ret = i915_gem_object_get_pages(obj);
556         if (ret)
557                 return ret;
558
559         i915_gem_object_pin_pages(obj);
560
561         return ret;
562 }
563
564 /* Per-page copy function for the shmem pread fastpath.
565  * Flushes invalid cachelines before reading the target if
566  * needs_clflush is set. */
567 static int
568 shmem_pread_fast(struct vm_page *page, int shmem_page_offset, int page_length,
569                  char __user *user_data,
570                  bool page_do_bit17_swizzling, bool needs_clflush)
571 {
572         char *vaddr;
573         int ret;
574
575         if (unlikely(page_do_bit17_swizzling))
576                 return -EINVAL;
577
578         vaddr = kmap_atomic(page);
579         if (needs_clflush)
580                 drm_clflush_virt_range(vaddr + shmem_page_offset,
581                                        page_length);
582         ret = __copy_to_user_inatomic(user_data,
583                                       vaddr + shmem_page_offset,
584                                       page_length);
585         kunmap_atomic(vaddr);
586
587         return ret ? -EFAULT : 0;
588 }
589
590 static void
591 shmem_clflush_swizzled_range(char *addr, unsigned long length,
592                              bool swizzled)
593 {
594         if (unlikely(swizzled)) {
595                 unsigned long start = (unsigned long) addr;
596                 unsigned long end = (unsigned long) addr + length;
597
598                 /* For swizzling simply ensure that we always flush both
599                  * channels. Lame, but simple and it works. Swizzled
600                  * pwrite/pread is far from a hotpath - current userspace
601                  * doesn't use it at all. */
602                 start = round_down(start, 128);
603                 end = round_up(end, 128);
604
605                 drm_clflush_virt_range((void *)start, end - start);
606         } else {
607                 drm_clflush_virt_range(addr, length);
608         }
609
610 }
611
612 /* Only difference to the fast-path function is that this can handle bit17
613  * and uses non-atomic copy and kmap functions. */
614 static int
615 shmem_pread_slow(struct vm_page *page, int shmem_page_offset, int page_length,
616                  char __user *user_data,
617                  bool page_do_bit17_swizzling, bool needs_clflush)
618 {
619         char *vaddr;
620         int ret;
621
622         vaddr = kmap(page);
623         if (needs_clflush)
624                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
625                                              page_length,
626                                              page_do_bit17_swizzling);
627
628         if (page_do_bit17_swizzling)
629                 ret = __copy_to_user_swizzled(user_data,
630                                               vaddr, shmem_page_offset,
631                                               page_length);
632         else
633                 ret = __copy_to_user(user_data,
634                                      vaddr + shmem_page_offset,
635                                      page_length);
636         kunmap(page);
637
638         return ret ? - EFAULT : 0;
639 }
640
641 static int
642 i915_gem_shmem_pread(struct drm_device *dev,
643                      struct drm_i915_gem_object *obj,
644                      struct drm_i915_gem_pread *args,
645                      struct drm_file *file)
646 {
647         char __user *user_data;
648         ssize_t remain;
649         loff_t offset;
650         int shmem_page_offset, page_length, ret = 0;
651         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
652         int prefaulted = 0;
653         int needs_clflush = 0;
654         int i;
655
656         user_data = to_user_ptr(args->data_ptr);
657         remain = args->size;
658
659         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
660
661         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
662         if (ret)
663                 return ret;
664
665         offset = args->offset;
666
667         for (i = 0; i < (obj->base.size >> PAGE_SHIFT); i++) {
668                 struct vm_page *page = obj->pages[i];
669
670                 if (remain <= 0)
671                         break;
672
673                 /* Operation in this page
674                  *
675                  * shmem_page_offset = offset within page in shmem file
676                  * page_length = bytes to copy for this page
677                  */
678                 shmem_page_offset = offset_in_page(offset);
679                 page_length = remain;
680                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
681                         page_length = PAGE_SIZE - shmem_page_offset;
682
683                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
684                         (page_to_phys(page) & (1 << 17)) != 0;
685
686                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
687                                        user_data, page_do_bit17_swizzling,
688                                        needs_clflush);
689                 if (ret == 0)
690                         goto next_page;
691
692                 mutex_unlock(&dev->struct_mutex);
693
694                 if (likely(!i915.prefault_disable) && !prefaulted) {
695                         ret = fault_in_multipages_writeable(user_data, remain);
696                         /* Userspace is tricking us, but we've already clobbered
697                          * its pages with the prefault and promised to write the
698                          * data up to the first fault. Hence ignore any errors
699                          * and just continue. */
700                         (void)ret;
701                         prefaulted = 1;
702                 }
703
704                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
705                                        user_data, page_do_bit17_swizzling,
706                                        needs_clflush);
707
708                 mutex_lock(&dev->struct_mutex);
709
710                 if (ret)
711                         goto out;
712
713 next_page:
714                 remain -= page_length;
715                 user_data += page_length;
716                 offset += page_length;
717         }
718
719 out:
720         i915_gem_object_unpin_pages(obj);
721
722         return ret;
723 }
724
725 /**
726  * Reads data from the object referenced by handle.
727  *
728  * On error, the contents of *data are undefined.
729  */
730 int
731 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
732                      struct drm_file *file)
733 {
734         struct drm_i915_gem_pread *args = data;
735         struct drm_i915_gem_object *obj;
736         int ret = 0;
737
738         if (args->size == 0)
739                 return 0;
740
741         ret = i915_mutex_lock_interruptible(dev);
742         if (ret)
743                 return ret;
744
745         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
746         if (&obj->base == NULL) {
747                 ret = -ENOENT;
748                 goto unlock;
749         }
750
751         /* Bounds check source.  */
752         if (args->offset > obj->base.size ||
753             args->size > obj->base.size - args->offset) {
754                 ret = -EINVAL;
755                 goto out;
756         }
757
758         trace_i915_gem_object_pread(obj, args->offset, args->size);
759
760         ret = i915_gem_shmem_pread(dev, obj, args, file);
761
762 out:
763         drm_gem_object_unreference(&obj->base);
764 unlock:
765         mutex_unlock(&dev->struct_mutex);
766         return ret;
767 }
768
769 /* This is the fast write path which cannot handle
770  * page faults in the source data
771  */
772
773 static inline int
774 fast_user_write(struct io_mapping *mapping,
775                 loff_t page_base, int page_offset,
776                 char __user *user_data,
777                 int length)
778 {
779         void __iomem *vaddr_atomic;
780         void *vaddr;
781         unsigned long unwritten;
782
783         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
784         /* We can use the cpu mem copy function because this is X86. */
785         vaddr = (char __force*)vaddr_atomic + page_offset;
786         unwritten = __copy_from_user_inatomic_nocache(vaddr,
787                                                       user_data, length);
788         io_mapping_unmap_atomic(vaddr_atomic);
789         return unwritten;
790 }
791
792 /**
793  * This is the fast pwrite path, where we copy the data directly from the
794  * user into the GTT, uncached.
795  */
796 static int
797 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
798                          struct drm_i915_gem_object *obj,
799                          struct drm_i915_gem_pwrite *args,
800                          struct drm_file *file)
801 {
802         struct drm_i915_private *dev_priv = dev->dev_private;
803         ssize_t remain;
804         loff_t offset, page_base;
805         char __user *user_data;
806         int page_offset, page_length, ret;
807
808         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
809         if (ret)
810                 goto out;
811
812         ret = i915_gem_object_set_to_gtt_domain(obj, true);
813         if (ret)
814                 goto out_unpin;
815
816         ret = i915_gem_object_put_fence(obj);
817         if (ret)
818                 goto out_unpin;
819
820         user_data = to_user_ptr(args->data_ptr);
821         remain = args->size;
822
823         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
824
825         while (remain > 0) {
826                 /* Operation in this page
827                  *
828                  * page_base = page offset within aperture
829                  * page_offset = offset within page
830                  * page_length = bytes to copy for this page
831                  */
832                 page_base = offset & ~PAGE_MASK;
833                 page_offset = offset_in_page(offset);
834                 page_length = remain;
835                 if ((page_offset + remain) > PAGE_SIZE)
836                         page_length = PAGE_SIZE - page_offset;
837
838                 /* If we get a fault while copying data, then (presumably) our
839                  * source page isn't available.  Return the error and we'll
840                  * retry in the slow path.
841                  */
842                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
843                                     page_offset, user_data, page_length)) {
844                         ret = -EFAULT;
845                         goto out_unpin;
846                 }
847
848                 remain -= page_length;
849                 user_data += page_length;
850                 offset += page_length;
851         }
852
853 out_unpin:
854         i915_gem_object_ggtt_unpin(obj);
855 out:
856         return ret;
857 }
858
859 /* Per-page copy function for the shmem pwrite fastpath.
860  * Flushes invalid cachelines before writing to the target if
861  * needs_clflush_before is set and flushes out any written cachelines after
862  * writing if needs_clflush is set. */
863 static int
864 shmem_pwrite_fast(struct vm_page *page, int shmem_page_offset, int page_length,
865                   char __user *user_data,
866                   bool page_do_bit17_swizzling,
867                   bool needs_clflush_before,
868                   bool needs_clflush_after)
869 {
870         char *vaddr;
871         int ret;
872
873         if (unlikely(page_do_bit17_swizzling))
874                 return -EINVAL;
875
876         vaddr = kmap_atomic(page);
877         if (needs_clflush_before)
878                 drm_clflush_virt_range(vaddr + shmem_page_offset,
879                                        page_length);
880         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
881                                         user_data, page_length);
882         if (needs_clflush_after)
883                 drm_clflush_virt_range(vaddr + shmem_page_offset,
884                                        page_length);
885         kunmap_atomic(vaddr);
886
887         return ret ? -EFAULT : 0;
888 }
889
890 /* Only difference to the fast-path function is that this can handle bit17
891  * and uses non-atomic copy and kmap functions. */
892 static int
893 shmem_pwrite_slow(struct vm_page *page, int shmem_page_offset, int page_length,
894                   char __user *user_data,
895                   bool page_do_bit17_swizzling,
896                   bool needs_clflush_before,
897                   bool needs_clflush_after)
898 {
899         char *vaddr;
900         int ret;
901
902         vaddr = kmap(page);
903         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
904                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
905                                              page_length,
906                                              page_do_bit17_swizzling);
907         if (page_do_bit17_swizzling)
908                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
909                                                 user_data,
910                                                 page_length);
911         else
912                 ret = __copy_from_user(vaddr + shmem_page_offset,
913                                        user_data,
914                                        page_length);
915         if (needs_clflush_after)
916                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
917                                              page_length,
918                                              page_do_bit17_swizzling);
919         kunmap(page);
920
921         return ret ? -EFAULT : 0;
922 }
923
924 static int
925 i915_gem_shmem_pwrite(struct drm_device *dev,
926                       struct drm_i915_gem_object *obj,
927                       struct drm_i915_gem_pwrite *args,
928                       struct drm_file *file)
929 {
930         ssize_t remain;
931         loff_t offset;
932         char __user *user_data;
933         int shmem_page_offset, page_length, ret = 0;
934         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
935         int hit_slowpath = 0;
936         int needs_clflush_after = 0;
937         int needs_clflush_before = 0;
938         int i;
939
940         user_data = to_user_ptr(args->data_ptr);
941         remain = args->size;
942
943         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
944
945         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
946                 /* If we're not in the cpu write domain, set ourself into the gtt
947                  * write domain and manually flush cachelines (if required). This
948                  * optimizes for the case when the gpu will use the data
949                  * right away and we therefore have to clflush anyway. */
950                 needs_clflush_after = cpu_write_needs_clflush(obj);
951                 ret = i915_gem_object_wait_rendering(obj, false);
952                 if (ret)
953                         return ret;
954
955                 i915_gem_object_retire(obj);
956         }
957         /* Same trick applies to invalidate partially written cachelines read
958          * before writing. */
959         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
960                 needs_clflush_before =
961                         !cpu_cache_is_coherent(dev, obj->cache_level);
962
963         ret = i915_gem_object_get_pages(obj);
964         if (ret)
965                 return ret;
966
967         i915_gem_object_pin_pages(obj);
968
969         offset = args->offset;
970         obj->dirty = 1;
971
972         VM_OBJECT_LOCK(obj->base.vm_obj);
973         vm_object_pip_add(obj->base.vm_obj, 1);
974         for (i = 0; i < (obj->base.size >> PAGE_SHIFT); i++) {
975                 struct vm_page *page = obj->pages[i];
976                 int partial_cacheline_write;
977
978                 if (i < offset >> PAGE_SHIFT)
979                         continue;
980
981                 if (remain <= 0)
982                         break;
983
984                 /* Operation in this page
985                  *
986                  * shmem_page_offset = offset within page in shmem file
987                  * page_length = bytes to copy for this page
988                  */
989                 shmem_page_offset = offset_in_page(offset);
990
991                 page_length = remain;
992                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
993                         page_length = PAGE_SIZE - shmem_page_offset;
994
995                 /* If we don't overwrite a cacheline completely we need to be
996                  * careful to have up-to-date data by first clflushing. Don't
997                  * overcomplicate things and flush the entire patch. */
998                 partial_cacheline_write = needs_clflush_before &&
999                         ((shmem_page_offset | page_length)
1000                                 & (cpu_clflush_line_size - 1));
1001
1002                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1003                         (page_to_phys(page) & (1 << 17)) != 0;
1004
1005                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1006                                         user_data, page_do_bit17_swizzling,
1007                                         partial_cacheline_write,
1008                                         needs_clflush_after);
1009                 if (ret == 0)
1010                         goto next_page;
1011
1012                 hit_slowpath = 1;
1013                 mutex_unlock(&dev->struct_mutex);
1014                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1015                                         user_data, page_do_bit17_swizzling,
1016                                         partial_cacheline_write,
1017                                         needs_clflush_after);
1018
1019                 mutex_lock(&dev->struct_mutex);
1020  
1021                 if (ret)
1022                         goto out;
1023
1024 next_page:
1025                 remain -= page_length;
1026                 user_data += page_length;
1027                 offset += page_length;
1028         }
1029         vm_object_pip_wakeup(obj->base.vm_obj);
1030         VM_OBJECT_UNLOCK(obj->base.vm_obj);
1031
1032 out:
1033         i915_gem_object_unpin_pages(obj);
1034
1035         if (hit_slowpath) {
1036                 /*
1037                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1038                  * cachelines in-line while writing and the object moved
1039                  * out of the cpu write domain while we've dropped the lock.
1040                  */
1041                 if (!needs_clflush_after &&
1042                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1043                         if (i915_gem_clflush_object(obj, obj->pin_display))
1044                                 i915_gem_chipset_flush(dev);
1045                 }
1046         }
1047
1048         if (needs_clflush_after)
1049                 i915_gem_chipset_flush(dev);
1050
1051         return ret;
1052 }
1053
1054 /**
1055  * Writes data to the object referenced by handle.
1056  *
1057  * On error, the contents of the buffer that were to be modified are undefined.
1058  */
1059 int
1060 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1061                       struct drm_file *file)
1062 {
1063         struct drm_i915_private *dev_priv = dev->dev_private;
1064         struct drm_i915_gem_pwrite *args = data;
1065         struct drm_i915_gem_object *obj;
1066         int ret;
1067
1068         if (args->size == 0)
1069                 return 0;
1070
1071         if (likely(!i915.prefault_disable)) {
1072                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1073                                                    args->size);
1074                 if (ret)
1075                         return -EFAULT;
1076         }
1077
1078         intel_runtime_pm_get(dev_priv);
1079
1080         ret = i915_mutex_lock_interruptible(dev);
1081         if (ret)
1082                 goto put_rpm;
1083
1084         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1085         if (&obj->base == NULL) {
1086                 ret = -ENOENT;
1087                 goto unlock;
1088         }
1089
1090         /* Bounds check destination. */
1091         if (args->offset > obj->base.size ||
1092             args->size > obj->base.size - args->offset) {
1093                 ret = -EINVAL;
1094                 goto out;
1095         }
1096
1097         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1098
1099         ret = -EFAULT;
1100         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1101          * it would end up going through the fenced access, and we'll get
1102          * different detiling behavior between reading and writing.
1103          * pread/pwrite currently are reading and writing from the CPU
1104          * perspective, requiring manual detiling by the client.
1105          */
1106
1107         if (obj->tiling_mode == I915_TILING_NONE &&
1108             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1109             cpu_write_needs_clflush(obj)) {
1110                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1111                 /* Note that the gtt paths might fail with non-page-backed user
1112                  * pointers (e.g. gtt mappings when moving data between
1113                  * textures). Fallback to the shmem path in that case. */
1114         }
1115
1116         if (ret == -EFAULT || ret == -ENOSPC) {
1117                 if (obj->phys_handle)
1118                         ret = i915_gem_phys_pwrite(obj, args, file);
1119                 else
1120                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1121         }
1122
1123 out:
1124         drm_gem_object_unreference(&obj->base);
1125 unlock:
1126         mutex_unlock(&dev->struct_mutex);
1127 put_rpm:
1128         intel_runtime_pm_put(dev_priv);
1129
1130         return ret;
1131 }
1132
1133 int
1134 i915_gem_check_wedge(struct i915_gpu_error *error,
1135                      bool interruptible)
1136 {
1137         if (i915_reset_in_progress(error)) {
1138                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1139                  * -EIO unconditionally for these. */
1140                 if (!interruptible)
1141                         return -EIO;
1142
1143                 /* Recovery complete, but the reset failed ... */
1144                 if (i915_terminally_wedged(error))
1145                         return -EIO;
1146
1147                 /*
1148                  * Check if GPU Reset is in progress - we need intel_ring_begin
1149                  * to work properly to reinit the hw state while the gpu is
1150                  * still marked as reset-in-progress. Handle this with a flag.
1151                  */
1152                 if (!error->reload_in_reset)
1153                         return -EAGAIN;
1154         }
1155
1156         return 0;
1157 }
1158
1159 /*
1160  * Compare arbitrary request against outstanding lazy request. Emit on match.
1161  */
1162 int
1163 i915_gem_check_olr(struct drm_i915_gem_request *req)
1164 {
1165         int ret;
1166
1167         WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1168
1169         ret = 0;
1170         if (req == req->ring->outstanding_lazy_request)
1171                 ret = i915_add_request(req->ring);
1172
1173         return ret;
1174 }
1175
1176 #if 0
1177 static void fake_irq(unsigned long data)
1178 {
1179         wake_up_process((struct task_struct *)data);
1180 }
1181
1182 static bool missed_irq(struct drm_i915_private *dev_priv,
1183                        struct intel_engine_cs *ring)
1184 {
1185         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1186 }
1187 #endif
1188
1189 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1190 {
1191         if (file_priv == NULL)
1192                 return true;
1193
1194         return !atomic_xchg(&file_priv->rps_wait_boost, true);
1195 }
1196
1197 /**
1198  * __i915_wait_request - wait until execution of request has finished
1199  * @req: duh!
1200  * @reset_counter: reset sequence associated with the given request
1201  * @interruptible: do an interruptible wait (normally yes)
1202  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1203  *
1204  * Note: It is of utmost importance that the passed in seqno and reset_counter
1205  * values have been read by the caller in an smp safe manner. Where read-side
1206  * locks are involved, it is sufficient to read the reset_counter before
1207  * unlocking the lock that protects the seqno. For lockless tricks, the
1208  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1209  * inserted.
1210  *
1211  * Returns 0 if the request was found within the alloted time. Else returns the
1212  * errno with remaining time filled in timeout argument.
1213  */
1214 int __i915_wait_request(struct drm_i915_gem_request *req,
1215                         unsigned reset_counter,
1216                         bool interruptible,
1217                         s64 *timeout,
1218                         struct drm_i915_file_private *file_priv)
1219 {
1220         struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1221         struct drm_device *dev = ring->dev;
1222         struct drm_i915_private *dev_priv = dev->dev_private;
1223         const bool irq_test_in_progress =
1224                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1225         unsigned long timeout_expire;
1226         long end;
1227         bool wait_forever = true;
1228         s64 before, now;
1229         int ret;
1230
1231         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1232
1233         if (i915_gem_request_completed(req, true))
1234                 return 0;
1235
1236         if (timeout != NULL)
1237                 wait_forever = false;
1238
1239         timeout_expire = timeout ?
1240                 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1241
1242         if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1243                 gen6_rps_boost(dev_priv);
1244                 if (file_priv)
1245                         mod_delayed_work(dev_priv->wq,
1246                                          &file_priv->mm.idle_work,
1247                                          msecs_to_jiffies(100));
1248         }
1249
1250         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1251                 return -ENODEV;
1252
1253         /* Record current time in case interrupted by signal, or wedged */
1254         trace_i915_gem_request_wait_begin(req);
1255         before = ktime_get_raw_ns();
1256
1257 #define EXIT_COND \
1258         (i915_seqno_passed(ring->get_seqno(ring, false), i915_gem_request_get_seqno(req)) || \
1259          i915_reset_in_progress(&dev_priv->gpu_error) || \
1260          reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1261         do {
1262                 if (interruptible)
1263                         end = wait_event_interruptible_timeout(ring->irq_queue,
1264                                                                EXIT_COND,
1265                                                                timeout_expire);
1266                 else
1267                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1268                                                  timeout_expire);
1269
1270                 /* We need to check whether any gpu reset happened in between
1271                  * the caller grabbing the seqno and now ... */
1272                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1273                         end = -EAGAIN;
1274
1275                 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1276                  * gone. */
1277                 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1278                 if (ret)
1279                         end = ret;
1280         } while (end == 0 && wait_forever);
1281
1282         now = ktime_get_raw_ns();
1283         trace_i915_gem_request_wait_end(req);
1284
1285         ring->irq_put(ring);
1286 #undef EXIT_COND
1287
1288         if (timeout) {
1289                 s64 tres = *timeout - (now - before);
1290
1291                 *timeout = tres < 0 ? 0 : tres;
1292         }
1293
1294         switch (end) {
1295         case -EIO:
1296         case -EAGAIN: /* Wedged */
1297         case -ERESTARTSYS: /* Signal */
1298                 return (int)end;
1299         case 0: /* Timeout */
1300                 return -ETIMEDOUT;      /* -ETIME on Linux */
1301         default: /* Completed */
1302                 WARN_ON(end < 0); /* We're not aware of other errors */
1303                 return 0;
1304         }
1305 }
1306
1307 /**
1308  * Waits for a request to be signaled, and cleans up the
1309  * request and object lists appropriately for that event.
1310  */
1311 int
1312 i915_wait_request(struct drm_i915_gem_request *req)
1313 {
1314         struct drm_device *dev;
1315         struct drm_i915_private *dev_priv;
1316         bool interruptible;
1317         unsigned reset_counter;
1318         int ret;
1319
1320         BUG_ON(req == NULL);
1321
1322         dev = req->ring->dev;
1323         dev_priv = dev->dev_private;
1324         interruptible = dev_priv->mm.interruptible;
1325
1326         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1327
1328         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1329         if (ret)
1330                 return ret;
1331
1332         ret = i915_gem_check_olr(req);
1333         if (ret)
1334                 return ret;
1335
1336         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1337         i915_gem_request_reference(req);
1338         ret = __i915_wait_request(req, reset_counter,
1339                                   interruptible, NULL, NULL);
1340         i915_gem_request_unreference(req);
1341         return ret;
1342 }
1343
1344 static int
1345 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1346 {
1347         if (!obj->active)
1348                 return 0;
1349
1350         /* Manually manage the write flush as we may have not yet
1351          * retired the buffer.
1352          *
1353          * Note that the last_write_req is always the earlier of
1354          * the two (read/write) requests, so if we haved successfully waited,
1355          * we know we have passed the last write.
1356          */
1357         i915_gem_request_assign(&obj->last_write_req, NULL);
1358
1359         return 0;
1360 }
1361
1362 /**
1363  * Ensures that all rendering to the object has completed and the object is
1364  * safe to unbind from the GTT or access from the CPU.
1365  */
1366 static __must_check int
1367 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1368                                bool readonly)
1369 {
1370         struct drm_i915_gem_request *req;
1371         int ret;
1372
1373         req = readonly ? obj->last_write_req : obj->last_read_req;
1374         if (!req)
1375                 return 0;
1376
1377         ret = i915_wait_request(req);
1378         if (ret)
1379                 return ret;
1380
1381         return i915_gem_object_wait_rendering__tail(obj);
1382 }
1383
1384 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1385  * as the object state may change during this call.
1386  */
1387 static __must_check int
1388 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1389                                             struct drm_i915_file_private *file_priv,
1390                                             bool readonly)
1391 {
1392         struct drm_i915_gem_request *req;
1393         struct drm_device *dev = obj->base.dev;
1394         struct drm_i915_private *dev_priv = dev->dev_private;
1395         unsigned reset_counter;
1396         int ret;
1397
1398         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1399         BUG_ON(!dev_priv->mm.interruptible);
1400
1401         req = readonly ? obj->last_write_req : obj->last_read_req;
1402         if (!req)
1403                 return 0;
1404
1405         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1406         if (ret)
1407                 return ret;
1408
1409         ret = i915_gem_check_olr(req);
1410         if (ret)
1411                 return ret;
1412
1413         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1414         i915_gem_request_reference(req);
1415         mutex_unlock(&dev->struct_mutex);
1416         ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1417         mutex_lock(&dev->struct_mutex);
1418         i915_gem_request_unreference(req);
1419         if (ret)
1420                 return ret;
1421
1422         return i915_gem_object_wait_rendering__tail(obj);
1423 }
1424
1425 /**
1426  * Called when user space prepares to use an object with the CPU, either
1427  * through the mmap ioctl's mapping or a GTT mapping.
1428  */
1429 int
1430 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1431                           struct drm_file *file)
1432 {
1433         struct drm_i915_gem_set_domain *args = data;
1434         struct drm_i915_gem_object *obj;
1435         uint32_t read_domains = args->read_domains;
1436         uint32_t write_domain = args->write_domain;
1437         int ret;
1438
1439         /* Only handle setting domains to types used by the CPU. */
1440         if (write_domain & I915_GEM_GPU_DOMAINS)
1441                 return -EINVAL;
1442
1443         if (read_domains & I915_GEM_GPU_DOMAINS)
1444                 return -EINVAL;
1445
1446         /* Having something in the write domain implies it's in the read
1447          * domain, and only that read domain.  Enforce that in the request.
1448          */
1449         if (write_domain != 0 && read_domains != write_domain)
1450                 return -EINVAL;
1451
1452         ret = i915_mutex_lock_interruptible(dev);
1453         if (ret)
1454                 return ret;
1455
1456         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1457         if (&obj->base == NULL) {
1458                 ret = -ENOENT;
1459                 goto unlock;
1460         }
1461
1462         /* Try to flush the object off the GPU without holding the lock.
1463          * We will repeat the flush holding the lock in the normal manner
1464          * to catch cases where we are gazumped.
1465          */
1466         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1467                                                           file->driver_priv,
1468                                                           !write_domain);
1469         if (ret)
1470                 goto unref;
1471
1472         if (read_domains & I915_GEM_DOMAIN_GTT)
1473                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1474         else
1475                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1476
1477 unref:
1478         drm_gem_object_unreference(&obj->base);
1479 unlock:
1480         mutex_unlock(&dev->struct_mutex);
1481         return ret;
1482 }
1483
1484 /**
1485  * Called when user space has done writes to this buffer
1486  */
1487 int
1488 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1489                          struct drm_file *file)
1490 {
1491         struct drm_i915_gem_sw_finish *args = data;
1492         struct drm_i915_gem_object *obj;
1493         int ret = 0;
1494
1495         ret = i915_mutex_lock_interruptible(dev);
1496         if (ret)
1497                 return ret;
1498
1499         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1500         if (&obj->base == NULL) {
1501                 ret = -ENOENT;
1502                 goto unlock;
1503         }
1504
1505         /* Pinned buffers may be scanout, so flush the cache */
1506         if (obj->pin_display)
1507                 i915_gem_object_flush_cpu_write_domain(obj);
1508
1509         drm_gem_object_unreference(&obj->base);
1510 unlock:
1511         mutex_unlock(&dev->struct_mutex);
1512         return ret;
1513 }
1514
1515 /**
1516  * Maps the contents of an object, returning the address it is mapped
1517  * into.
1518  *
1519  * While the mapping holds a reference on the contents of the object, it doesn't
1520  * imply a ref on the object itself.
1521  *
1522  * IMPORTANT:
1523  *
1524  * DRM driver writers who look a this function as an example for how to do GEM
1525  * mmap support, please don't implement mmap support like here. The modern way
1526  * to implement DRM mmap support is with an mmap offset ioctl (like
1527  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1528  * That way debug tooling like valgrind will understand what's going on, hiding
1529  * the mmap call in a driver private ioctl will break that. The i915 driver only
1530  * does cpu mmaps this way because we didn't know better.
1531  */
1532 int
1533 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1534                     struct drm_file *file)
1535 {
1536         struct drm_i915_gem_mmap *args = data;
1537         struct drm_gem_object *obj;
1538         unsigned long addr;
1539         struct proc *p = curproc;
1540         vm_map_t map = &p->p_vmspace->vm_map;
1541         vm_size_t size;
1542         int error = 0, rv;
1543
1544         obj = drm_gem_object_lookup(dev, file, args->handle);
1545         if (obj == NULL)
1546                 return -ENOENT;
1547
1548         if (args->size == 0)
1549                 goto out;
1550
1551         size = round_page(args->size);
1552         if (map->size + size > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
1553                 error = -ENOMEM;
1554                 goto out;
1555         }
1556
1557         /*
1558          * Call hint to ensure that NULL is not returned as a valid address
1559          * and to reduce vm_map traversals. XXX causes instability, use a
1560          * fixed low address as the start point instead to avoid the NULL
1561          * return issue.
1562          */
1563         addr = PAGE_SIZE;
1564
1565         /*
1566          * Use 256KB alignment.  It is unclear why this matters for a
1567          * virtual address but it appears to fix a number of application/X
1568          * crashes and kms console switching is much faster.
1569          */
1570         vm_object_hold(obj->vm_obj);
1571         vm_object_reference_locked(obj->vm_obj);
1572         vm_object_drop(obj->vm_obj);
1573
1574         rv = vm_map_find(map, obj->vm_obj, NULL,
1575                          args->offset, &addr, args->size,
1576                          256 * 1024, /* align */
1577                          TRUE, /* fitit */
1578                          VM_MAPTYPE_NORMAL, /* maptype */
1579                          VM_PROT_READ | VM_PROT_WRITE, /* prot */
1580                          VM_PROT_READ | VM_PROT_WRITE, /* max */
1581                          MAP_SHARED /* cow */);
1582         if (rv != KERN_SUCCESS) {
1583                 vm_object_deallocate(obj->vm_obj);
1584                 error = -vm_mmap_to_errno(rv);
1585         } else {
1586                 args->addr_ptr = (uint64_t)addr;
1587         }
1588 out:
1589         drm_gem_object_unreference(obj);
1590         return (error);
1591 }
1592
1593 /**
1594  * i915_gem_fault - fault a page into the GTT
1595  *
1596  * vm_obj is locked on entry and expected to be locked on return.
1597  *
1598  * The vm_pager has placemarked the object with an anonymous memory page
1599  * which we must replace atomically to avoid races against concurrent faults
1600  * on the same page.  XXX we currently are unable to do this atomically.
1601  *
1602  * If we are to return an error we should not touch the anonymous page,
1603  * the caller will deallocate it.
1604  *
1605  * XXX Most GEM calls appear to be interruptable, but we can't hard loop
1606  * in that case.  Release all resources and wait 1 tick before retrying.
1607  * This is a huge problem which needs to be fixed by getting rid of most
1608  * of the interruptability.  The linux code does not retry but does appear
1609  * to have some sort of mechanism (VM_FAULT_NOPAGE ?) for the higher level
1610  * to be able to retry.
1611  *
1612  * --
1613  *
1614  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1615  * from userspace.  The fault handler takes care of binding the object to
1616  * the GTT (if needed), allocating and programming a fence register (again,
1617  * only if needed based on whether the old reg is still valid or the object
1618  * is tiled) and inserting a new PTE into the faulting process.
1619  *
1620  * Note that the faulting process may involve evicting existing objects
1621  * from the GTT and/or fence registers to make room.  So performance may
1622  * suffer if the GTT working set is large or there are few fence registers
1623  * left.
1624  *
1625  * vm_obj is locked on entry and expected to be locked on return.  The VM
1626  * pager has placed an anonymous memory page at (obj,offset) which we have
1627  * to replace.
1628  */
1629 int i915_gem_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot, vm_page_t *mres)
1630 {
1631         struct drm_i915_gem_object *obj = to_intel_bo(vm_obj->handle);
1632         struct drm_device *dev = obj->base.dev;
1633         struct drm_i915_private *dev_priv = dev->dev_private;
1634         unsigned long page_offset;
1635         vm_page_t m, oldm = NULL;
1636         int ret = 0;
1637         int didpip = 0;
1638         bool write = !!(prot & VM_PROT_WRITE);
1639
1640         intel_runtime_pm_get(dev_priv);
1641
1642         /* We don't use vmf->pgoff since that has the fake offset */
1643         page_offset = (unsigned long)offset;
1644
1645 retry:
1646         ret = i915_mutex_lock_interruptible(dev);
1647         if (ret)
1648                 goto out;
1649
1650         trace_i915_gem_object_fault(obj, page_offset, true, write);
1651
1652         /* Try to flush the object off the GPU first without holding the lock.
1653          * Upon reacquiring the lock, we will perform our sanity checks and then
1654          * repeat the flush holding the lock in the normal manner to catch cases
1655          * where we are gazumped.
1656          */
1657         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1658         if (ret)
1659                 goto unlock;
1660
1661         /* Access to snoopable pages through the GTT is incoherent. */
1662         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1663                 ret = -EFAULT;
1664                 goto unlock;
1665         }
1666
1667         /* Now bind it into the GTT if needed */
1668         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1669         if (ret)
1670                 goto unlock;
1671
1672         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1673         if (ret)
1674                 goto unpin;
1675
1676         ret = i915_gem_object_get_fence(obj);
1677         if (ret)
1678                 goto unpin;
1679
1680         /*
1681          * START FREEBSD MAGIC
1682          *
1683          * Add a pip count to avoid destruction and certain other
1684          * complex operations (such as collapses?) while unlocked.
1685          */
1686         if (didpip == 0) {
1687                 vm_object_pip_add(vm_obj, 1);
1688                 didpip = 1;
1689         }
1690
1691         /*
1692          * XXX We must currently remove the placeholder page now to avoid
1693          * a deadlock against a concurrent i915_gem_release_mmap().
1694          * Otherwise concurrent operation will block on the busy page
1695          * while holding locks which we need to obtain.
1696          */
1697         if (*mres != NULL) {
1698                 oldm = *mres;
1699                 if ((oldm->flags & PG_BUSY) == 0)
1700                         kprintf("i915_gem_fault: Page was not busy\n");
1701                 else
1702                         vm_page_remove(oldm);
1703                 *mres = NULL;
1704         } else {
1705                 oldm = NULL;
1706         }
1707
1708         ret = 0;
1709         m = NULL;
1710
1711         /*
1712          * Since the object lock was dropped, another thread might have
1713          * faulted on the same GTT address and instantiated the mapping.
1714          * Recheck.
1715          */
1716         m = vm_page_lookup(vm_obj, OFF_TO_IDX(offset));
1717         if (m != NULL) {
1718                 /*
1719                  * Try to busy the page, retry on failure (non-zero ret).
1720                  */
1721                 if (vm_page_busy_try(m, false)) {
1722                         kprintf("i915_gem_fault: PG_BUSY\n");
1723                         ret = -EINTR;
1724                         goto unlock;
1725                 }
1726                 goto have_page;
1727         }
1728         /*
1729          * END FREEBSD MAGIC
1730          */
1731
1732         obj->fault_mappable = true;
1733
1734         m = vm_phys_fictitious_to_vm_page(dev_priv->gtt.mappable_base +
1735                                           i915_gem_obj_ggtt_offset(obj) +
1736                                           offset);
1737         if (m == NULL) {
1738                 ret = -EFAULT;
1739                 goto unpin;
1740         }
1741         KASSERT((m->flags & PG_FICTITIOUS) != 0, ("not fictitious %p", m));
1742         KASSERT(m->wire_count == 1, ("wire_count not 1 %p", m));
1743
1744         /*
1745          * Try to busy the page.  Fails on non-zero return.
1746          */
1747         if (vm_page_busy_try(m, false)) {
1748                 kprintf("i915_gem_fault: PG_BUSY(2)\n");
1749                 ret = -EINTR;
1750                 goto unpin;
1751         }
1752         m->valid = VM_PAGE_BITS_ALL;
1753
1754         /*
1755          * Finally, remap it using the new GTT offset.
1756          *
1757          * (object expected to be in a locked state)
1758          */
1759         vm_page_insert(m, vm_obj, OFF_TO_IDX(offset));
1760 have_page:
1761         *mres = m;
1762
1763         i915_gem_object_ggtt_unpin(obj);
1764         mutex_unlock(&dev->struct_mutex);
1765         ret = VM_PAGER_OK;
1766         goto done;
1767
1768         /*
1769          * ALTERNATIVE ERROR RETURN.
1770          *
1771          * OBJECT EXPECTED TO BE LOCKED.
1772          */
1773 unpin:
1774         i915_gem_object_ggtt_unpin(obj);
1775 unlock:
1776         mutex_unlock(&dev->struct_mutex);
1777 out:
1778         switch (ret) {
1779         case -EIO:
1780                 /*
1781                  * We eat errors when the gpu is terminally wedged to avoid
1782                  * userspace unduly crashing (gl has no provisions for mmaps to
1783                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1784                  * and so needs to be reported.
1785                  */
1786                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1787 //                      ret = VM_FAULT_SIGBUS;
1788                         break;
1789                 }
1790                 /* fall through */
1791         case -EAGAIN:
1792                 /*
1793                  * EAGAIN means the gpu is hung and we'll wait for the error
1794                  * handler to reset everything when re-faulting in
1795                  * i915_mutex_lock_interruptible.
1796                  */
1797                 /* fall through */
1798         case -ERESTARTSYS:
1799         case -EINTR:
1800                 VM_OBJECT_UNLOCK(vm_obj);
1801                 int dummy;
1802                 tsleep(&dummy, 0, "delay", 1); /* XXX */
1803                 VM_OBJECT_LOCK(vm_obj);
1804                 goto retry;
1805         default:
1806                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1807                 ret = VM_PAGER_ERROR;
1808                 break;
1809         }
1810
1811 done:
1812         if (oldm != NULL)
1813                 vm_page_free(oldm);
1814         if (didpip)
1815                 vm_object_pip_wakeup(vm_obj);
1816
1817         intel_runtime_pm_put(dev_priv);
1818         return ret;
1819 }
1820
1821 /**
1822  * i915_gem_release_mmap - remove physical page mappings
1823  * @obj: obj in question
1824  *
1825  * Preserve the reservation of the mmapping with the DRM core code, but
1826  * relinquish ownership of the pages back to the system.
1827  *
1828  * It is vital that we remove the page mapping if we have mapped a tiled
1829  * object through the GTT and then lose the fence register due to
1830  * resource pressure. Similarly if the object has been moved out of the
1831  * aperture, than pages mapped into userspace must be revoked. Removing the
1832  * mapping will then trigger a page fault on the next user access, allowing
1833  * fixup by i915_gem_fault().
1834  */
1835 void
1836 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1837 {
1838         vm_object_t devobj;
1839         vm_page_t m;
1840         int i, page_count;
1841
1842         if (!obj->fault_mappable)
1843                 return;
1844
1845         devobj = cdev_pager_lookup(obj);
1846         if (devobj != NULL) {
1847                 page_count = OFF_TO_IDX(obj->base.size);
1848
1849                 VM_OBJECT_LOCK(devobj);
1850                 for (i = 0; i < page_count; i++) {
1851                         m = vm_page_lookup_busy_wait(devobj, i, TRUE, "915unm");
1852                         if (m == NULL)
1853                                 continue;
1854                         cdev_pager_free_page(devobj, m);
1855                 }
1856                 VM_OBJECT_UNLOCK(devobj);
1857                 vm_object_deallocate(devobj);
1858         }
1859
1860         obj->fault_mappable = false;
1861 }
1862
1863 void
1864 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1865 {
1866         struct drm_i915_gem_object *obj;
1867
1868         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1869                 i915_gem_release_mmap(obj);
1870 }
1871
1872 uint32_t
1873 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1874 {
1875         uint32_t gtt_size;
1876
1877         if (INTEL_INFO(dev)->gen >= 4 ||
1878             tiling_mode == I915_TILING_NONE)
1879                 return size;
1880
1881         /* Previous chips need a power-of-two fence region when tiling */
1882         if (INTEL_INFO(dev)->gen == 3)
1883                 gtt_size = 1024*1024;
1884         else
1885                 gtt_size = 512*1024;
1886
1887         while (gtt_size < size)
1888                 gtt_size <<= 1;
1889
1890         return gtt_size;
1891 }
1892
1893 /**
1894  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1895  * @obj: object to check
1896  *
1897  * Return the required GTT alignment for an object, taking into account
1898  * potential fence register mapping.
1899  */
1900 uint32_t
1901 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1902                            int tiling_mode, bool fenced)
1903 {
1904         /*
1905          * Minimum alignment is 4k (GTT page size), but might be greater
1906          * if a fence register is needed for the object.
1907          */
1908         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1909             tiling_mode == I915_TILING_NONE)
1910                 return 4096;
1911
1912         /*
1913          * Previous chips need to be aligned to the size of the smallest
1914          * fence register that can contain the object.
1915          */
1916         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1917 }
1918
1919 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1920 {
1921         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1922         int ret;
1923
1924 #if 0
1925         if (drm_vma_node_has_offset(&obj->base.vma_node))
1926                 return 0;
1927 #endif
1928
1929         dev_priv->mm.shrinker_no_lock_stealing = true;
1930
1931         ret = drm_gem_create_mmap_offset(&obj->base);
1932         if (ret != -ENOSPC)
1933                 goto out;
1934
1935         /* Badly fragmented mmap space? The only way we can recover
1936          * space is by destroying unwanted objects. We can't randomly release
1937          * mmap_offsets as userspace expects them to be persistent for the
1938          * lifetime of the objects. The closest we can is to release the
1939          * offsets on purgeable objects by truncating it and marking it purged,
1940          * which prevents userspace from ever using that object again.
1941          */
1942         i915_gem_shrink(dev_priv,
1943                         obj->base.size >> PAGE_SHIFT,
1944                         I915_SHRINK_BOUND |
1945                         I915_SHRINK_UNBOUND |
1946                         I915_SHRINK_PURGEABLE);
1947         ret = drm_gem_create_mmap_offset(&obj->base);
1948         if (ret != -ENOSPC)
1949                 goto out;
1950
1951         i915_gem_shrink_all(dev_priv);
1952         ret = drm_gem_create_mmap_offset(&obj->base);
1953 out:
1954         dev_priv->mm.shrinker_no_lock_stealing = false;
1955
1956         return ret;
1957 }
1958
1959 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1960 {
1961         drm_gem_free_mmap_offset(&obj->base);
1962 }
1963
1964 int
1965 i915_gem_mmap_gtt(struct drm_file *file,
1966                   struct drm_device *dev,
1967                   uint32_t handle,
1968                   uint64_t *offset)
1969 {
1970         struct drm_i915_private *dev_priv = dev->dev_private;
1971         struct drm_i915_gem_object *obj;
1972         int ret;
1973
1974         ret = i915_mutex_lock_interruptible(dev);
1975         if (ret)
1976                 return ret;
1977
1978         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1979         if (&obj->base == NULL) {
1980                 ret = -ENOENT;
1981                 goto unlock;
1982         }
1983
1984         if (obj->base.size > dev_priv->gtt.mappable_end) {
1985                 ret = -E2BIG;
1986                 goto out;
1987         }
1988
1989         if (obj->madv != I915_MADV_WILLNEED) {
1990                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1991                 ret = -EFAULT;
1992                 goto out;
1993         }
1994
1995         ret = i915_gem_object_create_mmap_offset(obj);
1996         if (ret)
1997                 goto out;
1998
1999         *offset = DRM_GEM_MAPPING_OFF(obj->base.map_list.key) |
2000             DRM_GEM_MAPPING_KEY;
2001
2002 out:
2003         drm_gem_object_unreference(&obj->base);
2004 unlock:
2005         mutex_unlock(&dev->struct_mutex);
2006         return ret;
2007 }
2008
2009 /**
2010  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2011  * @dev: DRM device
2012  * @data: GTT mapping ioctl data
2013  * @file: GEM object info
2014  *
2015  * Simply returns the fake offset to userspace so it can mmap it.
2016  * The mmap call will end up in drm_gem_mmap(), which will set things
2017  * up so we can get faults in the handler above.
2018  *
2019  * The fault handler will take care of binding the object into the GTT
2020  * (since it may have been evicted to make room for something), allocating
2021  * a fence register, and mapping the appropriate aperture address into
2022  * userspace.
2023  */
2024 int
2025 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2026                         struct drm_file *file)
2027 {
2028         struct drm_i915_gem_mmap_gtt *args = data;
2029
2030         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2031 }
2032
2033 static inline int
2034 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
2035 {
2036         return obj->madv == I915_MADV_DONTNEED;
2037 }
2038
2039 /* Immediately discard the backing storage */
2040 static void
2041 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2042 {
2043         vm_object_t vm_obj;
2044
2045         vm_obj = obj->base.vm_obj;
2046         VM_OBJECT_LOCK(vm_obj);
2047         vm_object_page_remove(vm_obj, 0, 0, false);
2048         VM_OBJECT_UNLOCK(vm_obj);
2049
2050         obj->madv = __I915_MADV_PURGED;
2051 }
2052
2053 /* Try to discard unwanted pages */
2054 static void
2055 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2056 {
2057 #if 0
2058         struct address_space *mapping;
2059 #endif
2060
2061         switch (obj->madv) {
2062         case I915_MADV_DONTNEED:
2063                 i915_gem_object_truncate(obj);
2064         case __I915_MADV_PURGED:
2065                 return;
2066         }
2067
2068 #if 0
2069         if (obj->base.filp == NULL)
2070                 return;
2071
2072         mapping = file_inode(obj->base.filp)->i_mapping,
2073         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2074 #endif
2075 }
2076
2077 static void
2078 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2079 {
2080         int page_count = obj->base.size / PAGE_SIZE;
2081         int i, ret;
2082
2083         if (!obj->pages)
2084                 return;
2085
2086         BUG_ON(obj->madv == __I915_MADV_PURGED);
2087
2088         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2089         if (ret) {
2090                 /* In the event of a disaster, abandon all caches and
2091                  * hope for the best.
2092                  */
2093                 WARN_ON(ret != -EIO);
2094                 i915_gem_clflush_object(obj, true);
2095                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2096         }
2097
2098         if (i915_gem_object_needs_bit17_swizzle(obj))
2099                 i915_gem_object_save_bit_17_swizzle(obj);
2100
2101         if (obj->madv == I915_MADV_DONTNEED)
2102                 obj->dirty = 0;
2103
2104         for (i = 0; i < page_count; i++) {
2105                 struct vm_page *page = obj->pages[i];
2106
2107                 if (obj->dirty)
2108                         set_page_dirty(page);
2109
2110                 if (obj->madv == I915_MADV_WILLNEED)
2111                         mark_page_accessed(page);
2112
2113                 vm_page_busy_wait(obj->pages[i], FALSE, "i915gem");
2114                 vm_page_unwire(obj->pages[i], 1);
2115                 vm_page_wakeup(obj->pages[i]);
2116         }
2117         obj->dirty = 0;
2118
2119         kfree(obj->pages);
2120         obj->pages = NULL;
2121 }
2122
2123 int
2124 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2125 {
2126         const struct drm_i915_gem_object_ops *ops = obj->ops;
2127
2128         if (obj->pages == NULL)
2129                 return 0;
2130
2131         if (obj->pages_pin_count)
2132                 return -EBUSY;
2133
2134         BUG_ON(i915_gem_obj_bound_any(obj));
2135
2136         /* ->put_pages might need to allocate memory for the bit17 swizzle
2137          * array, hence protect them from being reaped by removing them from gtt
2138          * lists early. */
2139         list_del(&obj->global_list);
2140
2141         ops->put_pages(obj);
2142         obj->pages = NULL;
2143
2144         i915_gem_object_invalidate(obj);
2145
2146         return 0;
2147 }
2148
2149 unsigned long
2150 i915_gem_shrink(struct drm_i915_private *dev_priv,
2151                 long target, unsigned flags)
2152 {
2153         const struct {
2154                 struct list_head *list;
2155                 unsigned int bit;
2156         } phases[] = {
2157                 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
2158                 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
2159                 { NULL, 0 },
2160         }, *phase;
2161         unsigned long count = 0;
2162
2163         /*
2164          * As we may completely rewrite the (un)bound list whilst unbinding
2165          * (due to retiring requests) we have to strictly process only
2166          * one element of the list at the time, and recheck the list
2167          * on every iteration.
2168          *
2169          * In particular, we must hold a reference whilst removing the
2170          * object as we may end up waiting for and/or retiring the objects.
2171          * This might release the final reference (held by the active list)
2172          * and result in the object being freed from under us. This is
2173          * similar to the precautions the eviction code must take whilst
2174          * removing objects.
2175          *
2176          * Also note that although these lists do not hold a reference to
2177          * the object we can safely grab one here: The final object
2178          * unreferencing and the bound_list are both protected by the
2179          * dev->struct_mutex and so we won't ever be able to observe an
2180          * object on the bound_list with a reference count equals 0.
2181          */
2182         for (phase = phases; phase->list; phase++) {
2183                 struct list_head still_in_list;
2184
2185                 if ((flags & phase->bit) == 0)
2186                         continue;
2187
2188                 INIT_LIST_HEAD(&still_in_list);
2189                 while (count < target && !list_empty(phase->list)) {
2190                         struct drm_i915_gem_object *obj;
2191                         struct i915_vma *vma, *v;
2192
2193                         obj = list_first_entry(phase->list,
2194                                                typeof(*obj), global_list);
2195                         list_move_tail(&obj->global_list, &still_in_list);
2196
2197                         if (flags & I915_SHRINK_PURGEABLE &&
2198                             !i915_gem_object_is_purgeable(obj))
2199                                 continue;
2200
2201                         drm_gem_object_reference(&obj->base);
2202
2203                         /* For the unbound phase, this should be a no-op! */
2204                         list_for_each_entry_safe(vma, v,
2205                                                  &obj->vma_list, vma_link)
2206                                 if (i915_vma_unbind(vma))
2207                                         break;
2208
2209                         if (i915_gem_object_put_pages(obj) == 0)
2210                                 count += obj->base.size >> PAGE_SHIFT;
2211
2212                         drm_gem_object_unreference(&obj->base);
2213                 }
2214                 list_splice(&still_in_list, phase->list);
2215         }
2216
2217         return count;
2218 }
2219
2220 static unsigned long
2221 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2222 {
2223         i915_gem_evict_everything(dev_priv->dev);
2224         return i915_gem_shrink(dev_priv, LONG_MAX,
2225                                I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
2226 }
2227
2228 static int
2229 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2230 {
2231         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2232         int page_count, i, j;
2233         vm_object_t vm_obj;
2234         struct vm_page *page;
2235
2236         /* Assert that the object is not currently in any GPU domain. As it
2237          * wasn't in the GTT, there shouldn't be any way it could have been in
2238          * a GPU cache
2239          */
2240         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2241         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2242
2243         page_count = obj->base.size / PAGE_SIZE;
2244         obj->pages = kmalloc(page_count * sizeof(vm_page_t), M_DRM,
2245             M_WAITOK);
2246
2247         /* Get the list of pages out of our struct file.  They'll be pinned
2248          * at this point until we release them.
2249          *
2250          * Fail silently without starting the shrinker
2251          */
2252         vm_obj = obj->base.vm_obj;
2253         VM_OBJECT_LOCK(vm_obj);
2254         for (i = 0; i < page_count; i++) {
2255                 page = shmem_read_mapping_page(vm_obj, i);
2256                 if (IS_ERR(page)) {
2257                         i915_gem_shrink(dev_priv,
2258                                         page_count,
2259                                         I915_SHRINK_BOUND |
2260                                         I915_SHRINK_UNBOUND |
2261                                         I915_SHRINK_PURGEABLE);
2262                         page = shmem_read_mapping_page(vm_obj, i);
2263                 }
2264                 if (IS_ERR(page)) {
2265                         /* We've tried hard to allocate the memory by reaping
2266                          * our own buffer, now let the real VM do its job and
2267                          * go down in flames if truly OOM.
2268                          */
2269
2270                         i915_gem_shrink_all(dev_priv);
2271                         page = shmem_read_mapping_page(vm_obj, i);
2272                         if (IS_ERR(page))
2273                                 goto err_pages;
2274                 }
2275 #ifdef CONFIG_SWIOTLB
2276                 if (swiotlb_nr_tbl()) {
2277                         st->nents++;
2278                         sg_set_page(sg, page, PAGE_SIZE, 0);
2279                         sg = sg_next(sg);
2280                         continue;
2281                 }
2282 #endif
2283                 obj->pages[i] = page;
2284         }
2285 #ifdef CONFIG_SWIOTLB
2286         if (!swiotlb_nr_tbl())
2287 #endif
2288         VM_OBJECT_UNLOCK(vm_obj);
2289
2290         if (i915_gem_object_needs_bit17_swizzle(obj))
2291                 i915_gem_object_do_bit_17_swizzle(obj);
2292
2293         if (obj->tiling_mode != I915_TILING_NONE &&
2294             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2295                 i915_gem_object_pin_pages(obj);
2296
2297         return 0;
2298
2299 err_pages:
2300         for (j = 0; j < i; j++) {
2301                 page = obj->pages[j];
2302                 vm_page_busy_wait(page, FALSE, "i915gem");
2303                 vm_page_unwire(page, 0);
2304                 vm_page_wakeup(page);
2305         }
2306         VM_OBJECT_UNLOCK(vm_obj);
2307         kfree(obj->pages);
2308         obj->pages = NULL;
2309         return (-EIO);
2310 }
2311
2312 /* Ensure that the associated pages are gathered from the backing storage
2313  * and pinned into our object. i915_gem_object_get_pages() may be called
2314  * multiple times before they are released by a single call to
2315  * i915_gem_object_put_pages() - once the pages are no longer referenced
2316  * either as a result of memory pressure (reaping pages under the shrinker)
2317  * or as the object is itself released.
2318  */
2319 int
2320 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2321 {
2322         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2323         const struct drm_i915_gem_object_ops *ops = obj->ops;
2324         int ret;
2325
2326         if (obj->pages)
2327                 return 0;
2328
2329         if (obj->madv != I915_MADV_WILLNEED) {
2330                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2331                 return -EFAULT;
2332         }
2333
2334         BUG_ON(obj->pages_pin_count);
2335
2336         ret = ops->get_pages(obj);
2337         if (ret)
2338                 return ret;
2339
2340         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2341         return 0;
2342 }
2343
2344 static void
2345 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2346                                struct intel_engine_cs *ring)
2347 {
2348         struct drm_i915_gem_request *req;
2349         struct intel_engine_cs *old_ring;
2350
2351         BUG_ON(ring == NULL);
2352
2353         req = intel_ring_get_request(ring);
2354         old_ring = i915_gem_request_get_ring(obj->last_read_req);
2355
2356         if (old_ring != ring && obj->last_write_req) {
2357                 /* Keep the request relative to the current ring */
2358                 i915_gem_request_assign(&obj->last_write_req, req);
2359         }
2360
2361         /* Add a reference if we're newly entering the active list. */
2362         if (!obj->active) {
2363                 drm_gem_object_reference(&obj->base);
2364                 obj->active = 1;
2365         }
2366
2367         list_move_tail(&obj->ring_list, &ring->active_list);
2368
2369         i915_gem_request_assign(&obj->last_read_req, req);
2370 }
2371
2372 void i915_vma_move_to_active(struct i915_vma *vma,
2373                              struct intel_engine_cs *ring)
2374 {
2375         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2376         return i915_gem_object_move_to_active(vma->obj, ring);
2377 }
2378
2379 static void
2380 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2381 {
2382         struct i915_vma *vma;
2383
2384         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2385         BUG_ON(!obj->active);
2386
2387         list_for_each_entry(vma, &obj->vma_list, vma_link) {
2388                 if (!list_empty(&vma->mm_list))
2389                         list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2390         }
2391
2392         intel_fb_obj_flush(obj, true);
2393
2394         list_del_init(&obj->ring_list);
2395
2396         i915_gem_request_assign(&obj->last_read_req, NULL);
2397         i915_gem_request_assign(&obj->last_write_req, NULL);
2398         obj->base.write_domain = 0;
2399
2400         i915_gem_request_assign(&obj->last_fenced_req, NULL);
2401
2402         obj->active = 0;
2403         drm_gem_object_unreference(&obj->base);
2404
2405         WARN_ON(i915_verify_lists(dev));
2406 }
2407
2408 static void
2409 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2410 {
2411         if (obj->last_read_req == NULL)
2412                 return;
2413
2414         if (i915_gem_request_completed(obj->last_read_req, true))
2415                 i915_gem_object_move_to_inactive(obj);
2416 }
2417
2418 static int
2419 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2420 {
2421         struct drm_i915_private *dev_priv = dev->dev_private;
2422         struct intel_engine_cs *ring;
2423         int ret, i, j;
2424
2425         /* Carefully retire all requests without writing to the rings */
2426         for_each_ring(ring, dev_priv, i) {
2427                 ret = intel_ring_idle(ring);
2428                 if (ret)
2429                         return ret;
2430         }
2431         i915_gem_retire_requests(dev);
2432
2433         /* Finally reset hw state */
2434         for_each_ring(ring, dev_priv, i) {
2435                 intel_ring_init_seqno(ring, seqno);
2436
2437                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2438                         ring->semaphore.sync_seqno[j] = 0;
2439         }
2440
2441         return 0;
2442 }
2443
2444 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2445 {
2446         struct drm_i915_private *dev_priv = dev->dev_private;
2447         int ret;
2448
2449         if (seqno == 0)
2450                 return -EINVAL;
2451
2452         /* HWS page needs to be set less than what we
2453          * will inject to ring
2454          */
2455         ret = i915_gem_init_seqno(dev, seqno - 1);
2456         if (ret)
2457                 return ret;
2458
2459         /* Carefully set the last_seqno value so that wrap
2460          * detection still works
2461          */
2462         dev_priv->next_seqno = seqno;
2463         dev_priv->last_seqno = seqno - 1;
2464         if (dev_priv->last_seqno == 0)
2465                 dev_priv->last_seqno--;
2466
2467         return 0;
2468 }
2469
2470 int
2471 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2472 {
2473         struct drm_i915_private *dev_priv = dev->dev_private;
2474
2475         /* reserve 0 for non-seqno */
2476         if (dev_priv->next_seqno == 0) {
2477                 int ret = i915_gem_init_seqno(dev, 0);
2478                 if (ret)
2479                         return ret;
2480
2481                 dev_priv->next_seqno = 1;
2482         }
2483
2484         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2485         return 0;
2486 }
2487
2488 int __i915_add_request(struct intel_engine_cs *ring,
2489                        struct drm_file *file,
2490                        struct drm_i915_gem_object *obj)
2491 {
2492         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2493         struct drm_i915_gem_request *request;
2494         struct intel_ringbuffer *ringbuf;
2495         u32 request_start;
2496         int ret;
2497
2498         request = ring->outstanding_lazy_request;
2499         if (WARN_ON(request == NULL))
2500                 return -ENOMEM;
2501
2502         if (i915.enable_execlists) {
2503                 ringbuf = request->ctx->engine[ring->id].ringbuf;
2504         } else
2505                 ringbuf = ring->buffer;
2506
2507         request_start = intel_ring_get_tail(ringbuf);
2508         /*
2509          * Emit any outstanding flushes - execbuf can fail to emit the flush
2510          * after having emitted the batchbuffer command. Hence we need to fix
2511          * things up similar to emitting the lazy request. The difference here
2512          * is that the flush _must_ happen before the next request, no matter
2513          * what.
2514          */
2515         if (i915.enable_execlists) {
2516                 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2517                 if (ret)
2518                         return ret;
2519         } else {
2520                 ret = intel_ring_flush_all_caches(ring);
2521                 if (ret)
2522                         return ret;
2523         }
2524
2525         /* Record the position of the start of the request so that
2526          * should we detect the updated seqno part-way through the
2527          * GPU processing the request, we never over-estimate the
2528          * position of the head.
2529          */
2530         request->postfix = intel_ring_get_tail(ringbuf);
2531
2532         if (i915.enable_execlists) {
2533                 ret = ring->emit_request(ringbuf, request);
2534                 if (ret)
2535                         return ret;
2536         } else {
2537                 ret = ring->add_request(ring);
2538                 if (ret)
2539                         return ret;
2540         }
2541
2542         request->head = request_start;
2543         request->tail = intel_ring_get_tail(ringbuf);
2544
2545         /* Whilst this request exists, batch_obj will be on the
2546          * active_list, and so will hold the active reference. Only when this
2547          * request is retired will the the batch_obj be moved onto the
2548          * inactive_list and lose its active reference. Hence we do not need
2549          * to explicitly hold another reference here.
2550          */
2551         request->batch_obj = obj;
2552
2553         if (!i915.enable_execlists) {
2554                 /* Hold a reference to the current context so that we can inspect
2555                  * it later in case a hangcheck error event fires.
2556                  */
2557                 request->ctx = ring->last_context;
2558                 if (request->ctx)
2559                         i915_gem_context_reference(request->ctx);
2560         }
2561
2562         request->emitted_jiffies = jiffies;
2563         list_add_tail(&request->list, &ring->request_list);
2564         request->file_priv = NULL;
2565
2566         if (file) {
2567                 struct drm_i915_file_private *file_priv = file->driver_priv;
2568
2569                 spin_lock(&file_priv->mm.lock);
2570                 request->file_priv = file_priv;
2571                 list_add_tail(&request->client_list,
2572                               &file_priv->mm.request_list);
2573                 spin_unlock(&file_priv->mm.lock);
2574         }
2575
2576         trace_i915_gem_request_add(request);
2577         ring->outstanding_lazy_request = NULL;
2578
2579         i915_queue_hangcheck(ring->dev);
2580
2581         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2582         queue_delayed_work(dev_priv->wq,
2583                            &dev_priv->mm.retire_work,
2584                            round_jiffies_up_relative(HZ));
2585         intel_mark_busy(dev_priv->dev);
2586
2587         return 0;
2588 }
2589
2590 static inline void
2591 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2592 {
2593         struct drm_i915_file_private *file_priv = request->file_priv;
2594
2595         if (!file_priv)
2596                 return;
2597
2598         spin_lock(&file_priv->mm.lock);
2599         list_del(&request->client_list);
2600         request->file_priv = NULL;
2601         spin_unlock(&file_priv->mm.lock);
2602 }
2603
2604 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2605                                    const struct intel_context *ctx)
2606 {
2607         unsigned long elapsed;
2608
2609         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2610
2611         if (ctx->hang_stats.banned)
2612                 return true;
2613
2614         if (ctx->hang_stats.ban_period_seconds &&
2615             elapsed <= ctx->hang_stats.ban_period_seconds) {
2616                 if (!i915_gem_context_is_default(ctx)) {
2617                         DRM_DEBUG("context hanging too fast, banning!\n");
2618                         return true;
2619                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2620                         if (i915_stop_ring_allow_warn(dev_priv))
2621                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2622                         return true;
2623                 }
2624         }
2625
2626         return false;
2627 }
2628
2629 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2630                                   struct intel_context *ctx,
2631                                   const bool guilty)
2632 {
2633         struct i915_ctx_hang_stats *hs;
2634
2635         if (WARN_ON(!ctx))
2636                 return;
2637
2638         hs = &ctx->hang_stats;
2639
2640         if (guilty) {
2641                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2642                 hs->batch_active++;
2643                 hs->guilty_ts = get_seconds();
2644         } else {
2645                 hs->batch_pending++;
2646         }
2647 }
2648
2649 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2650 {
2651         list_del(&request->list);
2652         i915_gem_request_remove_from_client(request);
2653
2654         i915_gem_request_unreference(request);
2655 }
2656
2657 void i915_gem_request_free(struct kref *req_ref)
2658 {
2659         struct drm_i915_gem_request *req = container_of(req_ref,
2660                                                  typeof(*req), ref);
2661         struct intel_context *ctx = req->ctx;
2662
2663         if (ctx) {
2664                 if (i915.enable_execlists) {
2665                         struct intel_engine_cs *ring = req->ring;
2666
2667                         if (ctx != ring->default_context)
2668                                 intel_lr_context_unpin(ring, ctx);
2669                 }
2670
2671                 i915_gem_context_unreference(ctx);
2672         }
2673
2674         kfree(req);
2675 }
2676
2677 struct drm_i915_gem_request *
2678 i915_gem_find_active_request(struct intel_engine_cs *ring)
2679 {
2680         struct drm_i915_gem_request *request;
2681
2682         list_for_each_entry(request, &ring->request_list, list) {
2683                 if (i915_gem_request_completed(request, false))
2684                         continue;
2685
2686                 return request;
2687         }
2688
2689         return NULL;
2690 }
2691
2692 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2693                                        struct intel_engine_cs *ring)
2694 {
2695         struct drm_i915_gem_request *request;
2696         bool ring_hung;
2697
2698         request = i915_gem_find_active_request(ring);
2699
2700         if (request == NULL)
2701                 return;
2702
2703         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2704
2705         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2706
2707         list_for_each_entry_continue(request, &ring->request_list, list)
2708                 i915_set_reset_status(dev_priv, request->ctx, false);
2709 }
2710
2711 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2712                                         struct intel_engine_cs *ring)
2713 {
2714         while (!list_empty(&ring->active_list)) {
2715                 struct drm_i915_gem_object *obj;
2716
2717                 obj = list_first_entry(&ring->active_list,
2718                                        struct drm_i915_gem_object,
2719                                        ring_list);
2720
2721                 i915_gem_object_move_to_inactive(obj);
2722         }
2723
2724         /*
2725          * Clear the execlists queue up before freeing the requests, as those
2726          * are the ones that keep the context and ringbuffer backing objects
2727          * pinned in place.
2728          */
2729         while (!list_empty(&ring->execlist_queue)) {
2730                 struct drm_i915_gem_request *submit_req;
2731
2732                 submit_req = list_first_entry(&ring->execlist_queue,
2733                                 struct drm_i915_gem_request,
2734                                 execlist_link);
2735                 list_del(&submit_req->execlist_link);
2736                 intel_runtime_pm_put(dev_priv);
2737
2738                 if (submit_req->ctx != ring->default_context)
2739                         intel_lr_context_unpin(ring, submit_req->ctx);
2740
2741                 i915_gem_request_unreference(submit_req);
2742         }
2743
2744         /*
2745          * We must free the requests after all the corresponding objects have
2746          * been moved off active lists. Which is the same order as the normal
2747          * retire_requests function does. This is important if object hold
2748          * implicit references on things like e.g. ppgtt address spaces through
2749          * the request.
2750          */
2751         while (!list_empty(&ring->request_list)) {
2752                 struct drm_i915_gem_request *request;
2753
2754                 request = list_first_entry(&ring->request_list,
2755                                            struct drm_i915_gem_request,
2756                                            list);
2757
2758                 i915_gem_free_request(request);
2759         }
2760
2761         /* This may not have been flushed before the reset, so clean it now */
2762         i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2763 }
2764
2765 void i915_gem_restore_fences(struct drm_device *dev)
2766 {
2767         struct drm_i915_private *dev_priv = dev->dev_private;
2768         int i;
2769
2770         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2771                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2772
2773                 /*
2774                  * Commit delayed tiling changes if we have an object still
2775                  * attached to the fence, otherwise just clear the fence.
2776                  */
2777                 if (reg->obj) {
2778                         i915_gem_object_update_fence(reg->obj, reg,
2779                                                      reg->obj->tiling_mode);
2780                 } else {
2781                         i915_gem_write_fence(dev, i, NULL);
2782                 }
2783         }
2784 }
2785
2786 void i915_gem_reset(struct drm_device *dev)
2787 {
2788         struct drm_i915_private *dev_priv = dev->dev_private;
2789         struct intel_engine_cs *ring;
2790         int i;
2791
2792         /*
2793          * Before we free the objects from the requests, we need to inspect
2794          * them for finding the guilty party. As the requests only borrow
2795          * their reference to the objects, the inspection must be done first.
2796          */
2797         for_each_ring(ring, dev_priv, i)
2798                 i915_gem_reset_ring_status(dev_priv, ring);
2799
2800         for_each_ring(ring, dev_priv, i)
2801                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2802
2803         i915_gem_context_reset(dev);
2804
2805         i915_gem_restore_fences(dev);
2806 }
2807
2808 /**
2809  * This function clears the request list as sequence numbers are passed.
2810  */
2811 void
2812 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2813 {
2814         if (list_empty(&ring->request_list))
2815                 return;
2816
2817         WARN_ON(i915_verify_lists(ring->dev));
2818
2819         /* Retire requests first as we use it above for the early return.
2820          * If we retire requests last, we may use a later seqno and so clear
2821          * the requests lists without clearing the active list, leading to
2822          * confusion.
2823          */
2824         while (!list_empty(&ring->request_list)) {
2825                 struct drm_i915_gem_request *request;
2826                 struct intel_ringbuffer *ringbuf;
2827
2828                 request = list_first_entry(&ring->request_list,
2829                                            struct drm_i915_gem_request,
2830                                            list);
2831
2832                 if (!i915_gem_request_completed(request, true))
2833                         break;
2834
2835                 trace_i915_gem_request_retire(request);
2836
2837                 /* This is one of the few common intersection points
2838                  * between legacy ringbuffer submission and execlists:
2839                  * we need to tell them apart in order to find the correct
2840                  * ringbuffer to which the request belongs to.
2841                  */
2842                 if (i915.enable_execlists) {
2843                         struct intel_context *ctx = request->ctx;
2844                         ringbuf = ctx->engine[ring->id].ringbuf;
2845                 } else
2846                         ringbuf = ring->buffer;
2847
2848                 /* We know the GPU must have read the request to have
2849                  * sent us the seqno + interrupt, so use the position
2850                  * of tail of the request to update the last known position
2851                  * of the GPU head.
2852                  */
2853                 ringbuf->last_retired_head = request->postfix;
2854
2855                 i915_gem_free_request(request);
2856         }
2857
2858         /* Move any buffers on the active list that are no longer referenced
2859          * by the ringbuffer to the flushing/inactive lists as appropriate,
2860          * before we free the context associated with the requests.
2861          */
2862         while (!list_empty(&ring->active_list)) {
2863                 struct drm_i915_gem_object *obj;
2864
2865                 obj = list_first_entry(&ring->active_list,
2866                                       struct drm_i915_gem_object,
2867                                       ring_list);
2868
2869                 if (!i915_gem_request_completed(obj->last_read_req, true))
2870                         break;
2871
2872                 i915_gem_object_move_to_inactive(obj);
2873         }
2874
2875         if (unlikely(ring->trace_irq_req &&
2876                      i915_gem_request_completed(ring->trace_irq_req, true))) {
2877                 ring->irq_put(ring);
2878                 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2879         }
2880
2881         WARN_ON(i915_verify_lists(ring->dev));
2882 }
2883
2884 bool
2885 i915_gem_retire_requests(struct drm_device *dev)
2886 {
2887         struct drm_i915_private *dev_priv = dev->dev_private;
2888         struct intel_engine_cs *ring;
2889         bool idle = true;
2890         int i;
2891
2892         for_each_ring(ring, dev_priv, i) {
2893                 i915_gem_retire_requests_ring(ring);
2894                 idle &= list_empty(&ring->request_list);
2895                 if (i915.enable_execlists) {
2896
2897                         lockmgr(&ring->execlist_lock, LK_EXCLUSIVE);
2898                         idle &= list_empty(&ring->execlist_queue);
2899                         lockmgr(&ring->execlist_lock, LK_RELEASE);
2900
2901                         intel_execlists_retire_requests(ring);
2902                 }
2903         }
2904
2905         if (idle)
2906                 mod_delayed_work(dev_priv->wq,
2907                                    &dev_priv->mm.idle_work,
2908                                    msecs_to_jiffies(100));
2909
2910         return idle;
2911 }
2912
2913 static void
2914 i915_gem_retire_work_handler(struct work_struct *work)
2915 {
2916         struct drm_i915_private *dev_priv =
2917                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2918         struct drm_device *dev = dev_priv->dev;
2919         bool idle;
2920
2921         /* Come back later if the device is busy... */
2922         idle = false;
2923         if (mutex_trylock(&dev->struct_mutex)) {
2924                 idle = i915_gem_retire_requests(dev);
2925                 mutex_unlock(&dev->struct_mutex);
2926         }
2927         if (!idle)
2928                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2929                                    round_jiffies_up_relative(HZ));
2930 }
2931
2932 static void
2933 i915_gem_idle_work_handler(struct work_struct *work)
2934 {
2935         struct drm_i915_private *dev_priv =
2936                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2937
2938         intel_mark_idle(dev_priv->dev);
2939 }
2940
2941 /**
2942  * Ensures that an object will eventually get non-busy by flushing any required
2943  * write domains, emitting any outstanding lazy request and retiring and
2944  * completed requests.
2945  */
2946 static int
2947 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2948 {
2949         struct intel_engine_cs *ring;
2950         int ret;
2951
2952         if (obj->active) {
2953                 ring = i915_gem_request_get_ring(obj->last_read_req);
2954
2955                 ret = i915_gem_check_olr(obj->last_read_req);
2956                 if (ret)
2957                         return ret;
2958
2959                 i915_gem_retire_requests_ring(ring);
2960         }
2961
2962         return 0;
2963 }
2964
2965 /**
2966  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2967  * @DRM_IOCTL_ARGS: standard ioctl arguments
2968  *
2969  * Returns 0 if successful, else an error is returned with the remaining time in
2970  * the timeout parameter.
2971  *  -ETIME: object is still busy after timeout
2972  *  -ERESTARTSYS: signal interrupted the wait
2973  *  -ENONENT: object doesn't exist
2974  * Also possible, but rare:
2975  *  -EAGAIN: GPU wedged
2976  *  -ENOMEM: damn
2977  *  -ENODEV: Internal IRQ fail
2978  *  -E?: The add request failed
2979  *
2980  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2981  * non-zero timeout parameter the wait ioctl will wait for the given number of
2982  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2983  * without holding struct_mutex the object may become re-busied before this
2984  * function completes. A similar but shorter * race condition exists in the busy
2985  * ioctl
2986  */
2987 int
2988 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2989 {
2990         struct drm_i915_private *dev_priv = dev->dev_private;
2991         struct drm_i915_gem_wait *args = data;
2992         struct drm_i915_gem_object *obj;
2993         struct drm_i915_gem_request *req;
2994         unsigned reset_counter;
2995         int ret = 0;
2996
2997         if (args->flags != 0)
2998                 return -EINVAL;
2999
3000         ret = i915_mutex_lock_interruptible(dev);
3001         if (ret)
3002                 return ret;
3003
3004         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3005         if (&obj->base == NULL) {
3006                 mutex_unlock(&dev->struct_mutex);
3007                 return -ENOENT;
3008         }
3009
3010         /* Need to make sure the object gets inactive eventually. */
3011         ret = i915_gem_object_flush_active(obj);
3012         if (ret)
3013                 goto out;
3014
3015         if (!obj->active || !obj->last_read_req)
3016                 goto out;
3017
3018         req = obj->last_read_req;
3019
3020         /* Do this after OLR check to make sure we make forward progress polling
3021          * on this IOCTL with a timeout == 0 (like busy ioctl)
3022          */
3023         if (args->timeout_ns == 0) {
3024                 ret = -ETIME;
3025                 goto out;
3026         }
3027
3028         drm_gem_object_unreference(&obj->base);
3029         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3030         i915_gem_request_reference(req);
3031         mutex_unlock(&dev->struct_mutex);
3032
3033         ret = __i915_wait_request(req, reset_counter, true,
3034                                   args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3035                                   file->driver_priv);
3036         mutex_lock(&dev->struct_mutex);
3037         i915_gem_request_unreference(req);
3038         mutex_unlock(&dev->struct_mutex);
3039         return ret;
3040
3041 out:
3042         drm_gem_object_unreference(&obj->base);
3043         mutex_unlock(&dev->struct_mutex);
3044         return ret;
3045 }
3046
3047 /**
3048  * i915_gem_object_sync - sync an object to a ring.
3049  *
3050  * @obj: object which may be in use on another ring.
3051  * @to: ring we wish to use the object on. May be NULL.
3052  *
3053  * This code is meant to abstract object synchronization with the GPU.
3054  * Calling with NULL implies synchronizing the object with the CPU
3055  * rather than a particular GPU ring.
3056  *
3057  * Returns 0 if successful, else propagates up the lower layer error.
3058  */
3059 int
3060 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3061                      struct intel_engine_cs *to)
3062 {
3063         struct intel_engine_cs *from;
3064         u32 seqno;
3065         int ret, idx;
3066
3067         from = i915_gem_request_get_ring(obj->last_read_req);
3068
3069         if (from == NULL || to == from)
3070                 return 0;
3071
3072         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
3073                 return i915_gem_object_wait_rendering(obj, false);
3074
3075         idx = intel_ring_sync_index(from, to);
3076
3077         seqno = i915_gem_request_get_seqno(obj->last_read_req);
3078         /* Optimization: Avoid semaphore sync when we are sure we already
3079          * waited for an object with higher seqno */
3080         if (seqno <= from->semaphore.sync_seqno[idx])
3081                 return 0;
3082
3083         ret = i915_gem_check_olr(obj->last_read_req);
3084         if (ret)
3085                 return ret;
3086
3087         trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
3088         ret = to->semaphore.sync_to(to, from, seqno);
3089         if (!ret)
3090                 /* We use last_read_req because sync_to()
3091                  * might have just caused seqno wrap under
3092                  * the radar.
3093                  */
3094                 from->semaphore.sync_seqno[idx] =
3095                                 i915_gem_request_get_seqno(obj->last_read_req);
3096
3097         return ret;
3098 }
3099
3100 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3101 {
3102         u32 old_write_domain, old_read_domains;
3103
3104         /* Force a pagefault for domain tracking on next user access */
3105         i915_gem_release_mmap(obj);
3106
3107         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3108                 return;
3109
3110         /* Wait for any direct GTT access to complete */
3111         mb();
3112
3113         old_read_domains = obj->base.read_domains;
3114         old_write_domain = obj->base.write_domain;
3115
3116         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3117         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3118
3119         trace_i915_gem_object_change_domain(obj,
3120                                             old_read_domains,
3121                                             old_write_domain);
3122 }
3123
3124 int i915_vma_unbind(struct i915_vma *vma)
3125 {
3126         struct drm_i915_gem_object *obj = vma->obj;
3127         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3128         int ret;
3129
3130         if (list_empty(&vma->vma_link))
3131                 return 0;
3132
3133         if (!drm_mm_node_allocated(&vma->node)) {
3134                 i915_gem_vma_destroy(vma);
3135                 return 0;
3136         }
3137
3138         if (vma->pin_count)
3139                 return -EBUSY;
3140
3141         BUG_ON(obj->pages == NULL);
3142
3143         ret = i915_gem_object_finish_gpu(obj);
3144         if (ret)
3145                 return ret;
3146         /* Continue on if we fail due to EIO, the GPU is hung so we
3147          * should be safe and we need to cleanup or else we might
3148          * cause memory corruption through use-after-free.
3149          */
3150
3151         if (i915_is_ggtt(vma->vm) &&
3152             vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3153                 i915_gem_object_finish_gtt(obj);
3154
3155                 /* release the fence reg _after_ flushing */
3156                 ret = i915_gem_object_put_fence(obj);
3157                 if (ret)
3158                         return ret;
3159         }
3160
3161         trace_i915_vma_unbind(vma);
3162
3163         vma->unbind_vma(vma);
3164
3165         list_del_init(&vma->mm_list);
3166         if (i915_is_ggtt(vma->vm)) {
3167                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3168                         obj->map_and_fenceable = false;
3169                 } else if (vma->ggtt_view.pages) {
3170                         kfree(vma->ggtt_view.pages);
3171                         vma->ggtt_view.pages = NULL;
3172                 }
3173         }
3174
3175         drm_mm_remove_node(&vma->node);
3176         i915_gem_vma_destroy(vma);
3177
3178         /* Since the unbound list is global, only move to that list if
3179          * no more VMAs exist. */
3180         if (list_empty(&obj->vma_list)) {
3181                 /* Throw away the active reference before
3182                  * moving to the unbound list. */
3183                 i915_gem_object_retire(obj);
3184
3185                 i915_gem_gtt_finish_object(obj);
3186                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3187         }
3188
3189         /* And finally now the object is completely decoupled from this vma,
3190          * we can drop its hold on the backing storage and allow it to be
3191          * reaped by the shrinker.
3192          */
3193         i915_gem_object_unpin_pages(obj);
3194
3195         return 0;
3196 }
3197
3198 int i915_gpu_idle(struct drm_device *dev)
3199 {
3200         struct drm_i915_private *dev_priv = dev->dev_private;
3201         struct intel_engine_cs *ring;
3202         int ret, i;
3203
3204         /* Flush everything onto the inactive list. */
3205         for_each_ring(ring, dev_priv, i) {
3206                 if (!i915.enable_execlists) {
3207                         ret = i915_switch_context(ring, ring->default_context);
3208                         if (ret)
3209                                 return ret;
3210                 }
3211
3212                 ret = intel_ring_idle(ring);
3213                 if (ret)
3214                         return ret;
3215         }
3216
3217         return 0;
3218 }
3219
3220 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3221                                  struct drm_i915_gem_object *obj)
3222 {
3223         struct drm_i915_private *dev_priv = dev->dev_private;
3224         int fence_reg;
3225         int fence_pitch_shift;
3226
3227         if (INTEL_INFO(dev)->gen >= 6) {
3228                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3229                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3230         } else {
3231                 fence_reg = FENCE_REG_965_0;
3232                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3233         }
3234
3235         fence_reg += reg * 8;
3236
3237         /* To w/a incoherency with non-atomic 64-bit register updates,
3238          * we split the 64-bit update into two 32-bit writes. In order
3239          * for a partial fence not to be evaluated between writes, we
3240          * precede the update with write to turn off the fence register,
3241          * and only enable the fence as the last step.
3242          *
3243          * For extra levels of paranoia, we make sure each step lands
3244          * before applying the next step.
3245          */
3246         I915_WRITE(fence_reg, 0);
3247         POSTING_READ(fence_reg);
3248
3249         if (obj) {
3250                 u32 size = i915_gem_obj_ggtt_size(obj);
3251                 uint64_t val;
3252
3253                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3254                                  0xfffff000) << 32;
3255                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3256                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3257                 if (obj->tiling_mode == I915_TILING_Y)
3258                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3259                 val |= I965_FENCE_REG_VALID;
3260
3261                 I915_WRITE(fence_reg + 4, val >> 32);
3262                 POSTING_READ(fence_reg + 4);
3263
3264                 I915_WRITE(fence_reg + 0, val);
3265                 POSTING_READ(fence_reg);
3266         } else {
3267                 I915_WRITE(fence_reg + 4, 0);
3268                 POSTING_READ(fence_reg + 4);
3269         }
3270 }
3271
3272 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3273                                  struct drm_i915_gem_object *obj)
3274 {
3275         struct drm_i915_private *dev_priv = dev->dev_private;
3276         u32 val;
3277
3278         if (obj) {
3279                 u32 size = i915_gem_obj_ggtt_size(obj);
3280                 int pitch_val;
3281                 int tile_width;
3282
3283                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3284                      (size & -size) != size ||
3285                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3286                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3287                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3288
3289                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3290                         tile_width = 128;
3291                 else
3292                         tile_width = 512;
3293
3294                 /* Note: pitch better be a power of two tile widths */
3295                 pitch_val = obj->stride / tile_width;
3296                 pitch_val = ffs(pitch_val) - 1;
3297
3298                 val = i915_gem_obj_ggtt_offset(obj);
3299                 if (obj->tiling_mode == I915_TILING_Y)
3300                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3301                 val |= I915_FENCE_SIZE_BITS(size);
3302                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3303                 val |= I830_FENCE_REG_VALID;
3304         } else
3305                 val = 0;
3306
3307         if (reg < 8)
3308                 reg = FENCE_REG_830_0 + reg * 4;
3309         else
3310                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3311
3312         I915_WRITE(reg, val);
3313         POSTING_READ(reg);
3314 }
3315
3316 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3317                                 struct drm_i915_gem_object *obj)
3318 {
3319         struct drm_i915_private *dev_priv = dev->dev_private;
3320         uint32_t val;
3321
3322         if (obj) {
3323                 u32 size = i915_gem_obj_ggtt_size(obj);
3324                 uint32_t pitch_val;
3325
3326                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3327                      (size & -size) != size ||
3328                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3329                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3330                      i915_gem_obj_ggtt_offset(obj), size);
3331
3332                 pitch_val = obj->stride / 128;
3333                 pitch_val = ffs(pitch_val) - 1;
3334
3335                 val = i915_gem_obj_ggtt_offset(obj);
3336                 if (obj->tiling_mode == I915_TILING_Y)
3337                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3338                 val |= I830_FENCE_SIZE_BITS(size);
3339                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3340                 val |= I830_FENCE_REG_VALID;
3341         } else
3342                 val = 0;
3343
3344         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3345         POSTING_READ(FENCE_REG_830_0 + reg * 4);
3346 }
3347
3348 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3349 {
3350         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3351 }
3352
3353 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3354                                  struct drm_i915_gem_object *obj)
3355 {
3356         struct drm_i915_private *dev_priv = dev->dev_private;
3357
3358         /* Ensure that all CPU reads are completed before installing a fence
3359          * and all writes before removing the fence.
3360          */
3361         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3362                 mb();
3363
3364         WARN(obj && (!obj->stride || !obj->tiling_mode),
3365              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3366              obj->stride, obj->tiling_mode);
3367
3368         if (IS_GEN2(dev))
3369                 i830_write_fence_reg(dev, reg, obj);
3370         else if (IS_GEN3(dev))
3371                 i915_write_fence_reg(dev, reg, obj);
3372         else if (INTEL_INFO(dev)->gen >= 4)
3373                 i965_write_fence_reg(dev, reg, obj);
3374
3375         /* And similarly be paranoid that no direct access to this region
3376          * is reordered to before the fence is installed.
3377          */
3378         if (i915_gem_object_needs_mb(obj))
3379                 mb();
3380 }
3381
3382 static inline int fence_number(struct drm_i915_private *dev_priv,
3383                                struct drm_i915_fence_reg *fence)
3384 {
3385         return fence - dev_priv->fence_regs;
3386 }
3387
3388 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3389                                          struct drm_i915_fence_reg *fence,
3390                                          bool enable)
3391 {
3392         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3393         int reg = fence_number(dev_priv, fence);
3394
3395         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3396
3397         if (enable) {
3398                 obj->fence_reg = reg;
3399                 fence->obj = obj;
3400                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3401         } else {
3402                 obj->fence_reg = I915_FENCE_REG_NONE;
3403                 fence->obj = NULL;
3404                 list_del_init(&fence->lru_list);
3405         }
3406         obj->fence_dirty = false;
3407 }
3408
3409 static int
3410 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3411 {
3412         if (obj->last_fenced_req) {
3413                 int ret = i915_wait_request(obj->last_fenced_req);
3414                 if (ret)
3415                         return ret;
3416
3417                 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3418         }
3419
3420         return 0;
3421 }
3422
3423 int
3424 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3425 {
3426         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3427         struct drm_i915_fence_reg *fence;
3428         int ret;
3429
3430         ret = i915_gem_object_wait_fence(obj);
3431         if (ret)
3432                 return ret;
3433
3434         if (obj->fence_reg == I915_FENCE_REG_NONE)
3435                 return 0;
3436
3437         fence = &dev_priv->fence_regs[obj->fence_reg];
3438
3439         if (WARN_ON(fence->pin_count))
3440                 return -EBUSY;
3441
3442         i915_gem_object_fence_lost(obj);
3443         i915_gem_object_update_fence(obj, fence, false);
3444
3445         return 0;
3446 }
3447
3448 static struct drm_i915_fence_reg *
3449 i915_find_fence_reg(struct drm_device *dev)
3450 {
3451         struct drm_i915_private *dev_priv = dev->dev_private;
3452         struct drm_i915_fence_reg *reg, *avail;
3453         int i;
3454
3455         /* First try to find a free reg */
3456         avail = NULL;
3457         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3458                 reg = &dev_priv->fence_regs[i];
3459                 if (!reg->obj)
3460                         return reg;
3461
3462                 if (!reg->pin_count)
3463                         avail = reg;
3464         }
3465
3466         if (avail == NULL)
3467                 goto deadlock;
3468
3469         /* None available, try to steal one or wait for a user to finish */
3470         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3471                 if (reg->pin_count)
3472                         continue;
3473
3474                 return reg;
3475         }
3476
3477 deadlock:
3478         /* Wait for completion of pending flips which consume fences */
3479         if (intel_has_pending_fb_unpin(dev))
3480                 return ERR_PTR(-EAGAIN);
3481
3482         return ERR_PTR(-EDEADLK);
3483 }
3484
3485 /**
3486  * i915_gem_object_get_fence - set up fencing for an object
3487  * @obj: object to map through a fence reg
3488  *
3489  * When mapping objects through the GTT, userspace wants to be able to write
3490  * to them without having to worry about swizzling if the object is tiled.
3491  * This function walks the fence regs looking for a free one for @obj,
3492  * stealing one if it can't find any.
3493  *
3494  * It then sets up the reg based on the object's properties: address, pitch
3495  * and tiling format.
3496  *
3497  * For an untiled surface, this removes any existing fence.
3498  */
3499 int
3500 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3501 {
3502         struct drm_device *dev = obj->base.dev;
3503         struct drm_i915_private *dev_priv = dev->dev_private;
3504         bool enable = obj->tiling_mode != I915_TILING_NONE;
3505         struct drm_i915_fence_reg *reg;
3506         int ret;
3507
3508         /* Have we updated the tiling parameters upon the object and so
3509          * will need to serialise the write to the associated fence register?
3510          */
3511         if (obj->fence_dirty) {
3512                 ret = i915_gem_object_wait_fence(obj);
3513                 if (ret)
3514                         return ret;
3515         }
3516
3517         /* Just update our place in the LRU if our fence is getting reused. */
3518         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3519                 reg = &dev_priv->fence_regs[obj->fence_reg];
3520                 if (!obj->fence_dirty) {
3521                         list_move_tail(&reg->lru_list,
3522                                        &dev_priv->mm.fence_list);
3523                         return 0;
3524                 }
3525         } else if (enable) {
3526                 if (WARN_ON(!obj->map_and_fenceable))
3527                         return -EINVAL;
3528
3529                 reg = i915_find_fence_reg(dev);
3530                 if (IS_ERR(reg))
3531                         return PTR_ERR(reg);
3532
3533                 if (reg->obj) {
3534                         struct drm_i915_gem_object *old = reg->obj;
3535
3536                         ret = i915_gem_object_wait_fence(old);
3537                         if (ret)
3538                                 return ret;
3539
3540                         i915_gem_object_fence_lost(old);
3541                 }
3542         } else
3543                 return 0;
3544
3545         i915_gem_object_update_fence(obj, reg, enable);
3546
3547         return 0;
3548 }
3549
3550 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3551                                      unsigned long cache_level)
3552 {
3553         struct drm_mm_node *gtt_space = &vma->node;
3554         struct drm_mm_node *other;
3555
3556         /*
3557          * On some machines we have to be careful when putting differing types
3558          * of snoopable memory together to avoid the prefetcher crossing memory
3559          * domains and dying. During vm initialisation, we decide whether or not
3560          * these constraints apply and set the drm_mm.color_adjust
3561          * appropriately.
3562          */
3563         if (vma->vm->mm.color_adjust == NULL)
3564                 return true;
3565
3566         if (!drm_mm_node_allocated(gtt_space))
3567                 return true;
3568
3569         if (list_empty(&gtt_space->node_list))
3570                 return true;
3571
3572         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3573         if (other->allocated && !other->hole_follows && other->color != cache_level)
3574                 return false;
3575
3576         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3577         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3578                 return false;
3579
3580         return true;
3581 }
3582
3583 /**
3584  * Finds free space in the GTT aperture and binds the object there.
3585  */
3586 static struct i915_vma *
3587 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3588                            struct i915_address_space *vm,
3589                            unsigned alignment,
3590                            uint64_t flags,
3591                            const struct i915_ggtt_view *view)
3592 {
3593         struct drm_device *dev = obj->base.dev;
3594         struct drm_i915_private *dev_priv = dev->dev_private;
3595         u32 size, fence_size, fence_alignment, unfenced_alignment;
3596         unsigned long start =
3597                 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3598         unsigned long end =
3599                 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3600         struct i915_vma *vma;
3601         int ret;
3602
3603         fence_size = i915_gem_get_gtt_size(dev,
3604                                            obj->base.size,
3605                                            obj->tiling_mode);
3606         fence_alignment = i915_gem_get_gtt_alignment(dev,
3607                                                      obj->base.size,
3608                                                      obj->tiling_mode, true);
3609         unfenced_alignment =
3610                 i915_gem_get_gtt_alignment(dev,
3611                                            obj->base.size,
3612                                            obj->tiling_mode, false);
3613
3614         if (alignment == 0)
3615                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3616                                                 unfenced_alignment;
3617         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3618                 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3619                 return ERR_PTR(-EINVAL);
3620         }
3621
3622         size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3623
3624         /* If the object is bigger than the entire aperture, reject it early
3625          * before evicting everything in a vain attempt to find space.
3626          */
3627         if (obj->base.size > end) {
3628                 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3629                           obj->base.size,
3630                           flags & PIN_MAPPABLE ? "mappable" : "total",
3631                           end);
3632                 return ERR_PTR(-E2BIG);
3633         }
3634
3635         ret = i915_gem_object_get_pages(obj);
3636         if (ret)
3637                 return ERR_PTR(ret);
3638
3639         i915_gem_object_pin_pages(obj);
3640
3641         vma = i915_gem_obj_lookup_or_create_vma_view(obj, vm, view);
3642         if (IS_ERR(vma))
3643                 goto err_unpin;
3644
3645 search_free:
3646         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3647                                                   size, alignment,
3648                                                   obj->cache_level,
3649                                                   start, end,
3650                                                   DRM_MM_SEARCH_DEFAULT,
3651                                                   DRM_MM_CREATE_DEFAULT);
3652         if (ret) {
3653                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3654                                                obj->cache_level,
3655                                                start, end,
3656                                                flags);
3657                 if (ret == 0)
3658                         goto search_free;
3659
3660                 goto err_free_vma;
3661         }
3662         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3663                 ret = -EINVAL;
3664                 goto err_remove_node;
3665         }
3666
3667         ret = i915_gem_gtt_prepare_object(obj);
3668         if (ret)
3669                 goto err_remove_node;
3670
3671         trace_i915_vma_bind(vma, flags);
3672         ret = i915_vma_bind(vma, obj->cache_level,
3673                             flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3674         if (ret)
3675                 goto err_finish_gtt;
3676
3677         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3678         list_add_tail(&vma->mm_list, &vm->inactive_list);
3679
3680         return vma;
3681
3682 err_finish_gtt:
3683         i915_gem_gtt_finish_object(obj);
3684 err_remove_node:
3685         drm_mm_remove_node(&vma->node);
3686 err_free_vma:
3687         i915_gem_vma_destroy(vma);
3688         vma = ERR_PTR(ret);
3689 err_unpin:
3690         i915_gem_object_unpin_pages(obj);
3691         return vma;
3692 }
3693
3694 bool
3695 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3696                         bool force)
3697 {
3698         /* If we don't have a page list set up, then we're not pinned
3699          * to GPU, and we can ignore the cache flush because it'll happen
3700          * again at bind time.
3701          */
3702         if (obj->pages == NULL)
3703                 return false;
3704
3705         /*
3706          * Stolen memory is always coherent with the GPU as it is explicitly
3707          * marked as wc by the system, or the system is cache-coherent.
3708          */
3709         if (obj->stolen)
3710                 return false;
3711
3712         /* If the GPU is snooping the contents of the CPU cache,
3713          * we do not need to manually clear the CPU cache lines.  However,
3714          * the caches are only snooped when the render cache is
3715          * flushed/invalidated.  As we always have to emit invalidations
3716          * and flushes when moving into and out of the RENDER domain, correct
3717          * snooping behaviour occurs naturally as the result of our domain
3718          * tracking.
3719          */
3720         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3721                 obj->cache_dirty = true;
3722                 return false;
3723         }
3724
3725         trace_i915_gem_object_clflush(obj);
3726         drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
3727         obj->cache_dirty = false;
3728
3729         return true;
3730 }
3731
3732 /** Flushes the GTT write domain for the object if it's dirty. */
3733 static void
3734 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3735 {
3736         uint32_t old_write_domain;
3737
3738         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3739                 return;
3740
3741         /* No actual flushing is required for the GTT write domain.  Writes
3742          * to it immediately go to main memory as far as we know, so there's
3743          * no chipset flush.  It also doesn't land in render cache.
3744          *
3745          * However, we do have to enforce the order so that all writes through
3746          * the GTT land before any writes to the device, such as updates to
3747          * the GATT itself.
3748          */
3749         wmb();
3750
3751         old_write_domain = obj->base.write_domain;
3752         obj->base.write_domain = 0;
3753
3754         intel_fb_obj_flush(obj, false);
3755
3756         intel_fb_obj_flush(obj, false);
3757
3758         trace_i915_gem_object_change_domain(obj,
3759                                             obj->base.read_domains,
3760                                             old_write_domain);
3761 }
3762
3763 /** Flushes the CPU write domain for the object if it's dirty. */
3764 static void
3765 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3766 {
3767         uint32_t old_write_domain;
3768
3769         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3770                 return;
3771
3772         if (i915_gem_clflush_object(obj, obj->pin_display))
3773                 i915_gem_chipset_flush(obj->base.dev);
3774
3775         old_write_domain = obj->base.write_domain;
3776         obj->base.write_domain = 0;
3777
3778         trace_i915_gem_object_change_domain(obj,
3779                                             obj->base.read_domains,
3780                                             old_write_domain);
3781 }
3782
3783 /**
3784  * Moves a single object to the GTT read, and possibly write domain.
3785  *
3786  * This function returns when the move is complete, including waiting on
3787  * flushes to occur.
3788  */
3789 int
3790 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3791 {
3792         uint32_t old_write_domain, old_read_domains;
3793         struct i915_vma *vma;
3794         int ret;
3795
3796         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3797                 return 0;
3798
3799         ret = i915_gem_object_wait_rendering(obj, !write);
3800         if (ret)
3801                 return ret;
3802
3803         i915_gem_object_retire(obj);
3804
3805         /* Flush and acquire obj->pages so that we are coherent through
3806          * direct access in memory with previous cached writes through
3807          * shmemfs and that our cache domain tracking remains valid.
3808          * For example, if the obj->filp was moved to swap without us
3809          * being notified and releasing the pages, we would mistakenly
3810          * continue to assume that the obj remained out of the CPU cached
3811          * domain.
3812          */
3813         ret = i915_gem_object_get_pages(obj);
3814         if (ret)
3815                 return ret;
3816
3817         i915_gem_object_flush_cpu_write_domain(obj);
3818
3819         /* Serialise direct access to this object with the barriers for
3820          * coherent writes from the GPU, by effectively invalidating the
3821          * GTT domain upon first access.
3822          */
3823         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3824                 mb();
3825
3826         old_write_domain = obj->base.write_domain;
3827         old_read_domains = obj->base.read_domains;
3828
3829         /* It should now be out of any other write domains, and we can update
3830          * the domain values for our changes.
3831          */
3832         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3833         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3834         if (write) {
3835                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3836                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3837                 obj->dirty = 1;
3838         }
3839
3840         if (write)
3841                 intel_fb_obj_invalidate(obj, NULL);
3842
3843         trace_i915_gem_object_change_domain(obj,
3844                                             old_read_domains,
3845                                             old_write_domain);
3846
3847         /* And bump the LRU for this access */
3848         vma = i915_gem_obj_to_ggtt(obj);
3849         if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3850                 list_move_tail(&vma->mm_list,
3851                                &to_i915(obj->base.dev)->gtt.base.inactive_list);
3852
3853         return 0;
3854 }
3855
3856 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3857                                     enum i915_cache_level cache_level)
3858 {
3859         struct drm_device *dev = obj->base.dev;
3860         struct i915_vma *vma, *next;
3861         int ret;
3862
3863         if (obj->cache_level == cache_level)
3864                 return 0;
3865
3866         if (i915_gem_obj_is_pinned(obj)) {
3867                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3868                 return -EBUSY;
3869         }
3870
3871         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3872                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3873                         ret = i915_vma_unbind(vma);
3874                         if (ret)
3875                                 return ret;
3876                 }
3877         }
3878
3879         if (i915_gem_obj_bound_any(obj)) {
3880                 ret = i915_gem_object_finish_gpu(obj);
3881                 if (ret)
3882                         return ret;
3883
3884                 i915_gem_object_finish_gtt(obj);
3885
3886                 /* Before SandyBridge, you could not use tiling or fence
3887                  * registers with snooped memory, so relinquish any fences
3888                  * currently pointing to our region in the aperture.
3889                  */
3890                 if (INTEL_INFO(dev)->gen < 6) {
3891                         ret = i915_gem_object_put_fence(obj);
3892                         if (ret)
3893                                 return ret;
3894                 }
3895
3896                 list_for_each_entry(vma, &obj->vma_list, vma_link)
3897                         if (drm_mm_node_allocated(&vma->node)) {
3898                                 ret = i915_vma_bind(vma, cache_level,
3899                                                     vma->bound & GLOBAL_BIND);
3900                                 if (ret)
3901                                         return ret;
3902                         }
3903         }
3904
3905         list_for_each_entry(vma, &obj->vma_list, vma_link)
3906                 vma->node.color = cache_level;
3907         obj->cache_level = cache_level;
3908
3909         if (obj->cache_dirty &&
3910             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3911             cpu_write_needs_clflush(obj)) {
3912                 if (i915_gem_clflush_object(obj, true))
3913                         i915_gem_chipset_flush(obj->base.dev);
3914         }
3915
3916         return 0;
3917 }
3918
3919 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3920                                struct drm_file *file)
3921 {
3922         struct drm_i915_gem_caching *args = data;
3923         struct drm_i915_gem_object *obj;
3924         int ret;
3925
3926         ret = i915_mutex_lock_interruptible(dev);
3927         if (ret)
3928                 return ret;
3929
3930         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3931         if (&obj->base == NULL) {
3932                 ret = -ENOENT;
3933                 goto unlock;
3934         }
3935
3936         switch (obj->cache_level) {
3937         case I915_CACHE_LLC:
3938         case I915_CACHE_L3_LLC:
3939                 args->caching = I915_CACHING_CACHED;
3940                 break;
3941
3942         case I915_CACHE_WT:
3943                 args->caching = I915_CACHING_DISPLAY;
3944                 break;
3945
3946         default:
3947                 args->caching = I915_CACHING_NONE;
3948                 break;
3949         }
3950
3951         drm_gem_object_unreference(&obj->base);
3952 unlock:
3953         mutex_unlock(&dev->struct_mutex);
3954         return ret;
3955 }
3956
3957 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3958                                struct drm_file *file)
3959 {
3960         struct drm_i915_gem_caching *args = data;
3961         struct drm_i915_gem_object *obj;
3962         enum i915_cache_level level;
3963         int ret;
3964
3965         switch (args->caching) {
3966         case I915_CACHING_NONE:
3967                 level = I915_CACHE_NONE;
3968                 break;
3969         case I915_CACHING_CACHED:
3970                 level = I915_CACHE_LLC;
3971                 break;
3972         case I915_CACHING_DISPLAY:
3973                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3974                 break;
3975         default:
3976                 return -EINVAL;
3977         }
3978
3979         ret = i915_mutex_lock_interruptible(dev);
3980         if (ret)
3981                 return ret;
3982
3983         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3984         if (&obj->base == NULL) {
3985                 ret = -ENOENT;
3986                 goto unlock;
3987         }
3988
3989         ret = i915_gem_object_set_cache_level(obj, level);
3990
3991         drm_gem_object_unreference(&obj->base);
3992 unlock:
3993         mutex_unlock(&dev->struct_mutex);
3994         return ret;
3995 }
3996
3997 static bool is_pin_display(struct drm_i915_gem_object *obj)
3998 {
3999         struct i915_vma *vma;
4000
4001         vma = i915_gem_obj_to_ggtt(obj);
4002         if (!vma)
4003                 return false;
4004
4005         /* There are 2 sources that pin objects:
4006          *   1. The display engine (scanouts, sprites, cursors);
4007          *   2. Reservations for execbuffer;
4008          *
4009          * We can ignore reservations as we hold the struct_mutex and
4010          * are only called outside of the reservation path.
4011          */
4012         return vma->pin_count;
4013 }
4014
4015 /*
4016  * Prepare buffer for display plane (scanout, cursors, etc).
4017  * Can be called from an uninterruptible phase (modesetting) and allows
4018  * any flushes to be pipelined (for pageflips).
4019  */
4020 int
4021 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4022                                      u32 alignment,
4023                                      struct intel_engine_cs *pipelined)
4024 {
4025         u32 old_read_domains, old_write_domain;
4026         bool was_pin_display;
4027         int ret;
4028
4029         if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
4030                 ret = i915_gem_object_sync(obj, pipelined);
4031                 if (ret)
4032                         return ret;
4033         }
4034
4035         /* Mark the pin_display early so that we account for the
4036          * display coherency whilst setting up the cache domains.
4037          */
4038         was_pin_display = obj->pin_display;
4039         obj->pin_display = true;
4040
4041         /* The display engine is not coherent with the LLC cache on gen6.  As
4042          * a result, we make sure that the pinning that is about to occur is
4043          * done with uncached PTEs. This is lowest common denominator for all
4044          * chipsets.
4045          *
4046          * However for gen6+, we could do better by using the GFDT bit instead
4047          * of uncaching, which would allow us to flush all the LLC-cached data
4048          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4049          */
4050         ret = i915_gem_object_set_cache_level(obj,
4051                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4052         if (ret)
4053                 goto err_unpin_display;
4054
4055         /* As the user may map the buffer once pinned in the display plane
4056          * (e.g. libkms for the bootup splash), we have to ensure that we
4057          * always use map_and_fenceable for all scanout buffers.
4058          */
4059         ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
4060         if (ret)
4061                 goto err_unpin_display;
4062
4063         i915_gem_object_flush_cpu_write_domain(obj);
4064
4065         old_write_domain = obj->base.write_domain;
4066         old_read_domains = obj->base.read_domains;
4067
4068         /* It should now be out of any other write domains, and we can update
4069          * the domain values for our changes.
4070          */
4071         obj->base.write_domain = 0;
4072         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4073
4074         trace_i915_gem_object_change_domain(obj,
4075                                             old_read_domains,
4076                                             old_write_domain);
4077
4078         return 0;
4079
4080 err_unpin_display:
4081         WARN_ON(was_pin_display != is_pin_display(obj));
4082         obj->pin_display = was_pin_display;
4083         return ret;
4084 }
4085
4086 void
4087 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
4088 {
4089         i915_gem_object_ggtt_unpin(obj);
4090         obj->pin_display = is_pin_display(obj);
4091 }
4092
4093 int
4094 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4095 {
4096         int ret;
4097
4098         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4099                 return 0;
4100
4101         ret = i915_gem_object_wait_rendering(obj, false);
4102         if (ret)
4103                 return ret;
4104
4105         /* Ensure that we invalidate the GPU's caches and TLBs. */
4106         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4107         return 0;
4108 }
4109
4110 /**
4111  * Moves a single object to the CPU read, and possibly write domain.
4112  *
4113  * This function returns when the move is complete, including waiting on
4114  * flushes to occur.
4115  */
4116 int
4117 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4118 {
4119         uint32_t old_write_domain, old_read_domains;
4120         int ret;
4121
4122         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4123                 return 0;
4124
4125         ret = i915_gem_object_wait_rendering(obj, !write);
4126         if (ret)
4127                 return ret;
4128
4129         i915_gem_object_retire(obj);
4130         i915_gem_object_flush_gtt_write_domain(obj);
4131
4132         old_write_domain = obj->base.write_domain;
4133         old_read_domains = obj->base.read_domains;
4134
4135         /* Flush the CPU cache if it's still invalid. */
4136         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4137                 i915_gem_clflush_object(obj, false);
4138
4139                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4140         }
4141
4142         /* It should now be out of any other write domains, and we can update
4143          * the domain values for our changes.
4144          */
4145         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4146
4147         /* If we're writing through the CPU, then the GPU read domains will
4148          * need to be invalidated at next use.
4149          */
4150         if (write) {
4151                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4152                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4153         }
4154
4155         if (write)
4156                 intel_fb_obj_invalidate(obj, NULL);
4157
4158         trace_i915_gem_object_change_domain(obj,
4159                                             old_read_domains,
4160                                             old_write_domain);
4161
4162         return 0;
4163 }
4164
4165 /* Throttle our rendering by waiting until the ring has completed our requests
4166  * emitted over 20 msec ago.
4167  *
4168  * Note that if we were to use the current jiffies each time around the loop,
4169  * we wouldn't escape the function with any frames outstanding if the time to
4170  * render a frame was over 20ms.
4171  *
4172  * This should get us reasonable parallelism between CPU and GPU but also
4173  * relatively low latency when blocking on a particular request to finish.
4174  */
4175 static int
4176 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4177 {
4178         struct drm_i915_private *dev_priv = dev->dev_private;
4179         struct drm_i915_file_private *file_priv = file->driver_priv;
4180         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4181         struct drm_i915_gem_request *request, *target = NULL;
4182         unsigned reset_counter;
4183         int ret;
4184
4185         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4186         if (ret)
4187                 return ret;
4188
4189         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4190         if (ret)
4191                 return ret;
4192
4193         spin_lock(&file_priv->mm.lock);
4194         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4195                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4196                         break;
4197
4198                 target = request;
4199         }
4200         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4201         if (target)
4202                 i915_gem_request_reference(target);
4203         spin_unlock(&file_priv->mm.lock);
4204
4205         if (target == NULL)
4206                 return 0;
4207
4208         ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4209         if (ret == 0)
4210                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4211
4212         mutex_lock(&dev->struct_mutex);
4213         i915_gem_request_unreference(target);
4214         mutex_unlock(&dev->struct_mutex);
4215
4216         return ret;
4217 }
4218
4219 static bool
4220 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4221 {
4222         struct drm_i915_gem_object *obj = vma->obj;
4223
4224         if (alignment &&
4225             vma->node.start & (alignment - 1))
4226                 return true;
4227
4228         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4229                 return true;
4230
4231         if (flags & PIN_OFFSET_BIAS &&
4232             vma->node.start < (flags & PIN_OFFSET_MASK))
4233                 return true;
4234
4235         return false;
4236 }
4237
4238 int
4239 i915_gem_object_pin_view(struct drm_i915_gem_object *obj,
4240                          struct i915_address_space *vm,
4241                          uint32_t alignment,
4242                          uint64_t flags,
4243                          const struct i915_ggtt_view *view)
4244 {
4245         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4246         struct i915_vma *vma;
4247         unsigned bound;
4248         int ret;
4249
4250         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4251                 return -ENODEV;
4252
4253         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4254                 return -EINVAL;
4255
4256         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4257                 return -EINVAL;
4258
4259         vma = i915_gem_obj_to_vma_view(obj, vm, view);
4260         if (vma) {
4261                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4262                         return -EBUSY;
4263
4264                 if (i915_vma_misplaced(vma, alignment, flags)) {
4265                         WARN(vma->pin_count,
4266                              "bo is already pinned with incorrect alignment:"
4267                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4268                              " obj->map_and_fenceable=%d\n",
4269                              i915_gem_obj_offset_view(obj, vm, view->type),
4270                              alignment,
4271                              !!(flags & PIN_MAPPABLE),
4272                              obj->map_and_fenceable);
4273                         ret = i915_vma_unbind(vma);
4274                         if (ret)
4275                                 return ret;
4276
4277                         vma = NULL;
4278                 }
4279         }
4280
4281         bound = vma ? vma->bound : 0;
4282         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4283                 vma = i915_gem_object_bind_to_vm(obj, vm, alignment,
4284                                                  flags, view);
4285                 if (IS_ERR(vma))
4286                         return PTR_ERR(vma);
4287         }
4288
4289         if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
4290                 ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
4291                 if (ret)
4292                         return ret;
4293         }
4294
4295         if ((bound ^ vma->bound) & GLOBAL_BIND) {
4296                 bool mappable, fenceable;
4297                 u32 fence_size, fence_alignment;
4298
4299                 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4300                                                    obj->base.size,
4301                                                    obj->tiling_mode);
4302                 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4303                                                              obj->base.size,
4304                                                              obj->tiling_mode,
4305                                                              true);
4306
4307                 fenceable = (vma->node.size == fence_size &&
4308                              (vma->node.start & (fence_alignment - 1)) == 0);
4309
4310                 mappable = (vma->node.start + obj->base.size <=
4311                             dev_priv->gtt.mappable_end);
4312
4313                 obj->map_and_fenceable = mappable && fenceable;
4314         }
4315
4316         WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4317
4318         vma->pin_count++;
4319         if (flags & PIN_MAPPABLE)
4320                 obj->pin_mappable |= true;
4321
4322         return 0;
4323 }
4324
4325 void
4326 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4327 {
4328         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4329
4330         BUG_ON(!vma);
4331         BUG_ON(vma->pin_count == 0);
4332         BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4333
4334         if (--vma->pin_count == 0)
4335                 obj->pin_mappable = false;
4336 }
4337
4338 bool
4339 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4340 {
4341         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4342                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4343                 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4344
4345                 WARN_ON(!ggtt_vma ||
4346                         dev_priv->fence_regs[obj->fence_reg].pin_count >
4347                         ggtt_vma->pin_count);
4348                 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4349                 return true;
4350         } else
4351                 return false;
4352 }
4353
4354 void
4355 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4356 {
4357         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4358                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4359                 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4360                 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4361         }
4362 }
4363
4364 int
4365 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4366                     struct drm_file *file)
4367 {
4368         struct drm_i915_gem_busy *args = data;
4369         struct drm_i915_gem_object *obj;
4370         int ret;
4371
4372         ret = i915_mutex_lock_interruptible(dev);
4373         if (ret)
4374                 return ret;
4375
4376         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4377         if (&obj->base == NULL) {
4378                 ret = -ENOENT;
4379                 goto unlock;
4380         }
4381
4382         /* Count all active objects as busy, even if they are currently not used
4383          * by the gpu. Users of this interface expect objects to eventually
4384          * become non-busy without any further actions, therefore emit any
4385          * necessary flushes here.
4386          */
4387         ret = i915_gem_object_flush_active(obj);
4388
4389         args->busy = obj->active;
4390         if (obj->last_read_req) {
4391                 struct intel_engine_cs *ring;
4392                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4393                 ring = i915_gem_request_get_ring(obj->last_read_req);
4394                 args->busy |= intel_ring_flag(ring) << 16;
4395         }
4396
4397         drm_gem_object_unreference(&obj->base);
4398 unlock:
4399         mutex_unlock(&dev->struct_mutex);
4400         return ret;
4401 }
4402
4403 int
4404 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4405                         struct drm_file *file_priv)
4406 {
4407         return i915_gem_ring_throttle(dev, file_priv);
4408 }
4409
4410 int
4411 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4412                        struct drm_file *file_priv)
4413 {
4414         struct drm_i915_private *dev_priv = dev->dev_private;
4415         struct drm_i915_gem_madvise *args = data;
4416         struct drm_i915_gem_object *obj;
4417         int ret;
4418
4419         switch (args->madv) {
4420         case I915_MADV_DONTNEED:
4421         case I915_MADV_WILLNEED:
4422             break;
4423         default:
4424             return -EINVAL;
4425         }
4426
4427         ret = i915_mutex_lock_interruptible(dev);
4428         if (ret)
4429                 return ret;
4430
4431         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4432         if (&obj->base == NULL) {
4433                 ret = -ENOENT;
4434                 goto unlock;
4435         }
4436
4437         if (i915_gem_obj_is_pinned(obj)) {
4438                 ret = -EINVAL;
4439                 goto out;
4440         }
4441
4442         if (obj->pages &&
4443             obj->tiling_mode != I915_TILING_NONE &&
4444             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4445                 if (obj->madv == I915_MADV_WILLNEED)
4446                         i915_gem_object_unpin_pages(obj);
4447                 if (args->madv == I915_MADV_WILLNEED)
4448                         i915_gem_object_pin_pages(obj);
4449         }
4450
4451         if (obj->madv != __I915_MADV_PURGED)
4452                 obj->madv = args->madv;
4453
4454         /* if the object is no longer attached, discard its backing storage */
4455         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4456                 i915_gem_object_truncate(obj);
4457
4458         args->retained = obj->madv != __I915_MADV_PURGED;
4459
4460 out:
4461         drm_gem_object_unreference(&obj->base);
4462 unlock:
4463         mutex_unlock(&dev->struct_mutex);
4464         return ret;
4465 }
4466
4467 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4468                           const struct drm_i915_gem_object_ops *ops)
4469 {
4470         INIT_LIST_HEAD(&obj->global_list);
4471         INIT_LIST_HEAD(&obj->ring_list);
4472         INIT_LIST_HEAD(&obj->obj_exec_link);
4473         INIT_LIST_HEAD(&obj->vma_list);
4474         INIT_LIST_HEAD(&obj->batch_pool_list);
4475
4476         obj->ops = ops;
4477
4478         obj->fence_reg = I915_FENCE_REG_NONE;
4479         obj->madv = I915_MADV_WILLNEED;
4480
4481         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4482 }
4483
4484 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4485         .get_pages = i915_gem_object_get_pages_gtt,
4486         .put_pages = i915_gem_object_put_pages_gtt,
4487 };
4488
4489 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4490                                                   size_t size)
4491 {
4492         struct drm_i915_gem_object *obj;
4493 #if 0
4494         struct address_space *mapping;
4495         gfp_t mask;
4496 #endif
4497
4498         obj = i915_gem_object_alloc(dev);
4499         if (obj == NULL)
4500                 return NULL;
4501
4502         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4503                 i915_gem_object_free(obj);
4504                 return NULL;
4505         }
4506
4507 #if 0
4508         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4509         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4510                 /* 965gm cannot relocate objects above 4GiB. */
4511                 mask &= ~__GFP_HIGHMEM;
4512                 mask |= __GFP_DMA32;
4513         }
4514
4515         mapping = file_inode(obj->base.filp)->i_mapping;
4516         mapping_set_gfp_mask(mapping, mask);
4517 #endif
4518
4519         i915_gem_object_init(obj, &i915_gem_object_ops);
4520
4521         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4522         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4523
4524         if (HAS_LLC(dev)) {
4525                 /* On some devices, we can have the GPU use the LLC (the CPU
4526                  * cache) for about a 10% performance improvement
4527                  * compared to uncached.  Graphics requests other than
4528                  * display scanout are coherent with the CPU in
4529                  * accessing this cache.  This means in this mode we
4530                  * don't need to clflush on the CPU side, and on the
4531                  * GPU side we only need to flush internal caches to
4532                  * get data visible to the CPU.
4533                  *
4534                  * However, we maintain the display planes as UC, and so
4535                  * need to rebind when first used as such.
4536                  */
4537                 obj->cache_level = I915_CACHE_LLC;
4538         } else
4539                 obj->cache_level = I915_CACHE_NONE;
4540
4541         trace_i915_gem_object_create(obj);
4542
4543         return obj;
4544 }
4545
4546 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4547 {
4548         /* If we are the last user of the backing storage (be it shmemfs
4549          * pages or stolen etc), we know that the pages are going to be
4550          * immediately released. In this case, we can then skip copying
4551          * back the contents from the GPU.
4552          */
4553
4554         if (obj->madv != I915_MADV_WILLNEED)
4555                 return false;
4556
4557         if (obj->base.vm_obj == NULL)
4558                 return true;
4559
4560         /* At first glance, this looks racy, but then again so would be
4561          * userspace racing mmap against close. However, the first external
4562          * reference to the filp can only be obtained through the
4563          * i915_gem_mmap_ioctl() which safeguards us against the user
4564          * acquiring such a reference whilst we are in the middle of
4565          * freeing the object.
4566          */
4567 #if 0
4568         return atomic_long_read(&obj->base.filp->f_count) == 1;
4569 #else
4570         return false;
4571 #endif
4572 }
4573
4574 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4575 {
4576         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4577         struct drm_device *dev = obj->base.dev;
4578         struct drm_i915_private *dev_priv = dev->dev_private;
4579         struct i915_vma *vma, *next;
4580
4581         intel_runtime_pm_get(dev_priv);
4582
4583         trace_i915_gem_object_destroy(obj);
4584
4585         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4586                 int ret;
4587
4588                 vma->pin_count = 0;
4589                 ret = i915_vma_unbind(vma);
4590                 if (WARN_ON(ret == -ERESTARTSYS)) {
4591                         bool was_interruptible;
4592
4593                         was_interruptible = dev_priv->mm.interruptible;
4594                         dev_priv->mm.interruptible = false;
4595
4596                         WARN_ON(i915_vma_unbind(vma));
4597
4598                         dev_priv->mm.interruptible = was_interruptible;
4599                 }
4600         }
4601
4602         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4603          * before progressing. */
4604         if (obj->stolen)
4605                 i915_gem_object_unpin_pages(obj);
4606
4607         WARN_ON(obj->frontbuffer_bits);
4608
4609         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4610             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4611             obj->tiling_mode != I915_TILING_NONE)
4612                 i915_gem_object_unpin_pages(obj);
4613
4614         if (WARN_ON(obj->pages_pin_count))
4615                 obj->pages_pin_count = 0;
4616         if (discard_backing_storage(obj))
4617                 obj->madv = I915_MADV_DONTNEED;
4618         i915_gem_object_put_pages(obj);
4619         i915_gem_object_free_mmap_offset(obj);
4620
4621         BUG_ON(obj->pages);
4622
4623 #if 0
4624         if (obj->base.import_attach)
4625                 drm_prime_gem_destroy(&obj->base, NULL);
4626 #endif
4627
4628         if (obj->ops->release)
4629                 obj->ops->release(obj);
4630
4631         drm_gem_object_release(&obj->base);
4632         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4633
4634         kfree(obj->bit_17);
4635         i915_gem_object_free(obj);
4636
4637         intel_runtime_pm_put(dev_priv);
4638 }
4639
4640 struct i915_vma *i915_gem_obj_to_vma_view(struct drm_i915_gem_object *obj,
4641                                           struct i915_address_space *vm,
4642                                           const struct i915_ggtt_view *view)
4643 {
4644         struct i915_vma *vma;
4645         list_for_each_entry(vma, &obj->vma_list, vma_link)
4646                 if (vma->vm == vm && vma->ggtt_view.type == view->type)
4647                         return vma;
4648
4649         return NULL;
4650 }
4651
4652 void i915_gem_vma_destroy(struct i915_vma *vma)
4653 {
4654         struct i915_address_space *vm = NULL;
4655         WARN_ON(vma->node.allocated);
4656
4657         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4658         if (!list_empty(&vma->exec_list))
4659                 return;
4660
4661         vm = vma->vm;
4662
4663         if (!i915_is_ggtt(vm))
4664                 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4665
4666         list_del(&vma->vma_link);
4667
4668         kfree(vma);
4669 }
4670
4671 static void
4672 i915_gem_stop_ringbuffers(struct drm_device *dev)
4673 {
4674         struct drm_i915_private *dev_priv = dev->dev_private;
4675         struct intel_engine_cs *ring;
4676         int i;
4677
4678         for_each_ring(ring, dev_priv, i)
4679                 dev_priv->gt.stop_ring(ring);
4680 }
4681
4682 int
4683 i915_gem_suspend(struct drm_device *dev)
4684 {
4685         struct drm_i915_private *dev_priv = dev->dev_private;
4686         int ret = 0;
4687
4688         mutex_lock(&dev->struct_mutex);
4689         ret = i915_gpu_idle(dev);
4690         if (ret)
4691                 goto err;
4692
4693         i915_gem_retire_requests(dev);
4694
4695         /* Under UMS, be paranoid and evict. */
4696         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4697                 i915_gem_evict_everything(dev);
4698
4699         i915_gem_stop_ringbuffers(dev);
4700         mutex_unlock(&dev->struct_mutex);
4701
4702         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4703         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4704 #if 0
4705         flush_delayed_work(&dev_priv->mm.idle_work);
4706 #endif
4707
4708         /* Assert that we sucessfully flushed all the work and
4709          * reset the GPU back to its idle, low power state.
4710          */
4711         WARN_ON(dev_priv->mm.busy);
4712
4713         return 0;
4714
4715 err:
4716         mutex_unlock(&dev->struct_mutex);
4717         return ret;
4718 }
4719
4720 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4721 {
4722         struct drm_device *dev = ring->dev;
4723         struct drm_i915_private *dev_priv = dev->dev_private;
4724         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4725         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4726         int i, ret;
4727
4728         if (!HAS_L3_DPF(dev) || !remap_info)
4729                 return 0;
4730
4731         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4732         if (ret)
4733                 return ret;
4734
4735         /*
4736          * Note: We do not worry about the concurrent register cacheline hang
4737          * here because no other code should access these registers other than
4738          * at initialization time.
4739          */
4740         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4741                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4742                 intel_ring_emit(ring, reg_base + i);
4743                 intel_ring_emit(ring, remap_info[i/4]);
4744         }
4745
4746         intel_ring_advance(ring);
4747
4748         return ret;
4749 }
4750
4751 void i915_gem_init_swizzling(struct drm_device *dev)
4752 {
4753         struct drm_i915_private *dev_priv = dev->dev_private;
4754
4755         if (INTEL_INFO(dev)->gen < 5 ||
4756             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4757                 return;
4758
4759         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4760                                  DISP_TILE_SURFACE_SWIZZLING);
4761
4762         if (IS_GEN5(dev))
4763                 return;
4764
4765         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4766         if (IS_GEN6(dev))
4767                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4768         else if (IS_GEN7(dev))
4769                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4770         else if (IS_GEN8(dev))
4771                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4772         else
4773                 BUG();
4774 }
4775
4776 static bool
4777 intel_enable_blt(struct drm_device *dev)
4778 {
4779         if (!HAS_BLT(dev))
4780                 return false;
4781
4782         /* The blitter was dysfunctional on early prototypes */
4783         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4784                 DRM_INFO("BLT not supported on this pre-production hardware;"
4785                          " graphics performance will be degraded.\n");
4786                 return false;
4787         }
4788
4789         return true;
4790 }
4791
4792 static void init_unused_ring(struct drm_device *dev, u32 base)
4793 {
4794         struct drm_i915_private *dev_priv = dev->dev_private;
4795
4796         I915_WRITE(RING_CTL(base), 0);
4797         I915_WRITE(RING_HEAD(base), 0);
4798         I915_WRITE(RING_TAIL(base), 0);
4799         I915_WRITE(RING_START(base), 0);
4800 }
4801
4802 static void init_unused_rings(struct drm_device *dev)
4803 {
4804         if (IS_I830(dev)) {
4805                 init_unused_ring(dev, PRB1_BASE);
4806                 init_unused_ring(dev, SRB0_BASE);
4807                 init_unused_ring(dev, SRB1_BASE);
4808                 init_unused_ring(dev, SRB2_BASE);
4809                 init_unused_ring(dev, SRB3_BASE);
4810         } else if (IS_GEN2(dev)) {
4811                 init_unused_ring(dev, SRB0_BASE);
4812                 init_unused_ring(dev, SRB1_BASE);
4813         } else if (IS_GEN3(dev)) {
4814                 init_unused_ring(dev, PRB1_BASE);
4815                 init_unused_ring(dev, PRB2_BASE);
4816         }
4817 }
4818
4819 int i915_gem_init_rings(struct drm_device *dev)
4820 {
4821         struct drm_i915_private *dev_priv = dev->dev_private;
4822         int ret;
4823
4824         ret = intel_init_render_ring_buffer(dev);
4825         if (ret)
4826                 return ret;
4827
4828         if (HAS_BSD(dev)) {
4829                 ret = intel_init_bsd_ring_buffer(dev);
4830                 if (ret)
4831                         goto cleanup_render_ring;
4832         }
4833
4834         if (intel_enable_blt(dev)) {
4835                 ret = intel_init_blt_ring_buffer(dev);
4836                 if (ret)
4837                         goto cleanup_bsd_ring;
4838         }
4839
4840         if (HAS_VEBOX(dev)) {
4841                 ret = intel_init_vebox_ring_buffer(dev);
4842                 if (ret)
4843                         goto cleanup_blt_ring;
4844         }
4845
4846         if (HAS_BSD2(dev)) {
4847                 ret = intel_init_bsd2_ring_buffer(dev);
4848                 if (ret)
4849                         goto cleanup_vebox_ring;
4850         }
4851
4852         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4853         if (ret)
4854                 goto cleanup_bsd2_ring;
4855
4856         return 0;
4857
4858 cleanup_bsd2_ring:
4859         intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4860 cleanup_vebox_ring:
4861         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4862 cleanup_blt_ring:
4863         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4864 cleanup_bsd_ring:
4865         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4866 cleanup_render_ring:
4867         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4868
4869         return ret;
4870 }
4871
4872 int
4873 i915_gem_init_hw(struct drm_device *dev)
4874 {
4875         struct drm_i915_private *dev_priv = dev->dev_private;
4876         struct intel_engine_cs *ring;
4877         int ret, i;
4878
4879 #if 0
4880         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4881                 return -EIO;
4882 #endif
4883
4884         /* Double layer security blanket, see i915_gem_init() */
4885         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4886
4887         if (dev_priv->ellc_size)
4888                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4889
4890         if (IS_HASWELL(dev))
4891                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4892                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4893
4894         if (HAS_PCH_NOP(dev)) {
4895                 if (IS_IVYBRIDGE(dev)) {
4896                         u32 temp = I915_READ(GEN7_MSG_CTL);
4897                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4898                         I915_WRITE(GEN7_MSG_CTL, temp);
4899                 } else if (INTEL_INFO(dev)->gen >= 7) {
4900                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4901                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4902                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4903                 }
4904         }
4905
4906         i915_gem_init_swizzling(dev);
4907
4908         /*
4909          * At least 830 can leave some of the unused rings
4910          * "active" (ie. head != tail) after resume which
4911          * will prevent c3 entry. Makes sure all unused rings
4912          * are totally idle.
4913          */
4914         init_unused_rings(dev);
4915
4916         for_each_ring(ring, dev_priv, i) {
4917                 ret = ring->init_hw(ring);
4918                 if (ret)
4919                         goto out;
4920         }
4921
4922         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4923                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4924
4925         ret = i915_ppgtt_init_hw(dev);
4926         if (ret && ret != -EIO) {
4927                 DRM_ERROR("PPGTT enable failed %d\n", ret);
4928                 i915_gem_cleanup_ringbuffer(dev);
4929         }
4930
4931         ret = i915_gem_context_enable(dev_priv);
4932         if (ret && ret != -EIO) {
4933                 DRM_ERROR("Context enable failed %d\n", ret);
4934                 i915_gem_cleanup_ringbuffer(dev);
4935
4936                 goto out;
4937         }
4938
4939 out:
4940         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4941         return ret;
4942 }
4943
4944 int i915_gem_init(struct drm_device *dev)
4945 {
4946         struct drm_i915_private *dev_priv = dev->dev_private;
4947         int ret;
4948
4949         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4950                         i915.enable_execlists);
4951
4952         mutex_lock(&dev->struct_mutex);
4953
4954         if (IS_VALLEYVIEW(dev)) {
4955                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4956                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4957                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4958                               VLV_GTLC_ALLOWWAKEACK), 10))
4959                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4960         }
4961
4962         if (!i915.enable_execlists) {
4963                 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4964                 dev_priv->gt.init_rings = i915_gem_init_rings;
4965                 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4966                 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4967         } else {
4968                 dev_priv->gt.do_execbuf = intel_execlists_submission;
4969                 dev_priv->gt.init_rings = intel_logical_rings_init;
4970                 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4971                 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4972         }
4973
4974         /* This is just a security blanket to placate dragons.
4975          * On some systems, we very sporadically observe that the first TLBs
4976          * used by the CS may be stale, despite us poking the TLB reset. If
4977          * we hold the forcewake during initialisation these problems
4978          * just magically go away.
4979          */
4980         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4981
4982         ret = i915_gem_init_userptr(dev);
4983         if (ret)
4984                 goto out_unlock;
4985
4986         i915_gem_init_global_gtt(dev);
4987
4988         ret = i915_gem_context_init(dev);
4989         if (ret)
4990                 goto out_unlock;
4991
4992         ret = dev_priv->gt.init_rings(dev);
4993         if (ret)
4994                 goto out_unlock;
4995
4996         ret = i915_gem_init_hw(dev);
4997         if (ret == -EIO) {
4998                 /* Allow ring initialisation to fail by marking the GPU as
4999                  * wedged. But we only want to do this where the GPU is angry,
5000                  * for all other failure, such as an allocation failure, bail.
5001                  */
5002                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5003                 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5004                 ret = 0;
5005         }
5006
5007 out_unlock:
5008         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5009         mutex_unlock(&dev->struct_mutex);
5010
5011         return ret;
5012 }
5013
5014 void
5015 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5016 {
5017         struct drm_i915_private *dev_priv = dev->dev_private;
5018         struct intel_engine_cs *ring;
5019         int i;
5020
5021         for_each_ring(ring, dev_priv, i)
5022                 dev_priv->gt.cleanup_ring(ring);
5023 }
5024
5025 static void
5026 init_ring_lists(struct intel_engine_cs *ring)
5027 {
5028         INIT_LIST_HEAD(&ring->active_list);
5029         INIT_LIST_HEAD(&ring->request_list);
5030 }
5031
5032 void i915_init_vm(struct drm_i915_private *dev_priv,
5033                   struct i915_address_space *vm)
5034 {
5035         if (!i915_is_ggtt(vm))
5036                 drm_mm_init(&vm->mm, vm->start, vm->total);
5037         vm->dev = dev_priv->dev;
5038         INIT_LIST_HEAD(&vm->active_list);
5039         INIT_LIST_HEAD(&vm->inactive_list);
5040         INIT_LIST_HEAD(&vm->global_link);
5041         list_add_tail(&vm->global_link, &dev_priv->vm_list);
5042 }
5043
5044 void
5045 i915_gem_load(struct drm_device *dev)
5046 {
5047         struct drm_i915_private *dev_priv = dev->dev_private;
5048         int i;
5049
5050         INIT_LIST_HEAD(&dev_priv->vm_list);
5051         i915_init_vm(dev_priv, &dev_priv->gtt.base);
5052
5053         INIT_LIST_HEAD(&dev_priv->context_list);
5054         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5055         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5056         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5057         for (i = 0; i < I915_NUM_RINGS; i++)
5058                 init_ring_lists(&dev_priv->ring[i]);
5059         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5060                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5061         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5062                           i915_gem_retire_work_handler);
5063         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5064                           i915_gem_idle_work_handler);
5065         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5066
5067         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5068         if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
5069                 I915_WRITE(MI_ARB_STATE,
5070                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5071         }
5072
5073         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5074
5075         /* Old X drivers will take 0-2 for front, back, depth buffers */
5076         if (!drm_core_check_feature(dev, DRIVER_MODESET))
5077                 dev_priv->fence_reg_start = 3;
5078
5079         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5080                 dev_priv->num_fence_regs = 32;
5081         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5082                 dev_priv->num_fence_regs = 16;
5083         else
5084                 dev_priv->num_fence_regs = 8;
5085
5086         /* Initialize fence registers to zero */
5087         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5088         i915_gem_restore_fences(dev);
5089
5090         i915_gem_detect_bit_6_swizzle(dev);
5091         init_waitqueue_head(&dev_priv->pending_flip_queue);
5092
5093         dev_priv->mm.interruptible = true;
5094
5095 #if 0
5096         dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5097         dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5098         dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5099         register_shrinker(&dev_priv->mm.shrinker);
5100
5101         dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5102         register_oom_notifier(&dev_priv->mm.oom_notifier);
5103 #endif
5104
5105         i915_gem_batch_pool_init(dev, &dev_priv->mm.batch_pool);
5106
5107         lockinit(&dev_priv->fb_tracking.lock, "drmftl", 0, LK_CANRECURSE);
5108 }
5109
5110 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5111 {
5112         struct drm_i915_file_private *file_priv = file->driver_priv;
5113
5114         cancel_delayed_work_sync(&file_priv->mm.idle_work);
5115
5116         /* Clean up our request list when the client is going away, so that
5117          * later retire_requests won't dereference our soon-to-be-gone
5118          * file_priv.
5119          */
5120         spin_lock(&file_priv->mm.lock);
5121         while (!list_empty(&file_priv->mm.request_list)) {
5122                 struct drm_i915_gem_request *request;
5123
5124                 request = list_first_entry(&file_priv->mm.request_list,
5125                                            struct drm_i915_gem_request,
5126                                            client_list);
5127                 list_del(&request->client_list);
5128                 request->file_priv = NULL;
5129         }
5130         spin_unlock(&file_priv->mm.lock);
5131 }
5132
5133 int
5134 i915_gem_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
5135     vm_ooffset_t foff, struct ucred *cred, u_short *color)
5136 {
5137         *color = 0; /* XXXKIB */
5138         return (0);
5139 }
5140
5141 void
5142 i915_gem_pager_dtor(void *handle)
5143 {
5144         struct drm_gem_object *obj;
5145         struct drm_device *dev;
5146
5147         obj = handle;
5148         dev = obj->dev;
5149
5150         mutex_lock(&dev->struct_mutex);
5151         drm_gem_free_mmap_offset(obj);
5152         i915_gem_release_mmap(to_intel_bo(obj));
5153         drm_gem_object_unreference(obj);
5154         mutex_unlock(&dev->struct_mutex);
5155 }
5156
5157 static void
5158 i915_gem_file_idle_work_handler(struct work_struct *work)
5159 {
5160         struct drm_i915_file_private *file_priv =
5161                 container_of(work, typeof(*file_priv), mm.idle_work.work);
5162
5163         atomic_set(&file_priv->rps_wait_boost, false);
5164 }
5165
5166 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5167 {
5168         struct drm_i915_file_private *file_priv;
5169         int ret;
5170
5171         DRM_DEBUG_DRIVER("\n");
5172
5173         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5174         if (!file_priv)
5175                 return -ENOMEM;
5176
5177         file->driver_priv = file_priv;
5178         file_priv->dev_priv = dev->dev_private;
5179         file_priv->file = file;
5180
5181         spin_init(&file_priv->mm.lock, "i915_priv");
5182         INIT_LIST_HEAD(&file_priv->mm.request_list);
5183         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5184                           i915_gem_file_idle_work_handler);
5185
5186         ret = i915_gem_context_open(dev, file);
5187         if (ret)
5188                 kfree(file_priv);
5189
5190         return ret;
5191 }
5192
5193 /**
5194  * i915_gem_track_fb - update frontbuffer tracking
5195  * old: current GEM buffer for the frontbuffer slots
5196  * new: new GEM buffer for the frontbuffer slots
5197  * frontbuffer_bits: bitmask of frontbuffer slots
5198  *
5199  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5200  * from @old and setting them in @new. Both @old and @new can be NULL.
5201  */
5202 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5203                        struct drm_i915_gem_object *new,
5204                        unsigned frontbuffer_bits)
5205 {
5206         if (old) {
5207                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5208                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5209                 old->frontbuffer_bits &= ~frontbuffer_bits;
5210         }
5211
5212         if (new) {
5213                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5214                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5215                 new->frontbuffer_bits |= frontbuffer_bits;
5216         }
5217 }
5218
5219 #if 0
5220 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5221 {
5222         if (!mutex_is_locked(mutex))
5223                 return false;
5224
5225 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5226         return mutex->owner == task;
5227 #else
5228         /* Since UP may be pre-empted, we cannot assume that we own the lock */
5229         return false;
5230 #endif
5231 }
5232 #endif
5233
5234 #if 0
5235 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5236 {
5237         if (!mutex_trylock(&dev->struct_mutex)) {
5238                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5239                         return false;
5240
5241                 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5242                         return false;
5243
5244                 *unlock = false;
5245         } else
5246                 *unlock = true;
5247
5248         return true;
5249 }
5250
5251 static int num_vma_bound(struct drm_i915_gem_object *obj)
5252 {
5253         struct i915_vma *vma;
5254         int count = 0;
5255
5256         list_for_each_entry(vma, &obj->vma_list, vma_link)
5257                 if (drm_mm_node_allocated(&vma->node))
5258                         count++;
5259
5260         return count;
5261 }
5262
5263 static unsigned long
5264 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5265 {
5266         struct drm_i915_private *dev_priv =
5267                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5268         struct drm_device *dev = dev_priv->dev;
5269         struct drm_i915_gem_object *obj;
5270         unsigned long count;
5271         bool unlock;
5272
5273         if (!i915_gem_shrinker_lock(dev, &unlock))
5274                 return 0;
5275
5276         count = 0;
5277         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5278                 if (obj->pages_pin_count == 0)
5279                         count += obj->base.size >> PAGE_SHIFT;
5280
5281         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5282                 if (!i915_gem_obj_is_pinned(obj) &&
5283                     obj->pages_pin_count == num_vma_bound(obj))
5284                         count += obj->base.size >> PAGE_SHIFT;
5285         }
5286
5287         if (unlock)
5288                 mutex_unlock(&dev->struct_mutex);
5289
5290         return count;
5291 }
5292 #endif
5293
5294 /* All the new VM stuff */
5295 unsigned long i915_gem_obj_offset_view(struct drm_i915_gem_object *o,
5296                                        struct i915_address_space *vm,
5297                                        enum i915_ggtt_view_type view)
5298 {
5299         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5300         struct i915_vma *vma;
5301
5302         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5303
5304         list_for_each_entry(vma, &o->vma_list, vma_link) {
5305                 if (vma->vm == vm && vma->ggtt_view.type == view)
5306                         return vma->node.start;
5307
5308         }
5309         WARN(1, "%s vma for this object not found.\n",
5310              i915_is_ggtt(vm) ? "global" : "ppgtt");
5311         return -1;
5312 }
5313
5314 bool i915_gem_obj_bound_view(struct drm_i915_gem_object *o,
5315                              struct i915_address_space *vm,
5316                              enum i915_ggtt_view_type view)
5317 {
5318         struct i915_vma *vma;
5319
5320         list_for_each_entry(vma, &o->vma_list, vma_link)
5321                 if (vma->vm == vm &&
5322                     vma->ggtt_view.type == view &&
5323                     drm_mm_node_allocated(&vma->node))
5324                         return true;
5325
5326         return false;
5327 }
5328
5329 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5330 {
5331         struct i915_vma *vma;
5332
5333         list_for_each_entry(vma, &o->vma_list, vma_link)
5334                 if (drm_mm_node_allocated(&vma->node))
5335                         return true;
5336
5337         return false;
5338 }
5339
5340 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5341                                 struct i915_address_space *vm)
5342 {
5343         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5344         struct i915_vma *vma;
5345
5346         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5347
5348         BUG_ON(list_empty(&o->vma_list));
5349
5350         list_for_each_entry(vma, &o->vma_list, vma_link)
5351                 if (vma->vm == vm)
5352                         return vma->node.size;
5353
5354         return 0;
5355 }
5356
5357 #if 0
5358 static unsigned long
5359 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5360 {
5361         struct drm_i915_private *dev_priv =
5362                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5363         struct drm_device *dev = dev_priv->dev;
5364         unsigned long freed;
5365         bool unlock;
5366
5367         if (!i915_gem_shrinker_lock(dev, &unlock))
5368                 return SHRINK_STOP;
5369
5370         freed = i915_gem_shrink(dev_priv,
5371                                 sc->nr_to_scan,
5372                                 I915_SHRINK_BOUND |
5373                                 I915_SHRINK_UNBOUND |
5374                                 I915_SHRINK_PURGEABLE);
5375         if (freed < sc->nr_to_scan)
5376                 freed += i915_gem_shrink(dev_priv,
5377                                          sc->nr_to_scan - freed,
5378                                          I915_SHRINK_BOUND |
5379                                          I915_SHRINK_UNBOUND);
5380         if (unlock)
5381                 mutex_unlock(&dev->struct_mutex);
5382
5383         return freed;
5384 }
5385
5386 static int
5387 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5388 {
5389         struct drm_i915_private *dev_priv =
5390                 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5391         struct drm_device *dev = dev_priv->dev;
5392         struct drm_i915_gem_object *obj;
5393         unsigned long timeout = msecs_to_jiffies(5000) + 1;
5394         unsigned long pinned, bound, unbound, freed_pages;
5395         bool was_interruptible;
5396         bool unlock;
5397
5398         while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5399                 schedule_timeout_killable(1);
5400                 if (fatal_signal_pending(current))
5401                         return NOTIFY_DONE;
5402         }
5403         if (timeout == 0) {
5404                 pr_err("Unable to purge GPU memory due lock contention.\n");
5405                 return NOTIFY_DONE;
5406         }
5407
5408         was_interruptible = dev_priv->mm.interruptible;
5409         dev_priv->mm.interruptible = false;
5410
5411         freed_pages = i915_gem_shrink_all(dev_priv);
5412
5413         dev_priv->mm.interruptible = was_interruptible;
5414
5415         /* Because we may be allocating inside our own driver, we cannot
5416          * assert that there are no objects with pinned pages that are not
5417          * being pointed to by hardware.
5418          */
5419         unbound = bound = pinned = 0;
5420         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5421                 if (!obj->base.filp) /* not backed by a freeable object */
5422                         continue;
5423
5424                 if (obj->pages_pin_count)
5425                         pinned += obj->base.size;
5426                 else
5427                         unbound += obj->base.size;
5428         }
5429         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5430                 if (!obj->base.filp)
5431                         continue;
5432
5433                 if (obj->pages_pin_count)
5434                         pinned += obj->base.size;
5435                 else
5436                         bound += obj->base.size;
5437         }
5438
5439         if (unlock)
5440                 mutex_unlock(&dev->struct_mutex);
5441
5442         if (freed_pages || unbound || bound)
5443                 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5444                         freed_pages << PAGE_SHIFT, pinned);
5445         if (unbound || bound)
5446                 pr_err("%lu and %lu bytes still available in the "
5447                        "bound and unbound GPU page lists.\n",
5448                        bound, unbound);
5449
5450         *(unsigned long *)ptr += freed_pages;
5451         return NOTIFY_DONE;
5452 }
5453 #endif
5454
5455 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5456 {
5457         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
5458         struct i915_vma *vma;
5459
5460         list_for_each_entry(vma, &obj->vma_list, vma_link)
5461                 if (vma->vm == ggtt &&
5462                     vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5463                         return vma;
5464
5465         return NULL;
5466 }