kernel - Tear out selwakeup()
[dragonfly.git] / sys / kern / sys_pipe.c
1 /*
2  * Copyright (c) 1996 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Absolutely no warranty of function or purpose is made by the author
15  *    John S. Dyson.
16  * 4. Modifications may be freely made to this file if the above conditions
17  *    are met.
18  *
19  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.60.2.13 2002/08/05 15:05:15 des Exp $
20  * $DragonFly: src/sys/kern/sys_pipe.c,v 1.50 2008/09/09 04:06:13 dillon Exp $
21  */
22
23 /*
24  * This file contains a high-performance replacement for the socket-based
25  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
26  * all features of sockets, but does do everything that pipes normally
27  * do.
28  */
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
32 #include <sys/proc.h>
33 #include <sys/fcntl.h>
34 #include <sys/file.h>
35 #include <sys/filedesc.h>
36 #include <sys/filio.h>
37 #include <sys/ttycom.h>
38 #include <sys/stat.h>
39 #include <sys/select.h>
40 #include <sys/signalvar.h>
41 #include <sys/sysproto.h>
42 #include <sys/pipe.h>
43 #include <sys/vnode.h>
44 #include <sys/uio.h>
45 #include <sys/event.h>
46 #include <sys/globaldata.h>
47 #include <sys/module.h>
48 #include <sys/malloc.h>
49 #include <sys/sysctl.h>
50 #include <sys/socket.h>
51
52 #include <vm/vm.h>
53 #include <vm/vm_param.h>
54 #include <sys/lock.h>
55 #include <vm/vm_object.h>
56 #include <vm/vm_kern.h>
57 #include <vm/vm_extern.h>
58 #include <vm/pmap.h>
59 #include <vm/vm_map.h>
60 #include <vm/vm_page.h>
61 #include <vm/vm_zone.h>
62
63 #include <sys/file2.h>
64 #include <sys/signal2.h>
65 #include <sys/mplock2.h>
66
67 #include <machine/cpufunc.h>
68
69 /*
70  * interfaces to the outside world
71  */
72 static int pipe_read (struct file *fp, struct uio *uio, 
73                 struct ucred *cred, int flags);
74 static int pipe_write (struct file *fp, struct uio *uio, 
75                 struct ucred *cred, int flags);
76 static int pipe_close (struct file *fp);
77 static int pipe_shutdown (struct file *fp, int how);
78 static int pipe_kqfilter (struct file *fp, struct knote *kn);
79 static int pipe_stat (struct file *fp, struct stat *sb, struct ucred *cred);
80 static int pipe_ioctl (struct file *fp, u_long cmd, caddr_t data,
81                 struct ucred *cred, struct sysmsg *msg);
82
83 static struct fileops pipeops = {
84         .fo_read = pipe_read, 
85         .fo_write = pipe_write,
86         .fo_ioctl = pipe_ioctl,
87         .fo_kqfilter = pipe_kqfilter,
88         .fo_stat = pipe_stat,
89         .fo_close = pipe_close,
90         .fo_shutdown = pipe_shutdown
91 };
92
93 static void     filt_pipedetach(struct knote *kn);
94 static int      filt_piperead(struct knote *kn, long hint);
95 static int      filt_pipewrite(struct knote *kn, long hint);
96
97 static struct filterops pipe_rfiltops =
98         { 1, NULL, filt_pipedetach, filt_piperead };
99 static struct filterops pipe_wfiltops =
100         { 1, NULL, filt_pipedetach, filt_pipewrite };
101
102 MALLOC_DEFINE(M_PIPE, "pipe", "pipe structures");
103
104 /*
105  * Default pipe buffer size(s), this can be kind-of large now because pipe
106  * space is pageable.  The pipe code will try to maintain locality of
107  * reference for performance reasons, so small amounts of outstanding I/O
108  * will not wipe the cache.
109  */
110 #define MINPIPESIZE (PIPE_SIZE/3)
111 #define MAXPIPESIZE (2*PIPE_SIZE/3)
112
113 /*
114  * Limit the number of "big" pipes
115  */
116 #define LIMITBIGPIPES   64
117 #define PIPEQ_MAX_CACHE 16      /* per-cpu pipe structure cache */
118
119 static int pipe_maxbig = LIMITBIGPIPES;
120 static int pipe_maxcache = PIPEQ_MAX_CACHE;
121 static int pipe_bigcount;
122 static int pipe_nbig;
123 static int pipe_bcache_alloc;
124 static int pipe_bkmem_alloc;
125 static int pipe_rblocked_count;
126 static int pipe_wblocked_count;
127
128 SYSCTL_NODE(_kern, OID_AUTO, pipe, CTLFLAG_RW, 0, "Pipe operation");
129 SYSCTL_INT(_kern_pipe, OID_AUTO, nbig,
130         CTLFLAG_RD, &pipe_nbig, 0, "numer of big pipes allocated");
131 SYSCTL_INT(_kern_pipe, OID_AUTO, bigcount,
132         CTLFLAG_RW, &pipe_bigcount, 0, "number of times pipe expanded");
133 SYSCTL_INT(_kern_pipe, OID_AUTO, rblocked,
134         CTLFLAG_RW, &pipe_rblocked_count, 0, "number of times pipe expanded");
135 SYSCTL_INT(_kern_pipe, OID_AUTO, wblocked,
136         CTLFLAG_RW, &pipe_wblocked_count, 0, "number of times pipe expanded");
137 SYSCTL_INT(_kern_pipe, OID_AUTO, maxcache,
138         CTLFLAG_RW, &pipe_maxcache, 0, "max pipes cached per-cpu");
139 SYSCTL_INT(_kern_pipe, OID_AUTO, maxbig,
140         CTLFLAG_RW, &pipe_maxbig, 0, "max number of big pipes");
141 #ifdef SMP
142 static int pipe_delay = 5000;   /* 5uS default */
143 SYSCTL_INT(_kern_pipe, OID_AUTO, delay,
144         CTLFLAG_RW, &pipe_delay, 0, "SMP delay optimization in ns");
145 static int pipe_mpsafe = 1;
146 SYSCTL_INT(_kern_pipe, OID_AUTO, mpsafe,
147         CTLFLAG_RW, &pipe_mpsafe, 0, "");
148 #endif
149 #if !defined(NO_PIPE_SYSCTL_STATS)
150 SYSCTL_INT(_kern_pipe, OID_AUTO, bcache_alloc,
151         CTLFLAG_RW, &pipe_bcache_alloc, 0, "pipe buffer from pcpu cache");
152 SYSCTL_INT(_kern_pipe, OID_AUTO, bkmem_alloc,
153         CTLFLAG_RW, &pipe_bkmem_alloc, 0, "pipe buffer from kmem");
154 #endif
155
156 static void pipeclose (struct pipe *cpipe);
157 static void pipe_free_kmem (struct pipe *cpipe);
158 static int pipe_create (struct pipe **cpipep);
159 static __inline void pipeselwakeup (struct pipe *cpipe);
160 static int pipespace (struct pipe *cpipe, int size);
161
162 static __inline int
163 pipeseltest(struct pipe *cpipe)
164 {
165         return ((cpipe->pipe_state & PIPE_SEL) ||
166                 ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) ||
167                 SLIST_FIRST(&cpipe->pipe_sel.si_note));
168 }
169
170 static __inline void
171 pipeselwakeup(struct pipe *cpipe)
172 {
173         if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) {
174                 get_mplock();
175                 pgsigio(cpipe->pipe_sigio, SIGIO, 0);
176                 rel_mplock();
177         }
178         if (SLIST_FIRST(&cpipe->pipe_sel.si_note)) {
179                 get_mplock();
180                 KNOTE(&cpipe->pipe_sel.si_note, 0);
181                 rel_mplock();
182         }
183 }
184
185 /*
186  * These routines are called before and after a UIO.  The UIO
187  * may block, causing our held tokens to be lost temporarily.
188  *
189  * We use these routines to serialize reads against other reads
190  * and writes against other writes.
191  *
192  * The read token is held on entry so *ipp does not race.
193  */
194 static __inline int
195 pipe_start_uio(struct pipe *cpipe, int *ipp)
196 {
197         int error;
198
199         while (*ipp) {
200                 *ipp = -1;
201                 error = tsleep(ipp, PCATCH, "pipexx", 0);
202                 if (error)
203                         return (error);
204         }
205         *ipp = 1;
206         return (0);
207 }
208
209 static __inline void
210 pipe_end_uio(struct pipe *cpipe, int *ipp)
211 {
212         if (*ipp < 0) {
213                 *ipp = 0;
214                 wakeup(ipp);
215         } else {
216                 KKASSERT(*ipp > 0);
217                 *ipp = 0;
218         }
219 }
220
221 static __inline void
222 pipe_get_mplock(int *save)
223 {
224 #ifdef SMP
225         if (pipe_mpsafe == 0) {
226                 get_mplock();
227                 *save = 1;
228         } else
229 #endif
230         {
231                 *save = 0;
232         }
233 }
234
235 static __inline void
236 pipe_rel_mplock(int *save)
237 {
238 #ifdef SMP
239         if (*save)
240                 rel_mplock();
241 #endif
242 }
243
244
245 /*
246  * The pipe system call for the DTYPE_PIPE type of pipes
247  *
248  * pipe_args(int dummy)
249  *
250  * MPSAFE
251  */
252 int
253 sys_pipe(struct pipe_args *uap)
254 {
255         struct thread *td = curthread;
256         struct filedesc *fdp = td->td_proc->p_fd;
257         struct file *rf, *wf;
258         struct pipe *rpipe, *wpipe;
259         int fd1, fd2, error;
260
261         rpipe = wpipe = NULL;
262         if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
263                 pipeclose(rpipe); 
264                 pipeclose(wpipe); 
265                 return (ENFILE);
266         }
267         
268         error = falloc(td->td_lwp, &rf, &fd1);
269         if (error) {
270                 pipeclose(rpipe);
271                 pipeclose(wpipe);
272                 return (error);
273         }
274         uap->sysmsg_fds[0] = fd1;
275
276         /*
277          * Warning: once we've gotten past allocation of the fd for the
278          * read-side, we can only drop the read side via fdrop() in order
279          * to avoid races against processes which manage to dup() the read
280          * side while we are blocked trying to allocate the write side.
281          */
282         rf->f_type = DTYPE_PIPE;
283         rf->f_flag = FREAD | FWRITE;
284         rf->f_ops = &pipeops;
285         rf->f_data = rpipe;
286         error = falloc(td->td_lwp, &wf, &fd2);
287         if (error) {
288                 fsetfd(fdp, NULL, fd1);
289                 fdrop(rf);
290                 /* rpipe has been closed by fdrop(). */
291                 pipeclose(wpipe);
292                 return (error);
293         }
294         wf->f_type = DTYPE_PIPE;
295         wf->f_flag = FREAD | FWRITE;
296         wf->f_ops = &pipeops;
297         wf->f_data = wpipe;
298         uap->sysmsg_fds[1] = fd2;
299
300         rpipe->pipe_slock = kmalloc(sizeof(struct lock),
301                                     M_PIPE, M_WAITOK|M_ZERO);
302         wpipe->pipe_slock = rpipe->pipe_slock;
303         rpipe->pipe_peer = wpipe;
304         wpipe->pipe_peer = rpipe;
305         lockinit(rpipe->pipe_slock, "pipecl", 0, 0);
306
307         /*
308          * Once activated the peer relationship remains valid until
309          * both sides are closed.
310          */
311         fsetfd(fdp, rf, fd1);
312         fsetfd(fdp, wf, fd2);
313         fdrop(rf);
314         fdrop(wf);
315
316         return (0);
317 }
318
319 /*
320  * Allocate kva for pipe circular buffer, the space is pageable
321  * This routine will 'realloc' the size of a pipe safely, if it fails
322  * it will retain the old buffer.
323  * If it fails it will return ENOMEM.
324  */
325 static int
326 pipespace(struct pipe *cpipe, int size)
327 {
328         struct vm_object *object;
329         caddr_t buffer;
330         int npages, error;
331
332         npages = round_page(size) / PAGE_SIZE;
333         object = cpipe->pipe_buffer.object;
334
335         /*
336          * [re]create the object if necessary and reserve space for it
337          * in the kernel_map.  The object and memory are pageable.  On
338          * success, free the old resources before assigning the new
339          * ones.
340          */
341         if (object == NULL || object->size != npages) {
342                 get_mplock();
343                 object = vm_object_allocate(OBJT_DEFAULT, npages);
344                 buffer = (caddr_t)vm_map_min(&kernel_map);
345
346                 error = vm_map_find(&kernel_map, object, 0,
347                                     (vm_offset_t *)&buffer,
348                                     size, PAGE_SIZE,
349                                     1, VM_MAPTYPE_NORMAL,
350                                     VM_PROT_ALL, VM_PROT_ALL,
351                                     0);
352
353                 if (error != KERN_SUCCESS) {
354                         vm_object_deallocate(object);
355                         rel_mplock();
356                         return (ENOMEM);
357                 }
358                 pipe_free_kmem(cpipe);
359                 rel_mplock();
360                 cpipe->pipe_buffer.object = object;
361                 cpipe->pipe_buffer.buffer = buffer;
362                 cpipe->pipe_buffer.size = size;
363                 ++pipe_bkmem_alloc;
364         } else {
365                 ++pipe_bcache_alloc;
366         }
367         cpipe->pipe_buffer.rindex = 0;
368         cpipe->pipe_buffer.windex = 0;
369         return (0);
370 }
371
372 /*
373  * Initialize and allocate VM and memory for pipe, pulling the pipe from
374  * our per-cpu cache if possible.  For now make sure it is sized for the
375  * smaller PIPE_SIZE default.
376  */
377 static int
378 pipe_create(struct pipe **cpipep)
379 {
380         globaldata_t gd = mycpu;
381         struct pipe *cpipe;
382         int error;
383
384         if ((cpipe = gd->gd_pipeq) != NULL) {
385                 gd->gd_pipeq = cpipe->pipe_peer;
386                 --gd->gd_pipeqcount;
387                 cpipe->pipe_peer = NULL;
388                 cpipe->pipe_wantwcnt = 0;
389         } else {
390                 cpipe = kmalloc(sizeof(struct pipe), M_PIPE, M_WAITOK|M_ZERO);
391         }
392         *cpipep = cpipe;
393         if ((error = pipespace(cpipe, PIPE_SIZE)) != 0)
394                 return (error);
395         vfs_timestamp(&cpipe->pipe_ctime);
396         cpipe->pipe_atime = cpipe->pipe_ctime;
397         cpipe->pipe_mtime = cpipe->pipe_ctime;
398         lwkt_token_init(&cpipe->pipe_rlock, 1);
399         lwkt_token_init(&cpipe->pipe_wlock, 1);
400         return (0);
401 }
402
403 /*
404  * MPALMOSTSAFE (acquires mplock)
405  */
406 static int
407 pipe_read(struct file *fp, struct uio *uio, struct ucred *cred, int fflags)
408 {
409         struct pipe *rpipe;
410         int error;
411         size_t nread = 0;
412         int nbio;
413         u_int size;     /* total bytes available */
414         u_int nsize;    /* total bytes to read */
415         u_int rindex;   /* contiguous bytes available */
416         int notify_writer;
417         int mpsave;
418         int bigread;
419         int bigcount;
420
421         if (uio->uio_resid == 0)
422                 return(0);
423
424         /*
425          * Setup locks, calculate nbio
426          */
427         pipe_get_mplock(&mpsave);
428         rpipe = (struct pipe *)fp->f_data;
429         lwkt_gettoken(&rpipe->pipe_rlock);
430
431         if (fflags & O_FBLOCKING)
432                 nbio = 0;
433         else if (fflags & O_FNONBLOCKING)
434                 nbio = 1;
435         else if (fp->f_flag & O_NONBLOCK)
436                 nbio = 1;
437         else
438                 nbio = 0;
439
440         /*
441          * Reads are serialized.  Note howeverthat pipe_buffer.buffer and
442          * pipe_buffer.size can change out from under us when the number
443          * of bytes in the buffer are zero due to the write-side doing a
444          * pipespace().
445          */
446         error = pipe_start_uio(rpipe, &rpipe->pipe_rip);
447         if (error) {
448                 pipe_rel_mplock(&mpsave);
449                 lwkt_reltoken(&rpipe->pipe_rlock);
450                 return (error);
451         }
452         notify_writer = 0;
453
454         bigread = (uio->uio_resid > 10 * 1024 * 1024);
455         bigcount = 10;
456
457         while (uio->uio_resid) {
458                 /*
459                  * Don't hog the cpu.
460                  */
461                 if (bigread && --bigcount == 0) {
462                         lwkt_user_yield();
463                         bigcount = 10;
464                         if (CURSIG(curthread->td_lwp)) {
465                                 error = EINTR;
466                                 break;
467                         }
468                 }
469
470                 size = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
471                 cpu_lfence();
472                 if (size) {
473                         rindex = rpipe->pipe_buffer.rindex &
474                                  (rpipe->pipe_buffer.size - 1);
475                         nsize = size;
476                         if (nsize > rpipe->pipe_buffer.size - rindex)
477                                 nsize = rpipe->pipe_buffer.size - rindex;
478                         nsize = szmin(nsize, uio->uio_resid);
479
480                         error = uiomove(&rpipe->pipe_buffer.buffer[rindex],
481                                         nsize, uio);
482                         if (error)
483                                 break;
484                         cpu_mfence();
485                         rpipe->pipe_buffer.rindex += nsize;
486                         nread += nsize;
487
488                         /*
489                          * If the FIFO is still over half full just continue
490                          * and do not try to notify the writer yet.
491                          */
492                         if (size - nsize >= (rpipe->pipe_buffer.size >> 1)) {
493                                 notify_writer = 0;
494                                 continue;
495                         }
496
497                         /*
498                          * When the FIFO is less then half full notify any
499                          * waiting writer.  WANTW can be checked while
500                          * holding just the rlock.
501                          */
502                         notify_writer = 1;
503                         if ((rpipe->pipe_state & PIPE_WANTW) == 0)
504                                 continue;
505                 }
506
507                 /*
508                  * If the "write-side" was blocked we wake it up.  This code
509                  * is reached either when the buffer is completely emptied
510                  * or if it becomes more then half-empty.
511                  *
512                  * Pipe_state can only be modified if both the rlock and
513                  * wlock are held.
514                  */
515                 if (rpipe->pipe_state & PIPE_WANTW) {
516                         lwkt_gettoken(&rpipe->pipe_wlock);
517                         if (rpipe->pipe_state & PIPE_WANTW) {
518                                 notify_writer = 0;
519                                 rpipe->pipe_state &= ~PIPE_WANTW;
520                                 lwkt_reltoken(&rpipe->pipe_wlock);
521                                 wakeup(rpipe);
522                         } else {
523                                 lwkt_reltoken(&rpipe->pipe_wlock);
524                         }
525                 }
526
527                 /*
528                  * Pick up our copy loop again if the writer sent data to
529                  * us while we were messing around.
530                  *
531                  * On a SMP box poll up to pipe_delay nanoseconds for new
532                  * data.  Typically a value of 2000 to 4000 is sufficient
533                  * to eradicate most IPIs/tsleeps/wakeups when a pipe
534                  * is used for synchronous communications with small packets,
535                  * and 8000 or so (8uS) will pipeline large buffer xfers
536                  * between cpus over a pipe.
537                  *
538                  * For synchronous communications a hit means doing a
539                  * full Awrite-Bread-Bwrite-Aread cycle in less then 2uS,
540                  * where as miss requiring a tsleep/wakeup sequence
541                  * will take 7uS or more.
542                  */
543                 if (rpipe->pipe_buffer.windex != rpipe->pipe_buffer.rindex)
544                         continue;
545
546 #if defined(SMP) && defined(_RDTSC_SUPPORTED_)
547                 if (pipe_delay) {
548                         int64_t tsc_target;
549                         int good = 0;
550
551                         tsc_target = tsc_get_target(pipe_delay);
552                         while (tsc_test_target(tsc_target) == 0) {
553                                 if (rpipe->pipe_buffer.windex !=
554                                     rpipe->pipe_buffer.rindex) {
555                                         good = 1;
556                                         break;
557                                 }
558                         }
559                         if (good)
560                                 continue;
561                 }
562 #endif
563
564                 /*
565                  * Detect EOF condition, do not set error.
566                  */
567                 if (rpipe->pipe_state & PIPE_REOF)
568                         break;
569
570                 /*
571                  * Break if some data was read, or if this was a non-blocking
572                  * read.
573                  */
574                 if (nread > 0)
575                         break;
576
577                 if (nbio) {
578                         error = EAGAIN;
579                         break;
580                 }
581
582                 /*
583                  * Last chance, interlock with WANTR.
584                  */
585                 lwkt_gettoken(&rpipe->pipe_wlock);
586                 size = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
587                 if (size) {
588                         lwkt_reltoken(&rpipe->pipe_wlock);
589                         continue;
590                 }
591
592                 /*
593                  * Retest EOF - acquiring a new token can temporarily release
594                  * tokens already held.
595                  */
596                 if (rpipe->pipe_state & PIPE_REOF) {
597                         lwkt_reltoken(&rpipe->pipe_wlock);
598                         break;
599                 }
600
601                 /*
602                  * If there is no more to read in the pipe, reset its
603                  * pointers to the beginning.  This improves cache hit
604                  * stats.
605                  *
606                  * We need both locks to modify both pointers, and there
607                  * must also not be a write in progress or the uiomove()
608                  * in the write might block and temporarily release
609                  * its wlock, then reacquire and update windex.  We are
610                  * only serialized against reads, not writes.
611                  *
612                  * XXX should we even bother resetting the indices?  It
613                  *     might actually be more cache efficient not to.
614                  */
615                 if (rpipe->pipe_buffer.rindex == rpipe->pipe_buffer.windex &&
616                     rpipe->pipe_wip == 0) {
617                         rpipe->pipe_buffer.rindex = 0;
618                         rpipe->pipe_buffer.windex = 0;
619                 }
620
621                 /*
622                  * Wait for more data.
623                  *
624                  * Pipe_state can only be set if both the rlock and wlock
625                  * are held.
626                  */
627                 rpipe->pipe_state |= PIPE_WANTR;
628                 tsleep_interlock(rpipe, PCATCH);
629                 lwkt_reltoken(&rpipe->pipe_wlock);
630                 error = tsleep(rpipe, PCATCH | PINTERLOCKED, "piperd", 0);
631                 ++pipe_rblocked_count;
632                 if (error)
633                         break;
634         }
635         pipe_end_uio(rpipe, &rpipe->pipe_rip);
636
637         /*
638          * Uptime last access time
639          */
640         if (error == 0 && nread)
641                 vfs_timestamp(&rpipe->pipe_atime);
642
643         /*
644          * If we drained the FIFO more then half way then handle
645          * write blocking hysteresis.
646          *
647          * Note that PIPE_WANTW cannot be set by the writer without
648          * it holding both rlock and wlock, so we can test it
649          * while holding just rlock.
650          */
651         if (notify_writer) {
652                 if (rpipe->pipe_state & PIPE_WANTW) {
653                         lwkt_gettoken(&rpipe->pipe_wlock);
654                         if (rpipe->pipe_state & PIPE_WANTW) {
655                                 rpipe->pipe_state &= ~PIPE_WANTW;
656                                 lwkt_reltoken(&rpipe->pipe_wlock);
657                                 wakeup(rpipe);
658                         } else {
659                                 lwkt_reltoken(&rpipe->pipe_wlock);
660                         }
661                 }
662                 if (pipeseltest(rpipe)) {
663                         lwkt_gettoken(&rpipe->pipe_wlock);
664                         pipeselwakeup(rpipe);
665                         lwkt_reltoken(&rpipe->pipe_wlock);
666                 }
667         }
668         /*size = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;*/
669         lwkt_reltoken(&rpipe->pipe_rlock);
670
671         pipe_rel_mplock(&mpsave);
672         return (error);
673 }
674
675 /*
676  * MPALMOSTSAFE - acquires mplock
677  */
678 static int
679 pipe_write(struct file *fp, struct uio *uio, struct ucred *cred, int fflags)
680 {
681         int error;
682         int orig_resid;
683         int nbio;
684         struct pipe *wpipe, *rpipe;
685         u_int windex;
686         u_int space;
687         u_int wcount;
688         int mpsave;
689         int bigwrite;
690         int bigcount;
691
692         pipe_get_mplock(&mpsave);
693
694         /*
695          * Writes go to the peer.  The peer will always exist.
696          */
697         rpipe = (struct pipe *) fp->f_data;
698         wpipe = rpipe->pipe_peer;
699         lwkt_gettoken(&wpipe->pipe_wlock);
700         if (wpipe->pipe_state & PIPE_WEOF) {
701                 pipe_rel_mplock(&mpsave);
702                 lwkt_reltoken(&wpipe->pipe_wlock);
703                 return (EPIPE);
704         }
705
706         /*
707          * Degenerate case (EPIPE takes prec)
708          */
709         if (uio->uio_resid == 0) {
710                 pipe_rel_mplock(&mpsave);
711                 lwkt_reltoken(&wpipe->pipe_wlock);
712                 return(0);
713         }
714
715         /*
716          * Writes are serialized (start_uio must be called with wlock)
717          */
718         error = pipe_start_uio(wpipe, &wpipe->pipe_wip);
719         if (error) {
720                 pipe_rel_mplock(&mpsave);
721                 lwkt_reltoken(&wpipe->pipe_wlock);
722                 return (error);
723         }
724
725         if (fflags & O_FBLOCKING)
726                 nbio = 0;
727         else if (fflags & O_FNONBLOCKING)
728                 nbio = 1;
729         else if (fp->f_flag & O_NONBLOCK)
730                 nbio = 1;
731         else
732                 nbio = 0;
733
734         /*
735          * If it is advantageous to resize the pipe buffer, do
736          * so.  We are write-serialized so we can block safely.
737          */
738         if ((wpipe->pipe_buffer.size <= PIPE_SIZE) &&
739             (pipe_nbig < pipe_maxbig) &&
740             wpipe->pipe_wantwcnt > 4 &&
741             (wpipe->pipe_buffer.rindex == wpipe->pipe_buffer.windex)) {
742                 /* 
743                  * Recheck after lock.
744                  */
745                 lwkt_gettoken(&wpipe->pipe_rlock);
746                 if ((wpipe->pipe_buffer.size <= PIPE_SIZE) &&
747                     (pipe_nbig < pipe_maxbig) &&
748                     (wpipe->pipe_buffer.rindex == wpipe->pipe_buffer.windex)) {
749                         atomic_add_int(&pipe_nbig, 1);
750                         if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
751                                 ++pipe_bigcount;
752                         else
753                                 atomic_subtract_int(&pipe_nbig, 1);
754                 }
755                 lwkt_reltoken(&wpipe->pipe_rlock);
756         }
757
758         orig_resid = uio->uio_resid;
759         wcount = 0;
760
761         bigwrite = (uio->uio_resid > 10 * 1024 * 1024);
762         bigcount = 10;
763
764         while (uio->uio_resid) {
765                 if (wpipe->pipe_state & PIPE_WEOF) {
766                         error = EPIPE;
767                         break;
768                 }
769
770                 /*
771                  * Don't hog the cpu.
772                  */
773                 if (bigwrite && --bigcount == 0) {
774                         lwkt_user_yield();
775                         bigcount = 10;
776                         if (CURSIG(curthread->td_lwp)) {
777                                 error = EINTR;
778                                 break;
779                         }
780                 }
781
782                 windex = wpipe->pipe_buffer.windex &
783                          (wpipe->pipe_buffer.size - 1);
784                 space = wpipe->pipe_buffer.size -
785                         (wpipe->pipe_buffer.windex - wpipe->pipe_buffer.rindex);
786                 cpu_lfence();
787
788                 /* Writes of size <= PIPE_BUF must be atomic. */
789                 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
790                         space = 0;
791
792                 /* 
793                  * Write to fill, read size handles write hysteresis.  Also
794                  * additional restrictions can cause select-based non-blocking
795                  * writes to spin.
796                  */
797                 if (space > 0) {
798                         u_int segsize;
799
800                         /*
801                          * Transfer size is minimum of uio transfer
802                          * and free space in pipe buffer.
803                          *
804                          * Limit each uiocopy to no more then PIPE_SIZE
805                          * so we can keep the gravy train going on a
806                          * SMP box.  This doubles the performance for
807                          * write sizes > 16K.  Otherwise large writes
808                          * wind up doing an inefficient synchronous
809                          * ping-pong.
810                          */
811                         space = szmin(space, uio->uio_resid);
812                         if (space > PIPE_SIZE)
813                                 space = PIPE_SIZE;
814
815                         /*
816                          * First segment to transfer is minimum of
817                          * transfer size and contiguous space in
818                          * pipe buffer.  If first segment to transfer
819                          * is less than the transfer size, we've got
820                          * a wraparound in the buffer.
821                          */
822                         segsize = wpipe->pipe_buffer.size - windex;
823                         if (segsize > space)
824                                 segsize = space;
825
826 #ifdef SMP
827                         /*
828                          * If this is the first loop and the reader is
829                          * blocked, do a preemptive wakeup of the reader.
830                          *
831                          * On SMP the IPI latency plus the wlock interlock
832                          * on the reader side is the fastest way to get the
833                          * reader going.  (The scheduler will hard loop on
834                          * lock tokens).
835                          *
836                          * NOTE: We can't clear WANTR here without acquiring
837                          * the rlock, which we don't want to do here!
838                          */
839                         if ((wpipe->pipe_state & PIPE_WANTR) && pipe_mpsafe > 1)
840                                 wakeup(wpipe);
841 #endif
842
843                         /*
844                          * Transfer segment, which may include a wrap-around.
845                          * Update windex to account for both all in one go
846                          * so the reader can read() the data atomically.
847                          */
848                         error = uiomove(&wpipe->pipe_buffer.buffer[windex],
849                                         segsize, uio);
850                         if (error == 0 && segsize < space) {
851                                 segsize = space - segsize;
852                                 error = uiomove(&wpipe->pipe_buffer.buffer[0],
853                                                 segsize, uio);
854                         }
855                         if (error)
856                                 break;
857                         cpu_mfence();
858                         wpipe->pipe_buffer.windex += space;
859                         wcount += space;
860                         continue;
861                 }
862
863                 /*
864                  * We need both the rlock and the wlock to interlock against
865                  * the EOF, WANTW, and size checks, and to modify pipe_state.
866                  *
867                  * These are token locks so we do not have to worry about
868                  * deadlocks.
869                  */
870                 lwkt_gettoken(&wpipe->pipe_rlock);
871
872                 /*
873                  * If the "read-side" has been blocked, wake it up now
874                  * and yield to let it drain synchronously rather
875                  * then block.
876                  */
877                 if (wpipe->pipe_state & PIPE_WANTR) {
878                         wpipe->pipe_state &= ~PIPE_WANTR;
879                         wakeup(wpipe);
880                 }
881
882                 /*
883                  * don't block on non-blocking I/O
884                  */
885                 if (nbio) {
886                         lwkt_reltoken(&wpipe->pipe_rlock);
887                         error = EAGAIN;
888                         break;
889                 }
890
891                 /*
892                  * re-test whether we have to block in the writer after
893                  * acquiring both locks, in case the reader opened up
894                  * some space.
895                  */
896                 space = wpipe->pipe_buffer.size -
897                         (wpipe->pipe_buffer.windex - wpipe->pipe_buffer.rindex);
898                 cpu_lfence();
899                 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
900                         space = 0;
901
902                 /*
903                  * Retest EOF - acquiring a new token can temporarily release
904                  * tokens already held.
905                  */
906                 if (wpipe->pipe_state & PIPE_WEOF) {
907                         lwkt_reltoken(&wpipe->pipe_rlock);
908                         error = EPIPE;
909                         break;
910                 }
911
912                 /*
913                  * We have no more space and have something to offer,
914                  * wake up select/poll.
915                  */
916                 if (space == 0) {
917                         wpipe->pipe_state |= PIPE_WANTW;
918                         ++wpipe->pipe_wantwcnt;
919                         pipeselwakeup(wpipe);
920                         if (wpipe->pipe_state & PIPE_WANTW)
921                                 error = tsleep(wpipe, PCATCH, "pipewr", 0);
922                         ++pipe_wblocked_count;
923                 }
924                 lwkt_reltoken(&wpipe->pipe_rlock);
925
926                 /*
927                  * Break out if we errored or the read side wants us to go
928                  * away.
929                  */
930                 if (error)
931                         break;
932                 if (wpipe->pipe_state & PIPE_WEOF) {
933                         error = EPIPE;
934                         break;
935                 }
936         }
937         pipe_end_uio(wpipe, &wpipe->pipe_wip);
938
939         /*
940          * If we have put any characters in the buffer, we wake up
941          * the reader.
942          *
943          * Both rlock and wlock are required to be able to modify pipe_state.
944          */
945         if (wpipe->pipe_buffer.windex != wpipe->pipe_buffer.rindex) {
946                 if (wpipe->pipe_state & PIPE_WANTR) {
947                         lwkt_gettoken(&wpipe->pipe_rlock);
948                         if (wpipe->pipe_state & PIPE_WANTR) {
949                                 wpipe->pipe_state &= ~PIPE_WANTR;
950                                 lwkt_reltoken(&wpipe->pipe_rlock);
951                                 wakeup(wpipe);
952                         } else {
953                                 lwkt_reltoken(&wpipe->pipe_rlock);
954                         }
955                 }
956                 if (pipeseltest(wpipe)) {
957                         lwkt_gettoken(&wpipe->pipe_rlock);
958                         pipeselwakeup(wpipe);
959                         lwkt_reltoken(&wpipe->pipe_rlock);
960                 }
961         }
962
963         /*
964          * Don't return EPIPE if I/O was successful
965          */
966         if ((wpipe->pipe_buffer.rindex == wpipe->pipe_buffer.windex) &&
967             (uio->uio_resid == 0) &&
968             (error == EPIPE)) {
969                 error = 0;
970         }
971
972         if (error == 0)
973                 vfs_timestamp(&wpipe->pipe_mtime);
974
975         /*
976          * We have something to offer,
977          * wake up select/poll.
978          */
979         /*space = wpipe->pipe_buffer.windex - wpipe->pipe_buffer.rindex;*/
980         lwkt_reltoken(&wpipe->pipe_wlock);
981         pipe_rel_mplock(&mpsave);
982         return (error);
983 }
984
985 /*
986  * MPALMOSTSAFE - acquires mplock
987  *
988  * we implement a very minimal set of ioctls for compatibility with sockets.
989  */
990 int
991 pipe_ioctl(struct file *fp, u_long cmd, caddr_t data,
992            struct ucred *cred, struct sysmsg *msg)
993 {
994         struct pipe *mpipe;
995         int error;
996         int mpsave;
997
998         pipe_get_mplock(&mpsave);
999         mpipe = (struct pipe *)fp->f_data;
1000
1001         lwkt_gettoken(&mpipe->pipe_rlock);
1002         lwkt_gettoken(&mpipe->pipe_wlock);
1003
1004         switch (cmd) {
1005         case FIOASYNC:
1006                 if (*(int *)data) {
1007                         mpipe->pipe_state |= PIPE_ASYNC;
1008                 } else {
1009                         mpipe->pipe_state &= ~PIPE_ASYNC;
1010                 }
1011                 error = 0;
1012                 break;
1013         case FIONREAD:
1014                 *(int *)data = mpipe->pipe_buffer.windex -
1015                                 mpipe->pipe_buffer.rindex;
1016                 error = 0;
1017                 break;
1018         case FIOSETOWN:
1019                 get_mplock();
1020                 error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1021                 rel_mplock();
1022                 break;
1023         case FIOGETOWN:
1024                 *(int *)data = fgetown(mpipe->pipe_sigio);
1025                 error = 0;
1026                 break;
1027         case TIOCSPGRP:
1028                 /* This is deprecated, FIOSETOWN should be used instead. */
1029                 get_mplock();
1030                 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1031                 rel_mplock();
1032                 break;
1033
1034         case TIOCGPGRP:
1035                 /* This is deprecated, FIOGETOWN should be used instead. */
1036                 *(int *)data = -fgetown(mpipe->pipe_sigio);
1037                 error = 0;
1038                 break;
1039         default:
1040                 error = ENOTTY;
1041                 break;
1042         }
1043         lwkt_reltoken(&mpipe->pipe_wlock);
1044         lwkt_reltoken(&mpipe->pipe_rlock);
1045         pipe_rel_mplock(&mpsave);
1046
1047         return (error);
1048 }
1049
1050 /*
1051  * MPSAFE
1052  */
1053 static int
1054 pipe_stat(struct file *fp, struct stat *ub, struct ucred *cred)
1055 {
1056         struct pipe *pipe;
1057         int mpsave;
1058
1059         pipe_get_mplock(&mpsave);
1060         pipe = (struct pipe *)fp->f_data;
1061
1062         bzero((caddr_t)ub, sizeof(*ub));
1063         ub->st_mode = S_IFIFO;
1064         ub->st_blksize = pipe->pipe_buffer.size;
1065         ub->st_size = pipe->pipe_buffer.windex - pipe->pipe_buffer.rindex;
1066         ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1067         ub->st_atimespec = pipe->pipe_atime;
1068         ub->st_mtimespec = pipe->pipe_mtime;
1069         ub->st_ctimespec = pipe->pipe_ctime;
1070         /*
1071          * Left as 0: st_dev, st_ino, st_nlink, st_uid, st_gid, st_rdev,
1072          * st_flags, st_gen.
1073          * XXX (st_dev, st_ino) should be unique.
1074          */
1075         pipe_rel_mplock(&mpsave);
1076         return (0);
1077 }
1078
1079 /*
1080  * MPALMOSTSAFE - acquires mplock
1081  */
1082 static int
1083 pipe_close(struct file *fp)
1084 {
1085         struct pipe *cpipe;
1086
1087         get_mplock();
1088         cpipe = (struct pipe *)fp->f_data;
1089         fp->f_ops = &badfileops;
1090         fp->f_data = NULL;
1091         funsetown(cpipe->pipe_sigio);
1092         pipeclose(cpipe);
1093         rel_mplock();
1094         return (0);
1095 }
1096
1097 /*
1098  * Shutdown one or both directions of a full-duplex pipe.
1099  *
1100  * MPALMOSTSAFE - acquires mplock
1101  */
1102 static int
1103 pipe_shutdown(struct file *fp, int how)
1104 {
1105         struct pipe *rpipe;
1106         struct pipe *wpipe;
1107         int error = EPIPE;
1108         int mpsave;
1109
1110         pipe_get_mplock(&mpsave);
1111         rpipe = (struct pipe *)fp->f_data;
1112         wpipe = rpipe->pipe_peer;
1113
1114         /*
1115          * We modify pipe_state on both pipes, which means we need
1116          * all four tokens!
1117          */
1118         lwkt_gettoken(&rpipe->pipe_rlock);
1119         lwkt_gettoken(&rpipe->pipe_wlock);
1120         lwkt_gettoken(&wpipe->pipe_rlock);
1121         lwkt_gettoken(&wpipe->pipe_wlock);
1122
1123         switch(how) {
1124         case SHUT_RDWR:
1125         case SHUT_RD:
1126                 rpipe->pipe_state |= PIPE_REOF;         /* my reads */
1127                 rpipe->pipe_state |= PIPE_WEOF;         /* peer writes */
1128                 if (rpipe->pipe_state & PIPE_WANTR) {
1129                         rpipe->pipe_state &= ~PIPE_WANTR;
1130                         wakeup(rpipe);
1131                 }
1132                 if (rpipe->pipe_state & PIPE_WANTW) {
1133                         rpipe->pipe_state &= ~PIPE_WANTW;
1134                         wakeup(rpipe);
1135                 }
1136                 error = 0;
1137                 if (how == SHUT_RD)
1138                         break;
1139                 /* fall through */
1140         case SHUT_WR:
1141                 wpipe->pipe_state |= PIPE_REOF;         /* peer reads */
1142                 wpipe->pipe_state |= PIPE_WEOF;         /* my writes */
1143                 if (wpipe->pipe_state & PIPE_WANTR) {
1144                         wpipe->pipe_state &= ~PIPE_WANTR;
1145                         wakeup(wpipe);
1146                 }
1147                 if (wpipe->pipe_state & PIPE_WANTW) {
1148                         wpipe->pipe_state &= ~PIPE_WANTW;
1149                         wakeup(wpipe);
1150                 }
1151                 error = 0;
1152                 break;
1153         }
1154         pipeselwakeup(rpipe);
1155         pipeselwakeup(wpipe);
1156
1157         lwkt_reltoken(&wpipe->pipe_wlock);
1158         lwkt_reltoken(&wpipe->pipe_rlock);
1159         lwkt_reltoken(&rpipe->pipe_wlock);
1160         lwkt_reltoken(&rpipe->pipe_rlock);
1161
1162         pipe_rel_mplock(&mpsave);
1163         return (error);
1164 }
1165
1166 static void
1167 pipe_free_kmem(struct pipe *cpipe)
1168 {
1169         if (cpipe->pipe_buffer.buffer != NULL) {
1170                 if (cpipe->pipe_buffer.size > PIPE_SIZE)
1171                         atomic_subtract_int(&pipe_nbig, 1);
1172                 kmem_free(&kernel_map,
1173                         (vm_offset_t)cpipe->pipe_buffer.buffer,
1174                         cpipe->pipe_buffer.size);
1175                 cpipe->pipe_buffer.buffer = NULL;
1176                 cpipe->pipe_buffer.object = NULL;
1177         }
1178 }
1179
1180 /*
1181  * Close the pipe.  The slock must be held to interlock against simultanious
1182  * closes.  The rlock and wlock must be held to adjust the pipe_state.
1183  */
1184 static void
1185 pipeclose(struct pipe *cpipe)
1186 {
1187         globaldata_t gd;
1188         struct pipe *ppipe;
1189
1190         if (cpipe == NULL)
1191                 return;
1192
1193         /*
1194          * The slock may not have been allocated yet (close during
1195          * initialization)
1196          *
1197          * We need both the read and write tokens to modify pipe_state.
1198          */
1199         if (cpipe->pipe_slock)
1200                 lockmgr(cpipe->pipe_slock, LK_EXCLUSIVE);
1201         lwkt_gettoken(&cpipe->pipe_rlock);
1202         lwkt_gettoken(&cpipe->pipe_wlock);
1203
1204         /*
1205          * Set our state, wakeup anyone waiting in select, and
1206          * wakeup anyone blocked on our pipe.
1207          */
1208         cpipe->pipe_state |= PIPE_CLOSED | PIPE_REOF | PIPE_WEOF;
1209         pipeselwakeup(cpipe);
1210         if (cpipe->pipe_state & (PIPE_WANTR | PIPE_WANTW)) {
1211                 cpipe->pipe_state &= ~(PIPE_WANTR | PIPE_WANTW);
1212                 wakeup(cpipe);
1213         }
1214
1215         /*
1216          * Disconnect from peer.
1217          */
1218         if ((ppipe = cpipe->pipe_peer) != NULL) {
1219                 lwkt_gettoken(&ppipe->pipe_rlock);
1220                 lwkt_gettoken(&ppipe->pipe_wlock);
1221                 ppipe->pipe_state |= PIPE_REOF | PIPE_WEOF;
1222                 pipeselwakeup(ppipe);
1223                 if (ppipe->pipe_state & (PIPE_WANTR | PIPE_WANTW)) {
1224                         ppipe->pipe_state &= ~(PIPE_WANTR | PIPE_WANTW);
1225                         wakeup(ppipe);
1226                 }
1227                 if (SLIST_FIRST(&ppipe->pipe_sel.si_note)) {
1228                         get_mplock();
1229                         KNOTE(&ppipe->pipe_sel.si_note, 0);
1230                         rel_mplock();
1231                 }
1232                 lwkt_reltoken(&ppipe->pipe_wlock);
1233                 lwkt_reltoken(&ppipe->pipe_rlock);
1234         }
1235
1236         /*
1237          * If the peer is also closed we can free resources for both
1238          * sides, otherwise we leave our side intact to deal with any
1239          * races (since we only have the slock).
1240          */
1241         if (ppipe && (ppipe->pipe_state & PIPE_CLOSED)) {
1242                 cpipe->pipe_peer = NULL;
1243                 ppipe->pipe_peer = NULL;
1244                 ppipe->pipe_slock = NULL;       /* we will free the slock */
1245                 pipeclose(ppipe);
1246                 ppipe = NULL;
1247         }
1248
1249         lwkt_reltoken(&cpipe->pipe_wlock);
1250         lwkt_reltoken(&cpipe->pipe_rlock);
1251         if (cpipe->pipe_slock)
1252                 lockmgr(cpipe->pipe_slock, LK_RELEASE);
1253
1254         /*
1255          * If we disassociated from our peer we can free resources
1256          */
1257         if (ppipe == NULL) {
1258                 gd = mycpu;
1259                 if (cpipe->pipe_slock) {
1260                         kfree(cpipe->pipe_slock, M_PIPE);
1261                         cpipe->pipe_slock = NULL;
1262                 }
1263                 if (gd->gd_pipeqcount >= pipe_maxcache ||
1264                     cpipe->pipe_buffer.size != PIPE_SIZE
1265                 ) {
1266                         pipe_free_kmem(cpipe);
1267                         kfree(cpipe, M_PIPE);
1268                 } else {
1269                         cpipe->pipe_state = 0;
1270                         cpipe->pipe_peer = gd->gd_pipeq;
1271                         gd->gd_pipeq = cpipe;
1272                         ++gd->gd_pipeqcount;
1273                 }
1274         }
1275 }
1276
1277 /*
1278  * MPALMOSTSAFE - acquires mplock
1279  */
1280 static int
1281 pipe_kqfilter(struct file *fp, struct knote *kn)
1282 {
1283         struct pipe *cpipe;
1284
1285         get_mplock();
1286         cpipe = (struct pipe *)kn->kn_fp->f_data;
1287
1288         switch (kn->kn_filter) {
1289         case EVFILT_READ:
1290                 kn->kn_fop = &pipe_rfiltops;
1291                 break;
1292         case EVFILT_WRITE:
1293                 kn->kn_fop = &pipe_wfiltops;
1294                 cpipe = cpipe->pipe_peer;
1295                 if (cpipe == NULL) {
1296                         /* other end of pipe has been closed */
1297                         rel_mplock();
1298                         return (EPIPE);
1299                 }
1300                 break;
1301         default:
1302                 rel_mplock();
1303                 return (EOPNOTSUPP);
1304         }
1305         kn->kn_hook = (caddr_t)cpipe;
1306
1307         SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
1308         rel_mplock();
1309         return (0);
1310 }
1311
1312 static void
1313 filt_pipedetach(struct knote *kn)
1314 {
1315         struct pipe *cpipe = (struct pipe *)kn->kn_hook;
1316
1317         SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
1318 }
1319
1320 /*ARGSUSED*/
1321 static int
1322 filt_piperead(struct knote *kn, long hint)
1323 {
1324         struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1325
1326         kn->kn_data = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
1327
1328         /* XXX RACE */
1329         if (rpipe->pipe_state & PIPE_REOF) {
1330                 kn->kn_flags |= EV_EOF; 
1331                 return (1);
1332         }
1333         return (kn->kn_data > 0);
1334 }
1335
1336 /*ARGSUSED*/
1337 static int
1338 filt_pipewrite(struct knote *kn, long hint)
1339 {
1340         struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1341         struct pipe *wpipe = rpipe->pipe_peer;
1342         u_int32_t space;
1343
1344         /* XXX RACE */
1345         if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_WEOF)) {
1346                 kn->kn_data = 0;
1347                 kn->kn_flags |= EV_EOF; 
1348                 return (1);
1349         }
1350         space = wpipe->pipe_buffer.windex -
1351                 wpipe->pipe_buffer.rindex;
1352         space = wpipe->pipe_buffer.size - space;
1353         kn->kn_data = space;
1354         return (kn->kn_data >= PIPE_BUF);
1355 }