drm/i915: Update to Linux 4.1
[dragonfly.git] / sys / dev / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/export.h>
30 #include <drm/drmP.h>
31 #include <linux/slab.h>
32 #include <drm/drm_atomic_helper.h>
33 #include <drm/drm_crtc.h>
34 #include <drm/drm_crtc_helper.h>
35 #include <drm/drm_edid.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39
40 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
41
42 static int disable_aux_irq = 0;
43 TUNABLE_INT("drm.i915.disable_aux_irq", &disable_aux_irq);
44
45 struct dp_link_dpll {
46         int link_bw;
47         struct dpll dpll;
48 };
49
50 static const struct dp_link_dpll gen4_dpll[] = {
51         { DP_LINK_BW_1_62,
52                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
53         { DP_LINK_BW_2_7,
54                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
55 };
56
57 static const struct dp_link_dpll pch_dpll[] = {
58         { DP_LINK_BW_1_62,
59                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
60         { DP_LINK_BW_2_7,
61                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
62 };
63
64 static const struct dp_link_dpll vlv_dpll[] = {
65         { DP_LINK_BW_1_62,
66                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
67         { DP_LINK_BW_2_7,
68                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
69 };
70
71 /*
72  * CHV supports eDP 1.4 that have  more link rates.
73  * Below only provides the fixed rate but exclude variable rate.
74  */
75 static const struct dp_link_dpll chv_dpll[] = {
76         /*
77          * CHV requires to program fractional division for m2.
78          * m2 is stored in fixed point format using formula below
79          * (m2_int << 22) | m2_fraction
80          */
81         { DP_LINK_BW_1_62,      /* m2_int = 32, m2_fraction = 1677722 */
82                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
83         { DP_LINK_BW_2_7,       /* m2_int = 27, m2_fraction = 0 */
84                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
85         { DP_LINK_BW_5_4,       /* m2_int = 27, m2_fraction = 0 */
86                 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
87 };
88 /* Skylake supports following rates */
89 static const int gen9_rates[] = { 162000, 216000, 270000,
90                                   324000, 432000, 540000 };
91 static const int chv_rates[] = { 162000, 202500, 210000, 216000,
92                                  243000, 270000, 324000, 405000,
93                                  420000, 432000, 540000 };
94 static const int default_rates[] = { 162000, 270000, 540000 };
95
96 /**
97  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
98  * @intel_dp: DP struct
99  *
100  * If a CPU or PCH DP output is attached to an eDP panel, this function
101  * will return true, and false otherwise.
102  */
103 static bool is_edp(struct intel_dp *intel_dp)
104 {
105         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
106
107         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
108 }
109
110 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
111 {
112         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
113
114         return intel_dig_port->base.base.dev;
115 }
116
117 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
118 {
119         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
120 }
121
122 static void intel_dp_link_down(struct intel_dp *intel_dp);
123 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
124 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
125 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
126 static void vlv_steal_power_sequencer(struct drm_device *dev,
127                                       enum i915_pipe pipe);
128
129 static int
130 intel_dp_max_link_bw(struct intel_dp  *intel_dp)
131 {
132         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
133
134         switch (max_link_bw) {
135         case DP_LINK_BW_1_62:
136         case DP_LINK_BW_2_7:
137         case DP_LINK_BW_5_4:
138                 break;
139         default:
140                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
141                      max_link_bw);
142                 max_link_bw = DP_LINK_BW_1_62;
143                 break;
144         }
145         return max_link_bw;
146 }
147
148 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
149 {
150         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
151         struct drm_device *dev = intel_dig_port->base.base.dev;
152         u8 source_max, sink_max;
153
154         source_max = 4;
155         if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
156             (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
157                 source_max = 2;
158
159         sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
160
161         return min(source_max, sink_max);
162 }
163
164 /*
165  * The units on the numbers in the next two are... bizarre.  Examples will
166  * make it clearer; this one parallels an example in the eDP spec.
167  *
168  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
169  *
170  *     270000 * 1 * 8 / 10 == 216000
171  *
172  * The actual data capacity of that configuration is 2.16Gbit/s, so the
173  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
174  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
175  * 119000.  At 18bpp that's 2142000 kilobits per second.
176  *
177  * Thus the strange-looking division by 10 in intel_dp_link_required, to
178  * get the result in decakilobits instead of kilobits.
179  */
180
181 static int
182 intel_dp_link_required(int pixel_clock, int bpp)
183 {
184         return (pixel_clock * bpp + 9) / 10;
185 }
186
187 static int
188 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
189 {
190         return (max_link_clock * max_lanes * 8) / 10;
191 }
192
193 static enum drm_mode_status
194 intel_dp_mode_valid(struct drm_connector *connector,
195                     struct drm_display_mode *mode)
196 {
197         struct intel_dp *intel_dp = intel_attached_dp(connector);
198         struct intel_connector *intel_connector = to_intel_connector(connector);
199         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
200         int target_clock = mode->clock;
201         int max_rate, mode_rate, max_lanes, max_link_clock;
202
203         if (is_edp(intel_dp) && fixed_mode) {
204                 if (mode->hdisplay > fixed_mode->hdisplay)
205                         return MODE_PANEL;
206
207                 if (mode->vdisplay > fixed_mode->vdisplay)
208                         return MODE_PANEL;
209
210                 target_clock = fixed_mode->clock;
211         }
212
213         max_link_clock = intel_dp_max_link_rate(intel_dp);
214         max_lanes = intel_dp_max_lane_count(intel_dp);
215
216         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
217         mode_rate = intel_dp_link_required(target_clock, 18);
218
219         if (mode_rate > max_rate)
220                 return MODE_CLOCK_HIGH;
221
222         if (mode->clock < 10000)
223                 return MODE_CLOCK_LOW;
224
225         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
226                 return MODE_H_ILLEGAL;
227
228         return MODE_OK;
229 }
230
231 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
232 {
233         int     i;
234         uint32_t v = 0;
235
236         if (src_bytes > 4)
237                 src_bytes = 4;
238         for (i = 0; i < src_bytes; i++)
239                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
240         return v;
241 }
242
243 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
244 {
245         int i;
246         if (dst_bytes > 4)
247                 dst_bytes = 4;
248         for (i = 0; i < dst_bytes; i++)
249                 dst[i] = src >> ((3-i) * 8);
250 }
251
252 /* hrawclock is 1/4 the FSB frequency */
253 static int
254 intel_hrawclk(struct drm_device *dev)
255 {
256         struct drm_i915_private *dev_priv = dev->dev_private;
257         uint32_t clkcfg;
258
259         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
260         if (IS_VALLEYVIEW(dev))
261                 return 200;
262
263         clkcfg = I915_READ(CLKCFG);
264         switch (clkcfg & CLKCFG_FSB_MASK) {
265         case CLKCFG_FSB_400:
266                 return 100;
267         case CLKCFG_FSB_533:
268                 return 133;
269         case CLKCFG_FSB_667:
270                 return 166;
271         case CLKCFG_FSB_800:
272                 return 200;
273         case CLKCFG_FSB_1067:
274                 return 266;
275         case CLKCFG_FSB_1333:
276                 return 333;
277         /* these two are just a guess; one of them might be right */
278         case CLKCFG_FSB_1600:
279         case CLKCFG_FSB_1600_ALT:
280                 return 400;
281         default:
282                 return 133;
283         }
284 }
285
286 static void
287 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
288                                     struct intel_dp *intel_dp);
289 static void
290 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
291                                               struct intel_dp *intel_dp);
292
293 static void pps_lock(struct intel_dp *intel_dp)
294 {
295         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
296         struct intel_encoder *encoder = &intel_dig_port->base;
297         struct drm_device *dev = encoder->base.dev;
298         struct drm_i915_private *dev_priv = dev->dev_private;
299         enum intel_display_power_domain power_domain;
300
301         /*
302          * See vlv_power_sequencer_reset() why we need
303          * a power domain reference here.
304          */
305         power_domain = intel_display_port_power_domain(encoder);
306         intel_display_power_get(dev_priv, power_domain);
307
308         mutex_lock(&dev_priv->pps_mutex);
309 }
310
311 static void pps_unlock(struct intel_dp *intel_dp)
312 {
313         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
314         struct intel_encoder *encoder = &intel_dig_port->base;
315         struct drm_device *dev = encoder->base.dev;
316         struct drm_i915_private *dev_priv = dev->dev_private;
317         enum intel_display_power_domain power_domain;
318
319         mutex_unlock(&dev_priv->pps_mutex);
320
321         power_domain = intel_display_port_power_domain(encoder);
322         intel_display_power_put(dev_priv, power_domain);
323 }
324
325 static void
326 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
327 {
328         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
329         struct drm_device *dev = intel_dig_port->base.base.dev;
330         struct drm_i915_private *dev_priv = dev->dev_private;
331         enum i915_pipe pipe = intel_dp->pps_pipe;
332         bool pll_enabled;
333         uint32_t DP;
334
335         if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
336                  "skipping pipe %c power seqeuncer kick due to port %c being active\n",
337                  pipe_name(pipe), port_name(intel_dig_port->port)))
338                 return;
339
340         DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
341                       pipe_name(pipe), port_name(intel_dig_port->port));
342
343         /* Preserve the BIOS-computed detected bit. This is
344          * supposed to be read-only.
345          */
346         DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
347         DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
348         DP |= DP_PORT_WIDTH(1);
349         DP |= DP_LINK_TRAIN_PAT_1;
350
351         if (IS_CHERRYVIEW(dev))
352                 DP |= DP_PIPE_SELECT_CHV(pipe);
353         else if (pipe == PIPE_B)
354                 DP |= DP_PIPEB_SELECT;
355
356         pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
357
358         /*
359          * The DPLL for the pipe must be enabled for this to work.
360          * So enable temporarily it if it's not already enabled.
361          */
362         if (!pll_enabled)
363                 vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
364                                  &chv_dpll[0].dpll : &vlv_dpll[0].dpll);
365
366         /*
367          * Similar magic as in intel_dp_enable_port().
368          * We _must_ do this port enable + disable trick
369          * to make this power seqeuencer lock onto the port.
370          * Otherwise even VDD force bit won't work.
371          */
372         I915_WRITE(intel_dp->output_reg, DP);
373         POSTING_READ(intel_dp->output_reg);
374
375         I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
376         POSTING_READ(intel_dp->output_reg);
377
378         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
379         POSTING_READ(intel_dp->output_reg);
380
381         if (!pll_enabled)
382                 vlv_force_pll_off(dev, pipe);
383 }
384
385 static enum i915_pipe
386 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
387 {
388         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
389         struct drm_device *dev = intel_dig_port->base.base.dev;
390         struct drm_i915_private *dev_priv = dev->dev_private;
391         struct intel_encoder *encoder;
392         unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
393         enum i915_pipe pipe;
394
395         lockdep_assert_held(&dev_priv->pps_mutex);
396
397         /* We should never land here with regular DP ports */
398         WARN_ON(!is_edp(intel_dp));
399
400         if (intel_dp->pps_pipe != INVALID_PIPE)
401                 return intel_dp->pps_pipe;
402
403         /*
404          * We don't have power sequencer currently.
405          * Pick one that's not used by other ports.
406          */
407         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
408                             base.head) {
409                 struct intel_dp *tmp;
410
411                 if (encoder->type != INTEL_OUTPUT_EDP)
412                         continue;
413
414                 tmp = enc_to_intel_dp(&encoder->base);
415
416                 if (tmp->pps_pipe != INVALID_PIPE)
417                         pipes &= ~(1 << tmp->pps_pipe);
418         }
419
420         /*
421          * Didn't find one. This should not happen since there
422          * are two power sequencers and up to two eDP ports.
423          */
424         if (WARN_ON(pipes == 0))
425                 pipe = PIPE_A;
426         else
427                 pipe = ffs(pipes) - 1;
428
429         vlv_steal_power_sequencer(dev, pipe);
430         intel_dp->pps_pipe = pipe;
431
432         DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
433                       pipe_name(intel_dp->pps_pipe),
434                       port_name(intel_dig_port->port));
435
436         /* init power sequencer on this pipe and port */
437         intel_dp_init_panel_power_sequencer(dev, intel_dp);
438         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
439
440         /*
441          * Even vdd force doesn't work until we've made
442          * the power sequencer lock in on the port.
443          */
444         vlv_power_sequencer_kick(intel_dp);
445
446         return intel_dp->pps_pipe;
447 }
448
449 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
450                                enum i915_pipe pipe);
451
452 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
453                                enum i915_pipe pipe)
454 {
455         return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
456 }
457
458 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
459                                 enum i915_pipe pipe)
460 {
461         return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
462 }
463
464 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
465                          enum i915_pipe pipe)
466 {
467         return true;
468 }
469
470 static enum i915_pipe
471 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
472                      enum port port,
473                      vlv_pipe_check pipe_check)
474 {
475         enum i915_pipe pipe;
476
477         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
478                 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
479                         PANEL_PORT_SELECT_MASK;
480
481                 if (port_sel != PANEL_PORT_SELECT_VLV(port))
482                         continue;
483
484                 if (!pipe_check(dev_priv, pipe))
485                         continue;
486
487                 return pipe;
488         }
489
490         return INVALID_PIPE;
491 }
492
493 static void
494 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
495 {
496         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
497         struct drm_device *dev = intel_dig_port->base.base.dev;
498         struct drm_i915_private *dev_priv = dev->dev_private;
499         enum port port = intel_dig_port->port;
500
501         lockdep_assert_held(&dev_priv->pps_mutex);
502
503         /* try to find a pipe with this port selected */
504         /* first pick one where the panel is on */
505         intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
506                                                   vlv_pipe_has_pp_on);
507         /* didn't find one? pick one where vdd is on */
508         if (intel_dp->pps_pipe == INVALID_PIPE)
509                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
510                                                           vlv_pipe_has_vdd_on);
511         /* didn't find one? pick one with just the correct port */
512         if (intel_dp->pps_pipe == INVALID_PIPE)
513                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
514                                                           vlv_pipe_any);
515
516         /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
517         if (intel_dp->pps_pipe == INVALID_PIPE) {
518                 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
519                               port_name(port));
520                 return;
521         }
522
523         DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
524                       port_name(port), pipe_name(intel_dp->pps_pipe));
525
526         intel_dp_init_panel_power_sequencer(dev, intel_dp);
527         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
528 }
529
530 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
531 {
532         struct drm_device *dev = dev_priv->dev;
533         struct intel_encoder *encoder;
534
535         if (WARN_ON(!IS_VALLEYVIEW(dev)))
536                 return;
537
538         /*
539          * We can't grab pps_mutex here due to deadlock with power_domain
540          * mutex when power_domain functions are called while holding pps_mutex.
541          * That also means that in order to use pps_pipe the code needs to
542          * hold both a power domain reference and pps_mutex, and the power domain
543          * reference get/put must be done while _not_ holding pps_mutex.
544          * pps_{lock,unlock}() do these steps in the correct order, so one
545          * should use them always.
546          */
547
548         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
549                 struct intel_dp *intel_dp;
550
551                 if (encoder->type != INTEL_OUTPUT_EDP)
552                         continue;
553
554                 intel_dp = enc_to_intel_dp(&encoder->base);
555                 intel_dp->pps_pipe = INVALID_PIPE;
556         }
557 }
558
559 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
560 {
561         struct drm_device *dev = intel_dp_to_dev(intel_dp);
562
563         if (HAS_PCH_SPLIT(dev))
564                 return PCH_PP_CONTROL;
565         else
566                 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
567 }
568
569 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
570 {
571         struct drm_device *dev = intel_dp_to_dev(intel_dp);
572
573         if (HAS_PCH_SPLIT(dev))
574                 return PCH_PP_STATUS;
575         else
576                 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
577 }
578
579 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
580    This function only applicable when panel PM state is not to be tracked */
581 #if 0
582 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
583                               void *unused)
584 {
585         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
586                                                  edp_notifier);
587         struct drm_device *dev = intel_dp_to_dev(intel_dp);
588         struct drm_i915_private *dev_priv = dev->dev_private;
589         u32 pp_div;
590         u32 pp_ctrl_reg, pp_div_reg;
591
592         if (!is_edp(intel_dp) || code != SYS_RESTART)
593                 return 0;
594
595         pps_lock(intel_dp);
596
597         if (IS_VALLEYVIEW(dev)) {
598                 enum i915_pipe pipe = vlv_power_sequencer_pipe(intel_dp);
599
600                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
601                 pp_div_reg  = VLV_PIPE_PP_DIVISOR(pipe);
602                 pp_div = I915_READ(pp_div_reg);
603                 pp_div &= PP_REFERENCE_DIVIDER_MASK;
604
605                 /* 0x1F write to PP_DIV_REG sets max cycle delay */
606                 I915_WRITE(pp_div_reg, pp_div | 0x1F);
607                 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
608                 msleep(intel_dp->panel_power_cycle_delay);
609         }
610
611         pps_unlock(intel_dp);
612
613         return 0;
614 }
615 #endif
616
617 static bool edp_have_panel_power(struct intel_dp *intel_dp)
618 {
619         struct drm_device *dev = intel_dp_to_dev(intel_dp);
620         struct drm_i915_private *dev_priv = dev->dev_private;
621
622         lockdep_assert_held(&dev_priv->pps_mutex);
623
624         if (IS_VALLEYVIEW(dev) &&
625             intel_dp->pps_pipe == INVALID_PIPE)
626                 return false;
627
628         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
629 }
630
631 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
632 {
633         struct drm_device *dev = intel_dp_to_dev(intel_dp);
634         struct drm_i915_private *dev_priv = dev->dev_private;
635
636         lockdep_assert_held(&dev_priv->pps_mutex);
637
638         if (IS_VALLEYVIEW(dev) &&
639             intel_dp->pps_pipe == INVALID_PIPE)
640                 return false;
641
642         return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
643 }
644
645 static void
646 intel_dp_check_edp(struct intel_dp *intel_dp)
647 {
648         struct drm_device *dev = intel_dp_to_dev(intel_dp);
649         struct drm_i915_private *dev_priv = dev->dev_private;
650
651         if (!is_edp(intel_dp))
652                 return;
653
654         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
655                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
656                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
657                               I915_READ(_pp_stat_reg(intel_dp)),
658                               I915_READ(_pp_ctrl_reg(intel_dp)));
659         }
660 }
661
662 static uint32_t
663 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
664 {
665         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
666         struct drm_device *dev = intel_dig_port->base.base.dev;
667         struct drm_i915_private *dev_priv = dev->dev_private;
668         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
669         uint32_t status;
670         bool done;
671
672 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
673         if (has_aux_irq)
674                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
675                                           msecs_to_jiffies_timeout(10));
676         else
677                 done = wait_for_atomic(C, 10) == 0;
678         if (!done)
679                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
680                           has_aux_irq);
681 #undef C
682
683         return status;
684 }
685
686 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
687 {
688         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
689         struct drm_device *dev = intel_dig_port->base.base.dev;
690
691         /*
692          * The clock divider is based off the hrawclk, and would like to run at
693          * 2MHz.  So, take the hrawclk value and divide by 2 and use that
694          */
695         return index ? 0 : intel_hrawclk(dev) / 2;
696 }
697
698 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
699 {
700         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
701         struct drm_device *dev = intel_dig_port->base.base.dev;
702
703         if (index)
704                 return 0;
705
706         if (intel_dig_port->port == PORT_A) {
707                 if (IS_GEN6(dev) || IS_GEN7(dev))
708                         return 200; /* SNB & IVB eDP input clock at 400Mhz */
709                 else
710                         return 225; /* eDP input clock at 450Mhz */
711         } else {
712                 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
713         }
714 }
715
716 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
717 {
718         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
719         struct drm_device *dev = intel_dig_port->base.base.dev;
720         struct drm_i915_private *dev_priv = dev->dev_private;
721
722         if (intel_dig_port->port == PORT_A) {
723                 if (index)
724                         return 0;
725                 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
726         } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
727                 /* Workaround for non-ULT HSW */
728                 switch (index) {
729                 case 0: return 63;
730                 case 1: return 72;
731                 default: return 0;
732                 }
733         } else  {
734                 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
735         }
736 }
737
738 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
739 {
740         return index ? 0 : 100;
741 }
742
743 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
744 {
745         /*
746          * SKL doesn't need us to program the AUX clock divider (Hardware will
747          * derive the clock from CDCLK automatically). We still implement the
748          * get_aux_clock_divider vfunc to plug-in into the existing code.
749          */
750         return index ? 0 : 1;
751 }
752
753 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
754                                       bool has_aux_irq,
755                                       int send_bytes,
756                                       uint32_t aux_clock_divider)
757 {
758         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
759         struct drm_device *dev = intel_dig_port->base.base.dev;
760         uint32_t precharge, timeout;
761
762         if (IS_GEN6(dev))
763                 precharge = 3;
764         else
765                 precharge = 5;
766
767         if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
768                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
769         else
770                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
771
772         return DP_AUX_CH_CTL_SEND_BUSY |
773                DP_AUX_CH_CTL_DONE |
774                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
775                DP_AUX_CH_CTL_TIME_OUT_ERROR |
776                timeout |
777                DP_AUX_CH_CTL_RECEIVE_ERROR |
778                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
779                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
780                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
781 }
782
783 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
784                                       bool has_aux_irq,
785                                       int send_bytes,
786                                       uint32_t unused)
787 {
788         return DP_AUX_CH_CTL_SEND_BUSY |
789                DP_AUX_CH_CTL_DONE |
790                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
791                DP_AUX_CH_CTL_TIME_OUT_ERROR |
792                DP_AUX_CH_CTL_TIME_OUT_1600us |
793                DP_AUX_CH_CTL_RECEIVE_ERROR |
794                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
795                DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
796 }
797
798 static int
799 intel_dp_aux_ch(struct intel_dp *intel_dp,
800                 const uint8_t *send, int send_bytes,
801                 uint8_t *recv, int recv_size)
802 {
803         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
804         struct drm_device *dev = intel_dig_port->base.base.dev;
805         struct drm_i915_private *dev_priv = dev->dev_private;
806         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
807         uint32_t ch_data = ch_ctl + 4;
808         uint32_t aux_clock_divider;
809         int i, ret, recv_bytes;
810         uint32_t status;
811         int try, clock = 0;
812         bool has_aux_irq = HAS_AUX_IRQ(dev) && !disable_aux_irq;
813         bool vdd;
814
815         pps_lock(intel_dp);
816
817         /*
818          * We will be called with VDD already enabled for dpcd/edid/oui reads.
819          * In such cases we want to leave VDD enabled and it's up to upper layers
820          * to turn it off. But for eg. i2c-dev access we need to turn it on/off
821          * ourselves.
822          */
823         vdd = edp_panel_vdd_on(intel_dp);
824
825         /* dp aux is extremely sensitive to irq latency, hence request the
826          * lowest possible wakeup latency and so prevent the cpu from going into
827          * deep sleep states.
828          */
829         pm_qos_update_request(&dev_priv->pm_qos, 0);
830
831         intel_dp_check_edp(intel_dp);
832
833         intel_aux_display_runtime_get(dev_priv);
834
835         /* Try to wait for any previous AUX channel activity */
836         for (try = 0; try < 3; try++) {
837                 status = I915_READ_NOTRACE(ch_ctl);
838                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
839                         break;
840                 msleep(1);
841         }
842
843         if (try == 3) {
844                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
845                      I915_READ(ch_ctl));
846                 ret = -EBUSY;
847                 goto out;
848         }
849
850         /* Only 5 data registers! */
851         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
852                 ret = -E2BIG;
853                 goto out;
854         }
855
856         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
857                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
858                                                           has_aux_irq,
859                                                           send_bytes,
860                                                           aux_clock_divider);
861
862                 /* Must try at least 3 times according to DP spec */
863                 for (try = 0; try < 5; try++) {
864                         /* Load the send data into the aux channel data registers */
865                         for (i = 0; i < send_bytes; i += 4)
866                                 I915_WRITE(ch_data + i,
867                                            intel_dp_pack_aux(send + i,
868                                                              send_bytes - i));
869
870                         /* Send the command and wait for it to complete */
871                         I915_WRITE(ch_ctl, send_ctl);
872
873                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
874
875                         /* Clear done status and any errors */
876                         I915_WRITE(ch_ctl,
877                                    status |
878                                    DP_AUX_CH_CTL_DONE |
879                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
880                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
881
882                         if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
883                                       DP_AUX_CH_CTL_RECEIVE_ERROR))
884                                 continue;
885                         if (status & DP_AUX_CH_CTL_DONE)
886                                 goto done;
887                 }
888         }
889
890         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
891                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
892                 ret = -EBUSY;
893                 goto out;
894         }
895
896 done:
897         /* Check for timeout or receive error.
898          * Timeouts occur when the sink is not connected
899          */
900         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
901                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
902                 ret = -EIO;
903                 goto out;
904         }
905
906         /* Timeouts occur when the device isn't connected, so they're
907          * "normal" -- don't fill the kernel log with these */
908         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
909                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
910                 ret = -ETIMEDOUT;
911                 goto out;
912         }
913
914         /* Unload any bytes sent back from the other side */
915         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
916                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
917         if (recv_bytes > recv_size)
918                 recv_bytes = recv_size;
919
920         for (i = 0; i < recv_bytes; i += 4)
921                 intel_dp_unpack_aux(I915_READ(ch_data + i),
922                                     recv + i, recv_bytes - i);
923
924         ret = recv_bytes;
925 out:
926         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
927         intel_aux_display_runtime_put(dev_priv);
928
929         if (vdd)
930                 edp_panel_vdd_off(intel_dp, false);
931
932         pps_unlock(intel_dp);
933
934         return ret;
935 }
936
937 #define BARE_ADDRESS_SIZE       3
938 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
939 static ssize_t
940 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
941 {
942         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
943         uint8_t txbuf[20], rxbuf[20];
944         size_t txsize, rxsize;
945         int ret;
946
947         txbuf[0] = (msg->request << 4) |
948                 ((msg->address >> 16) & 0xf);
949         txbuf[1] = (msg->address >> 8) & 0xff;
950         txbuf[2] = msg->address & 0xff;
951         txbuf[3] = msg->size - 1;
952
953         switch (msg->request & ~DP_AUX_I2C_MOT) {
954         case DP_AUX_NATIVE_WRITE:
955         case DP_AUX_I2C_WRITE:
956                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
957                 rxsize = 2; /* 0 or 1 data bytes */
958
959                 if (WARN_ON(txsize > 20))
960                         return -E2BIG;
961
962                 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
963
964                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
965                 if (ret > 0) {
966                         msg->reply = rxbuf[0] >> 4;
967
968                         if (ret > 1) {
969                                 /* Number of bytes written in a short write. */
970                                 ret = clamp_t(int, rxbuf[1], 0, msg->size);
971                         } else {
972                                 /* Return payload size. */
973                                 ret = msg->size;
974                         }
975                 }
976                 break;
977
978         case DP_AUX_NATIVE_READ:
979         case DP_AUX_I2C_READ:
980                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
981                 rxsize = msg->size + 1;
982
983                 if (WARN_ON(rxsize > 20))
984                         return -E2BIG;
985
986                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
987                 if (ret > 0) {
988                         msg->reply = rxbuf[0] >> 4;
989                         /*
990                          * Assume happy day, and copy the data. The caller is
991                          * expected to check msg->reply before touching it.
992                          *
993                          * Return payload size.
994                          */
995                         ret--;
996                         memcpy(msg->buffer, rxbuf + 1, ret);
997                 }
998                 break;
999
1000         default:
1001                 ret = -EINVAL;
1002                 break;
1003         }
1004
1005         return ret;
1006 }
1007
1008 static int
1009 intel_dp_i2c_aux_ch(struct device *adapter, int mode,
1010                     uint8_t write_byte, uint8_t *read_byte)
1011 {
1012         struct i2c_algo_dp_aux_data *data = device_get_softc(adapter);
1013         struct intel_dp *intel_dp = data->priv;
1014         uint16_t address = data->address;
1015         uint8_t msg[5];
1016         uint8_t reply[2];
1017         unsigned retry;
1018         int msg_bytes;
1019         int reply_bytes;
1020         int ret;
1021
1022         intel_edp_panel_vdd_on(intel_dp);
1023         intel_dp_check_edp(intel_dp);
1024         /* Set up the command byte */
1025         if (mode & MODE_I2C_READ)
1026                 msg[0] = DP_AUX_I2C_READ << 4;
1027         else
1028                 msg[0] = DP_AUX_I2C_WRITE << 4;
1029
1030         if (!(mode & MODE_I2C_STOP))
1031                 msg[0] |= DP_AUX_I2C_MOT << 4;
1032
1033         msg[1] = address >> 8;
1034         msg[2] = address;
1035
1036         switch (mode) {
1037         case MODE_I2C_WRITE:
1038                 msg[3] = 0;
1039                 msg[4] = write_byte;
1040                 msg_bytes = 5;
1041                 reply_bytes = 1;
1042                 break;
1043         case MODE_I2C_READ:
1044                 msg[3] = 0;
1045                 msg_bytes = 4;
1046                 reply_bytes = 2;
1047                 break;
1048         default:
1049                 msg_bytes = 3;
1050                 reply_bytes = 1;
1051                 break;
1052         }
1053
1054         /*
1055          * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device is
1056          * required to retry at least seven times upon receiving AUX_DEFER
1057          * before giving up the AUX transaction.
1058          */
1059         for (retry = 0; retry < 7; retry++) {
1060                 ret = intel_dp_aux_ch(intel_dp,
1061                                       msg, msg_bytes,
1062                                       reply, reply_bytes);
1063                 if (ret < 0) {
1064                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
1065                         goto out;
1066                 }
1067
1068                 switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
1069                 case DP_AUX_NATIVE_REPLY_ACK:
1070                         /* I2C-over-AUX Reply field is only valid
1071                          * when paired with AUX ACK.
1072                          */
1073                         break;
1074                 case DP_AUX_NATIVE_REPLY_NACK:
1075                         DRM_DEBUG_KMS("aux_ch native nack\n");
1076                         ret = -EREMOTEIO;
1077                         goto out;
1078                 case DP_AUX_NATIVE_REPLY_DEFER:
1079                         /*
1080                          * For now, just give more slack to branch devices. We
1081                          * could check the DPCD for I2C bit rate capabilities,
1082                          * and if available, adjust the interval. We could also
1083                          * be more careful with DP-to-Legacy adapters where a
1084                          * long legacy cable may force very low I2C bit rates.
1085                          */
1086                         if (intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1087                             DP_DWN_STRM_PORT_PRESENT)
1088                                 usleep_range(500, 600);
1089                         else
1090                                 usleep_range(300, 400);
1091                         continue;
1092                 default:
1093                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
1094                                   reply[0]);
1095                         ret = -EREMOTEIO;
1096                         goto out;
1097                 }
1098
1099                 switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
1100                 case DP_AUX_I2C_REPLY_ACK:
1101                         if (mode == MODE_I2C_READ) {
1102                                 *read_byte = reply[1];
1103                         }
1104                         ret = 0;        /* reply_bytes - 1 */
1105                         goto out;
1106                 case DP_AUX_I2C_REPLY_NACK:
1107                         DRM_DEBUG_KMS("aux_i2c nack\n");
1108                         ret = -EREMOTEIO;
1109                         goto out;
1110                 case DP_AUX_I2C_REPLY_DEFER:
1111                         DRM_DEBUG_KMS("aux_i2c defer\n");
1112                         udelay(100);
1113                         break;
1114                 default:
1115                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
1116                         ret = -EREMOTEIO;
1117                         goto out;
1118                 }
1119         }
1120
1121         DRM_ERROR("too many retries, giving up\n");
1122         ret = -EREMOTEIO;
1123
1124 out:
1125         return ret;
1126 }
1127
1128 static void
1129 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1130 {
1131         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1132         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1133         enum port port = intel_dig_port->port;
1134         const char *name = NULL;
1135         int ret;
1136
1137         switch (port) {
1138         case PORT_A:
1139                 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
1140                 name = "DPDDC-A";
1141                 break;
1142         case PORT_B:
1143                 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
1144                 name = "DPDDC-B";
1145                 break;
1146         case PORT_C:
1147                 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
1148                 name = "DPDDC-C";
1149                 break;
1150         case PORT_D:
1151                 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
1152                 name = "DPDDC-D";
1153                 break;
1154         default:
1155                 BUG();
1156         }
1157
1158         /*
1159          * The AUX_CTL register is usually DP_CTL + 0x10.
1160          *
1161          * On Haswell and Broadwell though:
1162          *   - Both port A DDI_BUF_CTL and DDI_AUX_CTL are on the CPU
1163          *   - Port B/C/D AUX channels are on the PCH, DDI_BUF_CTL on the CPU
1164          *
1165          * Skylake moves AUX_CTL back next to DDI_BUF_CTL, on the CPU.
1166          */
1167         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1168                 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
1169
1170         intel_dp->aux.name = name;
1171         intel_dp->aux.dev = dev->dev;
1172         intel_dp->aux.transfer = intel_dp_aux_transfer;
1173
1174         DRM_DEBUG_KMS("i2c_init %s\n", name);
1175         ret = iic_dp_aux_add_bus(connector->base.dev->dev, name,
1176             intel_dp_i2c_aux_ch, intel_dp, &intel_dp->dp_iic_bus,
1177             &intel_dp->aux.ddc);
1178         WARN(ret, "intel_dp_i2c_init failed with error %d for port %c\n",
1179              ret, port_name(port));
1180
1181 }
1182
1183 static void
1184 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1185 {
1186         intel_connector_unregister(intel_connector);
1187 }
1188
1189 #if 0
1190 static int
1191 intel_dp_i2c_init(struct intel_dp *intel_dp,
1192                   struct intel_connector *intel_connector, const char *name)
1193 {
1194         int     ret;
1195
1196         DRM_DEBUG_KMS("i2c_init %s\n", name);
1197 #if 0
1198         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
1199         intel_dp->adapter.owner = THIS_MODULE;
1200         intel_dp->adapter.class = I2C_CLASS_DDC;
1201         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
1202         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
1203         intel_dp->adapter.algo_data = &intel_dp->algo;
1204         intel_dp->adapter.dev.parent = intel_connector->base.dev->dev;
1205
1206         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
1207         if (ret < 0)
1208                 return ret;
1209
1210         ret = sysfs_create_link(&intel_connector->base.kdev->kobj,
1211                                 &intel_dp->adapter.dev.kobj,
1212                                 intel_dp->adapter.dev.kobj.name);
1213 #endif
1214         ret = iic_dp_aux_add_bus(intel_connector->base.dev->dev, name,
1215             intel_dp_i2c_aux_ch, intel_dp, &intel_dp->dp_iic_bus,
1216             &intel_dp->adapter);
1217
1218         return ret;
1219 }
1220 #endif
1221
1222 static void
1223 skl_edp_set_pll_config(struct intel_crtc_state *pipe_config, int link_clock)
1224 {
1225         u32 ctrl1;
1226
1227         pipe_config->ddi_pll_sel = SKL_DPLL0;
1228         pipe_config->dpll_hw_state.cfgcr1 = 0;
1229         pipe_config->dpll_hw_state.cfgcr2 = 0;
1230
1231         ctrl1 = DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
1232         switch (link_clock / 2) {
1233         case 81000:
1234                 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_810,
1235                                               SKL_DPLL0);
1236                 break;
1237         case 135000:
1238                 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_1350,
1239                                               SKL_DPLL0);
1240                 break;
1241         case 270000:
1242                 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_2700,
1243                                               SKL_DPLL0);
1244                 break;
1245         case 162000:
1246                 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_1620,
1247                                               SKL_DPLL0);
1248                 break;
1249         /* TBD: For DP link rates 2.16 GHz and 4.32 GHz, VCO is 8640 which
1250         results in CDCLK change. Need to handle the change of CDCLK by
1251         disabling pipes and re-enabling them */
1252         case 108000:
1253                 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_1080,
1254                                               SKL_DPLL0);
1255                 break;
1256         case 216000:
1257                 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_2160,
1258                                               SKL_DPLL0);
1259                 break;
1260
1261         }
1262         pipe_config->dpll_hw_state.ctrl1 = ctrl1;
1263 }
1264
1265 static void
1266 hsw_dp_set_ddi_pll_sel(struct intel_crtc_state *pipe_config, int link_bw)
1267 {
1268         switch (link_bw) {
1269         case DP_LINK_BW_1_62:
1270                 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
1271                 break;
1272         case DP_LINK_BW_2_7:
1273                 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
1274                 break;
1275         case DP_LINK_BW_5_4:
1276                 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
1277                 break;
1278         }
1279 }
1280
1281 static int
1282 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1283 {
1284         if (intel_dp->num_sink_rates) {
1285                 *sink_rates = intel_dp->sink_rates;
1286                 return intel_dp->num_sink_rates;
1287         }
1288
1289         *sink_rates = default_rates;
1290
1291         return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1292 }
1293
1294 static int
1295 intel_dp_source_rates(struct drm_device *dev, const int **source_rates)
1296 {
1297         if (INTEL_INFO(dev)->gen >= 9) {
1298                 *source_rates = gen9_rates;
1299                 return ARRAY_SIZE(gen9_rates);
1300         } else if (IS_CHERRYVIEW(dev)) {
1301                 *source_rates = chv_rates;
1302                 return ARRAY_SIZE(chv_rates);
1303         }
1304
1305         *source_rates = default_rates;
1306
1307         if (IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0)
1308                 /* WaDisableHBR2:skl */
1309                 return (DP_LINK_BW_2_7 >> 3) + 1;
1310         else if (INTEL_INFO(dev)->gen >= 8 ||
1311             (IS_HASWELL(dev) && !IS_HSW_ULX(dev)))
1312                 return (DP_LINK_BW_5_4 >> 3) + 1;
1313         else
1314                 return (DP_LINK_BW_2_7 >> 3) + 1;
1315 }
1316
1317 static void
1318 intel_dp_set_clock(struct intel_encoder *encoder,
1319                    struct intel_crtc_state *pipe_config, int link_bw)
1320 {
1321         struct drm_device *dev = encoder->base.dev;
1322         const struct dp_link_dpll *divisor = NULL;
1323         int i, count = 0;
1324
1325         if (IS_G4X(dev)) {
1326                 divisor = gen4_dpll;
1327                 count = ARRAY_SIZE(gen4_dpll);
1328         } else if (HAS_PCH_SPLIT(dev)) {
1329                 divisor = pch_dpll;
1330                 count = ARRAY_SIZE(pch_dpll);
1331         } else if (IS_CHERRYVIEW(dev)) {
1332                 divisor = chv_dpll;
1333                 count = ARRAY_SIZE(chv_dpll);
1334         } else if (IS_VALLEYVIEW(dev)) {
1335                 divisor = vlv_dpll;
1336                 count = ARRAY_SIZE(vlv_dpll);
1337         }
1338
1339         if (divisor && count) {
1340                 for (i = 0; i < count; i++) {
1341                         if (link_bw == divisor[i].link_bw) {
1342                                 pipe_config->dpll = divisor[i].dpll;
1343                                 pipe_config->clock_set = true;
1344                                 break;
1345                         }
1346                 }
1347         }
1348 }
1349
1350 static int intersect_rates(const int *source_rates, int source_len,
1351                            const int *sink_rates, int sink_len,
1352                            int *common_rates)
1353 {
1354         int i = 0, j = 0, k = 0;
1355
1356         while (i < source_len && j < sink_len) {
1357                 if (source_rates[i] == sink_rates[j]) {
1358                         if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1359                                 return k;
1360                         common_rates[k] = source_rates[i];
1361                         ++k;
1362                         ++i;
1363                         ++j;
1364                 } else if (source_rates[i] < sink_rates[j]) {
1365                         ++i;
1366                 } else {
1367                         ++j;
1368                 }
1369         }
1370         return k;
1371 }
1372
1373 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1374                                  int *common_rates)
1375 {
1376         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1377         const int *source_rates, *sink_rates;
1378         int source_len, sink_len;
1379
1380         sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1381         source_len = intel_dp_source_rates(dev, &source_rates);
1382
1383         return intersect_rates(source_rates, source_len,
1384                                sink_rates, sink_len,
1385                                common_rates);
1386 }
1387
1388 static void snprintf_int_array(char *str, size_t len,
1389                                const int *array, int nelem)
1390 {
1391         int i;
1392
1393         str[0] = '\0';
1394
1395         for (i = 0; i < nelem; i++) {
1396                 int r = ksnprintf(str, len, "%d,", array[i]);
1397                 if (r >= len)
1398                         return;
1399                 str += r;
1400                 len -= r;
1401         }
1402 }
1403
1404 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1405 {
1406         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1407         const int *source_rates, *sink_rates;
1408         int source_len, sink_len, common_len;
1409         int common_rates[DP_MAX_SUPPORTED_RATES];
1410         char str[128]; /* FIXME: too big for stack? */
1411
1412         if ((drm_debug & DRM_UT_KMS) == 0)
1413                 return;
1414
1415         source_len = intel_dp_source_rates(dev, &source_rates);
1416         snprintf_int_array(str, sizeof(str), source_rates, source_len);
1417         DRM_DEBUG_KMS("source rates: %s\n", str);
1418
1419         sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1420         snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1421         DRM_DEBUG_KMS("sink rates: %s\n", str);
1422
1423         common_len = intel_dp_common_rates(intel_dp, common_rates);
1424         snprintf_int_array(str, sizeof(str), common_rates, common_len);
1425         DRM_DEBUG_KMS("common rates: %s\n", str);
1426 }
1427
1428 static int rate_to_index(int find, const int *rates)
1429 {
1430         int i = 0;
1431
1432         for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1433                 if (find == rates[i])
1434                         break;
1435
1436         return i;
1437 }
1438
1439 int
1440 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1441 {
1442         int rates[DP_MAX_SUPPORTED_RATES] = {};
1443         int len;
1444
1445         len = intel_dp_common_rates(intel_dp, rates);
1446         if (WARN_ON(len <= 0))
1447                 return 162000;
1448
1449         return rates[rate_to_index(0, rates) - 1];
1450 }
1451
1452 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1453 {
1454         return rate_to_index(rate, intel_dp->sink_rates);
1455 }
1456
1457 bool
1458 intel_dp_compute_config(struct intel_encoder *encoder,
1459                         struct intel_crtc_state *pipe_config)
1460 {
1461         struct drm_device *dev = encoder->base.dev;
1462         struct drm_i915_private *dev_priv = dev->dev_private;
1463         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1464         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1465         enum port port = dp_to_dig_port(intel_dp)->port;
1466         struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1467         struct intel_connector *intel_connector = intel_dp->attached_connector;
1468         int lane_count, clock;
1469         int min_lane_count = 1;
1470         int max_lane_count = intel_dp_max_lane_count(intel_dp);
1471         /* Conveniently, the link BW constants become indices with a shift...*/
1472         int min_clock = 0;
1473         int max_clock;
1474         int bpp, mode_rate;
1475         int link_avail, link_clock;
1476         int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1477         int common_len;
1478
1479         common_len = intel_dp_common_rates(intel_dp, common_rates);
1480
1481         /* No common link rates between source and sink */
1482         WARN_ON(common_len <= 0);
1483
1484         max_clock = common_len - 1;
1485
1486         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1487                 pipe_config->has_pch_encoder = true;
1488
1489         pipe_config->has_dp_encoder = true;
1490         pipe_config->has_drrs = false;
1491         pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1492
1493         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1494                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1495                                        adjusted_mode);
1496                 if (!HAS_PCH_SPLIT(dev))
1497                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
1498                                                  intel_connector->panel.fitting_mode);
1499                 else
1500                         intel_pch_panel_fitting(intel_crtc, pipe_config,
1501                                                 intel_connector->panel.fitting_mode);
1502         }
1503
1504         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1505                 return false;
1506
1507         DRM_DEBUG_KMS("DP link computation with max lane count %i "
1508                       "max bw %d pixel clock %iKHz\n",
1509                       max_lane_count, common_rates[max_clock],
1510                       adjusted_mode->crtc_clock);
1511
1512         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1513          * bpc in between. */
1514         bpp = pipe_config->pipe_bpp;
1515         if (is_edp(intel_dp)) {
1516                 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
1517                         DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1518                                       dev_priv->vbt.edp_bpp);
1519                         bpp = dev_priv->vbt.edp_bpp;
1520                 }
1521
1522                 /*
1523                  * Use the maximum clock and number of lanes the eDP panel
1524                  * advertizes being capable of. The panels are generally
1525                  * designed to support only a single clock and lane
1526                  * configuration, and typically these values correspond to the
1527                  * native resolution of the panel.
1528                  */
1529                 min_lane_count = max_lane_count;
1530                 min_clock = max_clock;
1531         }
1532
1533         for (; bpp >= 6*3; bpp -= 2*3) {
1534                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1535                                                    bpp);
1536
1537                 for (clock = min_clock; clock <= max_clock; clock++) {
1538                         for (lane_count = min_lane_count;
1539                                 lane_count <= max_lane_count;
1540                                 lane_count <<= 1) {
1541
1542                                 link_clock = common_rates[clock];
1543                                 link_avail = intel_dp_max_data_rate(link_clock,
1544                                                                     lane_count);
1545
1546                                 if (mode_rate <= link_avail) {
1547                                         goto found;
1548                                 }
1549                         }
1550                 }
1551         }
1552
1553         return false;
1554
1555 found:
1556         if (intel_dp->color_range_auto) {
1557                 /*
1558                  * See:
1559                  * CEA-861-E - 5.1 Default Encoding Parameters
1560                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1561                  */
1562                 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
1563                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
1564                 else
1565                         intel_dp->color_range = 0;
1566         }
1567
1568         if (intel_dp->color_range)
1569                 pipe_config->limited_color_range = true;
1570
1571         intel_dp->lane_count = lane_count;
1572
1573         if (intel_dp->num_sink_rates) {
1574                 intel_dp->link_bw = 0;
1575                 intel_dp->rate_select =
1576                         intel_dp_rate_select(intel_dp, common_rates[clock]);
1577         } else {
1578                 intel_dp->link_bw =
1579                         drm_dp_link_rate_to_bw_code(common_rates[clock]);
1580                 intel_dp->rate_select = 0;
1581         }
1582
1583         pipe_config->pipe_bpp = bpp;
1584         pipe_config->port_clock = common_rates[clock];
1585
1586         DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
1587                       intel_dp->link_bw, intel_dp->lane_count,
1588                       pipe_config->port_clock, bpp);
1589         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1590                       mode_rate, link_avail);
1591
1592         intel_link_compute_m_n(bpp, lane_count,
1593                                adjusted_mode->crtc_clock,
1594                                pipe_config->port_clock,
1595                                &pipe_config->dp_m_n);
1596
1597         if (intel_connector->panel.downclock_mode != NULL &&
1598                 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1599                         pipe_config->has_drrs = true;
1600                         intel_link_compute_m_n(bpp, lane_count,
1601                                 intel_connector->panel.downclock_mode->clock,
1602                                 pipe_config->port_clock,
1603                                 &pipe_config->dp_m2_n2);
1604         }
1605
1606         if (IS_SKYLAKE(dev) && is_edp(intel_dp))
1607                 skl_edp_set_pll_config(pipe_config, common_rates[clock]);
1608         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1609                 hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
1610         else
1611                 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
1612
1613         return true;
1614 }
1615
1616 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
1617 {
1618         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1619         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1620         struct drm_device *dev = crtc->base.dev;
1621         struct drm_i915_private *dev_priv = dev->dev_private;
1622         u32 dpa_ctl;
1623
1624         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n",
1625                       crtc->config->port_clock);
1626         dpa_ctl = I915_READ(DP_A);
1627         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1628
1629         if (crtc->config->port_clock == 162000) {
1630                 /* For a long time we've carried around a ILK-DevA w/a for the
1631                  * 160MHz clock. If we're really unlucky, it's still required.
1632                  */
1633                 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1634                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1635                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1636         } else {
1637                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1638                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1639         }
1640
1641         I915_WRITE(DP_A, dpa_ctl);
1642
1643         POSTING_READ(DP_A);
1644         udelay(500);
1645 }
1646
1647 static void intel_dp_prepare(struct intel_encoder *encoder)
1648 {
1649         struct drm_device *dev = encoder->base.dev;
1650         struct drm_i915_private *dev_priv = dev->dev_private;
1651         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1652         enum port port = dp_to_dig_port(intel_dp)->port;
1653         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1654         struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1655
1656         /*
1657          * There are four kinds of DP registers:
1658          *
1659          *      IBX PCH
1660          *      SNB CPU
1661          *      IVB CPU
1662          *      CPT PCH
1663          *
1664          * IBX PCH and CPU are the same for almost everything,
1665          * except that the CPU DP PLL is configured in this
1666          * register
1667          *
1668          * CPT PCH is quite different, having many bits moved
1669          * to the TRANS_DP_CTL register instead. That
1670          * configuration happens (oddly) in ironlake_pch_enable
1671          */
1672
1673         /* Preserve the BIOS-computed detected bit. This is
1674          * supposed to be read-only.
1675          */
1676         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1677
1678         /* Handle DP bits in common between all three register formats */
1679         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1680         intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1681
1682         if (crtc->config->has_audio)
1683                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1684
1685         /* Split out the IBX/CPU vs CPT settings */
1686
1687         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1688                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1689                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1690                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1691                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1692                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1693
1694                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1695                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1696
1697                 intel_dp->DP |= crtc->pipe << 29;
1698         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1699                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1700                         intel_dp->DP |= intel_dp->color_range;
1701
1702                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1703                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1704                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1705                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1706                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1707
1708                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1709                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1710
1711                 if (!IS_CHERRYVIEW(dev)) {
1712                         if (crtc->pipe == 1)
1713                                 intel_dp->DP |= DP_PIPEB_SELECT;
1714                 } else {
1715                         intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1716                 }
1717         } else {
1718                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1719         }
1720 }
1721
1722 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1723 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1724
1725 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1726 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
1727
1728 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1729 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1730
1731 static void wait_panel_status(struct intel_dp *intel_dp,
1732                                        u32 mask,
1733                                        u32 value)
1734 {
1735         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1736         struct drm_i915_private *dev_priv = dev->dev_private;
1737         u32 pp_stat_reg, pp_ctrl_reg;
1738
1739         lockdep_assert_held(&dev_priv->pps_mutex);
1740
1741         pp_stat_reg = _pp_stat_reg(intel_dp);
1742         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1743
1744         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1745                         mask, value,
1746                         I915_READ(pp_stat_reg),
1747                         I915_READ(pp_ctrl_reg));
1748
1749         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1750                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1751                                 I915_READ(pp_stat_reg),
1752                                 I915_READ(pp_ctrl_reg));
1753         }
1754
1755         DRM_DEBUG_KMS("Wait complete\n");
1756 }
1757
1758 static void wait_panel_on(struct intel_dp *intel_dp)
1759 {
1760         DRM_DEBUG_KMS("Wait for panel power on\n");
1761         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1762 }
1763
1764 static void wait_panel_off(struct intel_dp *intel_dp)
1765 {
1766         DRM_DEBUG_KMS("Wait for panel power off time\n");
1767         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1768 }
1769
1770 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1771 {
1772         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1773
1774         /* When we disable the VDD override bit last we have to do the manual
1775          * wait. */
1776         wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1777                                        intel_dp->panel_power_cycle_delay);
1778
1779         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1780 }
1781
1782 static void wait_backlight_on(struct intel_dp *intel_dp)
1783 {
1784         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1785                                        intel_dp->backlight_on_delay);
1786 }
1787
1788 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1789 {
1790         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1791                                        intel_dp->backlight_off_delay);
1792 }
1793
1794 /* Read the current pp_control value, unlocking the register if it
1795  * is locked
1796  */
1797
1798 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1799 {
1800         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1801         struct drm_i915_private *dev_priv = dev->dev_private;
1802         u32 control;
1803
1804         lockdep_assert_held(&dev_priv->pps_mutex);
1805
1806         control = I915_READ(_pp_ctrl_reg(intel_dp));
1807         control &= ~PANEL_UNLOCK_MASK;
1808         control |= PANEL_UNLOCK_REGS;
1809         return control;
1810 }
1811
1812 /*
1813  * Must be paired with edp_panel_vdd_off().
1814  * Must hold pps_mutex around the whole on/off sequence.
1815  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1816  */
1817 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1818 {
1819         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1820         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1821         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1822         struct drm_i915_private *dev_priv = dev->dev_private;
1823         enum intel_display_power_domain power_domain;
1824         u32 pp;
1825         u32 pp_stat_reg, pp_ctrl_reg;
1826         bool need_to_disable = !intel_dp->want_panel_vdd;
1827
1828         lockdep_assert_held(&dev_priv->pps_mutex);
1829
1830         if (!is_edp(intel_dp))
1831                 return false;
1832
1833         cancel_delayed_work(&intel_dp->panel_vdd_work);
1834         intel_dp->want_panel_vdd = true;
1835
1836         if (edp_have_panel_vdd(intel_dp))
1837                 return need_to_disable;
1838
1839         power_domain = intel_display_port_power_domain(intel_encoder);
1840         intel_display_power_get(dev_priv, power_domain);
1841
1842         DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1843                       port_name(intel_dig_port->port));
1844
1845         if (!edp_have_panel_power(intel_dp))
1846                 wait_panel_power_cycle(intel_dp);
1847
1848         pp = ironlake_get_pp_control(intel_dp);
1849         pp |= EDP_FORCE_VDD;
1850
1851         pp_stat_reg = _pp_stat_reg(intel_dp);
1852         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1853
1854         I915_WRITE(pp_ctrl_reg, pp);
1855         POSTING_READ(pp_ctrl_reg);
1856         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1857                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1858         /*
1859          * If the panel wasn't on, delay before accessing aux channel
1860          */
1861         if (!edp_have_panel_power(intel_dp)) {
1862                 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1863                               port_name(intel_dig_port->port));
1864                 msleep(intel_dp->panel_power_up_delay);
1865         }
1866
1867         return need_to_disable;
1868 }
1869
1870 /*
1871  * Must be paired with intel_edp_panel_vdd_off() or
1872  * intel_edp_panel_off().
1873  * Nested calls to these functions are not allowed since
1874  * we drop the lock. Caller must use some higher level
1875  * locking to prevent nested calls from other threads.
1876  */
1877 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1878 {
1879         bool vdd;
1880
1881         if (!is_edp(intel_dp))
1882                 return;
1883
1884         pps_lock(intel_dp);
1885         vdd = edp_panel_vdd_on(intel_dp);
1886         pps_unlock(intel_dp);
1887
1888         I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1889              port_name(dp_to_dig_port(intel_dp)->port));
1890 }
1891
1892 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1893 {
1894         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1895         struct drm_i915_private *dev_priv = dev->dev_private;
1896         struct intel_digital_port *intel_dig_port =
1897                 dp_to_dig_port(intel_dp);
1898         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1899         enum intel_display_power_domain power_domain;
1900         u32 pp;
1901         u32 pp_stat_reg, pp_ctrl_reg;
1902
1903         lockdep_assert_held(&dev_priv->pps_mutex);
1904
1905         WARN_ON(intel_dp->want_panel_vdd);
1906
1907         if (!edp_have_panel_vdd(intel_dp))
1908                 return;
1909
1910         DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1911                       port_name(intel_dig_port->port));
1912
1913         pp = ironlake_get_pp_control(intel_dp);
1914         pp &= ~EDP_FORCE_VDD;
1915
1916         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1917         pp_stat_reg = _pp_stat_reg(intel_dp);
1918
1919         I915_WRITE(pp_ctrl_reg, pp);
1920         POSTING_READ(pp_ctrl_reg);
1921
1922         /* Make sure sequencer is idle before allowing subsequent activity */
1923         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1924         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1925
1926         if ((pp & POWER_TARGET_ON) == 0)
1927                 intel_dp->last_power_cycle = jiffies;
1928
1929         power_domain = intel_display_port_power_domain(intel_encoder);
1930         intel_display_power_put(dev_priv, power_domain);
1931 }
1932
1933 static void edp_panel_vdd_work(struct work_struct *__work)
1934 {
1935         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1936                                                  struct intel_dp, panel_vdd_work);
1937
1938         pps_lock(intel_dp);
1939         if (!intel_dp->want_panel_vdd)
1940                 edp_panel_vdd_off_sync(intel_dp);
1941         pps_unlock(intel_dp);
1942 }
1943
1944 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1945 {
1946         unsigned long delay;
1947
1948         /*
1949          * Queue the timer to fire a long time from now (relative to the power
1950          * down delay) to keep the panel power up across a sequence of
1951          * operations.
1952          */
1953         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1954         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1955 }
1956
1957 /*
1958  * Must be paired with edp_panel_vdd_on().
1959  * Must hold pps_mutex around the whole on/off sequence.
1960  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1961  */
1962 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1963 {
1964         struct drm_i915_private *dev_priv =
1965                 intel_dp_to_dev(intel_dp)->dev_private;
1966
1967         lockdep_assert_held(&dev_priv->pps_mutex);
1968
1969         if (!is_edp(intel_dp))
1970                 return;
1971
1972         I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
1973              port_name(dp_to_dig_port(intel_dp)->port));
1974
1975         intel_dp->want_panel_vdd = false;
1976
1977         if (sync)
1978                 edp_panel_vdd_off_sync(intel_dp);
1979         else
1980                 edp_panel_vdd_schedule_off(intel_dp);
1981 }
1982
1983 static void edp_panel_on(struct intel_dp *intel_dp)
1984 {
1985         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1986         struct drm_i915_private *dev_priv = dev->dev_private;
1987         u32 pp;
1988         u32 pp_ctrl_reg;
1989
1990         lockdep_assert_held(&dev_priv->pps_mutex);
1991
1992         if (!is_edp(intel_dp))
1993                 return;
1994
1995         DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
1996                       port_name(dp_to_dig_port(intel_dp)->port));
1997
1998         if (WARN(edp_have_panel_power(intel_dp),
1999                  "eDP port %c panel power already on\n",
2000                  port_name(dp_to_dig_port(intel_dp)->port)))
2001                 return;
2002
2003         wait_panel_power_cycle(intel_dp);
2004
2005         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2006         pp = ironlake_get_pp_control(intel_dp);
2007         if (IS_GEN5(dev)) {
2008                 /* ILK workaround: disable reset around power sequence */
2009                 pp &= ~PANEL_POWER_RESET;
2010                 I915_WRITE(pp_ctrl_reg, pp);
2011                 POSTING_READ(pp_ctrl_reg);
2012         }
2013
2014         pp |= POWER_TARGET_ON;
2015         if (!IS_GEN5(dev))
2016                 pp |= PANEL_POWER_RESET;
2017
2018         I915_WRITE(pp_ctrl_reg, pp);
2019         POSTING_READ(pp_ctrl_reg);
2020
2021         wait_panel_on(intel_dp);
2022         intel_dp->last_power_on = jiffies;
2023
2024         if (IS_GEN5(dev)) {
2025                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2026                 I915_WRITE(pp_ctrl_reg, pp);
2027                 POSTING_READ(pp_ctrl_reg);
2028         }
2029 }
2030
2031 void intel_edp_panel_on(struct intel_dp *intel_dp)
2032 {
2033         if (!is_edp(intel_dp))
2034                 return;
2035
2036         pps_lock(intel_dp);
2037         edp_panel_on(intel_dp);
2038         pps_unlock(intel_dp);
2039 }
2040
2041
2042 static void edp_panel_off(struct intel_dp *intel_dp)
2043 {
2044         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2045         struct intel_encoder *intel_encoder = &intel_dig_port->base;
2046         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2047         struct drm_i915_private *dev_priv = dev->dev_private;
2048         enum intel_display_power_domain power_domain;
2049         u32 pp;
2050         u32 pp_ctrl_reg;
2051
2052         lockdep_assert_held(&dev_priv->pps_mutex);
2053
2054         if (!is_edp(intel_dp))
2055                 return;
2056
2057         DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2058                       port_name(dp_to_dig_port(intel_dp)->port));
2059
2060         WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2061              port_name(dp_to_dig_port(intel_dp)->port));
2062
2063         pp = ironlake_get_pp_control(intel_dp);
2064         /* We need to switch off panel power _and_ force vdd, for otherwise some
2065          * panels get very unhappy and cease to work. */
2066         pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2067                 EDP_BLC_ENABLE);
2068
2069         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2070
2071         intel_dp->want_panel_vdd = false;
2072
2073         I915_WRITE(pp_ctrl_reg, pp);
2074         POSTING_READ(pp_ctrl_reg);
2075
2076         intel_dp->last_power_cycle = jiffies;
2077         wait_panel_off(intel_dp);
2078
2079         /* We got a reference when we enabled the VDD. */
2080         power_domain = intel_display_port_power_domain(intel_encoder);
2081         intel_display_power_put(dev_priv, power_domain);
2082 }
2083
2084 void intel_edp_panel_off(struct intel_dp *intel_dp)
2085 {
2086         if (!is_edp(intel_dp))
2087                 return;
2088
2089         pps_lock(intel_dp);
2090         edp_panel_off(intel_dp);
2091         pps_unlock(intel_dp);
2092 }
2093
2094 /* Enable backlight in the panel power control. */
2095 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2096 {
2097         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2098         struct drm_device *dev = intel_dig_port->base.base.dev;
2099         struct drm_i915_private *dev_priv = dev->dev_private;
2100         u32 pp;
2101         u32 pp_ctrl_reg;
2102
2103         /*
2104          * If we enable the backlight right away following a panel power
2105          * on, we may see slight flicker as the panel syncs with the eDP
2106          * link.  So delay a bit to make sure the image is solid before
2107          * allowing it to appear.
2108          */
2109         wait_backlight_on(intel_dp);
2110
2111         pps_lock(intel_dp);
2112
2113         pp = ironlake_get_pp_control(intel_dp);
2114         pp |= EDP_BLC_ENABLE;
2115
2116         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2117
2118         I915_WRITE(pp_ctrl_reg, pp);
2119         POSTING_READ(pp_ctrl_reg);
2120
2121         pps_unlock(intel_dp);
2122 }
2123
2124 /* Enable backlight PWM and backlight PP control. */
2125 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2126 {
2127         if (!is_edp(intel_dp))
2128                 return;
2129
2130         DRM_DEBUG_KMS("\n");
2131
2132         intel_panel_enable_backlight(intel_dp->attached_connector);
2133         _intel_edp_backlight_on(intel_dp);
2134 }
2135
2136 /* Disable backlight in the panel power control. */
2137 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2138 {
2139         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2140         struct drm_i915_private *dev_priv = dev->dev_private;
2141         u32 pp;
2142         u32 pp_ctrl_reg;
2143
2144         if (!is_edp(intel_dp))
2145                 return;
2146
2147         pps_lock(intel_dp);
2148
2149         pp = ironlake_get_pp_control(intel_dp);
2150         pp &= ~EDP_BLC_ENABLE;
2151
2152         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2153
2154         I915_WRITE(pp_ctrl_reg, pp);
2155         POSTING_READ(pp_ctrl_reg);
2156
2157         pps_unlock(intel_dp);
2158
2159         intel_dp->last_backlight_off = jiffies;
2160         edp_wait_backlight_off(intel_dp);
2161 }
2162
2163 /* Disable backlight PP control and backlight PWM. */
2164 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2165 {
2166         if (!is_edp(intel_dp))
2167                 return;
2168
2169         DRM_DEBUG_KMS("\n");
2170
2171         _intel_edp_backlight_off(intel_dp);
2172         intel_panel_disable_backlight(intel_dp->attached_connector);
2173 }
2174
2175 /*
2176  * Hook for controlling the panel power control backlight through the bl_power
2177  * sysfs attribute. Take care to handle multiple calls.
2178  */
2179 static void intel_edp_backlight_power(struct intel_connector *connector,
2180                                       bool enable)
2181 {
2182         struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2183         bool is_enabled;
2184
2185         pps_lock(intel_dp);
2186         is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2187         pps_unlock(intel_dp);
2188
2189         if (is_enabled == enable)
2190                 return;
2191
2192         DRM_DEBUG_KMS("panel power control backlight %s\n",
2193                       enable ? "enable" : "disable");
2194
2195         if (enable)
2196                 _intel_edp_backlight_on(intel_dp);
2197         else
2198                 _intel_edp_backlight_off(intel_dp);
2199 }
2200
2201 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2202 {
2203         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2204         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2205         struct drm_device *dev = crtc->dev;
2206         struct drm_i915_private *dev_priv = dev->dev_private;
2207         u32 dpa_ctl;
2208
2209         assert_pipe_disabled(dev_priv,
2210                              to_intel_crtc(crtc)->pipe);
2211
2212         DRM_DEBUG_KMS("\n");
2213         dpa_ctl = I915_READ(DP_A);
2214         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
2215         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
2216
2217         /* We don't adjust intel_dp->DP while tearing down the link, to
2218          * facilitate link retraining (e.g. after hotplug). Hence clear all
2219          * enable bits here to ensure that we don't enable too much. */
2220         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
2221         intel_dp->DP |= DP_PLL_ENABLE;
2222         I915_WRITE(DP_A, intel_dp->DP);
2223         POSTING_READ(DP_A);
2224         udelay(200);
2225 }
2226
2227 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2228 {
2229         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2230         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2231         struct drm_device *dev = crtc->dev;
2232         struct drm_i915_private *dev_priv = dev->dev_private;
2233         u32 dpa_ctl;
2234
2235         assert_pipe_disabled(dev_priv,
2236                              to_intel_crtc(crtc)->pipe);
2237
2238         dpa_ctl = I915_READ(DP_A);
2239         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
2240              "dp pll off, should be on\n");
2241         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
2242
2243         /* We can't rely on the value tracked for the DP register in
2244          * intel_dp->DP because link_down must not change that (otherwise link
2245          * re-training will fail. */
2246         dpa_ctl &= ~DP_PLL_ENABLE;
2247         I915_WRITE(DP_A, dpa_ctl);
2248         POSTING_READ(DP_A);
2249         udelay(200);
2250 }
2251
2252 /* If the sink supports it, try to set the power state appropriately */
2253 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2254 {
2255         int ret, i;
2256
2257         /* Should have a valid DPCD by this point */
2258         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2259                 return;
2260
2261         if (mode != DRM_MODE_DPMS_ON) {
2262                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2263                                          DP_SET_POWER_D3);
2264         } else {
2265                 /*
2266                  * When turning on, we need to retry for 1ms to give the sink
2267                  * time to wake up.
2268                  */
2269                 for (i = 0; i < 3; i++) {
2270                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2271                                                  DP_SET_POWER_D0);
2272                         if (ret == 1)
2273                                 break;
2274                         msleep(1);
2275                 }
2276         }
2277
2278         if (ret != 1)
2279                 DRM_DEBUG_KMS("failed to %s sink power state\n",
2280                               mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2281 }
2282
2283 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2284                                   enum i915_pipe *pipe)
2285 {
2286         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2287         enum port port = dp_to_dig_port(intel_dp)->port;
2288         struct drm_device *dev = encoder->base.dev;
2289         struct drm_i915_private *dev_priv = dev->dev_private;
2290         enum intel_display_power_domain power_domain;
2291         u32 tmp;
2292
2293         power_domain = intel_display_port_power_domain(encoder);
2294         if (!intel_display_power_is_enabled(dev_priv, power_domain))
2295                 return false;
2296
2297         tmp = I915_READ(intel_dp->output_reg);
2298
2299         if (!(tmp & DP_PORT_EN))
2300                 return false;
2301
2302         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
2303                 *pipe = PORT_TO_PIPE_CPT(tmp);
2304         } else if (IS_CHERRYVIEW(dev)) {
2305                 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2306         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
2307                 *pipe = PORT_TO_PIPE(tmp);
2308         } else {
2309                 u32 trans_sel;
2310                 u32 trans_dp;
2311                 int i;
2312
2313                 switch (intel_dp->output_reg) {
2314                 case PCH_DP_B:
2315                         trans_sel = TRANS_DP_PORT_SEL_B;
2316                         break;
2317                 case PCH_DP_C:
2318                         trans_sel = TRANS_DP_PORT_SEL_C;
2319                         break;
2320                 case PCH_DP_D:
2321                         trans_sel = TRANS_DP_PORT_SEL_D;
2322                         break;
2323                 default:
2324                         return true;
2325                 }
2326
2327                 for_each_pipe(dev_priv, i) {
2328                         trans_dp = I915_READ(TRANS_DP_CTL(i));
2329                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
2330                                 *pipe = i;
2331                                 return true;
2332                         }
2333                 }
2334
2335                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2336                               intel_dp->output_reg);
2337         }
2338
2339         return true;
2340 }
2341
2342 static void intel_dp_get_config(struct intel_encoder *encoder,
2343                                 struct intel_crtc_state *pipe_config)
2344 {
2345         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2346         u32 tmp, flags = 0;
2347         struct drm_device *dev = encoder->base.dev;
2348         struct drm_i915_private *dev_priv = dev->dev_private;
2349         enum port port = dp_to_dig_port(intel_dp)->port;
2350         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2351         int dotclock;
2352
2353         tmp = I915_READ(intel_dp->output_reg);
2354
2355         pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2356
2357         if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
2358                 if (tmp & DP_SYNC_HS_HIGH)
2359                         flags |= DRM_MODE_FLAG_PHSYNC;
2360                 else
2361                         flags |= DRM_MODE_FLAG_NHSYNC;
2362
2363                 if (tmp & DP_SYNC_VS_HIGH)
2364                         flags |= DRM_MODE_FLAG_PVSYNC;
2365                 else
2366                         flags |= DRM_MODE_FLAG_NVSYNC;
2367         } else {
2368                 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2369                 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2370                         flags |= DRM_MODE_FLAG_PHSYNC;
2371                 else
2372                         flags |= DRM_MODE_FLAG_NHSYNC;
2373
2374                 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2375                         flags |= DRM_MODE_FLAG_PVSYNC;
2376                 else
2377                         flags |= DRM_MODE_FLAG_NVSYNC;
2378         }
2379
2380         pipe_config->base.adjusted_mode.flags |= flags;
2381
2382         if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2383             tmp & DP_COLOR_RANGE_16_235)
2384                 pipe_config->limited_color_range = true;
2385
2386         pipe_config->has_dp_encoder = true;
2387
2388         intel_dp_get_m_n(crtc, pipe_config);
2389
2390         if (port == PORT_A) {
2391                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
2392                         pipe_config->port_clock = 162000;
2393                 else
2394                         pipe_config->port_clock = 270000;
2395         }
2396
2397         dotclock = intel_dotclock_calculate(pipe_config->port_clock,
2398                                             &pipe_config->dp_m_n);
2399
2400         if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
2401                 ironlake_check_encoder_dotclock(pipe_config, dotclock);
2402
2403         pipe_config->base.adjusted_mode.crtc_clock = dotclock;
2404
2405         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
2406             pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2407                 /*
2408                  * This is a big fat ugly hack.
2409                  *
2410                  * Some machines in UEFI boot mode provide us a VBT that has 18
2411                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2412                  * unknown we fail to light up. Yet the same BIOS boots up with
2413                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2414                  * max, not what it tells us to use.
2415                  *
2416                  * Note: This will still be broken if the eDP panel is not lit
2417                  * up by the BIOS, and thus we can't get the mode at module
2418                  * load.
2419                  */
2420                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2421                               pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2422                 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2423         }
2424 }
2425
2426 static void intel_disable_dp(struct intel_encoder *encoder)
2427 {
2428         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2429         struct drm_device *dev = encoder->base.dev;
2430         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2431
2432         if (crtc->config->has_audio)
2433                 intel_audio_codec_disable(encoder);
2434
2435         if (HAS_PSR(dev) && !HAS_DDI(dev))
2436                 intel_psr_disable(intel_dp);
2437
2438         /* Make sure the panel is off before trying to change the mode. But also
2439          * ensure that we have vdd while we switch off the panel. */
2440         intel_edp_panel_vdd_on(intel_dp);
2441         intel_edp_backlight_off(intel_dp);
2442         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2443         intel_edp_panel_off(intel_dp);
2444
2445         /* disable the port before the pipe on g4x */
2446         if (INTEL_INFO(dev)->gen < 5)
2447                 intel_dp_link_down(intel_dp);
2448 }
2449
2450 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2451 {
2452         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2453         enum port port = dp_to_dig_port(intel_dp)->port;
2454
2455         intel_dp_link_down(intel_dp);
2456         if (port == PORT_A)
2457                 ironlake_edp_pll_off(intel_dp);
2458 }
2459
2460 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2461 {
2462         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2463
2464         intel_dp_link_down(intel_dp);
2465 }
2466
2467 static void chv_post_disable_dp(struct intel_encoder *encoder)
2468 {
2469         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2470         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2471         struct drm_device *dev = encoder->base.dev;
2472         struct drm_i915_private *dev_priv = dev->dev_private;
2473         struct intel_crtc *intel_crtc =
2474                 to_intel_crtc(encoder->base.crtc);
2475         enum dpio_channel ch = vlv_dport_to_channel(dport);
2476         enum i915_pipe pipe = intel_crtc->pipe;
2477         u32 val;
2478
2479         intel_dp_link_down(intel_dp);
2480
2481         mutex_lock(&dev_priv->dpio_lock);
2482
2483         /* Propagate soft reset to data lane reset */
2484         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2485         val |= CHV_PCS_REQ_SOFTRESET_EN;
2486         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2487
2488         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2489         val |= CHV_PCS_REQ_SOFTRESET_EN;
2490         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2491
2492         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2493         val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2494         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2495
2496         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2497         val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2498         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2499
2500         mutex_unlock(&dev_priv->dpio_lock);
2501 }
2502
2503 static void
2504 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2505                          uint32_t *DP,
2506                          uint8_t dp_train_pat)
2507 {
2508         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2509         struct drm_device *dev = intel_dig_port->base.base.dev;
2510         struct drm_i915_private *dev_priv = dev->dev_private;
2511         enum port port = intel_dig_port->port;
2512
2513         if (HAS_DDI(dev)) {
2514                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2515
2516                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2517                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2518                 else
2519                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2520
2521                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2522                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2523                 case DP_TRAINING_PATTERN_DISABLE:
2524                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2525
2526                         break;
2527                 case DP_TRAINING_PATTERN_1:
2528                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2529                         break;
2530                 case DP_TRAINING_PATTERN_2:
2531                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2532                         break;
2533                 case DP_TRAINING_PATTERN_3:
2534                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2535                         break;
2536                 }
2537                 I915_WRITE(DP_TP_CTL(port), temp);
2538
2539         } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2540                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2541
2542                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2543                 case DP_TRAINING_PATTERN_DISABLE:
2544                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2545                         break;
2546                 case DP_TRAINING_PATTERN_1:
2547                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2548                         break;
2549                 case DP_TRAINING_PATTERN_2:
2550                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2551                         break;
2552                 case DP_TRAINING_PATTERN_3:
2553                         DRM_ERROR("DP training pattern 3 not supported\n");
2554                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2555                         break;
2556                 }
2557
2558         } else {
2559                 if (IS_CHERRYVIEW(dev))
2560                         *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2561                 else
2562                         *DP &= ~DP_LINK_TRAIN_MASK;
2563
2564                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2565                 case DP_TRAINING_PATTERN_DISABLE:
2566                         *DP |= DP_LINK_TRAIN_OFF;
2567                         break;
2568                 case DP_TRAINING_PATTERN_1:
2569                         *DP |= DP_LINK_TRAIN_PAT_1;
2570                         break;
2571                 case DP_TRAINING_PATTERN_2:
2572                         *DP |= DP_LINK_TRAIN_PAT_2;
2573                         break;
2574                 case DP_TRAINING_PATTERN_3:
2575                         if (IS_CHERRYVIEW(dev)) {
2576                                 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2577                         } else {
2578                                 DRM_ERROR("DP training pattern 3 not supported\n");
2579                                 *DP |= DP_LINK_TRAIN_PAT_2;
2580                         }
2581                         break;
2582                 }
2583         }
2584 }
2585
2586 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2587 {
2588         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2589         struct drm_i915_private *dev_priv = dev->dev_private;
2590
2591         /* enable with pattern 1 (as per spec) */
2592         _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2593                                  DP_TRAINING_PATTERN_1);
2594
2595         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2596         POSTING_READ(intel_dp->output_reg);
2597
2598         /*
2599          * Magic for VLV/CHV. We _must_ first set up the register
2600          * without actually enabling the port, and then do another
2601          * write to enable the port. Otherwise link training will
2602          * fail when the power sequencer is freshly used for this port.
2603          */
2604         intel_dp->DP |= DP_PORT_EN;
2605
2606         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2607         POSTING_READ(intel_dp->output_reg);
2608 }
2609
2610 static void intel_enable_dp(struct intel_encoder *encoder)
2611 {
2612         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2613         struct drm_device *dev = encoder->base.dev;
2614         struct drm_i915_private *dev_priv = dev->dev_private;
2615         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2616         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2617
2618         if (WARN_ON(dp_reg & DP_PORT_EN))
2619                 return;
2620
2621         pps_lock(intel_dp);
2622
2623         if (IS_VALLEYVIEW(dev))
2624                 vlv_init_panel_power_sequencer(intel_dp);
2625
2626         intel_dp_enable_port(intel_dp);
2627
2628         edp_panel_vdd_on(intel_dp);
2629         edp_panel_on(intel_dp);
2630         edp_panel_vdd_off(intel_dp, true);
2631
2632         pps_unlock(intel_dp);
2633
2634         if (IS_VALLEYVIEW(dev))
2635                 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp));
2636
2637         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2638         intel_dp_start_link_train(intel_dp);
2639         intel_dp_complete_link_train(intel_dp);
2640         intel_dp_stop_link_train(intel_dp);
2641
2642         if (crtc->config->has_audio) {
2643                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2644                                  pipe_name(crtc->pipe));
2645                 intel_audio_codec_enable(encoder);
2646         }
2647 }
2648
2649 static void g4x_enable_dp(struct intel_encoder *encoder)
2650 {
2651         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2652
2653         intel_enable_dp(encoder);
2654         intel_edp_backlight_on(intel_dp);
2655 }
2656
2657 static void vlv_enable_dp(struct intel_encoder *encoder)
2658 {
2659         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2660
2661         intel_edp_backlight_on(intel_dp);
2662         intel_psr_enable(intel_dp);
2663 }
2664
2665 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2666 {
2667         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2668         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2669
2670         intel_dp_prepare(encoder);
2671
2672         /* Only ilk+ has port A */
2673         if (dport->port == PORT_A) {
2674                 ironlake_set_pll_cpu_edp(intel_dp);
2675                 ironlake_edp_pll_on(intel_dp);
2676         }
2677 }
2678
2679 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2680 {
2681         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2682         struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2683         enum i915_pipe pipe = intel_dp->pps_pipe;
2684         int pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2685
2686         edp_panel_vdd_off_sync(intel_dp);
2687
2688         /*
2689          * VLV seems to get confused when multiple power seqeuencers
2690          * have the same port selected (even if only one has power/vdd
2691          * enabled). The failure manifests as vlv_wait_port_ready() failing
2692          * CHV on the other hand doesn't seem to mind having the same port
2693          * selected in multiple power seqeuencers, but let's clear the
2694          * port select always when logically disconnecting a power sequencer
2695          * from a port.
2696          */
2697         DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2698                       pipe_name(pipe), port_name(intel_dig_port->port));
2699         I915_WRITE(pp_on_reg, 0);
2700         POSTING_READ(pp_on_reg);
2701
2702         intel_dp->pps_pipe = INVALID_PIPE;
2703 }
2704
2705 static void vlv_steal_power_sequencer(struct drm_device *dev,
2706                                       enum i915_pipe pipe)
2707 {
2708         struct drm_i915_private *dev_priv = dev->dev_private;
2709         struct intel_encoder *encoder;
2710
2711         lockdep_assert_held(&dev_priv->pps_mutex);
2712
2713         if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2714                 return;
2715
2716         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2717                             base.head) {
2718                 struct intel_dp *intel_dp;
2719                 enum port port;
2720
2721                 if (encoder->type != INTEL_OUTPUT_EDP)
2722                         continue;
2723
2724                 intel_dp = enc_to_intel_dp(&encoder->base);
2725                 port = dp_to_dig_port(intel_dp)->port;
2726
2727                 if (intel_dp->pps_pipe != pipe)
2728                         continue;
2729
2730                 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2731                               pipe_name(pipe), port_name(port));
2732
2733                 WARN(encoder->connectors_active,
2734                      "stealing pipe %c power sequencer from active eDP port %c\n",
2735                      pipe_name(pipe), port_name(port));
2736
2737                 /* make sure vdd is off before we steal it */
2738                 vlv_detach_power_sequencer(intel_dp);
2739         }
2740 }
2741
2742 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2743 {
2744         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2745         struct intel_encoder *encoder = &intel_dig_port->base;
2746         struct drm_device *dev = encoder->base.dev;
2747         struct drm_i915_private *dev_priv = dev->dev_private;
2748         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2749
2750         lockdep_assert_held(&dev_priv->pps_mutex);
2751
2752         if (!is_edp(intel_dp))
2753                 return;
2754
2755         if (intel_dp->pps_pipe == crtc->pipe)
2756                 return;
2757
2758         /*
2759          * If another power sequencer was being used on this
2760          * port previously make sure to turn off vdd there while
2761          * we still have control of it.
2762          */
2763         if (intel_dp->pps_pipe != INVALID_PIPE)
2764                 vlv_detach_power_sequencer(intel_dp);
2765
2766         /*
2767          * We may be stealing the power
2768          * sequencer from another port.
2769          */
2770         vlv_steal_power_sequencer(dev, crtc->pipe);
2771
2772         /* now it's all ours */
2773         intel_dp->pps_pipe = crtc->pipe;
2774
2775         DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2776                       pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2777
2778         /* init power sequencer on this pipe and port */
2779         intel_dp_init_panel_power_sequencer(dev, intel_dp);
2780         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2781 }
2782
2783 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2784 {
2785         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2786         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2787         struct drm_device *dev = encoder->base.dev;
2788         struct drm_i915_private *dev_priv = dev->dev_private;
2789         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2790         enum dpio_channel port = vlv_dport_to_channel(dport);
2791         int pipe = intel_crtc->pipe;
2792         u32 val;
2793
2794         mutex_lock(&dev_priv->dpio_lock);
2795
2796         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2797         val = 0;
2798         if (pipe)
2799                 val |= (1<<21);
2800         else
2801                 val &= ~(1<<21);
2802         val |= 0x001000c4;
2803         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2804         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2805         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2806
2807         mutex_unlock(&dev_priv->dpio_lock);
2808
2809         intel_enable_dp(encoder);
2810 }
2811
2812 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2813 {
2814         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2815         struct drm_device *dev = encoder->base.dev;
2816         struct drm_i915_private *dev_priv = dev->dev_private;
2817         struct intel_crtc *intel_crtc =
2818                 to_intel_crtc(encoder->base.crtc);
2819         enum dpio_channel port = vlv_dport_to_channel(dport);
2820         int pipe = intel_crtc->pipe;
2821
2822         intel_dp_prepare(encoder);
2823
2824         /* Program Tx lane resets to default */
2825         mutex_lock(&dev_priv->dpio_lock);
2826         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2827                          DPIO_PCS_TX_LANE2_RESET |
2828                          DPIO_PCS_TX_LANE1_RESET);
2829         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2830                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2831                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2832                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2833                                  DPIO_PCS_CLK_SOFT_RESET);
2834
2835         /* Fix up inter-pair skew failure */
2836         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2837         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2838         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2839         mutex_unlock(&dev_priv->dpio_lock);
2840 }
2841
2842 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2843 {
2844         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2845         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2846         struct drm_device *dev = encoder->base.dev;
2847         struct drm_i915_private *dev_priv = dev->dev_private;
2848         struct intel_crtc *intel_crtc =
2849                 to_intel_crtc(encoder->base.crtc);
2850         enum dpio_channel ch = vlv_dport_to_channel(dport);
2851         int pipe = intel_crtc->pipe;
2852         int data, i;
2853         u32 val;
2854
2855         mutex_lock(&dev_priv->dpio_lock);
2856
2857         /* allow hardware to manage TX FIFO reset source */
2858         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2859         val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2860         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2861
2862         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2863         val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2864         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2865
2866         /* Deassert soft data lane reset*/
2867         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2868         val |= CHV_PCS_REQ_SOFTRESET_EN;
2869         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2870
2871         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2872         val |= CHV_PCS_REQ_SOFTRESET_EN;
2873         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2874
2875         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2876         val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2877         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2878
2879         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2880         val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2881         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2882
2883         /* Program Tx lane latency optimal setting*/
2884         for (i = 0; i < 4; i++) {
2885                 /* Set the upar bit */
2886                 data = (i == 1) ? 0x0 : 0x1;
2887                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2888                                 data << DPIO_UPAR_SHIFT);
2889         }
2890
2891         /* Data lane stagger programming */
2892         /* FIXME: Fix up value only after power analysis */
2893
2894         mutex_unlock(&dev_priv->dpio_lock);
2895
2896         intel_enable_dp(encoder);
2897 }
2898
2899 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2900 {
2901         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2902         struct drm_device *dev = encoder->base.dev;
2903         struct drm_i915_private *dev_priv = dev->dev_private;
2904         struct intel_crtc *intel_crtc =
2905                 to_intel_crtc(encoder->base.crtc);
2906         enum dpio_channel ch = vlv_dport_to_channel(dport);
2907         enum i915_pipe pipe = intel_crtc->pipe;
2908         u32 val;
2909
2910         intel_dp_prepare(encoder);
2911
2912         mutex_lock(&dev_priv->dpio_lock);
2913
2914         /* program left/right clock distribution */
2915         if (pipe != PIPE_B) {
2916                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2917                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2918                 if (ch == DPIO_CH0)
2919                         val |= CHV_BUFLEFTENA1_FORCE;
2920                 if (ch == DPIO_CH1)
2921                         val |= CHV_BUFRIGHTENA1_FORCE;
2922                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2923         } else {
2924                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2925                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2926                 if (ch == DPIO_CH0)
2927                         val |= CHV_BUFLEFTENA2_FORCE;
2928                 if (ch == DPIO_CH1)
2929                         val |= CHV_BUFRIGHTENA2_FORCE;
2930                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2931         }
2932
2933         /* program clock channel usage */
2934         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2935         val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2936         if (pipe != PIPE_B)
2937                 val &= ~CHV_PCS_USEDCLKCHANNEL;
2938         else
2939                 val |= CHV_PCS_USEDCLKCHANNEL;
2940         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2941
2942         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2943         val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2944         if (pipe != PIPE_B)
2945                 val &= ~CHV_PCS_USEDCLKCHANNEL;
2946         else
2947                 val |= CHV_PCS_USEDCLKCHANNEL;
2948         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2949
2950         /*
2951          * This a a bit weird since generally CL
2952          * matches the pipe, but here we need to
2953          * pick the CL based on the port.
2954          */
2955         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2956         if (pipe != PIPE_B)
2957                 val &= ~CHV_CMN_USEDCLKCHANNEL;
2958         else
2959                 val |= CHV_CMN_USEDCLKCHANNEL;
2960         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2961
2962         mutex_unlock(&dev_priv->dpio_lock);
2963 }
2964
2965 /*
2966  * Native read with retry for link status and receiver capability reads for
2967  * cases where the sink may still be asleep.
2968  *
2969  * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2970  * supposed to retry 3 times per the spec.
2971  */
2972 static ssize_t
2973 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2974                         void *buffer, size_t size)
2975 {
2976         ssize_t ret;
2977         int i;
2978
2979         /*
2980          * Sometime we just get the same incorrect byte repeated
2981          * over the entire buffer. Doing just one throw away read
2982          * initially seems to "solve" it.
2983          */
2984         drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1);
2985
2986         for (i = 0; i < 3; i++) {
2987                 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2988                 if (ret == size)
2989                         return ret;
2990                 msleep(1);
2991         }
2992
2993         return ret;
2994 }
2995
2996 /*
2997  * Fetch AUX CH registers 0x202 - 0x207 which contain
2998  * link status information
2999  */
3000 static bool
3001 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3002 {
3003         return intel_dp_dpcd_read_wake(&intel_dp->aux,
3004                                        DP_LANE0_1_STATUS,
3005                                        link_status,
3006                                        DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3007 }
3008
3009 /* These are source-specific values. */
3010 static uint8_t
3011 intel_dp_voltage_max(struct intel_dp *intel_dp)
3012 {
3013         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3014         struct drm_i915_private *dev_priv = dev->dev_private;
3015         enum port port = dp_to_dig_port(intel_dp)->port;
3016
3017         if (INTEL_INFO(dev)->gen >= 9) {
3018                 if (dev_priv->vbt.edp_low_vswing && port == PORT_A)
3019                         return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3020                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3021         } else if (IS_VALLEYVIEW(dev))
3022                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3023         else if (IS_GEN7(dev) && port == PORT_A)
3024                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3025         else if (HAS_PCH_CPT(dev) && port != PORT_A)
3026                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3027         else
3028                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3029 }
3030
3031 static uint8_t
3032 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3033 {
3034         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3035         enum port port = dp_to_dig_port(intel_dp)->port;
3036
3037         if (INTEL_INFO(dev)->gen >= 9) {
3038                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3039                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3040                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3041                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3042                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3043                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3044                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3045                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3046                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3047                 default:
3048                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3049                 }
3050         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3051                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3052                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3053                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3054                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3055                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3056                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3057                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3058                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3059                 default:
3060                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3061                 }
3062         } else if (IS_VALLEYVIEW(dev)) {
3063                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3064                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3065                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3066                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3067                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3068                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3069                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3070                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3071                 default:
3072                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3073                 }
3074         } else if (IS_GEN7(dev) && port == PORT_A) {
3075                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3076                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3077                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3078                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3079                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3080                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3081                 default:
3082                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3083                 }
3084         } else {
3085                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3086                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3087                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3088                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3089                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3090                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3091                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3092                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3093                 default:
3094                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3095                 }
3096         }
3097 }
3098
3099 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
3100 {
3101         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3102         struct drm_i915_private *dev_priv = dev->dev_private;
3103         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3104         struct intel_crtc *intel_crtc =
3105                 to_intel_crtc(dport->base.base.crtc);
3106         unsigned long demph_reg_value, preemph_reg_value,
3107                 uniqtranscale_reg_value;
3108         uint8_t train_set = intel_dp->train_set[0];
3109         enum dpio_channel port = vlv_dport_to_channel(dport);
3110         int pipe = intel_crtc->pipe;
3111
3112         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3113         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3114                 preemph_reg_value = 0x0004000;
3115                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3116                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3117                         demph_reg_value = 0x2B405555;
3118                         uniqtranscale_reg_value = 0x552AB83A;
3119                         break;
3120                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3121                         demph_reg_value = 0x2B404040;
3122                         uniqtranscale_reg_value = 0x5548B83A;
3123                         break;
3124                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3125                         demph_reg_value = 0x2B245555;
3126                         uniqtranscale_reg_value = 0x5560B83A;
3127                         break;
3128                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3129                         demph_reg_value = 0x2B405555;
3130                         uniqtranscale_reg_value = 0x5598DA3A;
3131                         break;
3132                 default:
3133                         return 0;
3134                 }
3135                 break;
3136         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3137                 preemph_reg_value = 0x0002000;
3138                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3139                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3140                         demph_reg_value = 0x2B404040;
3141                         uniqtranscale_reg_value = 0x5552B83A;
3142                         break;
3143                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3144                         demph_reg_value = 0x2B404848;
3145                         uniqtranscale_reg_value = 0x5580B83A;
3146                         break;
3147                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3148                         demph_reg_value = 0x2B404040;
3149                         uniqtranscale_reg_value = 0x55ADDA3A;
3150                         break;
3151                 default:
3152                         return 0;
3153                 }
3154                 break;
3155         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3156                 preemph_reg_value = 0x0000000;
3157                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3158                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3159                         demph_reg_value = 0x2B305555;
3160                         uniqtranscale_reg_value = 0x5570B83A;
3161                         break;
3162                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3163                         demph_reg_value = 0x2B2B4040;
3164                         uniqtranscale_reg_value = 0x55ADDA3A;
3165                         break;
3166                 default:
3167                         return 0;
3168                 }
3169                 break;
3170         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3171                 preemph_reg_value = 0x0006000;
3172                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3173                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3174                         demph_reg_value = 0x1B405555;
3175                         uniqtranscale_reg_value = 0x55ADDA3A;
3176                         break;
3177                 default:
3178                         return 0;
3179                 }
3180                 break;
3181         default:
3182                 return 0;
3183         }
3184
3185         mutex_lock(&dev_priv->dpio_lock);
3186         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
3187         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
3188         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
3189                          uniqtranscale_reg_value);
3190         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
3191         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
3192         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
3193         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
3194         mutex_unlock(&dev_priv->dpio_lock);
3195
3196         return 0;
3197 }
3198
3199 static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
3200 {
3201         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3202         struct drm_i915_private *dev_priv = dev->dev_private;
3203         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3204         struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3205         u32 deemph_reg_value, margin_reg_value, val;
3206         uint8_t train_set = intel_dp->train_set[0];
3207         enum dpio_channel ch = vlv_dport_to_channel(dport);
3208         enum i915_pipe pipe = intel_crtc->pipe;
3209         int i;
3210
3211         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3212         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3213                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3214                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3215                         deemph_reg_value = 128;
3216                         margin_reg_value = 52;
3217                         break;
3218                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3219                         deemph_reg_value = 128;
3220                         margin_reg_value = 77;
3221                         break;
3222                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3223                         deemph_reg_value = 128;
3224                         margin_reg_value = 102;
3225                         break;
3226                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3227                         deemph_reg_value = 128;
3228                         margin_reg_value = 154;
3229                         /* FIXME extra to set for 1200 */
3230                         break;
3231                 default:
3232                         return 0;
3233                 }
3234                 break;
3235         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3236                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3237                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3238                         deemph_reg_value = 85;
3239                         margin_reg_value = 78;
3240                         break;
3241                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3242                         deemph_reg_value = 85;
3243                         margin_reg_value = 116;
3244                         break;
3245                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3246                         deemph_reg_value = 85;
3247                         margin_reg_value = 154;
3248                         break;
3249                 default:
3250                         return 0;
3251                 }
3252                 break;
3253         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3254                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3255                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3256                         deemph_reg_value = 64;
3257                         margin_reg_value = 104;
3258                         break;
3259                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3260                         deemph_reg_value = 64;
3261                         margin_reg_value = 154;
3262                         break;
3263                 default:
3264                         return 0;
3265                 }
3266                 break;
3267         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3268                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3269                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3270                         deemph_reg_value = 43;
3271                         margin_reg_value = 154;
3272                         break;
3273                 default:
3274                         return 0;
3275                 }
3276                 break;
3277         default:
3278                 return 0;
3279         }
3280
3281         mutex_lock(&dev_priv->dpio_lock);
3282
3283         /* Clear calc init */
3284         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3285         val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3286         val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3287         val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3288         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3289
3290         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3291         val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3292         val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3293         val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3294         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3295
3296         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
3297         val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3298         val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3299         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
3300
3301         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
3302         val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3303         val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3304         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
3305
3306         /* Program swing deemph */
3307         for (i = 0; i < 4; i++) {
3308                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3309                 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3310                 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3311                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3312         }
3313
3314         /* Program swing margin */
3315         for (i = 0; i < 4; i++) {
3316                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3317                 val &= ~DPIO_SWING_MARGIN000_MASK;
3318                 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3319                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3320         }
3321
3322         /* Disable unique transition scale */
3323         for (i = 0; i < 4; i++) {
3324                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3325                 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3326                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3327         }
3328
3329         if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
3330                         == DP_TRAIN_PRE_EMPH_LEVEL_0) &&
3331                 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
3332                         == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)) {
3333
3334                 /*
3335                  * The document said it needs to set bit 27 for ch0 and bit 26
3336                  * for ch1. Might be a typo in the doc.
3337                  * For now, for this unique transition scale selection, set bit
3338                  * 27 for ch0 and ch1.
3339                  */
3340                 for (i = 0; i < 4; i++) {
3341                         val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3342                         val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3343                         vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3344                 }
3345
3346                 for (i = 0; i < 4; i++) {
3347                         val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3348                         val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3349                         val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3350                         vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3351                 }
3352         }
3353
3354         /* Start swing calculation */
3355         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3356         val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3357         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3358
3359         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3360         val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3361         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3362
3363         /* LRC Bypass */
3364         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
3365         val |= DPIO_LRC_BYPASS;
3366         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
3367
3368         mutex_unlock(&dev_priv->dpio_lock);
3369
3370         return 0;
3371 }
3372
3373 static void
3374 intel_get_adjust_train(struct intel_dp *intel_dp,
3375                        const uint8_t link_status[DP_LINK_STATUS_SIZE])
3376 {
3377         uint8_t v = 0;
3378         uint8_t p = 0;
3379         int lane;
3380         uint8_t voltage_max;
3381         uint8_t preemph_max;
3382
3383         for (lane = 0; lane < intel_dp->lane_count; lane++) {
3384                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
3385                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
3386
3387                 if (this_v > v)
3388                         v = this_v;
3389                 if (this_p > p)
3390                         p = this_p;
3391         }
3392
3393         voltage_max = intel_dp_voltage_max(intel_dp);
3394         if (v >= voltage_max)
3395                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
3396
3397         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
3398         if (p >= preemph_max)
3399                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
3400
3401         for (lane = 0; lane < 4; lane++)
3402                 intel_dp->train_set[lane] = v | p;
3403 }
3404
3405 static uint32_t
3406 intel_gen4_signal_levels(uint8_t train_set)
3407 {
3408         uint32_t        signal_levels = 0;
3409
3410         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3411         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3412         default:
3413                 signal_levels |= DP_VOLTAGE_0_4;
3414                 break;
3415         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3416                 signal_levels |= DP_VOLTAGE_0_6;
3417                 break;
3418         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3419                 signal_levels |= DP_VOLTAGE_0_8;
3420                 break;
3421         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3422                 signal_levels |= DP_VOLTAGE_1_2;
3423                 break;
3424         }
3425         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3426         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3427         default:
3428                 signal_levels |= DP_PRE_EMPHASIS_0;
3429                 break;
3430         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3431                 signal_levels |= DP_PRE_EMPHASIS_3_5;
3432                 break;
3433         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3434                 signal_levels |= DP_PRE_EMPHASIS_6;
3435                 break;
3436         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3437                 signal_levels |= DP_PRE_EMPHASIS_9_5;
3438                 break;
3439         }
3440         return signal_levels;
3441 }
3442
3443 /* Gen6's DP voltage swing and pre-emphasis control */
3444 static uint32_t
3445 intel_gen6_edp_signal_levels(uint8_t train_set)
3446 {
3447         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3448                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3449         switch (signal_levels) {
3450         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3451         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3452                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3453         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3454                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3455         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3456         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3457                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3458         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3459         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3460                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3461         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3462         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3463                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3464         default:
3465                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3466                               "0x%x\n", signal_levels);
3467                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3468         }
3469 }
3470
3471 /* Gen7's DP voltage swing and pre-emphasis control */
3472 static uint32_t
3473 intel_gen7_edp_signal_levels(uint8_t train_set)
3474 {
3475         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3476                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3477         switch (signal_levels) {
3478         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3479                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3480         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3481                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3482         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3483                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3484
3485         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3486                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3487         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3488                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3489
3490         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3491                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3492         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3493                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3494
3495         default:
3496                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3497                               "0x%x\n", signal_levels);
3498                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3499         }
3500 }
3501
3502 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
3503 static uint32_t
3504 intel_hsw_signal_levels(uint8_t train_set)
3505 {
3506         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3507                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3508         switch (signal_levels) {
3509         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3510                 return DDI_BUF_TRANS_SELECT(0);
3511         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3512                 return DDI_BUF_TRANS_SELECT(1);
3513         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3514                 return DDI_BUF_TRANS_SELECT(2);
3515         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
3516                 return DDI_BUF_TRANS_SELECT(3);
3517
3518         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3519                 return DDI_BUF_TRANS_SELECT(4);
3520         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3521                 return DDI_BUF_TRANS_SELECT(5);
3522         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3523                 return DDI_BUF_TRANS_SELECT(6);
3524
3525         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3526                 return DDI_BUF_TRANS_SELECT(7);
3527         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3528                 return DDI_BUF_TRANS_SELECT(8);
3529
3530         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3531                 return DDI_BUF_TRANS_SELECT(9);
3532         default:
3533                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3534                               "0x%x\n", signal_levels);
3535                 return DDI_BUF_TRANS_SELECT(0);
3536         }
3537 }
3538
3539 /* Properly updates "DP" with the correct signal levels. */
3540 static void
3541 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
3542 {
3543         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3544         enum port port = intel_dig_port->port;
3545         struct drm_device *dev = intel_dig_port->base.base.dev;
3546         uint32_t signal_levels, mask;
3547         uint8_t train_set = intel_dp->train_set[0];
3548
3549         if (IS_HASWELL(dev) || IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
3550                 signal_levels = intel_hsw_signal_levels(train_set);
3551                 mask = DDI_BUF_EMP_MASK;
3552         } else if (IS_CHERRYVIEW(dev)) {
3553                 signal_levels = intel_chv_signal_levels(intel_dp);
3554                 mask = 0;
3555         } else if (IS_VALLEYVIEW(dev)) {
3556                 signal_levels = intel_vlv_signal_levels(intel_dp);
3557                 mask = 0;
3558         } else if (IS_GEN7(dev) && port == PORT_A) {
3559                 signal_levels = intel_gen7_edp_signal_levels(train_set);
3560                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3561         } else if (IS_GEN6(dev) && port == PORT_A) {
3562                 signal_levels = intel_gen6_edp_signal_levels(train_set);
3563                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3564         } else {
3565                 signal_levels = intel_gen4_signal_levels(train_set);
3566                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3567         }
3568
3569         DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3570
3571         *DP = (*DP & ~mask) | signal_levels;
3572 }
3573
3574 static bool
3575 intel_dp_set_link_train(struct intel_dp *intel_dp,
3576                         uint32_t *DP,
3577                         uint8_t dp_train_pat)
3578 {
3579         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3580         struct drm_device *dev = intel_dig_port->base.base.dev;
3581         struct drm_i915_private *dev_priv = dev->dev_private;
3582         uint8_t buf[sizeof(intel_dp->train_set) + 1];
3583         int ret, len;
3584
3585         _intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3586
3587         I915_WRITE(intel_dp->output_reg, *DP);
3588         POSTING_READ(intel_dp->output_reg);
3589
3590         buf[0] = dp_train_pat;
3591         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3592             DP_TRAINING_PATTERN_DISABLE) {
3593                 /* don't write DP_TRAINING_LANEx_SET on disable */
3594                 len = 1;
3595         } else {
3596                 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3597                 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3598                 len = intel_dp->lane_count + 1;
3599         }
3600
3601         ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3602                                 buf, len);
3603
3604         return ret == len;
3605 }
3606
3607 static bool
3608 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3609                         uint8_t dp_train_pat)
3610 {
3611         memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3612         intel_dp_set_signal_levels(intel_dp, DP);
3613         return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3614 }
3615
3616 static bool
3617 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3618                            const uint8_t link_status[DP_LINK_STATUS_SIZE])
3619 {
3620         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3621         struct drm_device *dev = intel_dig_port->base.base.dev;
3622         struct drm_i915_private *dev_priv = dev->dev_private;
3623         int ret;
3624
3625         intel_get_adjust_train(intel_dp, link_status);
3626         intel_dp_set_signal_levels(intel_dp, DP);
3627
3628         I915_WRITE(intel_dp->output_reg, *DP);
3629         POSTING_READ(intel_dp->output_reg);
3630
3631         ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3632                                 intel_dp->train_set, intel_dp->lane_count);
3633
3634         return ret == intel_dp->lane_count;
3635 }
3636
3637 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3638 {
3639         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3640         struct drm_device *dev = intel_dig_port->base.base.dev;
3641         struct drm_i915_private *dev_priv = dev->dev_private;
3642         enum port port = intel_dig_port->port;
3643         uint32_t val;
3644
3645         if (!HAS_DDI(dev))
3646                 return;
3647
3648         val = I915_READ(DP_TP_CTL(port));
3649         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3650         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3651         I915_WRITE(DP_TP_CTL(port), val);
3652
3653         /*
3654          * On PORT_A we can have only eDP in SST mode. There the only reason
3655          * we need to set idle transmission mode is to work around a HW issue
3656          * where we enable the pipe while not in idle link-training mode.
3657          * In this case there is requirement to wait for a minimum number of
3658          * idle patterns to be sent.
3659          */
3660         if (port == PORT_A)
3661                 return;
3662
3663         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3664                      1))
3665                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3666 }
3667
3668 /* Enable corresponding port and start training pattern 1 */
3669 void
3670 intel_dp_start_link_train(struct intel_dp *intel_dp)
3671 {
3672         struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3673         struct drm_device *dev = encoder->dev;
3674         int i;
3675         uint8_t voltage;
3676         int voltage_tries, loop_tries;
3677         uint32_t DP = intel_dp->DP;
3678         uint8_t link_config[2];
3679
3680         if (HAS_DDI(dev))
3681                 intel_ddi_prepare_link_retrain(encoder);
3682
3683         /* Write the link configuration data */
3684         link_config[0] = intel_dp->link_bw;
3685         link_config[1] = intel_dp->lane_count;
3686         if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3687                 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3688         drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3689         if (intel_dp->num_sink_rates)
3690                 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_RATE_SET,
3691                                 &intel_dp->rate_select, 1);
3692
3693         link_config[0] = 0;
3694         link_config[1] = DP_SET_ANSI_8B10B;
3695         drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3696
3697         DP |= DP_PORT_EN;
3698
3699         /* clock recovery */
3700         if (!intel_dp_reset_link_train(intel_dp, &DP,
3701                                        DP_TRAINING_PATTERN_1 |
3702                                        DP_LINK_SCRAMBLING_DISABLE)) {
3703                 DRM_ERROR("failed to enable link training\n");
3704                 return;
3705         }
3706
3707         voltage = 0xff;
3708         voltage_tries = 0;
3709         loop_tries = 0;
3710         for (;;) {
3711                 uint8_t link_status[DP_LINK_STATUS_SIZE];
3712
3713                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3714                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3715                         DRM_ERROR("failed to get link status\n");
3716                         break;
3717                 }
3718
3719                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3720                         DRM_DEBUG_KMS("clock recovery OK\n");
3721                         break;
3722                 }
3723
3724                 /* Check to see if we've tried the max voltage */
3725                 for (i = 0; i < intel_dp->lane_count; i++)
3726                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3727                                 break;
3728                 if (i == intel_dp->lane_count) {
3729                         ++loop_tries;
3730                         if (loop_tries == 5) {
3731                                 DRM_ERROR("too many full retries, give up\n");
3732                                 break;
3733                         }
3734                         intel_dp_reset_link_train(intel_dp, &DP,
3735                                                   DP_TRAINING_PATTERN_1 |
3736                                                   DP_LINK_SCRAMBLING_DISABLE);
3737                         voltage_tries = 0;
3738                         continue;
3739                 }
3740
3741                 /* Check to see if we've tried the same voltage 5 times */
3742                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3743                         ++voltage_tries;
3744                         if (voltage_tries == 5) {
3745                                 DRM_ERROR("too many voltage retries, give up\n");
3746                                 break;
3747                         }
3748                 } else
3749                         voltage_tries = 0;
3750                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3751
3752                 /* Update training set as requested by target */
3753                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3754                         DRM_ERROR("failed to update link training\n");
3755                         break;
3756                 }
3757         }
3758
3759         intel_dp->DP = DP;
3760 }
3761
3762 void
3763 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3764 {
3765         bool channel_eq = false;
3766         int tries, cr_tries;
3767         uint32_t DP = intel_dp->DP;
3768         uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3769
3770         /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3771         if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3772                 training_pattern = DP_TRAINING_PATTERN_3;
3773
3774         /* channel equalization */
3775         if (!intel_dp_set_link_train(intel_dp, &DP,
3776                                      training_pattern |
3777                                      DP_LINK_SCRAMBLING_DISABLE)) {
3778                 DRM_ERROR("failed to start channel equalization\n");
3779                 return;
3780         }
3781
3782         tries = 0;
3783         cr_tries = 0;
3784         channel_eq = false;
3785         for (;;) {
3786                 uint8_t link_status[DP_LINK_STATUS_SIZE];
3787
3788                 if (cr_tries > 5) {
3789                         DRM_ERROR("failed to train DP, aborting\n");
3790                         break;
3791                 }
3792
3793                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3794                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3795                         DRM_ERROR("failed to get link status\n");
3796                         break;
3797                 }
3798
3799                 /* Make sure clock is still ok */
3800                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3801                         intel_dp_start_link_train(intel_dp);
3802                         intel_dp_set_link_train(intel_dp, &DP,
3803                                                 training_pattern |
3804                                                 DP_LINK_SCRAMBLING_DISABLE);
3805                         cr_tries++;
3806                         continue;
3807                 }
3808
3809                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3810                         channel_eq = true;
3811                         break;
3812                 }
3813
3814                 /* Try 5 times, then try clock recovery if that fails */
3815                 if (tries > 5) {
3816                         intel_dp_start_link_train(intel_dp);
3817                         intel_dp_set_link_train(intel_dp, &DP,
3818                                                 training_pattern |
3819                                                 DP_LINK_SCRAMBLING_DISABLE);
3820                         tries = 0;
3821                         cr_tries++;
3822                         continue;
3823                 }
3824
3825                 /* Update training set as requested by target */
3826                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3827                         DRM_ERROR("failed to update link training\n");
3828                         break;
3829                 }
3830                 ++tries;
3831         }
3832
3833         intel_dp_set_idle_link_train(intel_dp);
3834
3835         intel_dp->DP = DP;
3836
3837         if (channel_eq)
3838                 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3839
3840 }
3841
3842 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3843 {
3844         intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3845                                 DP_TRAINING_PATTERN_DISABLE);
3846 }
3847
3848 static void
3849 intel_dp_link_down(struct intel_dp *intel_dp)
3850 {
3851         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3852         enum port port = intel_dig_port->port;
3853         struct drm_device *dev = intel_dig_port->base.base.dev;
3854         struct drm_i915_private *dev_priv = dev->dev_private;
3855         uint32_t DP = intel_dp->DP;
3856
3857         if (WARN_ON(HAS_DDI(dev)))
3858                 return;
3859
3860         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3861                 return;
3862
3863         DRM_DEBUG_KMS("\n");
3864
3865         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3866                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3867                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3868         } else {
3869                 if (IS_CHERRYVIEW(dev))
3870                         DP &= ~DP_LINK_TRAIN_MASK_CHV;
3871                 else
3872                         DP &= ~DP_LINK_TRAIN_MASK;
3873                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3874         }
3875         POSTING_READ(intel_dp->output_reg);
3876
3877         if (HAS_PCH_IBX(dev) &&
3878             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3879                 /* Hardware workaround: leaving our transcoder select
3880                  * set to transcoder B while it's off will prevent the
3881                  * corresponding HDMI output on transcoder A.
3882                  *
3883                  * Combine this with another hardware workaround:
3884                  * transcoder select bit can only be cleared while the
3885                  * port is enabled.
3886                  */
3887                 DP &= ~DP_PIPEB_SELECT;
3888                 I915_WRITE(intel_dp->output_reg, DP);
3889                 POSTING_READ(intel_dp->output_reg);
3890         }
3891
3892         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3893         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3894         POSTING_READ(intel_dp->output_reg);
3895         msleep(intel_dp->panel_power_down_delay);
3896 }
3897
3898 static bool
3899 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3900 {
3901         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3902         struct drm_device *dev = dig_port->base.base.dev;
3903         struct drm_i915_private *dev_priv = dev->dev_private;
3904         uint8_t rev;
3905
3906         if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3907                                     sizeof(intel_dp->dpcd)) < 0)
3908                 return false; /* aux transfer failed */
3909
3910         DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3911
3912         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3913                 return false; /* DPCD not present */
3914
3915         /* Check if the panel supports PSR */
3916         memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3917         if (is_edp(intel_dp)) {
3918                 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3919                                         intel_dp->psr_dpcd,
3920                                         sizeof(intel_dp->psr_dpcd));
3921                 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3922                         dev_priv->psr.sink_support = true;
3923                         DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3924                 }
3925         }
3926
3927         /* Training Pattern 3 support, both source and sink */
3928         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3929             intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED &&
3930             (IS_HASWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 8)) {
3931                 intel_dp->use_tps3 = true;
3932                 DRM_DEBUG_KMS("Displayport TPS3 supported\n");
3933         } else
3934                 intel_dp->use_tps3 = false;
3935
3936         /* Intermediate frequency support */
3937         if (is_edp(intel_dp) &&
3938             (intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3939             (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_EDP_DPCD_REV, &rev, 1) == 1) &&
3940             (rev >= 0x03)) { /* eDp v1.4 or higher */
3941                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3942                 int i;
3943
3944                 intel_dp_dpcd_read_wake(&intel_dp->aux,
3945                                 DP_SUPPORTED_LINK_RATES,
3946                                 sink_rates,
3947                                 sizeof(sink_rates));
3948
3949                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3950                         int val = le16_to_cpu(sink_rates[i]);
3951
3952                         if (val == 0)
3953                                 break;
3954
3955                         /* Value read is in kHz while drm clock is saved in deca-kHz */
3956                         intel_dp->sink_rates[i] = (val * 200) / 10;
3957                 }
3958                 intel_dp->num_sink_rates = i;
3959         }
3960
3961         intel_dp_print_rates(intel_dp);
3962
3963         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3964               DP_DWN_STRM_PORT_PRESENT))
3965                 return true; /* native DP sink */
3966
3967         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3968                 return true; /* no per-port downstream info */
3969
3970         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3971                                     intel_dp->downstream_ports,
3972                                     DP_MAX_DOWNSTREAM_PORTS) < 0)
3973                 return false; /* downstream port status fetch failed */
3974
3975         return true;
3976 }
3977
3978 static void
3979 intel_dp_probe_oui(struct intel_dp *intel_dp)
3980 {
3981         u8 buf[3];
3982
3983         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3984                 return;
3985
3986         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3987                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3988                               buf[0], buf[1], buf[2]);
3989
3990         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3991                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3992                               buf[0], buf[1], buf[2]);
3993 }
3994
3995 #if 0
3996 static bool
3997 intel_dp_probe_mst(struct intel_dp *intel_dp)
3998 {
3999         u8 buf[1];
4000
4001         if (!intel_dp->can_mst)
4002                 return false;
4003
4004         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4005                 return false;
4006
4007         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
4008                 if (buf[0] & DP_MST_CAP) {
4009                         DRM_DEBUG_KMS("Sink is MST capable\n");
4010                         intel_dp->is_mst = true;
4011                 } else {
4012                         DRM_DEBUG_KMS("Sink is not MST capable\n");
4013                         intel_dp->is_mst = false;
4014                 }
4015         }
4016
4017         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4018         return intel_dp->is_mst;
4019 }
4020 #endif
4021
4022 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
4023 {
4024         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4025         struct drm_device *dev = intel_dig_port->base.base.dev;
4026         struct intel_crtc *intel_crtc =
4027                 to_intel_crtc(intel_dig_port->base.base.crtc);
4028         u8 buf;
4029         int test_crc_count;
4030         int attempts = 6;
4031
4032         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
4033                 return -EIO;
4034
4035         if (!(buf & DP_TEST_CRC_SUPPORTED))
4036                 return -ENOTTY;
4037
4038         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
4039                 return -EIO;
4040
4041         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4042                                 buf | DP_TEST_SINK_START) < 0)
4043                 return -EIO;
4044
4045         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
4046                 return -EIO;
4047         test_crc_count = buf & DP_TEST_COUNT_MASK;
4048
4049         do {
4050                 if (drm_dp_dpcd_readb(&intel_dp->aux,
4051                                       DP_TEST_SINK_MISC, &buf) < 0)
4052                         return -EIO;
4053                 intel_wait_for_vblank(dev, intel_crtc->pipe);
4054         } while (--attempts && (buf & DP_TEST_COUNT_MASK) == test_crc_count);
4055
4056         if (attempts == 0) {
4057                 DRM_DEBUG_KMS("Panel is unable to calculate CRC after 6 vblanks\n");
4058                 return -ETIMEDOUT;
4059         }
4060
4061         if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
4062                 return -EIO;
4063
4064         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
4065                 return -EIO;
4066         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4067                                buf & ~DP_TEST_SINK_START) < 0)
4068                 return -EIO;
4069
4070         return 0;
4071 }
4072
4073 static bool
4074 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4075 {
4076         return intel_dp_dpcd_read_wake(&intel_dp->aux,
4077                                        DP_DEVICE_SERVICE_IRQ_VECTOR,
4078                                        sink_irq_vector, 1) == 1;
4079 }
4080
4081 static void
4082 intel_dp_handle_test_request(struct intel_dp *intel_dp)
4083 {
4084         /* NAK by default */
4085         drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
4086 }
4087
4088 #if 0
4089 static int
4090 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4091 {
4092         bool bret;
4093
4094         if (intel_dp->is_mst) {
4095                 u8 esi[16] = { 0 };
4096                 int ret = 0;
4097                 int retry;
4098                 bool handled;
4099                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4100 go_again:
4101                 if (bret == true) {
4102
4103                         /* check link status - esi[10] = 0x200c */
4104                         if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4105                                 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4106                                 intel_dp_start_link_train(intel_dp);
4107                                 intel_dp_complete_link_train(intel_dp);
4108                                 intel_dp_stop_link_train(intel_dp);
4109                         }
4110
4111                         DRM_DEBUG_KMS("got esi %3ph\n", esi);
4112                         ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4113
4114                         if (handled) {
4115                                 for (retry = 0; retry < 3; retry++) {
4116                                         int wret;
4117                                         wret = drm_dp_dpcd_write(&intel_dp->aux,
4118                                                                  DP_SINK_COUNT_ESI+1,
4119                                                                  &esi[1], 3);
4120                                         if (wret == 3) {
4121                                                 break;
4122                                         }
4123                                 }
4124
4125                                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4126                                 if (bret == true) {
4127                                         DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4128                                         goto go_again;
4129                                 }
4130                         } else
4131                                 ret = 0;
4132
4133                         return ret;
4134                 } else {
4135                         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4136                         DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4137                         intel_dp->is_mst = false;
4138                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4139                         /* send a hotplug event */
4140                         drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4141                 }
4142         }
4143         return -EINVAL;
4144 }
4145 #endif
4146
4147 /*
4148  * According to DP spec
4149  * 5.1.2:
4150  *  1. Read DPCD
4151  *  2. Configure link according to Receiver Capabilities
4152  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
4153  *  4. Check link status on receipt of hot-plug interrupt
4154  */
4155 static void
4156 intel_dp_check_link_status(struct intel_dp *intel_dp)
4157 {
4158         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4159         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4160         u8 sink_irq_vector;
4161         u8 link_status[DP_LINK_STATUS_SIZE];
4162
4163         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4164
4165         if (!intel_encoder->connectors_active)
4166                 return;
4167
4168         if (WARN_ON(!intel_encoder->base.crtc))
4169                 return;
4170
4171         if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4172                 return;
4173
4174         /* Try to read receiver status if the link appears to be up */
4175         if (!intel_dp_get_link_status(intel_dp, link_status)) {
4176                 return;
4177         }
4178
4179         /* Now read the DPCD to see if it's actually running */
4180         if (!intel_dp_get_dpcd(intel_dp)) {
4181                 return;
4182         }
4183
4184         /* Try to read the source of the interrupt */
4185         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4186             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4187                 /* Clear interrupt source */
4188                 drm_dp_dpcd_writeb(&intel_dp->aux,
4189                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
4190                                    sink_irq_vector);
4191
4192                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4193                         intel_dp_handle_test_request(intel_dp);
4194                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4195                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4196         }
4197
4198         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
4199                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4200                               intel_encoder->base.name);
4201                 intel_dp_start_link_train(intel_dp);
4202                 intel_dp_complete_link_train(intel_dp);
4203                 intel_dp_stop_link_train(intel_dp);
4204         }
4205 }
4206
4207 /* XXX this is probably wrong for multiple downstream ports */
4208 static enum drm_connector_status
4209 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4210 {
4211         uint8_t *dpcd = intel_dp->dpcd;
4212         uint8_t type;
4213
4214         if (!intel_dp_get_dpcd(intel_dp))
4215                 return connector_status_disconnected;
4216
4217         /* if there's no downstream port, we're done */
4218         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4219                 return connector_status_connected;
4220
4221         /* If we're HPD-aware, SINK_COUNT changes dynamically */
4222         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4223             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4224                 uint8_t reg;
4225
4226                 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
4227                                             &reg, 1) < 0)
4228                         return connector_status_unknown;
4229
4230                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
4231                                               : connector_status_disconnected;
4232         }
4233
4234         /* If no HPD, poke DDC gently */
4235         if (drm_probe_ddc(intel_dp->aux.ddc))
4236                 return connector_status_connected;
4237
4238         /* Well we tried, say unknown for unreliable port types */
4239         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4240                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4241                 if (type == DP_DS_PORT_TYPE_VGA ||
4242                     type == DP_DS_PORT_TYPE_NON_EDID)
4243                         return connector_status_unknown;
4244         } else {
4245                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4246                         DP_DWN_STRM_PORT_TYPE_MASK;
4247                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4248                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
4249                         return connector_status_unknown;
4250         }
4251
4252         /* Anything else is out of spec, warn and ignore */
4253         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4254         return connector_status_disconnected;
4255 }
4256
4257 static enum drm_connector_status
4258 edp_detect(struct intel_dp *intel_dp)
4259 {
4260         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4261         enum drm_connector_status status;
4262
4263         status = intel_panel_detect(dev);
4264         if (status == connector_status_unknown)
4265                 status = connector_status_connected;
4266
4267         return status;
4268 }
4269
4270 static enum drm_connector_status
4271 ironlake_dp_detect(struct intel_dp *intel_dp)
4272 {
4273         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4274         struct drm_i915_private *dev_priv = dev->dev_private;
4275         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4276
4277         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4278                 return connector_status_disconnected;
4279
4280         return intel_dp_detect_dpcd(intel_dp);
4281 }
4282
4283 static int g4x_digital_port_connected(struct drm_device *dev,
4284                                        struct intel_digital_port *intel_dig_port)
4285 {
4286         struct drm_i915_private *dev_priv = dev->dev_private;
4287         uint32_t bit;
4288
4289         if (IS_VALLEYVIEW(dev)) {
4290                 switch (intel_dig_port->port) {
4291                 case PORT_B:
4292                         bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
4293                         break;
4294                 case PORT_C:
4295                         bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
4296                         break;
4297                 case PORT_D:
4298                         bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
4299                         break;
4300                 default:
4301                         return -EINVAL;
4302                 }
4303         } else {
4304                 switch (intel_dig_port->port) {
4305                 case PORT_B:
4306                         bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4307                         break;
4308                 case PORT_C:
4309                         bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4310                         break;
4311                 case PORT_D:
4312                         bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4313                         break;
4314                 default:
4315                         return -EINVAL;
4316                 }
4317         }
4318
4319         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
4320                 return 0;
4321         return 1;
4322 }
4323
4324 static enum drm_connector_status
4325 g4x_dp_detect(struct intel_dp *intel_dp)
4326 {
4327         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4328         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4329         int ret;
4330
4331         /* Can't disconnect eDP, but you can close the lid... */
4332         if (is_edp(intel_dp)) {
4333                 enum drm_connector_status status;
4334
4335                 status = intel_panel_detect(dev);
4336                 if (status == connector_status_unknown)
4337                         status = connector_status_connected;
4338                 return status;
4339         }
4340
4341         ret = g4x_digital_port_connected(dev, intel_dig_port);
4342         if (ret == -EINVAL)
4343                 return connector_status_unknown;
4344         else if (ret == 0)
4345                 return connector_status_disconnected;
4346
4347         return intel_dp_detect_dpcd(intel_dp);
4348 }
4349
4350 static struct edid *
4351 intel_dp_get_edid(struct intel_dp *intel_dp)
4352 {
4353         struct intel_connector *intel_connector = intel_dp->attached_connector;
4354
4355         /* use cached edid if we have one */
4356         if (intel_connector->edid) {
4357                 /* invalid edid */
4358                 if (IS_ERR(intel_connector->edid))
4359                         return NULL;
4360
4361                 return drm_edid_duplicate(intel_connector->edid);
4362         } else
4363                 return drm_get_edid(&intel_connector->base,
4364                                     intel_dp->aux.ddc);
4365 }
4366
4367 static void
4368 intel_dp_set_edid(struct intel_dp *intel_dp)
4369 {
4370         struct intel_connector *intel_connector = intel_dp->attached_connector;
4371         struct edid *edid;
4372
4373         edid = intel_dp_get_edid(intel_dp);
4374         intel_connector->detect_edid = edid;
4375
4376         if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4377                 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4378         else
4379                 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4380 }
4381
4382 static void
4383 intel_dp_unset_edid(struct intel_dp *intel_dp)
4384 {
4385         struct intel_connector *intel_connector = intel_dp->attached_connector;
4386
4387         kfree(intel_connector->detect_edid);
4388         intel_connector->detect_edid = NULL;
4389
4390         intel_dp->has_audio = false;
4391 }
4392
4393 static enum intel_display_power_domain
4394 intel_dp_power_get(struct intel_dp *dp)
4395 {
4396         struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4397         enum intel_display_power_domain power_domain;
4398
4399         power_domain = intel_display_port_power_domain(encoder);
4400         intel_display_power_get(to_i915(encoder->base.dev), power_domain);
4401
4402         return power_domain;
4403 }
4404
4405 static void
4406 intel_dp_power_put(struct intel_dp *dp,
4407                    enum intel_display_power_domain power_domain)
4408 {
4409         struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4410         intel_display_power_put(to_i915(encoder->base.dev), power_domain);
4411 }
4412
4413 static enum drm_connector_status
4414 intel_dp_detect(struct drm_connector *connector, bool force)
4415 {
4416         struct intel_dp *intel_dp = intel_attached_dp(connector);
4417         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4418         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4419         struct drm_device *dev = connector->dev;
4420         enum drm_connector_status status;
4421         enum intel_display_power_domain power_domain;
4422
4423         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4424                       connector->base.id, connector->name);
4425         intel_dp_unset_edid(intel_dp);
4426
4427         if (intel_dp->is_mst) {
4428                 /* MST devices are disconnected from a monitor POV */
4429                 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4430                         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4431                 return connector_status_disconnected;
4432         }
4433
4434         power_domain = intel_dp_power_get(intel_dp);
4435
4436         /* Can't disconnect eDP, but you can close the lid... */
4437         if (is_edp(intel_dp))
4438                 status = edp_detect(intel_dp);
4439         else if (HAS_PCH_SPLIT(dev))
4440                 status = ironlake_dp_detect(intel_dp);
4441         else
4442                 status = g4x_dp_detect(intel_dp);
4443         if (status != connector_status_connected)
4444                 goto out;
4445
4446         intel_dp_probe_oui(intel_dp);
4447
4448 #if 0
4449         ret = intel_dp_probe_mst(intel_dp);
4450         if (ret) {
4451                 /* if we are in MST mode then this connector
4452                    won't appear connected or have anything with EDID on it */
4453                 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4454                         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4455                 status = connector_status_disconnected;
4456                 goto out;
4457         }
4458 #endif
4459
4460         intel_dp_set_edid(intel_dp);
4461
4462         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4463                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4464         status = connector_status_connected;
4465
4466 out:
4467         intel_dp_power_put(intel_dp, power_domain);
4468         return status;
4469 }
4470
4471 static void
4472 intel_dp_force(struct drm_connector *connector)
4473 {
4474         struct intel_dp *intel_dp = intel_attached_dp(connector);
4475         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4476         enum intel_display_power_domain power_domain;
4477
4478         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4479                       connector->base.id, connector->name);
4480         intel_dp_unset_edid(intel_dp);
4481
4482         if (connector->status != connector_status_connected)
4483                 return;
4484
4485         power_domain = intel_dp_power_get(intel_dp);
4486
4487         intel_dp_set_edid(intel_dp);
4488
4489         intel_dp_power_put(intel_dp, power_domain);
4490
4491         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4492                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4493 }
4494
4495 static int intel_dp_get_modes(struct drm_connector *connector)
4496 {
4497         struct intel_connector *intel_connector = to_intel_connector(connector);
4498         struct edid *edid;
4499
4500         edid = intel_connector->detect_edid;
4501         if (edid) {
4502                 int ret = intel_connector_update_modes(connector, edid);
4503                 if (ret)
4504                         return ret;
4505         }
4506
4507         /* if eDP has no EDID, fall back to fixed mode */
4508         if (is_edp(intel_attached_dp(connector)) &&
4509             intel_connector->panel.fixed_mode) {
4510                 struct drm_display_mode *mode;
4511
4512                 mode = drm_mode_duplicate(connector->dev,
4513                                           intel_connector->panel.fixed_mode);
4514                 if (mode) {
4515                         drm_mode_probed_add(connector, mode);
4516                         return 1;
4517                 }
4518         }
4519
4520         return 0;
4521 }
4522
4523 static bool
4524 intel_dp_detect_audio(struct drm_connector *connector)
4525 {
4526         bool has_audio = false;
4527         struct edid *edid;
4528
4529         edid = to_intel_connector(connector)->detect_edid;
4530         if (edid)
4531                 has_audio = drm_detect_monitor_audio(edid);
4532
4533         return has_audio;
4534 }
4535
4536 static int
4537 intel_dp_set_property(struct drm_connector *connector,
4538                       struct drm_property *property,
4539                       uint64_t val)
4540 {
4541         struct drm_i915_private *dev_priv = connector->dev->dev_private;
4542         struct intel_connector *intel_connector = to_intel_connector(connector);
4543         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4544         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4545         int ret;
4546
4547         ret = drm_object_property_set_value(&connector->base, property, val);
4548         if (ret)
4549                 return ret;
4550
4551         if (property == dev_priv->force_audio_property) {
4552                 int i = val;
4553                 bool has_audio;
4554
4555                 if (i == intel_dp->force_audio)
4556                         return 0;
4557
4558                 intel_dp->force_audio = i;
4559
4560                 if (i == HDMI_AUDIO_AUTO)
4561                         has_audio = intel_dp_detect_audio(connector);
4562                 else
4563                         has_audio = (i == HDMI_AUDIO_ON);
4564
4565                 if (has_audio == intel_dp->has_audio)
4566                         return 0;
4567
4568                 intel_dp->has_audio = has_audio;
4569                 goto done;
4570         }
4571
4572         if (property == dev_priv->broadcast_rgb_property) {
4573                 bool old_auto = intel_dp->color_range_auto;
4574                 uint32_t old_range = intel_dp->color_range;
4575
4576                 switch (val) {
4577                 case INTEL_BROADCAST_RGB_AUTO:
4578                         intel_dp->color_range_auto = true;
4579                         break;
4580                 case INTEL_BROADCAST_RGB_FULL:
4581                         intel_dp->color_range_auto = false;
4582                         intel_dp->color_range = 0;
4583                         break;
4584                 case INTEL_BROADCAST_RGB_LIMITED:
4585                         intel_dp->color_range_auto = false;
4586                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
4587                         break;
4588                 default:
4589                         return -EINVAL;
4590                 }
4591
4592                 if (old_auto == intel_dp->color_range_auto &&
4593                     old_range == intel_dp->color_range)
4594                         return 0;
4595
4596                 goto done;
4597         }
4598
4599         if (is_edp(intel_dp) &&
4600             property == connector->dev->mode_config.scaling_mode_property) {
4601                 if (val == DRM_MODE_SCALE_NONE) {
4602                         DRM_DEBUG_KMS("no scaling not supported\n");
4603                         return -EINVAL;
4604                 }
4605
4606                 if (intel_connector->panel.fitting_mode == val) {
4607                         /* the eDP scaling property is not changed */
4608                         return 0;
4609                 }
4610                 intel_connector->panel.fitting_mode = val;
4611
4612                 goto done;
4613         }
4614
4615         return -EINVAL;
4616
4617 done:
4618         if (intel_encoder->base.crtc)
4619                 intel_crtc_restore_mode(intel_encoder->base.crtc);
4620
4621         return 0;
4622 }
4623
4624 static void
4625 intel_dp_connector_destroy(struct drm_connector *connector)
4626 {
4627         struct intel_connector *intel_connector = to_intel_connector(connector);
4628
4629         kfree(intel_connector->detect_edid);
4630
4631         if (!IS_ERR_OR_NULL(intel_connector->edid))
4632                 kfree(intel_connector->edid);
4633
4634         /* Can't call is_edp() since the encoder may have been destroyed
4635          * already. */
4636         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4637                 intel_panel_fini(&intel_connector->panel);
4638
4639         drm_connector_cleanup(connector);
4640         kfree(connector);
4641 }
4642
4643 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4644 {
4645         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4646         struct intel_dp *intel_dp = &intel_dig_port->dp;
4647
4648         drm_dp_aux_unregister(&intel_dp->aux);
4649         intel_dp_mst_encoder_cleanup(intel_dig_port);
4650         if (is_edp(intel_dp)) {
4651                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4652                 /*
4653                  * vdd might still be enabled do to the delayed vdd off.
4654                  * Make sure vdd is actually turned off here.
4655                  */
4656                 pps_lock(intel_dp);
4657                 edp_panel_vdd_off_sync(intel_dp);
4658                 pps_unlock(intel_dp);
4659
4660 #if 0
4661                 if (intel_dp->edp_notifier.notifier_call) {
4662                         unregister_reboot_notifier(&intel_dp->edp_notifier);
4663                         intel_dp->edp_notifier.notifier_call = NULL;
4664                 }
4665 #endif
4666         }
4667         drm_encoder_cleanup(encoder);
4668         kfree(intel_dig_port);
4669 }
4670
4671 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4672 {
4673         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4674
4675         if (!is_edp(intel_dp))
4676                 return;
4677
4678         /*
4679          * vdd might still be enabled do to the delayed vdd off.
4680          * Make sure vdd is actually turned off here.
4681          */
4682         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4683         pps_lock(intel_dp);
4684         edp_panel_vdd_off_sync(intel_dp);
4685         pps_unlock(intel_dp);
4686 }
4687
4688 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4689 {
4690         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4691         struct drm_device *dev = intel_dig_port->base.base.dev;
4692         struct drm_i915_private *dev_priv = dev->dev_private;
4693         enum intel_display_power_domain power_domain;
4694
4695         lockdep_assert_held(&dev_priv->pps_mutex);
4696
4697         if (!edp_have_panel_vdd(intel_dp))
4698                 return;
4699
4700         /*
4701          * The VDD bit needs a power domain reference, so if the bit is
4702          * already enabled when we boot or resume, grab this reference and
4703          * schedule a vdd off, so we don't hold on to the reference
4704          * indefinitely.
4705          */
4706         DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4707         power_domain = intel_display_port_power_domain(&intel_dig_port->base);
4708         intel_display_power_get(dev_priv, power_domain);
4709
4710         edp_panel_vdd_schedule_off(intel_dp);
4711 }
4712
4713 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4714 {
4715         struct intel_dp *intel_dp;
4716
4717         if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4718                 return;
4719
4720         intel_dp = enc_to_intel_dp(encoder);
4721
4722         pps_lock(intel_dp);
4723
4724         /*
4725          * Read out the current power sequencer assignment,
4726          * in case the BIOS did something with it.
4727          */
4728         if (IS_VALLEYVIEW(encoder->dev))
4729                 vlv_initial_power_sequencer_setup(intel_dp);
4730
4731         intel_edp_panel_vdd_sanitize(intel_dp);
4732
4733         pps_unlock(intel_dp);
4734 }
4735
4736 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4737         .dpms = intel_connector_dpms,
4738         .detect = intel_dp_detect,
4739         .force = intel_dp_force,
4740         .fill_modes = drm_helper_probe_single_connector_modes,
4741         .set_property = intel_dp_set_property,
4742         .atomic_get_property = intel_connector_atomic_get_property,
4743         .destroy = intel_dp_connector_destroy,
4744         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4745         .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4746 };
4747
4748 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4749         .get_modes = intel_dp_get_modes,
4750         .mode_valid = intel_dp_mode_valid,
4751         .best_encoder = intel_best_encoder,
4752 };
4753
4754 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4755         .reset = intel_dp_encoder_reset,
4756         .destroy = intel_dp_encoder_destroy,
4757 };
4758
4759 void
4760 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4761 {
4762         return;
4763 }
4764
4765 bool
4766 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4767 {
4768         struct intel_dp *intel_dp = &intel_dig_port->dp;
4769         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4770         struct drm_device *dev = intel_dig_port->base.base.dev;
4771         struct drm_i915_private *dev_priv = dev->dev_private;
4772         enum intel_display_power_domain power_domain;
4773         bool ret = true;
4774
4775         if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4776                 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4777
4778         if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4779                 /*
4780                  * vdd off can generate a long pulse on eDP which
4781                  * would require vdd on to handle it, and thus we
4782                  * would end up in an endless cycle of
4783                  * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4784                  */
4785                 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4786                               port_name(intel_dig_port->port));
4787                 return false;
4788         }
4789
4790         DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4791                       port_name(intel_dig_port->port),
4792                       long_hpd ? "long" : "short");
4793
4794         power_domain = intel_display_port_power_domain(intel_encoder);
4795         intel_display_power_get(dev_priv, power_domain);
4796
4797         if (long_hpd) {
4798                 ret = true;
4799
4800                 if (HAS_PCH_SPLIT(dev)) {
4801                         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4802                                 goto mst_fail;
4803                 } else {
4804                         if (g4x_digital_port_connected(dev, intel_dig_port) != 1)
4805                                 goto mst_fail;
4806                 }
4807
4808                 if (!intel_dp_get_dpcd(intel_dp)) {
4809                         goto mst_fail;
4810                 }
4811
4812                 intel_dp_probe_oui(intel_dp);
4813
4814 #if 0
4815                 if (!intel_dp_probe_mst(intel_dp))
4816                         goto mst_fail;
4817 #endif
4818
4819         } else {
4820                 if (intel_dp->is_mst) {
4821 #if 0
4822                         if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4823                                 goto mst_fail;
4824 #endif
4825                 }
4826
4827                 if (!intel_dp->is_mst) {
4828                         /*
4829                          * we'll check the link status via the normal hot plug path later -
4830                          * but for short hpds we should check it now
4831                          */
4832                         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4833                         intel_dp_check_link_status(intel_dp);
4834                         drm_modeset_unlock(&dev->mode_config.connection_mutex);
4835                 }
4836         }
4837
4838         goto put_power;
4839 mst_fail:
4840         /* if we were in MST mode, and device is not there get out of MST mode */
4841         if (intel_dp->is_mst) {
4842                 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4843                 intel_dp->is_mst = false;
4844 #if 0
4845                 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4846 #endif
4847         }
4848 put_power:
4849         intel_display_power_put(dev_priv, power_domain);
4850
4851         return ret;
4852 }
4853
4854 /* Return which DP Port should be selected for Transcoder DP control */
4855 int
4856 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4857 {
4858         struct drm_device *dev = crtc->dev;
4859         struct intel_encoder *intel_encoder;
4860         struct intel_dp *intel_dp;
4861
4862         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4863                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4864
4865                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4866                     intel_encoder->type == INTEL_OUTPUT_EDP)
4867                         return intel_dp->output_reg;
4868         }
4869
4870         return -1;
4871 }
4872
4873 /* check the VBT to see whether the eDP is on DP-D port */
4874 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4875 {
4876         struct drm_i915_private *dev_priv = dev->dev_private;
4877         union child_device_config *p_child;
4878         int i;
4879         static const short port_mapping[] = {
4880                 [PORT_B] = PORT_IDPB,
4881                 [PORT_C] = PORT_IDPC,
4882                 [PORT_D] = PORT_IDPD,
4883         };
4884
4885         if (port == PORT_A)
4886                 return true;
4887
4888         if (!dev_priv->vbt.child_dev_num)
4889                 return false;
4890
4891         for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
4892                 p_child = dev_priv->vbt.child_dev + i;
4893
4894                 if (p_child->common.dvo_port == port_mapping[port] &&
4895                     (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
4896                     (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
4897                         return true;
4898         }
4899         return false;
4900 }
4901
4902 void
4903 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4904 {
4905         struct intel_connector *intel_connector = to_intel_connector(connector);
4906
4907         intel_attach_force_audio_property(connector);
4908         intel_attach_broadcast_rgb_property(connector);
4909         intel_dp->color_range_auto = true;
4910
4911         if (is_edp(intel_dp)) {
4912                 drm_mode_create_scaling_mode_property(connector->dev);
4913                 drm_object_attach_property(
4914                         &connector->base,
4915                         connector->dev->mode_config.scaling_mode_property,
4916                         DRM_MODE_SCALE_ASPECT);
4917                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4918         }
4919 }
4920
4921 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4922 {
4923         intel_dp->last_power_cycle = jiffies;
4924         intel_dp->last_power_on = jiffies;
4925         intel_dp->last_backlight_off = jiffies;
4926 }
4927
4928 static void
4929 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4930                                     struct intel_dp *intel_dp)
4931 {
4932         struct drm_i915_private *dev_priv = dev->dev_private;
4933         struct edp_power_seq cur, vbt, spec,
4934                 *final = &intel_dp->pps_delays;
4935         u32 pp_on, pp_off, pp_div, pp;
4936         int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
4937
4938         lockdep_assert_held(&dev_priv->pps_mutex);
4939
4940         /* already initialized? */
4941         if (final->t11_t12 != 0)
4942                 return;
4943
4944         if (HAS_PCH_SPLIT(dev)) {
4945                 pp_ctrl_reg = PCH_PP_CONTROL;
4946                 pp_on_reg = PCH_PP_ON_DELAYS;
4947                 pp_off_reg = PCH_PP_OFF_DELAYS;
4948                 pp_div_reg = PCH_PP_DIVISOR;
4949         } else {
4950                 enum i915_pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4951
4952                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4953                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4954                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4955                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4956         }
4957
4958         /* Workaround: Need to write PP_CONTROL with the unlock key as
4959          * the very first thing. */
4960         pp = ironlake_get_pp_control(intel_dp);
4961         I915_WRITE(pp_ctrl_reg, pp);
4962
4963         pp_on = I915_READ(pp_on_reg);
4964         pp_off = I915_READ(pp_off_reg);
4965         pp_div = I915_READ(pp_div_reg);
4966
4967         /* Pull timing values out of registers */
4968         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4969                 PANEL_POWER_UP_DELAY_SHIFT;
4970
4971         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4972                 PANEL_LIGHT_ON_DELAY_SHIFT;
4973
4974         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4975                 PANEL_LIGHT_OFF_DELAY_SHIFT;
4976
4977         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4978                 PANEL_POWER_DOWN_DELAY_SHIFT;
4979
4980         cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4981                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4982
4983         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4984                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4985
4986         vbt = dev_priv->vbt.edp_pps;
4987
4988         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4989          * our hw here, which are all in 100usec. */
4990         spec.t1_t3 = 210 * 10;
4991         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4992         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4993         spec.t10 = 500 * 10;
4994         /* This one is special and actually in units of 100ms, but zero
4995          * based in the hw (so we need to add 100 ms). But the sw vbt
4996          * table multiplies it with 1000 to make it in units of 100usec,
4997          * too. */
4998         spec.t11_t12 = (510 + 100) * 10;
4999
5000         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5001                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
5002
5003         /* Use the max of the register settings and vbt. If both are
5004          * unset, fall back to the spec limits. */
5005 #define assign_final(field)     final->field = (max(cur.field, vbt.field) == 0 ? \
5006                                        spec.field : \
5007                                        max(cur.field, vbt.field))
5008         assign_final(t1_t3);
5009         assign_final(t8);
5010         assign_final(t9);
5011         assign_final(t10);
5012         assign_final(t11_t12);
5013 #undef assign_final
5014
5015 #define get_delay(field)        (DIV_ROUND_UP(final->field, 10))
5016         intel_dp->panel_power_up_delay = get_delay(t1_t3);
5017         intel_dp->backlight_on_delay = get_delay(t8);
5018         intel_dp->backlight_off_delay = get_delay(t9);
5019         intel_dp->panel_power_down_delay = get_delay(t10);
5020         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5021 #undef get_delay
5022
5023         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5024                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5025                       intel_dp->panel_power_cycle_delay);
5026
5027         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5028                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5029 }
5030
5031 static void
5032 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5033                                               struct intel_dp *intel_dp)
5034 {
5035         struct drm_i915_private *dev_priv = dev->dev_private;
5036         u32 pp_on, pp_off, pp_div, port_sel = 0;
5037         int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
5038         int pp_on_reg, pp_off_reg, pp_div_reg;
5039         enum port port = dp_to_dig_port(intel_dp)->port;
5040         const struct edp_power_seq *seq = &intel_dp->pps_delays;
5041
5042         lockdep_assert_held(&dev_priv->pps_mutex);
5043
5044         if (HAS_PCH_SPLIT(dev)) {
5045                 pp_on_reg = PCH_PP_ON_DELAYS;
5046                 pp_off_reg = PCH_PP_OFF_DELAYS;
5047                 pp_div_reg = PCH_PP_DIVISOR;
5048         } else {
5049                 enum i915_pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5050
5051                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5052                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5053                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5054         }
5055
5056         /*
5057          * And finally store the new values in the power sequencer. The
5058          * backlight delays are set to 1 because we do manual waits on them. For
5059          * T8, even BSpec recommends doing it. For T9, if we don't do this,
5060          * we'll end up waiting for the backlight off delay twice: once when we
5061          * do the manual sleep, and once when we disable the panel and wait for
5062          * the PP_STATUS bit to become zero.
5063          */
5064         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5065                 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
5066         pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5067                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5068         /* Compute the divisor for the pp clock, simply match the Bspec
5069          * formula. */
5070         pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5071         pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5072                         << PANEL_POWER_CYCLE_DELAY_SHIFT);
5073
5074         /* Haswell doesn't have any port selection bits for the panel
5075          * power sequencer any more. */
5076         if (IS_VALLEYVIEW(dev)) {
5077                 port_sel = PANEL_PORT_SELECT_VLV(port);
5078         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5079                 if (port == PORT_A)
5080                         port_sel = PANEL_PORT_SELECT_DPA;
5081                 else
5082                         port_sel = PANEL_PORT_SELECT_DPD;
5083         }
5084
5085         pp_on |= port_sel;
5086
5087         I915_WRITE(pp_on_reg, pp_on);
5088         I915_WRITE(pp_off_reg, pp_off);
5089         I915_WRITE(pp_div_reg, pp_div);
5090
5091         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5092                       I915_READ(pp_on_reg),
5093                       I915_READ(pp_off_reg),
5094                       I915_READ(pp_div_reg));
5095 }
5096
5097 /**
5098  * intel_dp_set_drrs_state - program registers for RR switch to take effect
5099  * @dev: DRM device
5100  * @refresh_rate: RR to be programmed
5101  *
5102  * This function gets called when refresh rate (RR) has to be changed from
5103  * one frequency to another. Switches can be between high and low RR
5104  * supported by the panel or to any other RR based on media playback (in
5105  * this case, RR value needs to be passed from user space).
5106  *
5107  * The caller of this function needs to take a lock on dev_priv->drrs.
5108  */
5109 static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
5110 {
5111         struct drm_i915_private *dev_priv = dev->dev_private;
5112         struct intel_encoder *encoder;
5113         struct intel_digital_port *dig_port = NULL;
5114         struct intel_dp *intel_dp = dev_priv->drrs.dp;
5115         struct intel_crtc_state *config = NULL;
5116         struct intel_crtc *intel_crtc = NULL;
5117         u32 reg, val;
5118         enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5119
5120         if (refresh_rate <= 0) {
5121                 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5122                 return;
5123         }
5124
5125         if (intel_dp == NULL) {
5126                 DRM_DEBUG_KMS("DRRS not supported.\n");
5127                 return;
5128         }
5129
5130         /*
5131          * FIXME: This needs proper synchronization with psr state for some
5132          * platforms that cannot have PSR and DRRS enabled at the same time.
5133          */
5134
5135         dig_port = dp_to_dig_port(intel_dp);
5136         encoder = &dig_port->base;
5137         intel_crtc = to_intel_crtc(encoder->base.crtc);
5138
5139         if (!intel_crtc) {
5140                 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5141                 return;
5142         }
5143
5144         config = intel_crtc->config;
5145
5146         if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5147                 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5148                 return;
5149         }
5150
5151         if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5152                         refresh_rate)
5153                 index = DRRS_LOW_RR;
5154
5155         if (index == dev_priv->drrs.refresh_rate_type) {
5156                 DRM_DEBUG_KMS(
5157                         "DRRS requested for previously set RR...ignoring\n");
5158                 return;
5159         }
5160
5161         if (!intel_crtc->active) {
5162                 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5163                 return;
5164         }
5165
5166         if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
5167                 switch (index) {
5168                 case DRRS_HIGH_RR:
5169                         intel_dp_set_m_n(intel_crtc, M1_N1);
5170                         break;
5171                 case DRRS_LOW_RR:
5172                         intel_dp_set_m_n(intel_crtc, M2_N2);
5173                         break;
5174                 case DRRS_MAX_RR:
5175                 default:
5176                         DRM_ERROR("Unsupported refreshrate type\n");
5177                 }
5178         } else if (INTEL_INFO(dev)->gen > 6) {
5179                 reg = PIPECONF(intel_crtc->config->cpu_transcoder);
5180                 val = I915_READ(reg);
5181
5182                 if (index > DRRS_HIGH_RR) {
5183                         if (IS_VALLEYVIEW(dev))
5184                                 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5185                         else
5186                                 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5187                 } else {
5188                         if (IS_VALLEYVIEW(dev))
5189                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5190                         else
5191                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5192                 }
5193                 I915_WRITE(reg, val);
5194         }
5195
5196         dev_priv->drrs.refresh_rate_type = index;
5197
5198         DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5199 }
5200
5201 /**
5202  * intel_edp_drrs_enable - init drrs struct if supported
5203  * @intel_dp: DP struct
5204  *
5205  * Initializes frontbuffer_bits and drrs.dp
5206  */
5207 void intel_edp_drrs_enable(struct intel_dp *intel_dp)
5208 {
5209         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5210         struct drm_i915_private *dev_priv = dev->dev_private;
5211         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5212         struct drm_crtc *crtc = dig_port->base.base.crtc;
5213         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5214
5215         if (!intel_crtc->config->has_drrs) {
5216                 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5217                 return;
5218         }
5219
5220         mutex_lock(&dev_priv->drrs.mutex);
5221         if (WARN_ON(dev_priv->drrs.dp)) {
5222                 DRM_ERROR("DRRS already enabled\n");
5223                 goto unlock;
5224         }
5225
5226         dev_priv->drrs.busy_frontbuffer_bits = 0;
5227
5228         dev_priv->drrs.dp = intel_dp;
5229
5230 unlock:
5231         mutex_unlock(&dev_priv->drrs.mutex);
5232 }
5233
5234 /**
5235  * intel_edp_drrs_disable - Disable DRRS
5236  * @intel_dp: DP struct
5237  *
5238  */
5239 void intel_edp_drrs_disable(struct intel_dp *intel_dp)
5240 {
5241         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5242         struct drm_i915_private *dev_priv = dev->dev_private;
5243         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5244         struct drm_crtc *crtc = dig_port->base.base.crtc;
5245         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5246
5247         if (!intel_crtc->config->has_drrs)
5248                 return;
5249
5250         mutex_lock(&dev_priv->drrs.mutex);
5251         if (!dev_priv->drrs.dp) {
5252                 mutex_unlock(&dev_priv->drrs.mutex);
5253                 return;
5254         }
5255
5256         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5257                 intel_dp_set_drrs_state(dev_priv->dev,
5258                         intel_dp->attached_connector->panel.
5259                         fixed_mode->vrefresh);
5260
5261         dev_priv->drrs.dp = NULL;
5262         mutex_unlock(&dev_priv->drrs.mutex);
5263
5264         cancel_delayed_work_sync(&dev_priv->drrs.work);
5265 }
5266
5267 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5268 {
5269         struct drm_i915_private *dev_priv =
5270                 container_of(work, typeof(*dev_priv), drrs.work.work);
5271         struct intel_dp *intel_dp;
5272
5273         mutex_lock(&dev_priv->drrs.mutex);
5274
5275         intel_dp = dev_priv->drrs.dp;
5276
5277         if (!intel_dp)
5278                 goto unlock;
5279
5280         /*
5281          * The delayed work can race with an invalidate hence we need to
5282          * recheck.
5283          */
5284
5285         if (dev_priv->drrs.busy_frontbuffer_bits)
5286                 goto unlock;
5287
5288         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
5289                 intel_dp_set_drrs_state(dev_priv->dev,
5290                         intel_dp->attached_connector->panel.
5291                         downclock_mode->vrefresh);
5292
5293 unlock:
5294         mutex_unlock(&dev_priv->drrs.mutex);
5295 }
5296
5297 /**
5298  * intel_edp_drrs_invalidate - Invalidate DRRS
5299  * @dev: DRM device
5300  * @frontbuffer_bits: frontbuffer plane tracking bits
5301  *
5302  * When there is a disturbance on screen (due to cursor movement/time
5303  * update etc), DRRS needs to be invalidated, i.e. need to switch to
5304  * high RR.
5305  *
5306  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5307  */
5308 void intel_edp_drrs_invalidate(struct drm_device *dev,
5309                 unsigned frontbuffer_bits)
5310 {
5311         struct drm_i915_private *dev_priv = dev->dev_private;
5312         struct drm_crtc *crtc;
5313         enum i915_pipe pipe;
5314
5315         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5316                 return;
5317
5318         cancel_delayed_work(&dev_priv->drrs.work);
5319
5320         mutex_lock(&dev_priv->drrs.mutex);
5321         if (!dev_priv->drrs.dp) {
5322                 mutex_unlock(&dev_priv->drrs.mutex);
5323                 return;
5324         }
5325
5326         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5327         pipe = to_intel_crtc(crtc)->pipe;
5328
5329         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) {
5330                 intel_dp_set_drrs_state(dev_priv->dev,
5331                                 dev_priv->drrs.dp->attached_connector->panel.
5332                                 fixed_mode->vrefresh);
5333         }
5334
5335         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5336
5337         dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5338         mutex_unlock(&dev_priv->drrs.mutex);
5339 }
5340
5341 /**
5342  * intel_edp_drrs_flush - Flush DRRS
5343  * @dev: DRM device
5344  * @frontbuffer_bits: frontbuffer plane tracking bits
5345  *
5346  * When there is no movement on screen, DRRS work can be scheduled.
5347  * This DRRS work is responsible for setting relevant registers after a
5348  * timeout of 1 second.
5349  *
5350  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5351  */
5352 void intel_edp_drrs_flush(struct drm_device *dev,
5353                 unsigned frontbuffer_bits)
5354 {
5355         struct drm_i915_private *dev_priv = dev->dev_private;
5356         struct drm_crtc *crtc;
5357         enum i915_pipe pipe;
5358
5359         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5360                 return;
5361
5362         cancel_delayed_work(&dev_priv->drrs.work);
5363
5364         mutex_lock(&dev_priv->drrs.mutex);
5365         if (!dev_priv->drrs.dp) {
5366                 mutex_unlock(&dev_priv->drrs.mutex);
5367                 return;
5368         }
5369
5370         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5371         pipe = to_intel_crtc(crtc)->pipe;
5372         dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5373
5374         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR &&
5375                         !dev_priv->drrs.busy_frontbuffer_bits)
5376                 schedule_delayed_work(&dev_priv->drrs.work,
5377                                 msecs_to_jiffies(1000));
5378         mutex_unlock(&dev_priv->drrs.mutex);
5379 }
5380
5381 /**
5382  * DOC: Display Refresh Rate Switching (DRRS)
5383  *
5384  * Display Refresh Rate Switching (DRRS) is a power conservation feature
5385  * which enables swtching between low and high refresh rates,
5386  * dynamically, based on the usage scenario. This feature is applicable
5387  * for internal panels.
5388  *
5389  * Indication that the panel supports DRRS is given by the panel EDID, which
5390  * would list multiple refresh rates for one resolution.
5391  *
5392  * DRRS is of 2 types - static and seamless.
5393  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5394  * (may appear as a blink on screen) and is used in dock-undock scenario.
5395  * Seamless DRRS involves changing RR without any visual effect to the user
5396  * and can be used during normal system usage. This is done by programming
5397  * certain registers.
5398  *
5399  * Support for static/seamless DRRS may be indicated in the VBT based on
5400  * inputs from the panel spec.
5401  *
5402  * DRRS saves power by switching to low RR based on usage scenarios.
5403  *
5404  * eDP DRRS:-
5405  *        The implementation is based on frontbuffer tracking implementation.
5406  * When there is a disturbance on the screen triggered by user activity or a
5407  * periodic system activity, DRRS is disabled (RR is changed to high RR).
5408  * When there is no movement on screen, after a timeout of 1 second, a switch
5409  * to low RR is made.
5410  *        For integration with frontbuffer tracking code,
5411  * intel_edp_drrs_invalidate() and intel_edp_drrs_flush() are called.
5412  *
5413  * DRRS can be further extended to support other internal panels and also
5414  * the scenario of video playback wherein RR is set based on the rate
5415  * requested by userspace.
5416  */
5417
5418 /**
5419  * intel_dp_drrs_init - Init basic DRRS work and mutex.
5420  * @intel_connector: eDP connector
5421  * @fixed_mode: preferred mode of panel
5422  *
5423  * This function is  called only once at driver load to initialize basic
5424  * DRRS stuff.
5425  *
5426  * Returns:
5427  * Downclock mode if panel supports it, else return NULL.
5428  * DRRS support is determined by the presence of downclock mode (apart
5429  * from VBT setting).
5430  */
5431 static struct drm_display_mode *
5432 intel_dp_drrs_init(struct intel_connector *intel_connector,
5433                 struct drm_display_mode *fixed_mode)
5434 {
5435         struct drm_connector *connector = &intel_connector->base;
5436         struct drm_device *dev = connector->dev;
5437         struct drm_i915_private *dev_priv = dev->dev_private;
5438         struct drm_display_mode *downclock_mode = NULL;
5439
5440         INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5441         lockinit(&dev_priv->drrs.mutex, "i915dm", 0, LK_CANRECURSE);
5442
5443         if (INTEL_INFO(dev)->gen <= 6) {
5444                 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5445                 return NULL;
5446         }
5447
5448         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5449                 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5450                 return NULL;
5451         }
5452
5453         downclock_mode = intel_find_panel_downclock
5454                                         (dev, fixed_mode, connector);
5455
5456         if (!downclock_mode) {
5457                 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5458                 return NULL;
5459         }
5460
5461         dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5462
5463         dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5464         DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5465         return downclock_mode;
5466 }
5467
5468 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5469                                      struct intel_connector *intel_connector)
5470 {
5471         struct drm_connector *connector = &intel_connector->base;
5472         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5473         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5474         struct drm_device *dev = intel_encoder->base.dev;
5475         struct drm_i915_private *dev_priv = dev->dev_private;
5476         struct drm_display_mode *fixed_mode = NULL;
5477         struct drm_display_mode *downclock_mode = NULL;
5478         bool has_dpcd;
5479         struct drm_display_mode *scan;
5480         struct edid *edid;
5481         enum i915_pipe pipe = INVALID_PIPE;
5482
5483         if (!is_edp(intel_dp))
5484                 return true;
5485
5486         pps_lock(intel_dp);
5487         intel_edp_panel_vdd_sanitize(intel_dp);
5488         pps_unlock(intel_dp);
5489
5490         /* Cache DPCD and EDID for edp. */
5491         has_dpcd = intel_dp_get_dpcd(intel_dp);
5492
5493         if (has_dpcd) {
5494                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5495                         dev_priv->no_aux_handshake =
5496                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5497                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5498         } else {
5499                 /* if this fails, presume the device is a ghost */
5500                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5501                 return false;
5502         }
5503
5504         /* We now know it's not a ghost, init power sequence regs. */
5505         pps_lock(intel_dp);
5506         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5507         pps_unlock(intel_dp);
5508
5509         mutex_lock(&dev->mode_config.mutex);
5510         edid = drm_get_edid(connector, intel_dp->aux.ddc);
5511         if (edid) {
5512                 if (drm_add_edid_modes(connector, edid)) {
5513                         drm_mode_connector_update_edid_property(connector,
5514                                                                 edid);
5515                         drm_edid_to_eld(connector, edid);
5516                 } else {
5517                         kfree(edid);
5518                         edid = ERR_PTR(-EINVAL);
5519                 }
5520         } else {
5521                 edid = ERR_PTR(-ENOENT);
5522         }
5523         intel_connector->edid = edid;
5524
5525         /* prefer fixed mode from EDID if available */
5526         list_for_each_entry(scan, &connector->probed_modes, head) {
5527                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5528                         fixed_mode = drm_mode_duplicate(dev, scan);
5529                         downclock_mode = intel_dp_drrs_init(
5530                                                 intel_connector, fixed_mode);
5531                         break;
5532                 }
5533         }
5534
5535         /* fallback to VBT if available for eDP */
5536         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5537                 fixed_mode = drm_mode_duplicate(dev,
5538                                         dev_priv->vbt.lfp_lvds_vbt_mode);
5539                 if (fixed_mode)
5540                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5541         }
5542         mutex_unlock(&dev->mode_config.mutex);
5543
5544         if (IS_VALLEYVIEW(dev)) {
5545 #if 0
5546                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5547                 register_reboot_notifier(&intel_dp->edp_notifier);
5548 #endif
5549
5550                 /*
5551                  * Figure out the current pipe for the initial backlight setup.
5552                  * If the current pipe isn't valid, try the PPS pipe, and if that
5553                  * fails just assume pipe A.
5554                  */
5555                 if (IS_CHERRYVIEW(dev))
5556                         pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5557                 else
5558                         pipe = PORT_TO_PIPE(intel_dp->DP);
5559
5560                 if (pipe != PIPE_A && pipe != PIPE_B)
5561                         pipe = intel_dp->pps_pipe;
5562
5563                 if (pipe != PIPE_A && pipe != PIPE_B)
5564                         pipe = PIPE_A;
5565
5566                 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5567                               pipe_name(pipe));
5568         }
5569
5570         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5571         intel_connector->panel.backlight_power = intel_edp_backlight_power;
5572         intel_panel_setup_backlight(connector, pipe);
5573
5574         return true;
5575 }
5576
5577 bool
5578 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5579                         struct intel_connector *intel_connector)
5580 {
5581         struct drm_connector *connector = &intel_connector->base;
5582         struct intel_dp *intel_dp = &intel_dig_port->dp;
5583         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5584         struct drm_device *dev = intel_encoder->base.dev;
5585         struct drm_i915_private *dev_priv = dev->dev_private;
5586         enum port port = intel_dig_port->port;
5587         int type;
5588
5589         intel_dp->pps_pipe = INVALID_PIPE;
5590
5591         /* intel_dp vfuncs */
5592         if (INTEL_INFO(dev)->gen >= 9)
5593                 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5594         else if (IS_VALLEYVIEW(dev))
5595                 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
5596         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5597                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5598         else if (HAS_PCH_SPLIT(dev))
5599                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5600         else
5601                 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
5602
5603         if (INTEL_INFO(dev)->gen >= 9)
5604                 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5605         else
5606                 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5607
5608         /* Preserve the current hw state. */
5609         intel_dp->DP = I915_READ(intel_dp->output_reg);
5610         intel_dp->attached_connector = intel_connector;
5611
5612         if (intel_dp_is_edp(dev, port))
5613                 type = DRM_MODE_CONNECTOR_eDP;
5614         else
5615                 type = DRM_MODE_CONNECTOR_DisplayPort;
5616
5617         /*
5618          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5619          * for DP the encoder type can be set by the caller to
5620          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5621          */
5622         if (type == DRM_MODE_CONNECTOR_eDP)
5623                 intel_encoder->type = INTEL_OUTPUT_EDP;
5624
5625         /* eDP only on port B and/or C on vlv/chv */
5626         if (WARN_ON(IS_VALLEYVIEW(dev) && is_edp(intel_dp) &&
5627                     port != PORT_B && port != PORT_C))
5628                 return false;
5629
5630         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5631                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5632                         port_name(port));
5633
5634         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5635         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5636
5637         connector->interlace_allowed = true;
5638         connector->doublescan_allowed = 0;
5639
5640         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5641                           edp_panel_vdd_work);
5642
5643         intel_connector_attach_encoder(intel_connector, intel_encoder);
5644         drm_connector_register(connector);
5645
5646         if (HAS_DDI(dev))
5647                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5648         else
5649                 intel_connector->get_hw_state = intel_connector_get_hw_state;
5650         intel_connector->unregister = intel_dp_connector_unregister;
5651
5652         /* Set up the hotplug pin. */
5653         switch (port) {
5654         case PORT_A:
5655                 intel_encoder->hpd_pin = HPD_PORT_A;
5656                 break;
5657         case PORT_B:
5658                 intel_encoder->hpd_pin = HPD_PORT_B;
5659                 break;
5660         case PORT_C:
5661                 intel_encoder->hpd_pin = HPD_PORT_C;
5662                 break;
5663         case PORT_D:
5664                 intel_encoder->hpd_pin = HPD_PORT_D;
5665                 break;
5666         default:
5667                 BUG();
5668         }
5669
5670         if (is_edp(intel_dp)) {
5671                 pps_lock(intel_dp);
5672                 intel_dp_init_panel_power_timestamps(intel_dp);
5673                 if (IS_VALLEYVIEW(dev))
5674                         vlv_initial_power_sequencer_setup(intel_dp);
5675                 else
5676                         intel_dp_init_panel_power_sequencer(dev, intel_dp);
5677                 pps_unlock(intel_dp);
5678         }
5679
5680         intel_dp_aux_init(intel_dp, intel_connector);
5681
5682         /* init MST on ports that can support it */
5683         if (IS_HASWELL(dev) || IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
5684                 if (port == PORT_B || port == PORT_C || port == PORT_D) {
5685                         intel_dp_mst_encoder_init(intel_dig_port,
5686                                                   intel_connector->base.base.id);
5687                 }
5688         }
5689
5690         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5691                 drm_dp_aux_unregister(&intel_dp->aux);
5692                 if (is_edp(intel_dp)) {
5693                         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5694                         /*
5695                          * vdd might still be enabled do to the delayed vdd off.
5696                          * Make sure vdd is actually turned off here.
5697                          */
5698                         pps_lock(intel_dp);
5699                         edp_panel_vdd_off_sync(intel_dp);
5700                         pps_unlock(intel_dp);
5701                 }
5702                 drm_connector_unregister(connector);
5703                 drm_connector_cleanup(connector);
5704                 return false;
5705         }
5706
5707         intel_dp_add_properties(intel_dp, connector);
5708
5709         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5710          * 0xd.  Failure to do so will result in spurious interrupts being
5711          * generated on the port when a cable is not attached.
5712          */
5713         if (IS_G4X(dev) && !IS_GM45(dev)) {
5714                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5715                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5716         }
5717
5718         return true;
5719 }
5720
5721 void
5722 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
5723 {
5724         struct drm_i915_private *dev_priv = dev->dev_private;
5725         struct intel_digital_port *intel_dig_port;
5726         struct intel_encoder *intel_encoder;
5727         struct drm_encoder *encoder;
5728         struct intel_connector *intel_connector;
5729
5730         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5731         if (!intel_dig_port)
5732                 return;
5733
5734         intel_connector = intel_connector_alloc();
5735         if (!intel_connector) {
5736                 kfree(intel_dig_port);
5737                 return;
5738         }
5739
5740         intel_encoder = &intel_dig_port->base;
5741         encoder = &intel_encoder->base;
5742
5743         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5744                          DRM_MODE_ENCODER_TMDS);
5745
5746         intel_encoder->compute_config = intel_dp_compute_config;
5747         intel_encoder->disable = intel_disable_dp;
5748         intel_encoder->get_hw_state = intel_dp_get_hw_state;
5749         intel_encoder->get_config = intel_dp_get_config;
5750         intel_encoder->suspend = intel_dp_encoder_suspend;
5751         if (IS_CHERRYVIEW(dev)) {
5752                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5753                 intel_encoder->pre_enable = chv_pre_enable_dp;
5754                 intel_encoder->enable = vlv_enable_dp;
5755                 intel_encoder->post_disable = chv_post_disable_dp;
5756         } else if (IS_VALLEYVIEW(dev)) {
5757                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5758                 intel_encoder->pre_enable = vlv_pre_enable_dp;
5759                 intel_encoder->enable = vlv_enable_dp;
5760                 intel_encoder->post_disable = vlv_post_disable_dp;
5761         } else {
5762                 intel_encoder->pre_enable = g4x_pre_enable_dp;
5763                 intel_encoder->enable = g4x_enable_dp;
5764                 if (INTEL_INFO(dev)->gen >= 5)
5765                         intel_encoder->post_disable = ilk_post_disable_dp;
5766         }
5767
5768         intel_dig_port->port = port;
5769         intel_dig_port->dp.output_reg = output_reg;
5770
5771         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
5772         if (IS_CHERRYVIEW(dev)) {
5773                 if (port == PORT_D)
5774                         intel_encoder->crtc_mask = 1 << 2;
5775                 else
5776                         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5777         } else {
5778                 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5779         }
5780         intel_encoder->cloneable = 0;
5781         intel_encoder->hot_plug = intel_dp_hot_plug;
5782
5783         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5784         dev_priv->hpd_irq_port[port] = intel_dig_port;
5785
5786         if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
5787                 drm_encoder_cleanup(encoder);
5788                 kfree(intel_dig_port);
5789                 kfree(intel_connector);
5790         }
5791 }
5792
5793 #if 0
5794 void intel_dp_mst_suspend(struct drm_device *dev)
5795 {
5796         struct drm_i915_private *dev_priv = dev->dev_private;
5797         int i;
5798
5799         /* disable MST */
5800         for (i = 0; i < I915_MAX_PORTS; i++) {
5801                 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5802                 if (!intel_dig_port)
5803                         continue;
5804
5805                 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5806                         if (!intel_dig_port->dp.can_mst)
5807                                 continue;
5808                         if (intel_dig_port->dp.is_mst)
5809                                 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5810                 }
5811         }
5812 }
5813 #endif
5814
5815 void intel_dp_mst_resume(struct drm_device *dev)
5816 {
5817         struct drm_i915_private *dev_priv = dev->dev_private;
5818         int i;
5819
5820         for (i = 0; i < I915_MAX_PORTS; i++) {
5821                 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5822                 if (!intel_dig_port)
5823                         continue;
5824                 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5825 #if 0
5826                         int ret;
5827
5828                         if (!intel_dig_port->dp.can_mst)
5829                                 continue;
5830
5831                         ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5832                         if (ret != 0) {
5833                                 intel_dp_check_mst_status(&intel_dig_port->dp);
5834                         }
5835 #endif
5836                 }
5837         }
5838 }