Merge branch 'vendor/DHCPCD'
[dragonfly.git] / sys / kern / kern_slaballoc.c
1 /*
2  * KERN_SLABALLOC.C     - Kernel SLAB memory allocator
3  *
4  * Copyright (c) 2003,2004,2010-2019 The DragonFly Project.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The DragonFly Project
8  * by Matthew Dillon <dillon@backplane.com>
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in
18  *    the documentation and/or other materials provided with the
19  *    distribution.
20  * 3. Neither the name of The DragonFly Project nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific, prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
28  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
32  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
34  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * This module implements a slab allocator drop-in replacement for the
38  * kernel malloc().
39  *
40  * A slab allocator reserves a ZONE for each chunk size, then lays the
41  * chunks out in an array within the zone.  Allocation and deallocation
42  * is nearly instantanious, and fragmentation/overhead losses are limited
43  * to a fixed worst-case amount.
44  *
45  * The downside of this slab implementation is in the chunk size
46  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
47  * In a kernel implementation all this memory will be physical so
48  * the zone size is adjusted downward on machines with less physical
49  * memory.  The upside is that overhead is bounded... this is the *worst*
50  * case overhead.
51  *
52  * Slab management is done on a per-cpu basis and no locking or mutexes
53  * are required, only a critical section.  When one cpu frees memory
54  * belonging to another cpu's slab manager an asynchronous IPI message
55  * will be queued to execute the operation.   In addition, both the
56  * high level slab allocator and the low level zone allocator optimize
57  * M_ZERO requests, and the slab allocator does not have to pre initialize
58  * the linked list of chunks.
59  *
60  * XXX Balancing is needed between cpus.  Balance will be handled through
61  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
62  *
63  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
64  * the new zone should be restricted to M_USE_RESERVE requests only.
65  *
66  *      Alloc Size      Chunking        Number of zones
67  *      0-127           8               16
68  *      128-255         16              8
69  *      256-511         32              8
70  *      512-1023        64              8
71  *      1024-2047       128             8
72  *      2048-4095       256             8
73  *      4096-8191       512             8
74  *      8192-16383      1024            8
75  *      16384-32767     2048            8
76  *      (if PAGE_SIZE is 4K the maximum zone allocation is 16383)
77  *
78  *      Allocations >= ZoneLimit go directly to kmem.
79  *      (n * PAGE_SIZE, n > 2) allocations go directly to kmem.
80  *
81  * Alignment properties:
82  * - All power-of-2 sized allocations are power-of-2 aligned.
83  * - Allocations with M_POWEROF2 are power-of-2 aligned on the nearest
84  *   power-of-2 round up of 'size'.
85  * - Non-power-of-2 sized allocations are zone chunk size aligned (see the
86  *   above table 'Chunking' column).
87  *
88  *                      API REQUIREMENTS AND SIDE EFFECTS
89  *
90  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
91  *    have remained compatible with the following API requirements:
92  *
93  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
94  *    + ability to allocate arbitrarily large chunks of memory
95  */
96
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/kernel.h>
100 #include <sys/slaballoc.h>
101 #include <sys/mbuf.h>
102 #include <sys/vmmeter.h>
103 #include <sys/lock.h>
104 #include <sys/thread.h>
105 #include <sys/globaldata.h>
106 #include <sys/sysctl.h>
107 #include <sys/ktr.h>
108 #include <sys/kthread.h>
109 #include <sys/malloc.h>
110
111 #include <vm/vm.h>
112 #include <vm/vm_param.h>
113 #include <vm/vm_kern.h>
114 #include <vm/vm_extern.h>
115 #include <vm/vm_object.h>
116 #include <vm/pmap.h>
117 #include <vm/vm_map.h>
118 #include <vm/vm_page.h>
119 #include <vm/vm_pageout.h>
120
121 #include <machine/cpu.h>
122
123 #include <sys/thread2.h>
124 #include <vm/vm_page2.h>
125
126 #if (__VM_CACHELINE_SIZE == 32)
127 #define CAN_CACHEALIGN(sz)      ((sz) >= 256)
128 #elif (__VM_CACHELINE_SIZE == 64)
129 #define CAN_CACHEALIGN(sz)      ((sz) >= 512)
130 #elif (__VM_CACHELINE_SIZE == 128)
131 #define CAN_CACHEALIGN(sz)      ((sz) >= 1024)
132 #else
133 #error "unsupported cacheline size"
134 #endif
135
136 #define btokup(z)       (&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt)
137
138 #define MEMORY_STRING   "ptr=%p type=%p size=%lu flags=%04x"
139 #define MEMORY_ARGS     void *ptr, void *type, unsigned long size, int flags
140
141 #if !defined(KTR_MEMORY)
142 #define KTR_MEMORY      KTR_ALL
143 #endif
144 KTR_INFO_MASTER(memory);
145 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin");
146 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARGS);
147 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARGS);
148 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARGS);
149 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARGS);
150 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARGS);
151 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARGS);
152 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARGS);
153 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARGS);
154 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin");
155 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end");
156
157 #define logmemory(name, ptr, type, size, flags)                         \
158         KTR_LOG(memory_ ## name, ptr, type, size, flags)
159 #define logmemory_quick(name)                                           \
160         KTR_LOG(memory_ ## name)
161
162 /*
163  * Fixed globals (not per-cpu)
164  */
165 __read_frequently static int ZoneSize;
166 __read_frequently static int ZoneLimit;
167 __read_frequently static int ZonePageCount;
168 __read_frequently static uintptr_t ZoneMask;
169 __read_frequently struct malloc_type *kmemstatistics;   /* exported to vmstat */
170
171 #if defined(INVARIANTS)
172 static void chunk_mark_allocated(SLZone *z, void *chunk);
173 static void chunk_mark_free(SLZone *z, void *chunk);
174 #else
175 #define chunk_mark_allocated(z, chunk)
176 #define chunk_mark_free(z, chunk)
177 #endif
178
179 /*
180  * Misc constants.  Note that allocations that are exact multiples of
181  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
182  */
183 #define ZONE_RELS_THRESH        32              /* threshold number of zones */
184
185 #ifdef INVARIANTS
186 /*
187  * The WEIRD_ADDR is used as known text to copy into free objects to
188  * try to create deterministic failure cases if the data is accessed after
189  * free.
190  */
191 #define WEIRD_ADDR      0xdeadc0de
192 #endif
193 #define ZERO_LENGTH_PTR ((void *)-8)
194
195 /*
196  * Misc global malloc buckets
197  */
198
199 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
200 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
201 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
202 MALLOC_DEFINE(M_DRM, "m_drm", "DRM memory allocations");
203
204 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
205 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
206
207 /*
208  * Initialize the slab memory allocator.  We have to choose a zone size based
209  * on available physical memory.  We choose a zone side which is approximately
210  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
211  * 128K.  The zone size is limited to the bounds set in slaballoc.h
212  * (typically 32K min, 128K max).
213  */
214 static void kmeminit(void *dummy);
215 static void kmemfinishinit(void *dummy);
216
217 char *ZeroPage;
218
219 SYSINIT(kmem1, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL);
220 SYSINIT(kmem2, SI_BOOT2_POST_SMP, SI_ORDER_FIRST, kmemfinishinit, NULL);
221
222 #ifdef INVARIANTS
223 /*
224  * If enabled any memory allocated without M_ZERO is initialized to -1.
225  */
226 __read_frequently static int  use_malloc_pattern;
227 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
228            &use_malloc_pattern, 0,
229            "Initialize memory to -1 if M_ZERO not specified");
230
231 __read_frequently static int32_t weirdary[16];
232 __read_frequently static int  use_weird_array;
233 SYSCTL_INT(_debug, OID_AUTO, use_weird_array, CTLFLAG_RW,
234            &use_weird_array, 0,
235            "Initialize memory to weird values on kfree()");
236 #endif
237
238 __read_frequently static int ZoneRelsThresh = ZONE_RELS_THRESH;
239 SYSCTL_INT(_kern, OID_AUTO, zone_cache, CTLFLAG_RW, &ZoneRelsThresh, 0, "");
240 __read_frequently static int kzone_pollfreq = 1;
241 SYSCTL_INT(_kern, OID_AUTO, kzone_pollfreq, CTLFLAG_RW, &kzone_pollfreq, 0, "");
242
243 static struct spinlock kmemstat_spin =
244                         SPINLOCK_INITIALIZER(&kmemstat_spin, "malinit");
245 static struct malloc_type *kmemstat_poll;
246
247 /*
248  * Returns the kernel memory size limit for the purposes of initializing
249  * various subsystem caches.  The smaller of available memory and the KVM
250  * memory space is returned.
251  *
252  * The size in megabytes is returned.
253  */
254 size_t
255 kmem_lim_size(void)
256 {
257     size_t limsize;
258
259     limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
260     if (limsize > KvaSize)
261         limsize = KvaSize;
262     return (limsize / (1024 * 1024));
263 }
264
265 static void
266 kmeminit(void *dummy)
267 {
268     size_t limsize;
269     int usesize;
270 #ifdef INVARIANTS
271     int i;
272 #endif
273
274     limsize = kmem_lim_size();
275     usesize = (int)(limsize * 1024);    /* convert to KB */
276
277     /*
278      * If the machine has a large KVM space and more than 8G of ram,
279      * double the zone release threshold to reduce SMP invalidations.
280      * If more than 16G of ram, do it again.
281      *
282      * The BIOS eats a little ram so add some slop.  We want 8G worth of
283      * memory sticks to trigger the first adjustment.
284      */
285     if (ZoneRelsThresh == ZONE_RELS_THRESH) {
286             if (limsize >= 7 * 1024)
287                     ZoneRelsThresh *= 2;
288             if (limsize >= 15 * 1024)
289                     ZoneRelsThresh *= 2;
290             if (limsize >= 31 * 1024)
291                     ZoneRelsThresh *= 2;
292             if (limsize >= 63 * 1024)
293                     ZoneRelsThresh *= 2;
294             if (limsize >= 127 * 1024)
295                     ZoneRelsThresh *= 2;
296     }
297
298     /*
299      * Calculate the zone size.  This typically calculates to
300      * ZALLOC_MAX_ZONE_SIZE
301      */
302     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
303     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
304         ZoneSize <<= 1;
305     ZoneLimit = ZoneSize / 4;
306     if (ZoneLimit > ZALLOC_ZONE_LIMIT)
307         ZoneLimit = ZALLOC_ZONE_LIMIT;
308     ZoneMask = ~(uintptr_t)(ZoneSize - 1);
309     ZonePageCount = ZoneSize / PAGE_SIZE;
310
311 #ifdef INVARIANTS
312     for (i = 0; i < NELEM(weirdary); ++i)
313         weirdary[i] = WEIRD_ADDR;
314 #endif
315
316     ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO);
317
318     if (bootverbose)
319         kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
320 }
321
322 /*
323  * Once we know how many cpus are configured reduce ZoneRelsThresh
324  * based on multiples of 32 cpu threads.
325  */
326 static void
327 kmemfinishinit(void *dummy)
328 {
329         if (ncpus > 32)
330                 ZoneRelsThresh = ZoneRelsThresh * 32 / ncpus;
331 }
332
333 /*
334  * (low level) Initialize slab-related elements in the globaldata structure.
335  *
336  * Occurs after kmeminit().
337  */
338 void
339 slab_gdinit(globaldata_t gd)
340 {
341         SLGlobalData *slgd;
342         int i;
343
344         slgd = &gd->gd_slab;
345         for (i = 0; i < NZONES; ++i)
346                 TAILQ_INIT(&slgd->ZoneAry[i]);
347         TAILQ_INIT(&slgd->FreeZones);
348         TAILQ_INIT(&slgd->FreeOvZones);
349 }
350
351 /*
352  * Initialize a malloc type tracking structure.
353  */
354 void
355 malloc_init(void *data)
356 {
357     struct malloc_type *type = data;
358     struct kmalloc_use *use;
359     size_t limsize;
360     int n;
361
362     if (type->ks_magic != M_MAGIC)
363         panic("malloc type lacks magic");
364
365     if (type->ks_limit != 0)
366         return;
367
368     if (vmstats.v_page_count == 0)
369         panic("malloc_init not allowed before vm init");
370
371     limsize = kmem_lim_size() * (1024 * 1024);
372     type->ks_limit = limsize / 10;
373     if (type->ks_flags & KSF_OBJSIZE)
374             malloc_mgt_init(type, &type->ks_mgt, type->ks_objsize);
375
376     if (ncpus == 1)
377         use = &type->ks_use0;
378     else
379         use = kmalloc(ncpus * sizeof(*use), M_TEMP, M_WAITOK | M_ZERO);
380     if (type->ks_flags & KSF_OBJSIZE) {
381         for (n = 0; n < ncpus; ++n)
382             malloc_mgt_init(type, &use[n].mgt, type->ks_objsize);
383     }
384
385     spin_lock(&kmemstat_spin);
386     type->ks_next = kmemstatistics;
387     type->ks_use = use;
388     kmemstatistics = type;
389     spin_unlock(&kmemstat_spin);
390 }
391
392 void
393 malloc_uninit(void *data)
394 {
395     struct malloc_type *type = data;
396     struct malloc_type *t;
397     int i;
398 #ifdef INVARIANTS
399     long ttl;
400 #endif
401
402     if (type->ks_magic != M_MAGIC)
403         panic("malloc type lacks magic");
404
405     if (vmstats.v_page_count == 0)
406         panic("malloc_uninit not allowed before vm init");
407
408     if (type->ks_limit == 0)
409         panic("malloc_uninit on uninitialized type");
410
411     /* Make sure that all pending kfree()s are finished. */
412     lwkt_synchronize_ipiqs("muninit");
413
414     /*
415      * Remove from the kmemstatistics list, blocking if the removal races
416      * the kmalloc poller.
417      *
418      * Advance kmemstat_poll if necessary.
419      */
420     spin_lock(&kmemstat_spin);
421     while (type->ks_flags & KSF_POLLING)
422         ssleep(type, &kmemstat_spin, 0, "kmuninit", 0);
423
424     if (kmemstat_poll == type)
425         kmemstat_poll = type->ks_next;
426
427     if (kmemstatistics == type) {
428         kmemstatistics = type->ks_next;
429     } else {
430         for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
431             if (t->ks_next == type) {
432                 t->ks_next = type->ks_next;
433                 break;
434             }
435         }
436     }
437     type->ks_next = NULL;
438     type->ks_limit = 0;
439     spin_unlock(&kmemstat_spin);
440
441     /*
442      * memuse is only correct in aggregation.  Due to memory being allocated
443      * on one cpu and freed on another individual array entries may be
444      * negative or positive (canceling each other out).
445      */
446 #ifdef INVARIANTS
447     ttl = 0;
448 #endif
449     for (i = 0; i < ncpus; ++i) {
450 #ifdef INVARIANTS
451         ttl += type->ks_use[i].memuse;
452 #endif
453         if (type->ks_flags & KSF_OBJSIZE)
454             malloc_mgt_uninit(type, &type->ks_use[i].mgt);
455     }
456     if (type->ks_flags & KSF_OBJSIZE)
457         malloc_mgt_uninit(type, &type->ks_mgt);
458 #ifdef INVARIANTS
459     if (ttl) {
460         kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
461             ttl, type->ks_shortdesc, i);
462     }
463 #endif
464
465     if (type->ks_use != &type->ks_use0) {
466         kfree(type->ks_use, M_TEMP);
467         type->ks_use = NULL;
468     }
469 }
470
471 /*
472  * Slowly polls all kmalloc zones for cleanup
473  */
474 static void
475 kmalloc_poller_thread(void)
476 {
477     struct malloc_type *type;
478
479     for (;;) {
480         /*
481          * Very slow poll by default, adjustable with sysctl
482          */
483         int sticks;
484
485         sticks = kzone_pollfreq;
486         cpu_ccfence();
487         if (sticks > 0)
488                 sticks = hz / sticks + 1;       /* approximate */
489         else
490                 sticks = hz;                    /* safety */
491         tsleep((caddr_t)&sticks, 0, "kmslp", sticks);
492
493         /*
494          * [re]poll one zone each period.
495          */
496         spin_lock(&kmemstat_spin);
497         type = kmemstat_poll;
498
499         if (type == NULL)
500                 type = kmemstatistics;
501         if (type) {
502                 atomic_set_int(&type->ks_flags, KSF_POLLING);
503                 spin_unlock(&kmemstat_spin);
504                 if (malloc_mgt_poll(type)) {
505                         spin_lock(&kmemstat_spin);
506                         kmemstat_poll = type->ks_next;
507                 } else {
508                         spin_lock(&kmemstat_spin);
509                 }
510                 atomic_clear_int(&type->ks_flags, KSF_POLLING);
511                 wakeup(type);
512         } else {
513                 kmemstat_poll = NULL;
514         }
515         spin_unlock(&kmemstat_spin);
516     }
517 }
518
519 static struct thread *kmalloc_poller_td;
520 static struct kproc_desc kmalloc_poller_kp = {
521         "kmalloc_poller",
522         kmalloc_poller_thread,
523         &kmalloc_poller_td
524 };
525 SYSINIT(kmalloc_polller, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST,
526         kproc_start, &kmalloc_poller_kp);
527
528 /*
529  * Reinitialize all installed malloc regions after ncpus has been
530  * determined.  type->ks_use0 is initially set to &type->ks_use0,
531  * this function will dynamically allocate it as appropriate for ncpus.
532  */
533 void
534 malloc_reinit_ncpus(void)
535 {
536     struct malloc_type *t;
537     struct kmalloc_use *use;
538     int n;
539
540     /*
541      * If only one cpu we can leave ks_use set to ks_use0
542      */
543     if (ncpus <= 1)
544         return;
545
546     /*
547      * Expand ks_use for all kmalloc blocks
548      */
549     for (t = kmemstatistics; t; t = t->ks_next) {
550         KKASSERT(t->ks_use == &t->ks_use0);
551         t->ks_use = kmalloc(sizeof(*use) * ncpus, M_TEMP, M_WAITOK|M_ZERO);
552         t->ks_use[0] = t->ks_use0;
553         if (t->ks_flags & KSF_OBJSIZE) {
554             malloc_mgt_relocate(&t->ks_use0.mgt, &t->ks_use[0].mgt);
555             for (n = 1; n < ncpus; ++n)
556                 malloc_mgt_init(t, &t->ks_use[n].mgt, t->ks_objsize);
557         }
558     }
559 }
560
561 /*
562  * Increase the kmalloc pool limit for the specified pool.  No changes
563  * are the made if the pool would shrink.
564  */
565 void
566 kmalloc_raise_limit(struct malloc_type *type, size_t bytes)
567 {
568     KKASSERT(type->ks_limit != 0);
569     if (bytes == 0)
570         bytes = KvaSize;
571     if (type->ks_limit < bytes)
572         type->ks_limit = bytes;
573 }
574
575 void
576 kmalloc_set_unlimited(struct malloc_type *type)
577 {
578     type->ks_limit = kmem_lim_size() * (1024 * 1024);
579 }
580
581 /*
582  * Dynamically create a malloc pool.  This function is a NOP if *typep is
583  * already non-NULL.
584  */
585 void
586 kmalloc_create(struct malloc_type **typep, const char *descr)
587 {
588         struct malloc_type *type;
589
590         if (*typep == NULL) {
591                 type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
592                 type->ks_magic = M_MAGIC;
593                 type->ks_shortdesc = descr;
594                 malloc_init(type);
595                 *typep = type;
596         }
597 }
598
599 void
600 _kmalloc_create_obj(struct malloc_type **typep, const char *descr,
601                     size_t objsize)
602 {
603         struct malloc_type *type;
604
605         if (*typep == NULL) {
606                 type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
607                 type->ks_magic = M_MAGIC;
608                 type->ks_shortdesc = descr;
609                 type->ks_flags = KSF_OBJSIZE;
610                 type->ks_objsize = __VM_CACHELINE_ALIGN(objsize);
611                 malloc_init(type);
612                 *typep = type;
613         }
614 }
615
616 /*
617  * Destroy a dynamically created malloc pool.  This function is a NOP if
618  * the pool has already been destroyed.
619  *
620  * WARNING! For kmalloc_obj's, the exis state for related slabs is ignored,
621  *          only call once all references are 100% known to be gone.
622  */
623 void
624 kmalloc_destroy(struct malloc_type **typep)
625 {
626         if (*typep != NULL) {
627                 malloc_uninit(*typep);
628                 kfree(*typep, M_TEMP);
629                 *typep = NULL;
630         }
631 }
632
633 /*
634  * Calculate the zone index for the allocation request size and set the
635  * allocation request size to that particular zone's chunk size.
636  */
637 static __inline int
638 zoneindex(unsigned long *bytes, unsigned long *align)
639 {
640     unsigned int n = (unsigned int)*bytes;      /* unsigned for shift opt */
641
642     if (n < 128) {
643         *bytes = n = (n + 7) & ~7;
644         *align = 8;
645         return(n / 8 - 1);              /* 8 byte chunks, 16 zones */
646     }
647     if (n < 256) {
648         *bytes = n = (n + 15) & ~15;
649         *align = 16;
650         return(n / 16 + 7);
651     }
652     if (n < 8192) {
653         if (n < 512) {
654             *bytes = n = (n + 31) & ~31;
655             *align = 32;
656             return(n / 32 + 15);
657         }
658         if (n < 1024) {
659             *bytes = n = (n + 63) & ~63;
660             *align = 64;
661             return(n / 64 + 23);
662         }
663         if (n < 2048) {
664             *bytes = n = (n + 127) & ~127;
665             *align = 128;
666             return(n / 128 + 31);
667         }
668         if (n < 4096) {
669             *bytes = n = (n + 255) & ~255;
670             *align = 256;
671             return(n / 256 + 39);
672         }
673         *bytes = n = (n + 511) & ~511;
674         *align = 512;
675         return(n / 512 + 47);
676     }
677 #if ZALLOC_ZONE_LIMIT > 8192
678     if (n < 16384) {
679         *bytes = n = (n + 1023) & ~1023;
680         *align = 1024;
681         return(n / 1024 + 55);
682     }
683 #endif
684 #if ZALLOC_ZONE_LIMIT > 16384
685     if (n < 32768) {
686         *bytes = n = (n + 2047) & ~2047;
687         *align = 2048;
688         return(n / 2048 + 63);
689     }
690 #endif
691     panic("Unexpected byte count %d", n);
692     return(0);
693 }
694
695 static __inline void
696 clean_zone_rchunks(SLZone *z)
697 {
698     SLChunk *bchunk;
699
700     while ((bchunk = z->z_RChunks) != NULL) {
701         cpu_ccfence();
702         if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
703             *z->z_LChunksp = bchunk;
704             while (bchunk) {
705                 chunk_mark_free(z, bchunk);
706                 z->z_LChunksp = &bchunk->c_Next;
707                 bchunk = bchunk->c_Next;
708                 ++z->z_NFree;
709             }
710             break;
711         }
712         /* retry */
713     }
714 }
715
716 /*
717  * If the zone becomes totally free and is not the only zone listed for a
718  * chunk size we move it to the FreeZones list.  We always leave at least
719  * one zone per chunk size listed, even if it is freeable.
720  *
721  * Do not move the zone if there is an IPI in_flight (z_RCount != 0),
722  * otherwise MP races can result in our free_remote code accessing a
723  * destroyed zone.  The remote end interlocks z_RCount with z_RChunks
724  * so one has to test both z_NFree and z_RCount.
725  *
726  * Since this code can be called from an IPI callback, do *NOT* try to mess
727  * with kernel_map here.  Hysteresis will be performed at kmalloc() time.
728  */
729 static __inline SLZone *
730 check_zone_free(SLGlobalData *slgd, SLZone *z)
731 {
732     SLZone *znext;
733
734     znext = TAILQ_NEXT(z, z_Entry);
735     if (z->z_NFree == z->z_NMax && z->z_RCount == 0 &&
736         (TAILQ_FIRST(&slgd->ZoneAry[z->z_ZoneIndex]) != z || znext)) {
737         int *kup;
738
739         TAILQ_REMOVE(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
740
741         z->z_Magic = -1;
742         TAILQ_INSERT_HEAD(&slgd->FreeZones, z, z_Entry);
743         ++slgd->NFreeZones;
744         kup = btokup(z);
745         *kup = 0;
746     }
747     return znext;
748 }
749
750 #ifdef SLAB_DEBUG
751 /*
752  * Used to debug memory corruption issues.  Record up to (typically 32)
753  * allocation sources for this zone (for a particular chunk size).
754  */
755
756 static void
757 slab_record_source(SLZone *z, const char *file, int line)
758 {
759     int i;
760     int b = line & (SLAB_DEBUG_ENTRIES - 1);
761
762     i = b;
763     do {
764         if (z->z_Sources[i].file == file && z->z_Sources[i].line == line)
765                 return;
766         if (z->z_Sources[i].file == NULL)
767                 break;
768         i = (i + 1) & (SLAB_DEBUG_ENTRIES - 1);
769     } while (i != b);
770     z->z_Sources[i].file = file;
771     z->z_Sources[i].line = line;
772 }
773
774 #endif
775
776 static __inline unsigned long
777 powerof2_size(unsigned long size)
778 {
779         int i;
780
781         if (size == 0 || powerof2(size))
782                 return size;
783
784         i = flsl(size);
785         return (1UL << i);
786 }
787
788 /*
789  * kmalloc()    (SLAB ALLOCATOR)
790  *
791  *      Allocate memory via the slab allocator.  If the request is too large,
792  *      or if it page-aligned beyond a certain size, we fall back to the
793  *      KMEM subsystem.  A SLAB tracking descriptor must be specified, use
794  *      &SlabMisc if you don't care.
795  *
796  *      M_RNOWAIT       - don't block.
797  *      M_NULLOK        - return NULL instead of blocking.
798  *      M_ZERO          - zero the returned memory.
799  *      M_USE_RESERVE   - allow greater drawdown of the free list
800  *      M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
801  *      M_POWEROF2      - roundup size to the nearest power of 2
802  *
803  * MPSAFE
804  */
805
806 /* don't let kmalloc macro mess up function declaration */
807 #undef kmalloc
808
809 #ifdef SLAB_DEBUG
810 void *
811 _kmalloc_debug(unsigned long size, struct malloc_type *type, int flags,
812               const char *file, int line)
813 #else
814 void *
815 _kmalloc(unsigned long size, struct malloc_type *type, int flags)
816 #endif
817 {
818     SLZone *z;
819     SLChunk *chunk;
820     SLGlobalData *slgd;
821     struct globaldata *gd;
822     unsigned long align;
823     int zi;
824 #ifdef INVARIANTS
825     int i;
826 #endif
827
828     logmemory_quick(malloc_beg);
829     gd = mycpu;
830     slgd = &gd->gd_slab;
831
832     /*
833      * XXX silly to have this in the critical path.
834      */
835     KKASSERT(type->ks_limit != 0);
836     ++type->ks_use[gd->gd_cpuid].calls;
837
838     /*
839      * Flagged for cache-alignment
840      */
841     if (flags & M_CACHEALIGN) {
842         if (size < __VM_CACHELINE_SIZE)
843                 size = __VM_CACHELINE_SIZE;
844         else if (!CAN_CACHEALIGN(size))
845                 flags |= M_POWEROF2;
846     }
847
848     /*
849      * Flagged to force nearest power-of-2 (higher or same)
850      */
851     if (flags & M_POWEROF2)
852         size = powerof2_size(size);
853
854     /*
855      * Handle the case where the limit is reached.  Panic if we can't return
856      * NULL.  The original malloc code looped, but this tended to
857      * simply deadlock the computer.
858      *
859      * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
860      * to determine if a more complete limit check should be done.  The
861      * actual memory use is tracked via ks_use[cpu].memuse.
862      */
863     while (type->ks_loosememuse >= type->ks_limit) {
864         int i;
865         long ttl;
866
867         for (i = ttl = 0; i < ncpus; ++i)
868             ttl += type->ks_use[i].memuse;
869         type->ks_loosememuse = ttl;     /* not MP synchronized */
870         if ((ssize_t)ttl < 0)           /* deal with occassional race */
871                 ttl = 0;
872         if (ttl >= type->ks_limit) {
873             if (flags & M_NULLOK) {
874                 logmemory(malloc_end, NULL, type, size, flags);
875                 return(NULL);
876             }
877             panic("%s: malloc limit exceeded", type->ks_shortdesc);
878         }
879     }
880
881     /*
882      * Handle the degenerate size == 0 case.  Yes, this does happen.
883      * Return a special pointer.  This is to maintain compatibility with
884      * the original malloc implementation.  Certain devices, such as the
885      * adaptec driver, not only allocate 0 bytes, they check for NULL and
886      * also realloc() later on.  Joy.
887      */
888     if (size == 0) {
889         logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags);
890         return(ZERO_LENGTH_PTR);
891     }
892
893     /*
894      * Handle hysteresis from prior frees here in malloc().  We cannot
895      * safely manipulate the kernel_map in free() due to free() possibly
896      * being called via an IPI message or from sensitive interrupt code.
897      *
898      * NOTE: ku_pagecnt must be cleared before we free the slab or we
899      *       might race another cpu allocating the kva and setting
900      *       ku_pagecnt.
901      */
902     while (slgd->NFreeZones > ZoneRelsThresh && (flags & M_RNOWAIT) == 0) {
903         crit_enter();
904         if (slgd->NFreeZones > ZoneRelsThresh) {        /* crit sect race */
905             int *kup;
906
907             z = TAILQ_LAST(&slgd->FreeZones, SLZoneList);
908             KKASSERT(z != NULL);
909             TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry);
910             --slgd->NFreeZones;
911             kup = btokup(z);
912             *kup = 0;
913             kmem_slab_free(z, ZoneSize);        /* may block */
914         }
915         crit_exit();
916     }
917
918     /*
919      * XXX handle oversized frees that were queued from kfree().
920      */
921     while (TAILQ_FIRST(&slgd->FreeOvZones) && (flags & M_RNOWAIT) == 0) {
922         crit_enter();
923         if ((z = TAILQ_LAST(&slgd->FreeOvZones, SLZoneList)) != NULL) {
924             vm_size_t tsize;
925
926             KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
927             TAILQ_REMOVE(&slgd->FreeOvZones, z, z_Entry);
928             tsize = z->z_ChunkSize;
929             kmem_slab_free(z, tsize);   /* may block */
930         }
931         crit_exit();
932     }
933
934     /*
935      * Handle large allocations directly.  There should not be very many of
936      * these so performance is not a big issue.
937      *
938      * The backend allocator is pretty nasty on a SMP system.   Use the
939      * slab allocator for one and two page-sized chunks even though we lose
940      * some efficiency.  XXX maybe fix mmio and the elf loader instead.
941      */
942     if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
943         int *kup;
944
945         size = round_page(size);
946         chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
947         if (chunk == NULL) {
948             logmemory(malloc_end, NULL, type, size, flags);
949             return(NULL);
950         }
951         flags &= ~M_ZERO;       /* result already zero'd if M_ZERO was set */
952         flags |= M_PASSIVE_ZERO;
953         kup = btokup(chunk);
954         *kup = size / PAGE_SIZE;
955         crit_enter();
956         goto done;
957     }
958
959     /*
960      * Attempt to allocate out of an existing zone.  First try the free list,
961      * then allocate out of unallocated space.  If we find a good zone move
962      * it to the head of the list so later allocations find it quickly
963      * (we might have thousands of zones in the list).
964      *
965      * Note: zoneindex() will panic of size is too large.
966      */
967     zi = zoneindex(&size, &align);
968     KKASSERT(zi < NZONES);
969     crit_enter();
970
971     if ((z = TAILQ_LAST(&slgd->ZoneAry[zi], SLZoneList)) != NULL) {
972         /*
973          * Locate a chunk - we have to have at least one.  If this is the
974          * last chunk go ahead and do the work to retrieve chunks freed
975          * from remote cpus, and if the zone is still empty move it off
976          * the ZoneAry.
977          */
978         if (--z->z_NFree <= 0) {
979             KKASSERT(z->z_NFree == 0);
980
981             /*
982              * WARNING! This code competes with other cpus.  It is ok
983              * for us to not drain RChunks here but we might as well, and
984              * it is ok if more accumulate after we're done.
985              *
986              * Set RSignal before pulling rchunks off, indicating that we
987              * will be moving ourselves off of the ZoneAry.  Remote ends will
988              * read RSignal before putting rchunks on thus interlocking
989              * their IPI signaling.
990              */
991             if (z->z_RChunks == NULL)
992                 atomic_swap_int(&z->z_RSignal, 1);
993
994             clean_zone_rchunks(z);
995
996             /*
997              * Remove from the zone list if no free chunks remain.
998              * Clear RSignal
999              */
1000             if (z->z_NFree == 0) {
1001                 TAILQ_REMOVE(&slgd->ZoneAry[zi], z, z_Entry);
1002             } else {
1003                 z->z_RSignal = 0;
1004             }
1005         }
1006
1007         /*
1008          * Fast path, we have chunks available in z_LChunks.
1009          */
1010         chunk = z->z_LChunks;
1011         if (chunk) {
1012                 chunk_mark_allocated(z, chunk);
1013                 z->z_LChunks = chunk->c_Next;
1014                 if (z->z_LChunks == NULL)
1015                         z->z_LChunksp = &z->z_LChunks;
1016 #ifdef SLAB_DEBUG
1017                 slab_record_source(z, file, line);
1018 #endif
1019                 goto done;
1020         }
1021
1022         /*
1023          * No chunks are available in LChunks, the free chunk MUST be
1024          * in the never-before-used memory area, controlled by UIndex.
1025          *
1026          * The consequences are very serious if our zone got corrupted so
1027          * we use an explicit panic rather than a KASSERT.
1028          */
1029         if (z->z_UIndex + 1 != z->z_NMax)
1030             ++z->z_UIndex;
1031         else
1032             z->z_UIndex = 0;
1033
1034         if (z->z_UIndex == z->z_UEndIndex)
1035             panic("slaballoc: corrupted zone");
1036
1037         chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
1038         if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
1039             flags &= ~M_ZERO;
1040             flags |= M_PASSIVE_ZERO;
1041         }
1042         chunk_mark_allocated(z, chunk);
1043 #ifdef SLAB_DEBUG
1044         slab_record_source(z, file, line);
1045 #endif
1046         goto done;
1047     }
1048
1049     /*
1050      * If all zones are exhausted we need to allocate a new zone for this
1051      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
1052      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
1053      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
1054      * we do not pre-zero it because we do not want to mess up the L1 cache.
1055      *
1056      * At least one subsystem, the tty code (see CROUND) expects power-of-2
1057      * allocations to be power-of-2 aligned.  We maintain compatibility by
1058      * adjusting the base offset below.
1059      */
1060     {
1061         int off;
1062         int *kup;
1063
1064         if ((z = TAILQ_FIRST(&slgd->FreeZones)) != NULL) {
1065             TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry);
1066             --slgd->NFreeZones;
1067             bzero(z, sizeof(SLZone));
1068             z->z_Flags |= SLZF_UNOTZEROD;
1069         } else {
1070             z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
1071             if (z == NULL)
1072                 goto fail;
1073         }
1074
1075         /*
1076          * How big is the base structure?
1077          */
1078 #if defined(INVARIANTS)
1079         /*
1080          * Make room for z_Bitmap.  An exact calculation is somewhat more
1081          * complicated so don't make an exact calculation.
1082          */
1083         off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
1084         bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
1085 #else
1086         off = sizeof(SLZone);
1087 #endif
1088
1089         /*
1090          * Guarentee power-of-2 alignment for power-of-2-sized chunks.
1091          * Otherwise properly align the data according to the chunk size.
1092          */
1093         if (powerof2(size))
1094             align = size;
1095         off = roundup2(off, align);
1096
1097         z->z_Magic = ZALLOC_SLAB_MAGIC;
1098         z->z_ZoneIndex = zi;
1099         z->z_NMax = (ZoneSize - off) / size;
1100         z->z_NFree = z->z_NMax - 1;
1101         z->z_BasePtr = (char *)z + off;
1102         z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
1103         z->z_ChunkSize = size;
1104         z->z_CpuGd = gd;
1105         z->z_Cpu = gd->gd_cpuid;
1106         z->z_LChunksp = &z->z_LChunks;
1107 #ifdef SLAB_DEBUG
1108         bcopy(z->z_Sources, z->z_AltSources, sizeof(z->z_Sources));
1109         bzero(z->z_Sources, sizeof(z->z_Sources));
1110 #endif
1111         chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
1112         TAILQ_INSERT_HEAD(&slgd->ZoneAry[zi], z, z_Entry);
1113         if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
1114             flags &= ~M_ZERO;   /* already zero'd */
1115             flags |= M_PASSIVE_ZERO;
1116         }
1117         kup = btokup(z);
1118         *kup = -(z->z_Cpu + 1); /* -1 to -(N+1) */
1119         chunk_mark_allocated(z, chunk);
1120 #ifdef SLAB_DEBUG
1121         slab_record_source(z, file, line);
1122 #endif
1123
1124         /*
1125          * Slide the base index for initial allocations out of the next
1126          * zone we create so we do not over-weight the lower part of the
1127          * cpu memory caches.
1128          */
1129         slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
1130                                 & (ZALLOC_MAX_ZONE_SIZE - 1);
1131     }
1132
1133 done:
1134     ++type->ks_use[gd->gd_cpuid].inuse;
1135     type->ks_use[gd->gd_cpuid].memuse += size;
1136     type->ks_use[gd->gd_cpuid].loosememuse += size;
1137     if (type->ks_use[gd->gd_cpuid].loosememuse >= ZoneSize) {
1138         /* not MP synchronized */
1139         type->ks_loosememuse += type->ks_use[gd->gd_cpuid].loosememuse;
1140         type->ks_use[gd->gd_cpuid].loosememuse = 0;
1141     }
1142     crit_exit();
1143
1144     if (flags & M_ZERO)
1145         bzero(chunk, size);
1146 #ifdef INVARIANTS
1147     else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
1148         if (use_malloc_pattern) {
1149             for (i = 0; i < size; i += sizeof(int)) {
1150                 *(int *)((char *)chunk + i) = -1;
1151             }
1152         }
1153         chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
1154     }
1155 #endif
1156     logmemory(malloc_end, chunk, type, size, flags);
1157     return(chunk);
1158 fail:
1159     crit_exit();
1160     logmemory(malloc_end, NULL, type, size, flags);
1161     return(NULL);
1162 }
1163
1164 /*
1165  * kernel realloc.  (SLAB ALLOCATOR) (MP SAFE)
1166  *
1167  * Generally speaking this routine is not called very often and we do
1168  * not attempt to optimize it beyond reusing the same pointer if the
1169  * new size fits within the chunking of the old pointer's zone.
1170  */
1171 #ifdef SLAB_DEBUG
1172 void *
1173 krealloc_debug(void *ptr, unsigned long size,
1174                struct malloc_type *type, int flags,
1175                const char *file, int line)
1176 #else
1177 void *
1178 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
1179 #endif
1180 {
1181     unsigned long osize;
1182     unsigned long align;
1183     SLZone *z;
1184     void *nptr;
1185     int *kup;
1186
1187     KKASSERT((flags & M_ZERO) == 0);    /* not supported */
1188
1189     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
1190         return(_kmalloc_debug(size, type, flags, file, line));
1191     if (size == 0) {
1192         kfree(ptr, type);
1193         return(NULL);
1194     }
1195
1196     /*
1197      * Handle oversized allocations.  XXX we really should require that a
1198      * size be passed to free() instead of this nonsense.
1199      */
1200     kup = btokup(ptr);
1201     if (*kup > 0) {
1202         osize = *kup << PAGE_SHIFT;
1203         if (osize == round_page(size))
1204             return(ptr);
1205         if ((nptr = _kmalloc_debug(size, type, flags, file, line)) == NULL)
1206             return(NULL);
1207         bcopy(ptr, nptr, min(size, osize));
1208         kfree(ptr, type);
1209         return(nptr);
1210     }
1211
1212     /*
1213      * Get the original allocation's zone.  If the new request winds up
1214      * using the same chunk size we do not have to do anything.
1215      */
1216     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1217     kup = btokup(z);
1218     KKASSERT(*kup < 0);
1219     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1220
1221     /*
1222      * Allocate memory for the new request size.  Note that zoneindex has
1223      * already adjusted the request size to the appropriate chunk size, which
1224      * should optimize our bcopy().  Then copy and return the new pointer.
1225      *
1226      * Resizing a non-power-of-2 allocation to a power-of-2 size does not
1227      * necessary align the result.
1228      *
1229      * We can only zoneindex (to align size to the chunk size) if the new
1230      * size is not too large.
1231      */
1232     if (size < ZoneLimit) {
1233         zoneindex(&size, &align);
1234         if (z->z_ChunkSize == size)
1235             return(ptr);
1236     }
1237     if ((nptr = _kmalloc_debug(size, type, flags, file, line)) == NULL)
1238         return(NULL);
1239     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
1240     kfree(ptr, type);
1241     return(nptr);
1242 }
1243
1244 size_t
1245 kmalloc_usable_size(const void *ptr)
1246 {
1247     unsigned long size;
1248     SLZone *z;
1249     int *kup;
1250
1251     if (ptr == NULL)
1252         return 0;
1253     if (ptr == ZERO_LENGTH_PTR)
1254         return 0;
1255
1256     /*
1257      * Check to see if the pointer blongs to an oversized segment
1258      */
1259     kup = btokup(ptr);
1260     if (*kup > 0) {
1261         size = *kup << PAGE_SHIFT;
1262         return size;
1263     }
1264
1265     /*
1266      * Zone case.  Figure out the zone based on the fact that it is
1267      * ZoneSize aligned.
1268      */
1269     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1270     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1271
1272     return (z->z_ChunkSize);
1273 }
1274
1275 /*
1276  * Return the kmalloc limit for this type, in bytes.
1277  */
1278 long
1279 kmalloc_limit(struct malloc_type *type)
1280 {
1281     KKASSERT(type->ks_limit != 0);
1282     return(type->ks_limit);
1283 }
1284
1285 /*
1286  * Allocate a copy of the specified string.
1287  *
1288  * (MP SAFE) (MAY BLOCK)
1289  */
1290 #ifdef SLAB_DEBUG
1291 char *
1292 kstrdup_debug(const char *str, struct malloc_type *type,
1293               const char *file, int line)
1294 #else
1295 char *
1296 kstrdup(const char *str, struct malloc_type *type)
1297 #endif
1298 {
1299     int zlen;   /* length inclusive of terminating NUL */
1300     char *nstr;
1301
1302     if (str == NULL)
1303         return(NULL);
1304     zlen = strlen(str) + 1;
1305     nstr = _kmalloc_debug(zlen, type, M_WAITOK, file, line);
1306     bcopy(str, nstr, zlen);
1307     return(nstr);
1308 }
1309
1310 #ifdef SLAB_DEBUG
1311 char *
1312 kstrndup_debug(const char *str, size_t maxlen, struct malloc_type *type,
1313               const char *file, int line)
1314 #else
1315 char *
1316 kstrndup(const char *str, size_t maxlen, struct malloc_type *type)
1317 #endif
1318 {
1319     int zlen;   /* length inclusive of terminating NUL */
1320     char *nstr;
1321
1322     if (str == NULL)
1323         return(NULL);
1324     zlen = strnlen(str, maxlen) + 1;
1325     nstr = _kmalloc_debug(zlen, type, M_WAITOK, file, line);
1326     bcopy(str, nstr, zlen);
1327     nstr[zlen - 1] = '\0';
1328     return(nstr);
1329 }
1330
1331 /*
1332  * Notify our cpu that a remote cpu has freed some chunks in a zone that
1333  * we own.  RCount will be bumped so the memory should be good, but validate
1334  * that it really is.
1335  */
1336 static void
1337 kfree_remote(void *ptr)
1338 {
1339     SLGlobalData *slgd;
1340     SLZone *z;
1341     int nfree;
1342     int *kup;
1343
1344     slgd = &mycpu->gd_slab;
1345     z = ptr;
1346     kup = btokup(z);
1347     KKASSERT(*kup == -((int)mycpuid + 1));
1348     KKASSERT(z->z_RCount > 0);
1349     atomic_subtract_int(&z->z_RCount, 1);
1350
1351     logmemory(free_rem_beg, z, NULL, 0L, 0);
1352     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1353     KKASSERT(z->z_Cpu  == mycpu->gd_cpuid);
1354     nfree = z->z_NFree;
1355
1356     /*
1357      * Indicate that we will no longer be off of the ZoneAry by
1358      * clearing RSignal.
1359      */
1360     if (z->z_RChunks)
1361         z->z_RSignal = 0;
1362
1363     /*
1364      * Atomically extract the bchunks list and then process it back
1365      * into the lchunks list.  We want to append our bchunks to the
1366      * lchunks list and not prepend since we likely do not have
1367      * cache mastership of the related data (not that it helps since
1368      * we are using c_Next).
1369      */
1370     clean_zone_rchunks(z);
1371     if (z->z_NFree && nfree == 0) {
1372         TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1373     }
1374
1375     check_zone_free(slgd, z);
1376     logmemory(free_rem_end, z, NULL, 0L, 0);
1377 }
1378
1379 /*
1380  * free (SLAB ALLOCATOR)
1381  *
1382  * Free a memory block previously allocated by malloc.
1383  *
1384  * Note: We do not attempt to update ks_loosememuse as MP races could
1385  * prevent us from checking memory limits in malloc.   YYY we may
1386  * consider updating ks_cpu.loosememuse.
1387  *
1388  * MPSAFE
1389  */
1390 void
1391 _kfree(void *ptr, struct malloc_type *type)
1392 {
1393     SLZone *z;
1394     SLChunk *chunk;
1395     SLGlobalData *slgd;
1396     struct globaldata *gd;
1397     int *kup;
1398     unsigned long size;
1399     SLChunk *bchunk;
1400     int rsignal;
1401
1402     logmemory_quick(free_beg);
1403     gd = mycpu;
1404     slgd = &gd->gd_slab;
1405
1406     if (ptr == NULL)
1407         panic("trying to free NULL pointer");
1408
1409     /*
1410      * Handle special 0-byte allocations
1411      */
1412     if (ptr == ZERO_LENGTH_PTR) {
1413         logmemory(free_zero, ptr, type, -1UL, 0);
1414         logmemory_quick(free_end);
1415         return;
1416     }
1417
1418     /*
1419      * Panic on bad malloc type
1420      */
1421     if (type->ks_magic != M_MAGIC)
1422         panic("free: malloc type lacks magic");
1423
1424     /*
1425      * Handle oversized allocations.  XXX we really should require that a
1426      * size be passed to free() instead of this nonsense.
1427      *
1428      * This code is never called via an ipi.
1429      */
1430     kup = btokup(ptr);
1431     if (*kup > 0) {
1432         size = *kup << PAGE_SHIFT;
1433         *kup = 0;
1434 #ifdef INVARIANTS
1435         if (use_weird_array) {
1436                 KKASSERT(sizeof(weirdary) <= size);
1437                 bcopy(weirdary, ptr, sizeof(weirdary));
1438         }
1439 #endif
1440         /*
1441          * NOTE: For oversized allocations we do not record the
1442          *           originating cpu.  It gets freed on the cpu calling
1443          *           kfree().  The statistics are in aggregate.
1444          *
1445          * note: XXX we have still inherited the interrupts-can't-block
1446          * assumption.  An interrupt thread does not bump
1447          * gd_intr_nesting_level so check TDF_INTTHREAD.  This is
1448          * primarily until we can fix softupdate's assumptions about free().
1449          */
1450         crit_enter();
1451         --type->ks_use[gd->gd_cpuid].inuse;
1452         type->ks_use[gd->gd_cpuid].memuse -= size;
1453         if (mycpu->gd_intr_nesting_level ||
1454             (gd->gd_curthread->td_flags & TDF_INTTHREAD)) {
1455             logmemory(free_ovsz_delayed, ptr, type, size, 0);
1456             z = (SLZone *)ptr;
1457             z->z_Magic = ZALLOC_OVSZ_MAGIC;
1458             z->z_ChunkSize = size;
1459
1460             TAILQ_INSERT_HEAD(&slgd->FreeOvZones, z, z_Entry);
1461             crit_exit();
1462         } else {
1463             crit_exit();
1464             logmemory(free_ovsz, ptr, type, size, 0);
1465             kmem_slab_free(ptr, size);  /* may block */
1466         }
1467         logmemory_quick(free_end);
1468         return;
1469     }
1470
1471     /*
1472      * Zone case.  Figure out the zone based on the fact that it is
1473      * ZoneSize aligned.
1474      */
1475     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1476     kup = btokup(z);
1477     KKASSERT(*kup < 0);
1478     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1479
1480     /*
1481      * If we do not own the zone then use atomic ops to free to the
1482      * remote cpu linked list and notify the target zone using a
1483      * passive message.
1484      *
1485      * The target zone cannot be deallocated while we own a chunk of it,
1486      * so the zone header's storage is stable until the very moment
1487      * we adjust z_RChunks.  After that we cannot safely dereference (z).
1488      *
1489      * (no critical section needed)
1490      */
1491     if (z->z_CpuGd != gd) {
1492         /*
1493          * Making these adjustments now allow us to avoid passing (type)
1494          * to the remote cpu.  Note that inuse/memuse is being
1495          * adjusted on OUR cpu, not the zone cpu, but it should all still
1496          * sum up properly and cancel out.
1497          */
1498         crit_enter();
1499         --type->ks_use[gd->gd_cpuid].inuse;
1500         type->ks_use[gd->gd_cpuid].memuse -= z->z_ChunkSize;
1501         crit_exit();
1502
1503         /*
1504          * WARNING! This code competes with other cpus.  Once we
1505          *          successfully link the chunk to RChunks the remote
1506          *          cpu can rip z's storage out from under us.
1507          *
1508          *          Bumping RCount prevents z's storage from getting
1509          *          ripped out.
1510          */
1511         rsignal = z->z_RSignal;
1512         cpu_lfence();
1513         if (rsignal)
1514                 atomic_add_int(&z->z_RCount, 1);
1515
1516         chunk = ptr;
1517         for (;;) {
1518             bchunk = z->z_RChunks;
1519             cpu_ccfence();
1520             chunk->c_Next = bchunk;
1521             cpu_sfence();
1522
1523             if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk))
1524                 break;
1525         }
1526
1527         /*
1528          * We have to signal the remote cpu if our actions will cause
1529          * the remote zone to be placed back on ZoneAry so it can
1530          * move the zone back on.
1531          *
1532          * We only need to deal with NULL->non-NULL RChunk transitions
1533          * and only if z_RSignal is set.  We interlock by reading rsignal
1534          * before adding our chunk to RChunks.  This should result in
1535          * virtually no IPI traffic.
1536          *
1537          * We can use a passive IPI to reduce overhead even further.
1538          */
1539         if (bchunk == NULL && rsignal) {
1540             logmemory(free_request, ptr, type,
1541                       (unsigned long)z->z_ChunkSize, 0);
1542             lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z);
1543             /* z can get ripped out from under us from this point on */
1544         } else if (rsignal) {
1545             atomic_subtract_int(&z->z_RCount, 1);
1546             /* z can get ripped out from under us from this point on */
1547         }
1548         logmemory_quick(free_end);
1549         return;
1550     }
1551
1552     /*
1553      * kfree locally
1554      */
1555     logmemory(free_chunk, ptr, type, (unsigned long)z->z_ChunkSize, 0);
1556
1557     crit_enter();
1558     chunk = ptr;
1559     chunk_mark_free(z, chunk);
1560
1561     /*
1562      * Put weird data into the memory to detect modifications after freeing,
1563      * illegal pointer use after freeing (we should fault on the odd address),
1564      * and so forth.  XXX needs more work, see the old malloc code.
1565      */
1566 #ifdef INVARIANTS
1567     if (use_weird_array) {
1568             if (z->z_ChunkSize < sizeof(weirdary))
1569                 bcopy(weirdary, chunk, z->z_ChunkSize);
1570             else
1571                 bcopy(weirdary, chunk, sizeof(weirdary));
1572     }
1573 #endif
1574
1575     /*
1576      * Add this free non-zero'd chunk to a linked list for reuse.  Add
1577      * to the front of the linked list so it is more likely to be
1578      * reallocated, since it is already in our L1 cache.
1579      */
1580 #ifdef INVARIANTS
1581     if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
1582         panic("BADFREE %p", chunk);
1583 #endif
1584     chunk->c_Next = z->z_LChunks;
1585     z->z_LChunks = chunk;
1586     if (chunk->c_Next == NULL)
1587         z->z_LChunksp = &chunk->c_Next;
1588
1589 #ifdef INVARIANTS
1590     if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
1591         panic("BADFREE2");
1592 #endif
1593
1594     /*
1595      * Bump the number of free chunks.  If it becomes non-zero the zone
1596      * must be added back onto the appropriate list.  A fully allocated
1597      * zone that sees its first free is considered 'mature' and is placed
1598      * at the head, giving the system time to potentially free the remaining
1599      * entries even while other allocations are going on and making the zone
1600      * freeable.
1601      */
1602     if (z->z_NFree++ == 0)
1603             TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1604
1605     --type->ks_use[gd->gd_cpuid].inuse;
1606     type->ks_use[gd->gd_cpuid].memuse -= z->z_ChunkSize;
1607
1608     check_zone_free(slgd, z);
1609     logmemory_quick(free_end);
1610     crit_exit();
1611 }
1612
1613 /*
1614  * Cleanup slabs which are hanging around due to RChunks or which are wholely
1615  * free and can be moved to the free list if not moved by other means.
1616  *
1617  * Called once every 10 seconds on all cpus.
1618  */
1619 void
1620 slab_cleanup(void)
1621 {
1622     SLGlobalData *slgd = &mycpu->gd_slab;
1623     SLZone *z;
1624     int i;
1625
1626     crit_enter();
1627     for (i = 0; i < NZONES; ++i) {
1628         if ((z = TAILQ_FIRST(&slgd->ZoneAry[i])) == NULL)
1629                 continue;
1630
1631         /*
1632          * Scan zones.
1633          */
1634         while (z) {
1635             /*
1636              * Shift all RChunks to the end of the LChunks list.  This is
1637              * an O(1) operation.
1638              *
1639              * Then free the zone if possible.
1640              */
1641             clean_zone_rchunks(z);
1642             z = check_zone_free(slgd, z);
1643         }
1644     }
1645     crit_exit();
1646 }
1647
1648 #if defined(INVARIANTS)
1649
1650 /*
1651  * Helper routines for sanity checks
1652  */
1653 static void
1654 chunk_mark_allocated(SLZone *z, void *chunk)
1655 {
1656     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1657     uint32_t *bitptr;
1658
1659     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1660     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1661             ("memory chunk %p bit index %d is illegal", chunk, bitdex));
1662     bitptr = &z->z_Bitmap[bitdex >> 5];
1663     bitdex &= 31;
1664     KASSERT((*bitptr & (1 << bitdex)) == 0,
1665             ("memory chunk %p is already allocated!", chunk));
1666     *bitptr |= 1 << bitdex;
1667 }
1668
1669 static void
1670 chunk_mark_free(SLZone *z, void *chunk)
1671 {
1672     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1673     uint32_t *bitptr;
1674
1675     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1676     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1677             ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
1678     bitptr = &z->z_Bitmap[bitdex >> 5];
1679     bitdex &= 31;
1680     KASSERT((*bitptr & (1 << bitdex)) != 0,
1681             ("memory chunk %p is already free!", chunk));
1682     *bitptr &= ~(1 << bitdex);
1683 }
1684
1685 #endif
1686
1687 /*
1688  * kmem_slab_alloc()
1689  *
1690  *      Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1691  *      specified alignment.  M_* flags are expected in the flags field.
1692  *
1693  *      Alignment must be a multiple of PAGE_SIZE.
1694  *
1695  *      NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1696  *      but when we move zalloc() over to use this function as its backend
1697  *      we will have to switch to kreserve/krelease and call reserve(0)
1698  *      after the new space is made available.
1699  *
1700  *      Interrupt code which has preempted other code is not allowed to
1701  *      use PQ_CACHE pages.  However, if an interrupt thread is run
1702  *      non-preemptively or blocks and then runs non-preemptively, then
1703  *      it is free to use PQ_CACHE pages.  <--- may not apply any longer XXX
1704  */
1705 void *
1706 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1707 {
1708     vm_size_t i;
1709     vm_offset_t addr;
1710     int count, vmflags, base_vmflags;
1711     vm_page_t mbase = NULL;
1712     vm_page_t m;
1713     thread_t td;
1714
1715     size = round_page(size);
1716     addr = vm_map_min(kernel_map);
1717
1718     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1719     crit_enter();
1720     vm_map_lock(kernel_map);
1721     if (vm_map_findspace(kernel_map, addr, size, align, 0, &addr)) {
1722         vm_map_unlock(kernel_map);
1723         if ((flags & M_NULLOK) == 0)
1724             panic("kmem_slab_alloc(): kernel_map ran out of space!");
1725         vm_map_entry_release(count);
1726         crit_exit();
1727         return(NULL);
1728     }
1729
1730     /*
1731      * kernel_object maps 1:1 to kernel_map.
1732      */
1733     vm_object_hold(kernel_object);
1734     vm_object_reference_locked(kernel_object);
1735     vm_map_insert(kernel_map, &count,
1736                   kernel_object, NULL,
1737                   addr, NULL,
1738                   addr, addr + size,
1739                   VM_MAPTYPE_NORMAL,
1740                   VM_SUBSYS_KMALLOC,
1741                   VM_PROT_ALL, VM_PROT_ALL, 0);
1742     vm_object_drop(kernel_object);
1743     vm_map_set_wired_quick(kernel_map, addr, size, &count);
1744     vm_map_unlock(kernel_map);
1745
1746     td = curthread;
1747
1748     base_vmflags = 0;
1749     if (flags & M_ZERO)
1750         base_vmflags |= VM_ALLOC_ZERO;
1751     if (flags & M_USE_RESERVE)
1752         base_vmflags |= VM_ALLOC_SYSTEM;
1753     if (flags & M_USE_INTERRUPT_RESERVE)
1754         base_vmflags |= VM_ALLOC_INTERRUPT;
1755     if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) {
1756         panic("kmem_slab_alloc: bad flags %08x (%p)",
1757               flags, ((int **)&size)[-1]);
1758     }
1759
1760     /*
1761      * Allocate the pages.  Do not map them yet.  VM_ALLOC_NORMAL can only
1762      * be set if we are not preempting.
1763      *
1764      * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1765      * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1766      * implied in this case), though I'm not sure if we really need to
1767      * do that.
1768      */
1769     vmflags = base_vmflags;
1770     if (flags & M_WAITOK) {
1771         if (td->td_preempted)
1772             vmflags |= VM_ALLOC_SYSTEM;
1773         else
1774             vmflags |= VM_ALLOC_NORMAL;
1775     }
1776
1777     vm_object_hold(kernel_object);
1778     for (i = 0; i < size; i += PAGE_SIZE) {
1779         m = vm_page_alloc(kernel_object, OFF_TO_IDX(addr + i), vmflags);
1780         if (i == 0)
1781                 mbase = m;
1782
1783         /*
1784          * If the allocation failed we either return NULL or we retry.
1785          *
1786          * If M_WAITOK is specified we wait for more memory and retry.
1787          * If M_WAITOK is specified from a preemption we yield instead of
1788          * wait.  Livelock will not occur because the interrupt thread
1789          * will not be preempting anyone the second time around after the
1790          * yield.
1791          */
1792         if (m == NULL) {
1793             if (flags & M_WAITOK) {
1794                 if (td->td_preempted) {
1795                     lwkt_switch();
1796                 } else {
1797                     vm_wait(0);
1798                 }
1799                 i -= PAGE_SIZE; /* retry */
1800                 continue;
1801             }
1802             break;
1803         }
1804     }
1805
1806     /*
1807      * Check and deal with an allocation failure
1808      */
1809     if (i != size) {
1810         while (i != 0) {
1811             i -= PAGE_SIZE;
1812             m = vm_page_lookup(kernel_object, OFF_TO_IDX(addr + i));
1813             /* page should already be busy */
1814             vm_page_free(m);
1815         }
1816         vm_map_lock(kernel_map);
1817         vm_map_delete(kernel_map, addr, addr + size, &count);
1818         vm_map_unlock(kernel_map);
1819         vm_object_drop(kernel_object);
1820
1821         vm_map_entry_release(count);
1822         crit_exit();
1823         return(NULL);
1824     }
1825
1826     /*
1827      * Success!
1828      *
1829      * NOTE: The VM pages are still busied.  mbase points to the first one
1830      *       but we have to iterate via vm_page_next()
1831      */
1832     vm_object_drop(kernel_object);
1833     crit_exit();
1834
1835     /*
1836      * Enter the pages into the pmap and deal with M_ZERO.
1837      */
1838     m = mbase;
1839     i = 0;
1840
1841     while (i < size) {
1842         /*
1843          * page should already be busy
1844          */
1845         m->valid = VM_PAGE_BITS_ALL;
1846         vm_page_wire(m);
1847         pmap_enter(kernel_pmap, addr + i, m,
1848                    VM_PROT_ALL | VM_PROT_NOSYNC, 1, NULL);
1849         if (flags & M_ZERO)
1850                 pagezero((char *)addr + i);
1851         KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED));
1852         vm_page_flag_set(m, PG_REFERENCED);
1853         vm_page_wakeup(m);
1854
1855         i += PAGE_SIZE;
1856         vm_object_hold(kernel_object);
1857         m = vm_page_next(m);
1858         vm_object_drop(kernel_object);
1859     }
1860     smp_invltlb();
1861     vm_map_entry_release(count);
1862     return((void *)addr);
1863 }
1864
1865 /*
1866  * kmem_slab_free()
1867  */
1868 void
1869 kmem_slab_free(void *ptr, vm_size_t size)
1870 {
1871     crit_enter();
1872     vm_map_remove(kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1873     crit_exit();
1874 }