Merge branch 'vendor/TNFTP'
[dragonfly.git] / sys / dev / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include "i915_drv.h"
29 #include "intel_drv.h"
30 #include <linux/module.h>
31 #include <machine/clock.h>
32 #include <drm/i915_powerwell.h>
33
34 /**
35  * RC6 is a special power stage which allows the GPU to enter an very
36  * low-voltage mode when idle, using down to 0V while at this stage.  This
37  * stage is entered automatically when the GPU is idle when RC6 support is
38  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
39  *
40  * There are different RC6 modes available in Intel GPU, which differentiate
41  * among each other with the latency required to enter and leave RC6 and
42  * voltage consumed by the GPU in different states.
43  *
44  * The combination of the following flags define which states GPU is allowed
45  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
46  * RC6pp is deepest RC6. Their support by hardware varies according to the
47  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
48  * which brings the most power savings; deeper states save more power, but
49  * require higher latency to switch to and wake up.
50  */
51 #define INTEL_RC6_ENABLE                        (1<<0)
52 #define INTEL_RC6p_ENABLE                       (1<<1)
53 #define INTEL_RC6pp_ENABLE                      (1<<2)
54
55 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
56  * framebuffer contents in-memory, aiming at reducing the required bandwidth
57  * during in-memory transfers and, therefore, reduce the power packet.
58  *
59  * The benefits of FBC are mostly visible with solid backgrounds and
60  * variation-less patterns.
61  *
62  * FBC-related functionality can be enabled by the means of the
63  * i915.i915_enable_fbc parameter
64  */
65
66 static void i8xx_disable_fbc(struct drm_device *dev)
67 {
68         struct drm_i915_private *dev_priv = dev->dev_private;
69         u32 fbc_ctl;
70
71         /* Disable compression */
72         fbc_ctl = I915_READ(FBC_CONTROL);
73         if ((fbc_ctl & FBC_CTL_EN) == 0)
74                 return;
75
76         fbc_ctl &= ~FBC_CTL_EN;
77         I915_WRITE(FBC_CONTROL, fbc_ctl);
78
79         /* Wait for compressing bit to clear */
80         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
81                 DRM_DEBUG_KMS("FBC idle timed out\n");
82                 return;
83         }
84
85         DRM_DEBUG_KMS("disabled FBC\n");
86 }
87
88 static void i8xx_enable_fbc(struct drm_crtc *crtc)
89 {
90         struct drm_device *dev = crtc->dev;
91         struct drm_i915_private *dev_priv = dev->dev_private;
92         struct drm_framebuffer *fb = crtc->primary->fb;
93         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
94         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
95         int cfb_pitch;
96         int i;
97         u32 fbc_ctl;
98
99         cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
100         if (fb->pitches[0] < cfb_pitch)
101                 cfb_pitch = fb->pitches[0];
102
103         /* FBC_CTL wants 32B or 64B units */
104         if (IS_GEN2(dev))
105                 cfb_pitch = (cfb_pitch / 32) - 1;
106         else
107                 cfb_pitch = (cfb_pitch / 64) - 1;
108
109         /* Clear old tags */
110         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
111                 I915_WRITE(FBC_TAG + (i * 4), 0);
112
113         if (IS_GEN4(dev)) {
114                 u32 fbc_ctl2;
115
116                 /* Set it up... */
117                 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
118                 fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
119                 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
120                 I915_WRITE(FBC_FENCE_OFF, crtc->y);
121         }
122
123         /* enable it... */
124         fbc_ctl = I915_READ(FBC_CONTROL);
125         fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
126         fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
127         if (IS_I945GM(dev))
128                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
129         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
130         fbc_ctl |= obj->fence_reg;
131         I915_WRITE(FBC_CONTROL, fbc_ctl);
132
133         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
134                       cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
135 }
136
137 static bool i8xx_fbc_enabled(struct drm_device *dev)
138 {
139         struct drm_i915_private *dev_priv = dev->dev_private;
140
141         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
142 }
143
144 static void g4x_enable_fbc(struct drm_crtc *crtc)
145 {
146         struct drm_device *dev = crtc->dev;
147         struct drm_i915_private *dev_priv = dev->dev_private;
148         struct drm_framebuffer *fb = crtc->primary->fb;
149         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
150         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
151         u32 dpfc_ctl;
152
153         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
154         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
155                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
156         else
157                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
158         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
159
160         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
161
162         /* enable it... */
163         I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
164
165         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
166 }
167
168 static void g4x_disable_fbc(struct drm_device *dev)
169 {
170         struct drm_i915_private *dev_priv = dev->dev_private;
171         u32 dpfc_ctl;
172
173         /* Disable compression */
174         dpfc_ctl = I915_READ(DPFC_CONTROL);
175         if (dpfc_ctl & DPFC_CTL_EN) {
176                 dpfc_ctl &= ~DPFC_CTL_EN;
177                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
178
179                 DRM_DEBUG_KMS("disabled FBC\n");
180         }
181 }
182
183 static bool g4x_fbc_enabled(struct drm_device *dev)
184 {
185         struct drm_i915_private *dev_priv = dev->dev_private;
186
187         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
188 }
189
190 static void sandybridge_blit_fbc_update(struct drm_device *dev)
191 {
192         struct drm_i915_private *dev_priv = dev->dev_private;
193         u32 blt_ecoskpd;
194
195         /* Make sure blitter notifies FBC of writes */
196
197         /* Blitter is part of Media powerwell on VLV. No impact of
198          * his param in other platforms for now */
199         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
200
201         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
202         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
203                 GEN6_BLITTER_LOCK_SHIFT;
204         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
205         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
206         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
207         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
208                          GEN6_BLITTER_LOCK_SHIFT);
209         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
210         POSTING_READ(GEN6_BLITTER_ECOSKPD);
211
212         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
213 }
214
215 static void ironlake_enable_fbc(struct drm_crtc *crtc)
216 {
217         struct drm_device *dev = crtc->dev;
218         struct drm_i915_private *dev_priv = dev->dev_private;
219         struct drm_framebuffer *fb = crtc->primary->fb;
220         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
221         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
222         u32 dpfc_ctl;
223
224         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
225         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
226                 dev_priv->fbc.threshold++;
227
228         switch (dev_priv->fbc.threshold) {
229         case 4:
230         case 3:
231                 dpfc_ctl |= DPFC_CTL_LIMIT_4X;
232                 break;
233         case 2:
234                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
235                 break;
236         case 1:
237                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
238                 break;
239         }
240         dpfc_ctl |= DPFC_CTL_FENCE_EN;
241         if (IS_GEN5(dev))
242                 dpfc_ctl |= obj->fence_reg;
243
244         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
245         I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
246         /* enable it... */
247         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
248
249         if (IS_GEN6(dev)) {
250                 I915_WRITE(SNB_DPFC_CTL_SA,
251                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
252                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
253                 sandybridge_blit_fbc_update(dev);
254         }
255
256         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
257 }
258
259 static void ironlake_disable_fbc(struct drm_device *dev)
260 {
261         struct drm_i915_private *dev_priv = dev->dev_private;
262         u32 dpfc_ctl;
263
264         /* Disable compression */
265         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
266         if (dpfc_ctl & DPFC_CTL_EN) {
267                 dpfc_ctl &= ~DPFC_CTL_EN;
268                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
269
270                 DRM_DEBUG_KMS("disabled FBC\n");
271         }
272 }
273
274 static bool ironlake_fbc_enabled(struct drm_device *dev)
275 {
276         struct drm_i915_private *dev_priv = dev->dev_private;
277
278         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
279 }
280
281 static void gen7_enable_fbc(struct drm_crtc *crtc)
282 {
283         struct drm_device *dev = crtc->dev;
284         struct drm_i915_private *dev_priv = dev->dev_private;
285         struct drm_framebuffer *fb = crtc->primary->fb;
286         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
287         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
288         u32 dpfc_ctl;
289
290         dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
291         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
292                 dev_priv->fbc.threshold++;
293
294         switch (dev_priv->fbc.threshold) {
295         case 4:
296         case 3:
297                 dpfc_ctl |= DPFC_CTL_LIMIT_4X;
298                 break;
299         case 2:
300                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
301                 break;
302         case 1:
303                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
304                 break;
305         }
306
307         dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
308
309         if (dev_priv->fbc.false_color)
310                 dpfc_ctl |= FBC_CTL_FALSE_COLOR;
311
312         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
313
314         if (IS_IVYBRIDGE(dev)) {
315                 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
316                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
317                            I915_READ(ILK_DISPLAY_CHICKEN1) |
318                            ILK_FBCQ_DIS);
319         } else {
320                 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
321                 I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
322                            I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
323                            HSW_FBCQ_DIS);
324         }
325
326         I915_WRITE(SNB_DPFC_CTL_SA,
327                    SNB_CPU_FENCE_ENABLE | obj->fence_reg);
328         I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
329
330         sandybridge_blit_fbc_update(dev);
331
332         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
333 }
334
335 bool intel_fbc_enabled(struct drm_device *dev)
336 {
337         struct drm_i915_private *dev_priv = dev->dev_private;
338
339         if (!dev_priv->display.fbc_enabled)
340                 return false;
341
342         return dev_priv->display.fbc_enabled(dev);
343 }
344
345 void gen8_fbc_sw_flush(struct drm_device *dev, u32 value)
346 {
347         struct drm_i915_private *dev_priv = dev->dev_private;
348
349         if (!IS_GEN8(dev))
350                 return;
351
352         I915_WRITE(MSG_FBC_REND_STATE, value);
353 }
354
355 static void intel_fbc_work_fn(struct work_struct *__work)
356 {
357         struct intel_fbc_work *work =
358                 container_of(to_delayed_work(__work),
359                              struct intel_fbc_work, work);
360         struct drm_device *dev = work->crtc->dev;
361         struct drm_i915_private *dev_priv = dev->dev_private;
362
363         mutex_lock(&dev->struct_mutex);
364         if (work == dev_priv->fbc.fbc_work) {
365                 /* Double check that we haven't switched fb without cancelling
366                  * the prior work.
367                  */
368                 if (work->crtc->primary->fb == work->fb) {
369                         dev_priv->display.enable_fbc(work->crtc);
370
371                         dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
372                         dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
373                         dev_priv->fbc.y = work->crtc->y;
374                 }
375
376                 dev_priv->fbc.fbc_work = NULL;
377         }
378         mutex_unlock(&dev->struct_mutex);
379
380         kfree(work);
381 }
382
383 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
384 {
385         if (dev_priv->fbc.fbc_work == NULL)
386                 return;
387
388         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
389
390         /* Synchronisation is provided by struct_mutex and checking of
391          * dev_priv->fbc.fbc_work, so we can perform the cancellation
392          * entirely asynchronously.
393          */
394         if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
395                 /* tasklet was killed before being run, clean up */
396                 kfree(dev_priv->fbc.fbc_work);
397
398         /* Mark the work as no longer wanted so that if it does
399          * wake-up (because the work was already running and waiting
400          * for our mutex), it will discover that is no longer
401          * necessary to run.
402          */
403         dev_priv->fbc.fbc_work = NULL;
404 }
405
406 static void intel_enable_fbc(struct drm_crtc *crtc)
407 {
408         struct intel_fbc_work *work;
409         struct drm_device *dev = crtc->dev;
410         struct drm_i915_private *dev_priv = dev->dev_private;
411
412         if (!dev_priv->display.enable_fbc)
413                 return;
414
415         intel_cancel_fbc_work(dev_priv);
416
417         work = kzalloc(sizeof(*work), GFP_KERNEL);
418         if (work == NULL) {
419                 DRM_ERROR("Failed to allocate FBC work structure\n");
420                 dev_priv->display.enable_fbc(crtc);
421                 return;
422         }
423
424         work->crtc = crtc;
425         work->fb = crtc->primary->fb;
426         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
427
428         dev_priv->fbc.fbc_work = work;
429
430         /* Delay the actual enabling to let pageflipping cease and the
431          * display to settle before starting the compression. Note that
432          * this delay also serves a second purpose: it allows for a
433          * vblank to pass after disabling the FBC before we attempt
434          * to modify the control registers.
435          *
436          * A more complicated solution would involve tracking vblanks
437          * following the termination of the page-flipping sequence
438          * and indeed performing the enable as a co-routine and not
439          * waiting synchronously upon the vblank.
440          *
441          * WaFbcWaitForVBlankBeforeEnable:ilk,snb
442          */
443         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
444 }
445
446 void intel_disable_fbc(struct drm_device *dev)
447 {
448         struct drm_i915_private *dev_priv = dev->dev_private;
449
450         intel_cancel_fbc_work(dev_priv);
451
452         if (!dev_priv->display.disable_fbc)
453                 return;
454
455         dev_priv->display.disable_fbc(dev);
456         dev_priv->fbc.plane = -1;
457 }
458
459 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
460                               enum no_fbc_reason reason)
461 {
462         if (dev_priv->fbc.no_fbc_reason == reason)
463                 return false;
464
465         dev_priv->fbc.no_fbc_reason = reason;
466         return true;
467 }
468
469 /**
470  * intel_update_fbc - enable/disable FBC as needed
471  * @dev: the drm_device
472  *
473  * Set up the framebuffer compression hardware at mode set time.  We
474  * enable it if possible:
475  *   - plane A only (on pre-965)
476  *   - no pixel mulitply/line duplication
477  *   - no alpha buffer discard
478  *   - no dual wide
479  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
480  *
481  * We can't assume that any compression will take place (worst case),
482  * so the compressed buffer has to be the same size as the uncompressed
483  * one.  It also must reside (along with the line length buffer) in
484  * stolen memory.
485  *
486  * We need to enable/disable FBC on a global basis.
487  */
488 void intel_update_fbc(struct drm_device *dev)
489 {
490         struct drm_i915_private *dev_priv = dev->dev_private;
491         struct drm_crtc *crtc = NULL, *tmp_crtc;
492         struct intel_crtc *intel_crtc;
493         struct drm_framebuffer *fb;
494         struct drm_i915_gem_object *obj;
495         const struct drm_display_mode *adjusted_mode;
496         unsigned int max_width, max_height;
497
498         if (!HAS_FBC(dev)) {
499                 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
500                 return;
501         }
502
503         if (!i915.powersave) {
504                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
505                         DRM_DEBUG_KMS("fbc disabled per module param\n");
506                 return;
507         }
508
509         /*
510          * If FBC is already on, we just have to verify that we can
511          * keep it that way...
512          * Need to disable if:
513          *   - more than one pipe is active
514          *   - changing FBC params (stride, fence, mode)
515          *   - new fb is too large to fit in compressed buffer
516          *   - going to an unsupported config (interlace, pixel multiply, etc.)
517          */
518         for_each_crtc(dev, tmp_crtc) {
519                 if (intel_crtc_active(tmp_crtc) &&
520                     to_intel_crtc(tmp_crtc)->primary_enabled) {
521                         if (crtc) {
522                                 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
523                                         DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
524                                 goto out_disable;
525                         }
526                         crtc = tmp_crtc;
527                 }
528         }
529
530         if (!crtc || crtc->primary->fb == NULL) {
531                 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
532                         DRM_DEBUG_KMS("no output, disabling\n");
533                 goto out_disable;
534         }
535
536         intel_crtc = to_intel_crtc(crtc);
537         fb = crtc->primary->fb;
538         obj = intel_fb_obj(fb);
539         adjusted_mode = &intel_crtc->config.adjusted_mode;
540
541         if (i915.enable_fbc < 0) {
542                 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
543                         DRM_DEBUG_KMS("disabled per chip default\n");
544                 goto out_disable;
545         }
546         if (!i915.enable_fbc) {
547                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
548                         DRM_DEBUG_KMS("fbc disabled per module param\n");
549                 goto out_disable;
550         }
551         if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
552             (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
553                 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
554                         DRM_DEBUG_KMS("mode incompatible with compression, "
555                                       "disabling\n");
556                 goto out_disable;
557         }
558
559         if (INTEL_INFO(dev)->gen >= 8 || IS_HASWELL(dev)) {
560                 max_width = 4096;
561                 max_height = 4096;
562         } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
563                 max_width = 4096;
564                 max_height = 2048;
565         } else {
566                 max_width = 2048;
567                 max_height = 1536;
568         }
569         if (intel_crtc->config.pipe_src_w > max_width ||
570             intel_crtc->config.pipe_src_h > max_height) {
571                 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
572                         DRM_DEBUG_KMS("mode too large for compression, disabling\n");
573                 goto out_disable;
574         }
575         if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
576             intel_crtc->plane != PLANE_A) {
577                 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
578                         DRM_DEBUG_KMS("plane not A, disabling compression\n");
579                 goto out_disable;
580         }
581
582         /* The use of a CPU fence is mandatory in order to detect writes
583          * by the CPU to the scanout and trigger updates to the FBC.
584          */
585         if (obj->tiling_mode != I915_TILING_X ||
586             obj->fence_reg == I915_FENCE_REG_NONE) {
587                 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
588                         DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
589                 goto out_disable;
590         }
591         if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
592             to_intel_plane(crtc->primary)->rotation != BIT(DRM_ROTATE_0)) {
593                 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
594                         DRM_DEBUG_KMS("Rotation unsupported, disabling\n");
595                 goto out_disable;
596         }
597
598         /* If the kernel debugger is active, always disable compression */
599 #ifdef DDB
600         if (in_dbg_master())
601                 goto out_disable;
602 #endif
603
604         if (i915_gem_stolen_setup_compression(dev, obj->base.size,
605                                               drm_format_plane_cpp(fb->pixel_format, 0))) {
606                 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
607                         DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
608                 goto out_disable;
609         }
610
611         /* If the scanout has not changed, don't modify the FBC settings.
612          * Note that we make the fundamental assumption that the fb->obj
613          * cannot be unpinned (and have its GTT offset and fence revoked)
614          * without first being decoupled from the scanout and FBC disabled.
615          */
616         if (dev_priv->fbc.plane == intel_crtc->plane &&
617             dev_priv->fbc.fb_id == fb->base.id &&
618             dev_priv->fbc.y == crtc->y)
619                 return;
620
621         if (intel_fbc_enabled(dev)) {
622                 /* We update FBC along two paths, after changing fb/crtc
623                  * configuration (modeswitching) and after page-flipping
624                  * finishes. For the latter, we know that not only did
625                  * we disable the FBC at the start of the page-flip
626                  * sequence, but also more than one vblank has passed.
627                  *
628                  * For the former case of modeswitching, it is possible
629                  * to switch between two FBC valid configurations
630                  * instantaneously so we do need to disable the FBC
631                  * before we can modify its control registers. We also
632                  * have to wait for the next vblank for that to take
633                  * effect. However, since we delay enabling FBC we can
634                  * assume that a vblank has passed since disabling and
635                  * that we can safely alter the registers in the deferred
636                  * callback.
637                  *
638                  * In the scenario that we go from a valid to invalid
639                  * and then back to valid FBC configuration we have
640                  * no strict enforcement that a vblank occurred since
641                  * disabling the FBC. However, along all current pipe
642                  * disabling paths we do need to wait for a vblank at
643                  * some point. And we wait before enabling FBC anyway.
644                  */
645                 DRM_DEBUG_KMS("disabling active FBC for update\n");
646                 intel_disable_fbc(dev);
647         }
648
649         intel_enable_fbc(crtc);
650         dev_priv->fbc.no_fbc_reason = FBC_OK;
651         return;
652
653 out_disable:
654         /* Multiple disables should be harmless */
655         if (intel_fbc_enabled(dev)) {
656                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
657                 intel_disable_fbc(dev);
658         }
659         i915_gem_stolen_cleanup_compression(dev);
660 }
661
662 static void i915_pineview_get_mem_freq(struct drm_device *dev)
663 {
664         struct drm_i915_private *dev_priv = dev->dev_private;
665         u32 tmp;
666
667         tmp = I915_READ(CLKCFG);
668
669         switch (tmp & CLKCFG_FSB_MASK) {
670         case CLKCFG_FSB_533:
671                 dev_priv->fsb_freq = 533; /* 133*4 */
672                 break;
673         case CLKCFG_FSB_800:
674                 dev_priv->fsb_freq = 800; /* 200*4 */
675                 break;
676         case CLKCFG_FSB_667:
677                 dev_priv->fsb_freq =  667; /* 167*4 */
678                 break;
679         case CLKCFG_FSB_400:
680                 dev_priv->fsb_freq = 400; /* 100*4 */
681                 break;
682         }
683
684         switch (tmp & CLKCFG_MEM_MASK) {
685         case CLKCFG_MEM_533:
686                 dev_priv->mem_freq = 533;
687                 break;
688         case CLKCFG_MEM_667:
689                 dev_priv->mem_freq = 667;
690                 break;
691         case CLKCFG_MEM_800:
692                 dev_priv->mem_freq = 800;
693                 break;
694         }
695
696         /* detect pineview DDR3 setting */
697         tmp = I915_READ(CSHRDDR3CTL);
698         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
699 }
700
701 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
702 {
703         struct drm_i915_private *dev_priv = dev->dev_private;
704         u16 ddrpll, csipll;
705
706         ddrpll = I915_READ16(DDRMPLL1);
707         csipll = I915_READ16(CSIPLL0);
708
709         switch (ddrpll & 0xff) {
710         case 0xc:
711                 dev_priv->mem_freq = 800;
712                 break;
713         case 0x10:
714                 dev_priv->mem_freq = 1066;
715                 break;
716         case 0x14:
717                 dev_priv->mem_freq = 1333;
718                 break;
719         case 0x18:
720                 dev_priv->mem_freq = 1600;
721                 break;
722         default:
723                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
724                                  ddrpll & 0xff);
725                 dev_priv->mem_freq = 0;
726                 break;
727         }
728
729         dev_priv->ips.r_t = dev_priv->mem_freq;
730
731         switch (csipll & 0x3ff) {
732         case 0x00c:
733                 dev_priv->fsb_freq = 3200;
734                 break;
735         case 0x00e:
736                 dev_priv->fsb_freq = 3733;
737                 break;
738         case 0x010:
739                 dev_priv->fsb_freq = 4266;
740                 break;
741         case 0x012:
742                 dev_priv->fsb_freq = 4800;
743                 break;
744         case 0x014:
745                 dev_priv->fsb_freq = 5333;
746                 break;
747         case 0x016:
748                 dev_priv->fsb_freq = 5866;
749                 break;
750         case 0x018:
751                 dev_priv->fsb_freq = 6400;
752                 break;
753         default:
754                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
755                                  csipll & 0x3ff);
756                 dev_priv->fsb_freq = 0;
757                 break;
758         }
759
760         if (dev_priv->fsb_freq == 3200) {
761                 dev_priv->ips.c_m = 0;
762         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
763                 dev_priv->ips.c_m = 1;
764         } else {
765                 dev_priv->ips.c_m = 2;
766         }
767 }
768
769 static const struct cxsr_latency cxsr_latency_table[] = {
770         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
771         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
772         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
773         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
774         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
775
776         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
777         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
778         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
779         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
780         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
781
782         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
783         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
784         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
785         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
786         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
787
788         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
789         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
790         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
791         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
792         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
793
794         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
795         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
796         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
797         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
798         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
799
800         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
801         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
802         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
803         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
804         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
805 };
806
807 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
808                                                          int is_ddr3,
809                                                          int fsb,
810                                                          int mem)
811 {
812         const struct cxsr_latency *latency;
813         int i;
814
815         if (fsb == 0 || mem == 0)
816                 return NULL;
817
818         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
819                 latency = &cxsr_latency_table[i];
820                 if (is_desktop == latency->is_desktop &&
821                     is_ddr3 == latency->is_ddr3 &&
822                     fsb == latency->fsb_freq && mem == latency->mem_freq)
823                         return latency;
824         }
825
826         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
827
828         return NULL;
829 }
830
831 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
832 {
833         struct drm_device *dev = dev_priv->dev;
834         u32 val;
835
836         if (IS_VALLEYVIEW(dev)) {
837                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
838         } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
839                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
840         } else if (IS_PINEVIEW(dev)) {
841                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
842                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
843                 I915_WRITE(DSPFW3, val);
844         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
845                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
846                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
847                 I915_WRITE(FW_BLC_SELF, val);
848         } else if (IS_I915GM(dev)) {
849                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
850                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
851                 I915_WRITE(INSTPM, val);
852         } else {
853                 return;
854         }
855
856         DRM_DEBUG_KMS("memory self-refresh is %s\n",
857                       enable ? "enabled" : "disabled");
858 }
859
860 /*
861  * Latency for FIFO fetches is dependent on several factors:
862  *   - memory configuration (speed, channels)
863  *   - chipset
864  *   - current MCH state
865  * It can be fairly high in some situations, so here we assume a fairly
866  * pessimal value.  It's a tradeoff between extra memory fetches (if we
867  * set this value too high, the FIFO will fetch frequently to stay full)
868  * and power consumption (set it too low to save power and we might see
869  * FIFO underruns and display "flicker").
870  *
871  * A value of 5us seems to be a good balance; safe for very low end
872  * platforms but not overly aggressive on lower latency configs.
873  */
874 static const int pessimal_latency_ns = 5000;
875
876 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
877 {
878         struct drm_i915_private *dev_priv = dev->dev_private;
879         uint32_t dsparb = I915_READ(DSPARB);
880         int size;
881
882         size = dsparb & 0x7f;
883         if (plane)
884                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
885
886         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
887                       plane ? "B" : "A", size);
888
889         return size;
890 }
891
892 static int i830_get_fifo_size(struct drm_device *dev, int plane)
893 {
894         struct drm_i915_private *dev_priv = dev->dev_private;
895         uint32_t dsparb = I915_READ(DSPARB);
896         int size;
897
898         size = dsparb & 0x1ff;
899         if (plane)
900                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
901         size >>= 1; /* Convert to cachelines */
902
903         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
904                       plane ? "B" : "A", size);
905
906         return size;
907 }
908
909 static int i845_get_fifo_size(struct drm_device *dev, int plane)
910 {
911         struct drm_i915_private *dev_priv = dev->dev_private;
912         uint32_t dsparb = I915_READ(DSPARB);
913         int size;
914
915         size = dsparb & 0x7f;
916         size >>= 2; /* Convert to cachelines */
917
918         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
919                       plane ? "B" : "A",
920                       size);
921
922         return size;
923 }
924
925 /* Pineview has different values for various configs */
926 static const struct intel_watermark_params pineview_display_wm = {
927         .fifo_size = PINEVIEW_DISPLAY_FIFO,
928         .max_wm = PINEVIEW_MAX_WM,
929         .default_wm = PINEVIEW_DFT_WM,
930         .guard_size = PINEVIEW_GUARD_WM,
931         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
932 };
933 static const struct intel_watermark_params pineview_display_hplloff_wm = {
934         .fifo_size = PINEVIEW_DISPLAY_FIFO,
935         .max_wm = PINEVIEW_MAX_WM,
936         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
937         .guard_size = PINEVIEW_GUARD_WM,
938         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
939 };
940 static const struct intel_watermark_params pineview_cursor_wm = {
941         .fifo_size = PINEVIEW_CURSOR_FIFO,
942         .max_wm = PINEVIEW_CURSOR_MAX_WM,
943         .default_wm = PINEVIEW_CURSOR_DFT_WM,
944         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
945         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
946 };
947 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
948         .fifo_size = PINEVIEW_CURSOR_FIFO,
949         .max_wm = PINEVIEW_CURSOR_MAX_WM,
950         .default_wm = PINEVIEW_CURSOR_DFT_WM,
951         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
952         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
953 };
954 static const struct intel_watermark_params g4x_wm_info = {
955         .fifo_size = G4X_FIFO_SIZE,
956         .max_wm = G4X_MAX_WM,
957         .default_wm = G4X_MAX_WM,
958         .guard_size = 2,
959         .cacheline_size = G4X_FIFO_LINE_SIZE,
960 };
961 static const struct intel_watermark_params g4x_cursor_wm_info = {
962         .fifo_size = I965_CURSOR_FIFO,
963         .max_wm = I965_CURSOR_MAX_WM,
964         .default_wm = I965_CURSOR_DFT_WM,
965         .guard_size = 2,
966         .cacheline_size = G4X_FIFO_LINE_SIZE,
967 };
968 static const struct intel_watermark_params valleyview_wm_info = {
969         .fifo_size = VALLEYVIEW_FIFO_SIZE,
970         .max_wm = VALLEYVIEW_MAX_WM,
971         .default_wm = VALLEYVIEW_MAX_WM,
972         .guard_size = 2,
973         .cacheline_size = G4X_FIFO_LINE_SIZE,
974 };
975 static const struct intel_watermark_params valleyview_cursor_wm_info = {
976         .fifo_size = I965_CURSOR_FIFO,
977         .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
978         .default_wm = I965_CURSOR_DFT_WM,
979         .guard_size = 2,
980         .cacheline_size = G4X_FIFO_LINE_SIZE,
981 };
982 static const struct intel_watermark_params i965_cursor_wm_info = {
983         .fifo_size = I965_CURSOR_FIFO,
984         .max_wm = I965_CURSOR_MAX_WM,
985         .default_wm = I965_CURSOR_DFT_WM,
986         .guard_size = 2,
987         .cacheline_size = I915_FIFO_LINE_SIZE,
988 };
989 static const struct intel_watermark_params i945_wm_info = {
990         .fifo_size = I945_FIFO_SIZE,
991         .max_wm = I915_MAX_WM,
992         .default_wm = 1,
993         .guard_size = 2,
994         .cacheline_size = I915_FIFO_LINE_SIZE,
995 };
996 static const struct intel_watermark_params i915_wm_info = {
997         .fifo_size = I915_FIFO_SIZE,
998         .max_wm = I915_MAX_WM,
999         .default_wm = 1,
1000         .guard_size = 2,
1001         .cacheline_size = I915_FIFO_LINE_SIZE,
1002 };
1003 static const struct intel_watermark_params i830_a_wm_info = {
1004         .fifo_size = I855GM_FIFO_SIZE,
1005         .max_wm = I915_MAX_WM,
1006         .default_wm = 1,
1007         .guard_size = 2,
1008         .cacheline_size = I830_FIFO_LINE_SIZE,
1009 };
1010 static const struct intel_watermark_params i830_bc_wm_info = {
1011         .fifo_size = I855GM_FIFO_SIZE,
1012         .max_wm = I915_MAX_WM/2,
1013         .default_wm = 1,
1014         .guard_size = 2,
1015         .cacheline_size = I830_FIFO_LINE_SIZE,
1016 };
1017 static const struct intel_watermark_params i845_wm_info = {
1018         .fifo_size = I830_FIFO_SIZE,
1019         .max_wm = I915_MAX_WM,
1020         .default_wm = 1,
1021         .guard_size = 2,
1022         .cacheline_size = I830_FIFO_LINE_SIZE,
1023 };
1024
1025 /**
1026  * intel_calculate_wm - calculate watermark level
1027  * @clock_in_khz: pixel clock
1028  * @wm: chip FIFO params
1029  * @pixel_size: display pixel size
1030  * @latency_ns: memory latency for the platform
1031  *
1032  * Calculate the watermark level (the level at which the display plane will
1033  * start fetching from memory again).  Each chip has a different display
1034  * FIFO size and allocation, so the caller needs to figure that out and pass
1035  * in the correct intel_watermark_params structure.
1036  *
1037  * As the pixel clock runs, the FIFO will be drained at a rate that depends
1038  * on the pixel size.  When it reaches the watermark level, it'll start
1039  * fetching FIFO line sized based chunks from memory until the FIFO fills
1040  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
1041  * will occur, and a display engine hang could result.
1042  */
1043 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1044                                         const struct intel_watermark_params *wm,
1045                                         int fifo_size,
1046                                         int pixel_size,
1047                                         unsigned long latency_ns)
1048 {
1049         long entries_required, wm_size;
1050
1051         /*
1052          * Note: we need to make sure we don't overflow for various clock &
1053          * latency values.
1054          * clocks go from a few thousand to several hundred thousand.
1055          * latency is usually a few thousand
1056          */
1057         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1058                 1000;
1059         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1060
1061         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1062
1063         wm_size = fifo_size - (entries_required + wm->guard_size);
1064
1065         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1066
1067         /* Don't promote wm_size to unsigned... */
1068         if (wm_size > (long)wm->max_wm)
1069                 wm_size = wm->max_wm;
1070         if (wm_size <= 0)
1071                 wm_size = wm->default_wm;
1072
1073         /*
1074          * Bspec seems to indicate that the value shouldn't be lower than
1075          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
1076          * Lets go for 8 which is the burst size since certain platforms
1077          * already use a hardcoded 8 (which is what the spec says should be
1078          * done).
1079          */
1080         if (wm_size <= 8)
1081                 wm_size = 8;
1082
1083         return wm_size;
1084 }
1085
1086 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1087 {
1088         struct drm_crtc *crtc, *enabled = NULL;
1089
1090         for_each_crtc(dev, crtc) {
1091                 if (intel_crtc_active(crtc)) {
1092                         if (enabled)
1093                                 return NULL;
1094                         enabled = crtc;
1095                 }
1096         }
1097
1098         return enabled;
1099 }
1100
1101 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1102 {
1103         struct drm_device *dev = unused_crtc->dev;
1104         struct drm_i915_private *dev_priv = dev->dev_private;
1105         struct drm_crtc *crtc;
1106         const struct cxsr_latency *latency;
1107         u32 reg;
1108         unsigned long wm;
1109
1110         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1111                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1112         if (!latency) {
1113                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1114                 intel_set_memory_cxsr(dev_priv, false);
1115                 return;
1116         }
1117
1118         crtc = single_enabled_crtc(dev);
1119         if (crtc) {
1120                 const struct drm_display_mode *adjusted_mode;
1121                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1122                 int clock;
1123
1124                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1125                 clock = adjusted_mode->crtc_clock;
1126
1127                 /* Display SR */
1128                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1129                                         pineview_display_wm.fifo_size,
1130                                         pixel_size, latency->display_sr);
1131                 reg = I915_READ(DSPFW1);
1132                 reg &= ~DSPFW_SR_MASK;
1133                 reg |= wm << DSPFW_SR_SHIFT;
1134                 I915_WRITE(DSPFW1, reg);
1135                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1136
1137                 /* cursor SR */
1138                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1139                                         pineview_display_wm.fifo_size,
1140                                         pixel_size, latency->cursor_sr);
1141                 reg = I915_READ(DSPFW3);
1142                 reg &= ~DSPFW_CURSOR_SR_MASK;
1143                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1144                 I915_WRITE(DSPFW3, reg);
1145
1146                 /* Display HPLL off SR */
1147                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1148                                         pineview_display_hplloff_wm.fifo_size,
1149                                         pixel_size, latency->display_hpll_disable);
1150                 reg = I915_READ(DSPFW3);
1151                 reg &= ~DSPFW_HPLL_SR_MASK;
1152                 reg |= wm & DSPFW_HPLL_SR_MASK;
1153                 I915_WRITE(DSPFW3, reg);
1154
1155                 /* cursor HPLL off SR */
1156                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1157                                         pineview_display_hplloff_wm.fifo_size,
1158                                         pixel_size, latency->cursor_hpll_disable);
1159                 reg = I915_READ(DSPFW3);
1160                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1161                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1162                 I915_WRITE(DSPFW3, reg);
1163                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1164
1165                 intel_set_memory_cxsr(dev_priv, true);
1166         } else {
1167                 intel_set_memory_cxsr(dev_priv, false);
1168         }
1169 }
1170
1171 static bool g4x_compute_wm0(struct drm_device *dev,
1172                             int plane,
1173                             const struct intel_watermark_params *display,
1174                             int display_latency_ns,
1175                             const struct intel_watermark_params *cursor,
1176                             int cursor_latency_ns,
1177                             int *plane_wm,
1178                             int *cursor_wm)
1179 {
1180         struct drm_crtc *crtc;
1181         const struct drm_display_mode *adjusted_mode;
1182         int htotal, hdisplay, clock, pixel_size;
1183         int line_time_us, line_count;
1184         int entries, tlb_miss;
1185
1186         crtc = intel_get_crtc_for_plane(dev, plane);
1187         if (!intel_crtc_active(crtc)) {
1188                 *cursor_wm = cursor->guard_size;
1189                 *plane_wm = display->guard_size;
1190                 return false;
1191         }
1192
1193         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1194         clock = adjusted_mode->crtc_clock;
1195         htotal = adjusted_mode->crtc_htotal;
1196         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1197         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1198
1199         /* Use the small buffer method to calculate plane watermark */
1200         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1201         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1202         if (tlb_miss > 0)
1203                 entries += tlb_miss;
1204         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1205         *plane_wm = entries + display->guard_size;
1206         if (*plane_wm > (int)display->max_wm)
1207                 *plane_wm = display->max_wm;
1208
1209         /* Use the large buffer method to calculate cursor watermark */
1210         line_time_us = max(htotal * 1000 / clock, 1);
1211         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1212         entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1213         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1214         if (tlb_miss > 0)
1215                 entries += tlb_miss;
1216         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1217         *cursor_wm = entries + cursor->guard_size;
1218         if (*cursor_wm > (int)cursor->max_wm)
1219                 *cursor_wm = (int)cursor->max_wm;
1220
1221         return true;
1222 }
1223
1224 /*
1225  * Check the wm result.
1226  *
1227  * If any calculated watermark values is larger than the maximum value that
1228  * can be programmed into the associated watermark register, that watermark
1229  * must be disabled.
1230  */
1231 static bool g4x_check_srwm(struct drm_device *dev,
1232                            int display_wm, int cursor_wm,
1233                            const struct intel_watermark_params *display,
1234                            const struct intel_watermark_params *cursor)
1235 {
1236         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1237                       display_wm, cursor_wm);
1238
1239         if (display_wm > display->max_wm) {
1240                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1241                               display_wm, display->max_wm);
1242                 return false;
1243         }
1244
1245         if (cursor_wm > cursor->max_wm) {
1246                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1247                               cursor_wm, cursor->max_wm);
1248                 return false;
1249         }
1250
1251         if (!(display_wm || cursor_wm)) {
1252                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1253                 return false;
1254         }
1255
1256         return true;
1257 }
1258
1259 static bool g4x_compute_srwm(struct drm_device *dev,
1260                              int plane,
1261                              int latency_ns,
1262                              const struct intel_watermark_params *display,
1263                              const struct intel_watermark_params *cursor,
1264                              int *display_wm, int *cursor_wm)
1265 {
1266         struct drm_crtc *crtc;
1267         const struct drm_display_mode *adjusted_mode;
1268         int hdisplay, htotal, pixel_size, clock;
1269         unsigned long line_time_us;
1270         int line_count, line_size;
1271         int small, large;
1272         int entries;
1273
1274         if (!latency_ns) {
1275                 *display_wm = *cursor_wm = 0;
1276                 return false;
1277         }
1278
1279         crtc = intel_get_crtc_for_plane(dev, plane);
1280         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1281         clock = adjusted_mode->crtc_clock;
1282         htotal = adjusted_mode->crtc_htotal;
1283         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1284         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1285
1286         line_time_us = max(htotal * 1000 / clock, 1);
1287         line_count = (latency_ns / line_time_us + 1000) / 1000;
1288         line_size = hdisplay * pixel_size;
1289
1290         /* Use the minimum of the small and large buffer method for primary */
1291         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1292         large = line_count * line_size;
1293
1294         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1295         *display_wm = entries + display->guard_size;
1296
1297         /* calculate the self-refresh watermark for display cursor */
1298         entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1299         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1300         *cursor_wm = entries + cursor->guard_size;
1301
1302         return g4x_check_srwm(dev,
1303                               *display_wm, *cursor_wm,
1304                               display, cursor);
1305 }
1306
1307 static bool vlv_compute_drain_latency(struct drm_crtc *crtc,
1308                                       int pixel_size,
1309                                       int *prec_mult,
1310                                       int *drain_latency)
1311 {
1312         int entries;
1313         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1314
1315         if (WARN(clock == 0, "Pixel clock is zero!\n"))
1316                 return false;
1317
1318         if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
1319                 return false;
1320
1321         entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
1322         *prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_64 :
1323                                        DRAIN_LATENCY_PRECISION_32;
1324         *drain_latency = (64 * (*prec_mult) * 4) / entries;
1325
1326         if (*drain_latency > DRAIN_LATENCY_MASK)
1327                 *drain_latency = DRAIN_LATENCY_MASK;
1328
1329         return true;
1330 }
1331
1332 /*
1333  * Update drain latency registers of memory arbiter
1334  *
1335  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1336  * to be programmed. Each plane has a drain latency multiplier and a drain
1337  * latency value.
1338  */
1339
1340 static void vlv_update_drain_latency(struct drm_crtc *crtc)
1341 {
1342         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1343         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1344         int pixel_size;
1345         int drain_latency;
1346         enum i915_pipe pipe = intel_crtc->pipe;
1347         int plane_prec, prec_mult, plane_dl;
1348
1349         plane_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_PLANE_PRECISION_64 |
1350                    DRAIN_LATENCY_MASK | DDL_CURSOR_PRECISION_64 |
1351                    (DRAIN_LATENCY_MASK << DDL_CURSOR_SHIFT));
1352
1353         if (!intel_crtc_active(crtc)) {
1354                 I915_WRITE(VLV_DDL(pipe), plane_dl);
1355                 return;
1356         }
1357
1358         /* Primary plane Drain Latency */
1359         pixel_size = crtc->primary->fb->bits_per_pixel / 8;     /* BPP */
1360         if (vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
1361                 plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
1362                                            DDL_PLANE_PRECISION_64 :
1363                                            DDL_PLANE_PRECISION_32;
1364                 plane_dl |= plane_prec | drain_latency;
1365         }
1366
1367         /* Cursor Drain Latency
1368          * BPP is always 4 for cursor
1369          */
1370         pixel_size = 4;
1371
1372         /* Program cursor DL only if it is enabled */
1373         if (intel_crtc->cursor_base &&
1374             vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
1375                 plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
1376                                            DDL_CURSOR_PRECISION_64 :
1377                                            DDL_CURSOR_PRECISION_32;
1378                 plane_dl |= plane_prec | (drain_latency << DDL_CURSOR_SHIFT);
1379         }
1380
1381         I915_WRITE(VLV_DDL(pipe), plane_dl);
1382 }
1383
1384 #define single_plane_enabled(mask) is_power_of_2(mask)
1385
1386 static void valleyview_update_wm(struct drm_crtc *crtc)
1387 {
1388         struct drm_device *dev = crtc->dev;
1389         static const int sr_latency_ns = 12000;
1390         struct drm_i915_private *dev_priv = dev->dev_private;
1391         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1392         int plane_sr, cursor_sr;
1393         int ignore_plane_sr, ignore_cursor_sr;
1394         unsigned int enabled = 0;
1395         bool cxsr_enabled;
1396
1397         vlv_update_drain_latency(crtc);
1398
1399         if (g4x_compute_wm0(dev, PIPE_A,
1400                             &valleyview_wm_info, pessimal_latency_ns,
1401                             &valleyview_cursor_wm_info, pessimal_latency_ns,
1402                             &planea_wm, &cursora_wm))
1403                 enabled |= 1 << PIPE_A;
1404
1405         if (g4x_compute_wm0(dev, PIPE_B,
1406                             &valleyview_wm_info, pessimal_latency_ns,
1407                             &valleyview_cursor_wm_info, pessimal_latency_ns,
1408                             &planeb_wm, &cursorb_wm))
1409                 enabled |= 1 << PIPE_B;
1410
1411         if (single_plane_enabled(enabled) &&
1412             g4x_compute_srwm(dev, ffs(enabled) - 1,
1413                              sr_latency_ns,
1414                              &valleyview_wm_info,
1415                              &valleyview_cursor_wm_info,
1416                              &plane_sr, &ignore_cursor_sr) &&
1417             g4x_compute_srwm(dev, ffs(enabled) - 1,
1418                              2*sr_latency_ns,
1419                              &valleyview_wm_info,
1420                              &valleyview_cursor_wm_info,
1421                              &ignore_plane_sr, &cursor_sr)) {
1422                 cxsr_enabled = true;
1423         } else {
1424                 cxsr_enabled = false;
1425                 intel_set_memory_cxsr(dev_priv, false);
1426                 plane_sr = cursor_sr = 0;
1427         }
1428
1429         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1430                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1431                       planea_wm, cursora_wm,
1432                       planeb_wm, cursorb_wm,
1433                       plane_sr, cursor_sr);
1434
1435         I915_WRITE(DSPFW1,
1436                    (plane_sr << DSPFW_SR_SHIFT) |
1437                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1438                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1439                    (planea_wm << DSPFW_PLANEA_SHIFT));
1440         I915_WRITE(DSPFW2,
1441                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1442                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1443         I915_WRITE(DSPFW3,
1444                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1445                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1446
1447         if (cxsr_enabled)
1448                 intel_set_memory_cxsr(dev_priv, true);
1449 }
1450
1451 static void cherryview_update_wm(struct drm_crtc *crtc)
1452 {
1453         struct drm_device *dev = crtc->dev;
1454         static const int sr_latency_ns = 12000;
1455         struct drm_i915_private *dev_priv = dev->dev_private;
1456         int planea_wm, planeb_wm, planec_wm;
1457         int cursora_wm, cursorb_wm, cursorc_wm;
1458         int plane_sr, cursor_sr;
1459         int ignore_plane_sr, ignore_cursor_sr;
1460         unsigned int enabled = 0;
1461         bool cxsr_enabled;
1462
1463         vlv_update_drain_latency(crtc);
1464
1465         if (g4x_compute_wm0(dev, PIPE_A,
1466                             &valleyview_wm_info, pessimal_latency_ns,
1467                             &valleyview_cursor_wm_info, pessimal_latency_ns,
1468                             &planea_wm, &cursora_wm))
1469                 enabled |= 1 << PIPE_A;
1470
1471         if (g4x_compute_wm0(dev, PIPE_B,
1472                             &valleyview_wm_info, pessimal_latency_ns,
1473                             &valleyview_cursor_wm_info, pessimal_latency_ns,
1474                             &planeb_wm, &cursorb_wm))
1475                 enabled |= 1 << PIPE_B;
1476
1477         if (g4x_compute_wm0(dev, PIPE_C,
1478                             &valleyview_wm_info, pessimal_latency_ns,
1479                             &valleyview_cursor_wm_info, pessimal_latency_ns,
1480                             &planec_wm, &cursorc_wm))
1481                 enabled |= 1 << PIPE_C;
1482
1483         if (single_plane_enabled(enabled) &&
1484             g4x_compute_srwm(dev, ffs(enabled) - 1,
1485                              sr_latency_ns,
1486                              &valleyview_wm_info,
1487                              &valleyview_cursor_wm_info,
1488                              &plane_sr, &ignore_cursor_sr) &&
1489             g4x_compute_srwm(dev, ffs(enabled) - 1,
1490                              2*sr_latency_ns,
1491                              &valleyview_wm_info,
1492                              &valleyview_cursor_wm_info,
1493                              &ignore_plane_sr, &cursor_sr)) {
1494                 cxsr_enabled = true;
1495         } else {
1496                 cxsr_enabled = false;
1497                 intel_set_memory_cxsr(dev_priv, false);
1498                 plane_sr = cursor_sr = 0;
1499         }
1500
1501         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1502                       "B: plane=%d, cursor=%d, C: plane=%d, cursor=%d, "
1503                       "SR: plane=%d, cursor=%d\n",
1504                       planea_wm, cursora_wm,
1505                       planeb_wm, cursorb_wm,
1506                       planec_wm, cursorc_wm,
1507                       plane_sr, cursor_sr);
1508
1509         I915_WRITE(DSPFW1,
1510                    (plane_sr << DSPFW_SR_SHIFT) |
1511                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1512                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1513                    (planea_wm << DSPFW_PLANEA_SHIFT));
1514         I915_WRITE(DSPFW2,
1515                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1516                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1517         I915_WRITE(DSPFW3,
1518                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1519                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1520         I915_WRITE(DSPFW9_CHV,
1521                    (I915_READ(DSPFW9_CHV) & ~(DSPFW_PLANEC_MASK |
1522                                               DSPFW_CURSORC_MASK)) |
1523                    (planec_wm << DSPFW_PLANEC_SHIFT) |
1524                    (cursorc_wm << DSPFW_CURSORC_SHIFT));
1525
1526         if (cxsr_enabled)
1527                 intel_set_memory_cxsr(dev_priv, true);
1528 }
1529
1530 static void valleyview_update_sprite_wm(struct drm_plane *plane,
1531                                         struct drm_crtc *crtc,
1532                                         uint32_t sprite_width,
1533                                         uint32_t sprite_height,
1534                                         int pixel_size,
1535                                         bool enabled, bool scaled)
1536 {
1537         struct drm_device *dev = crtc->dev;
1538         struct drm_i915_private *dev_priv = dev->dev_private;
1539         int pipe = to_intel_plane(plane)->pipe;
1540         int sprite = to_intel_plane(plane)->plane;
1541         int drain_latency;
1542         int plane_prec;
1543         int sprite_dl;
1544         int prec_mult;
1545
1546         sprite_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_SPRITE_PRECISION_64(sprite) |
1547                     (DRAIN_LATENCY_MASK << DDL_SPRITE_SHIFT(sprite)));
1548
1549         if (enabled && vlv_compute_drain_latency(crtc, pixel_size, &prec_mult,
1550                                                  &drain_latency)) {
1551                 plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
1552                                            DDL_SPRITE_PRECISION_64(sprite) :
1553                                            DDL_SPRITE_PRECISION_32(sprite);
1554                 sprite_dl |= plane_prec |
1555                              (drain_latency << DDL_SPRITE_SHIFT(sprite));
1556         }
1557
1558         I915_WRITE(VLV_DDL(pipe), sprite_dl);
1559 }
1560
1561 static void g4x_update_wm(struct drm_crtc *crtc)
1562 {
1563         struct drm_device *dev = crtc->dev;
1564         static const int sr_latency_ns = 12000;
1565         struct drm_i915_private *dev_priv = dev->dev_private;
1566         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1567         int plane_sr, cursor_sr;
1568         unsigned int enabled = 0;
1569         bool cxsr_enabled;
1570
1571         if (g4x_compute_wm0(dev, PIPE_A,
1572                             &g4x_wm_info, pessimal_latency_ns,
1573                             &g4x_cursor_wm_info, pessimal_latency_ns,
1574                             &planea_wm, &cursora_wm))
1575                 enabled |= 1 << PIPE_A;
1576
1577         if (g4x_compute_wm0(dev, PIPE_B,
1578                             &g4x_wm_info, pessimal_latency_ns,
1579                             &g4x_cursor_wm_info, pessimal_latency_ns,
1580                             &planeb_wm, &cursorb_wm))
1581                 enabled |= 1 << PIPE_B;
1582
1583         if (single_plane_enabled(enabled) &&
1584             g4x_compute_srwm(dev, ffs(enabled) - 1,
1585                              sr_latency_ns,
1586                              &g4x_wm_info,
1587                              &g4x_cursor_wm_info,
1588                              &plane_sr, &cursor_sr)) {
1589                 cxsr_enabled = true;
1590         } else {
1591                 cxsr_enabled = false;
1592                 intel_set_memory_cxsr(dev_priv, false);
1593                 plane_sr = cursor_sr = 0;
1594         }
1595
1596         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1597                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1598                       planea_wm, cursora_wm,
1599                       planeb_wm, cursorb_wm,
1600                       plane_sr, cursor_sr);
1601
1602         I915_WRITE(DSPFW1,
1603                    (plane_sr << DSPFW_SR_SHIFT) |
1604                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1605                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1606                    (planea_wm << DSPFW_PLANEA_SHIFT));
1607         I915_WRITE(DSPFW2,
1608                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1609                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1610         /* HPLL off in SR has some issues on G4x... disable it */
1611         I915_WRITE(DSPFW3,
1612                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1613                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1614
1615         if (cxsr_enabled)
1616                 intel_set_memory_cxsr(dev_priv, true);
1617 }
1618
1619 static void i965_update_wm(struct drm_crtc *unused_crtc)
1620 {
1621         struct drm_device *dev = unused_crtc->dev;
1622         struct drm_i915_private *dev_priv = dev->dev_private;
1623         struct drm_crtc *crtc;
1624         int srwm = 1;
1625         int cursor_sr = 16;
1626         bool cxsr_enabled;
1627
1628         /* Calc sr entries for one plane configs */
1629         crtc = single_enabled_crtc(dev);
1630         if (crtc) {
1631                 /* self-refresh has much higher latency */
1632                 static const int sr_latency_ns = 12000;
1633                 const struct drm_display_mode *adjusted_mode =
1634                         &to_intel_crtc(crtc)->config.adjusted_mode;
1635                 int clock = adjusted_mode->crtc_clock;
1636                 int htotal = adjusted_mode->crtc_htotal;
1637                 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1638                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1639                 unsigned long line_time_us;
1640                 int entries;
1641
1642                 line_time_us = max(htotal * 1000 / clock, 1);
1643
1644                 /* Use ns/us then divide to preserve precision */
1645                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1646                         pixel_size * hdisplay;
1647                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1648                 srwm = I965_FIFO_SIZE - entries;
1649                 if (srwm < 0)
1650                         srwm = 1;
1651                 srwm &= 0x1ff;
1652                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1653                               entries, srwm);
1654
1655                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1656                         pixel_size * to_intel_crtc(crtc)->cursor_width;
1657                 entries = DIV_ROUND_UP(entries,
1658                                           i965_cursor_wm_info.cacheline_size);
1659                 cursor_sr = i965_cursor_wm_info.fifo_size -
1660                         (entries + i965_cursor_wm_info.guard_size);
1661
1662                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1663                         cursor_sr = i965_cursor_wm_info.max_wm;
1664
1665                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1666                               "cursor %d\n", srwm, cursor_sr);
1667
1668                 cxsr_enabled = true;
1669         } else {
1670                 cxsr_enabled = false;
1671                 /* Turn off self refresh if both pipes are enabled */
1672                 intel_set_memory_cxsr(dev_priv, false);
1673         }
1674
1675         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1676                       srwm);
1677
1678         /* 965 has limitations... */
1679         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1680                    (8 << DSPFW_CURSORB_SHIFT) |
1681                    (8 << DSPFW_PLANEB_SHIFT) |
1682                    (8 << DSPFW_PLANEA_SHIFT));
1683         I915_WRITE(DSPFW2, (8 << DSPFW_CURSORA_SHIFT) |
1684                    (8 << DSPFW_PLANEC_SHIFT_OLD));
1685         /* update cursor SR watermark */
1686         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1687
1688         if (cxsr_enabled)
1689                 intel_set_memory_cxsr(dev_priv, true);
1690 }
1691
1692 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1693 {
1694         struct drm_device *dev = unused_crtc->dev;
1695         struct drm_i915_private *dev_priv = dev->dev_private;
1696         const struct intel_watermark_params *wm_info;
1697         uint32_t fwater_lo;
1698         uint32_t fwater_hi;
1699         int cwm, srwm = 1;
1700         int fifo_size;
1701         int planea_wm, planeb_wm;
1702         struct drm_crtc *crtc, *enabled = NULL;
1703
1704         if (IS_I945GM(dev))
1705                 wm_info = &i945_wm_info;
1706         else if (!IS_GEN2(dev))
1707                 wm_info = &i915_wm_info;
1708         else
1709                 wm_info = &i830_a_wm_info;
1710
1711         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1712         crtc = intel_get_crtc_for_plane(dev, 0);
1713         if (intel_crtc_active(crtc)) {
1714                 const struct drm_display_mode *adjusted_mode;
1715                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1716                 if (IS_GEN2(dev))
1717                         cpp = 4;
1718
1719                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1720                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1721                                                wm_info, fifo_size, cpp,
1722                                                pessimal_latency_ns);
1723                 enabled = crtc;
1724         } else {
1725                 planea_wm = fifo_size - wm_info->guard_size;
1726                 if (planea_wm > (long)wm_info->max_wm)
1727                         planea_wm = wm_info->max_wm;
1728         }
1729
1730         if (IS_GEN2(dev))
1731                 wm_info = &i830_bc_wm_info;
1732
1733         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1734         crtc = intel_get_crtc_for_plane(dev, 1);
1735         if (intel_crtc_active(crtc)) {
1736                 const struct drm_display_mode *adjusted_mode;
1737                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1738                 if (IS_GEN2(dev))
1739                         cpp = 4;
1740
1741                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1742                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1743                                                wm_info, fifo_size, cpp,
1744                                                pessimal_latency_ns);
1745                 if (enabled == NULL)
1746                         enabled = crtc;
1747                 else
1748                         enabled = NULL;
1749         } else {
1750                 planeb_wm = fifo_size - wm_info->guard_size;
1751                 if (planeb_wm > (long)wm_info->max_wm)
1752                         planeb_wm = wm_info->max_wm;
1753         }
1754
1755         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1756
1757         if (IS_I915GM(dev) && enabled) {
1758                 struct drm_i915_gem_object *obj;
1759
1760                 obj = intel_fb_obj(enabled->primary->fb);
1761
1762                 /* self-refresh seems busted with untiled */
1763                 if (obj->tiling_mode == I915_TILING_NONE)
1764                         enabled = NULL;
1765         }
1766
1767         /*
1768          * Overlay gets an aggressive default since video jitter is bad.
1769          */
1770         cwm = 2;
1771
1772         /* Play safe and disable self-refresh before adjusting watermarks. */
1773         intel_set_memory_cxsr(dev_priv, false);
1774
1775         /* Calc sr entries for one plane configs */
1776         if (HAS_FW_BLC(dev) && enabled) {
1777                 /* self-refresh has much higher latency */
1778                 static const int sr_latency_ns = 6000;
1779                 const struct drm_display_mode *adjusted_mode =
1780                         &to_intel_crtc(enabled)->config.adjusted_mode;
1781                 int clock = adjusted_mode->crtc_clock;
1782                 int htotal = adjusted_mode->crtc_htotal;
1783                 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1784                 int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1785                 unsigned long line_time_us;
1786                 int entries;
1787
1788                 line_time_us = max(htotal * 1000 / clock, 1);
1789
1790                 /* Use ns/us then divide to preserve precision */
1791                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1792                         pixel_size * hdisplay;
1793                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1794                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1795                 srwm = wm_info->fifo_size - entries;
1796                 if (srwm < 0)
1797                         srwm = 1;
1798
1799                 if (IS_I945G(dev) || IS_I945GM(dev))
1800                         I915_WRITE(FW_BLC_SELF,
1801                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1802                 else if (IS_I915GM(dev))
1803                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1804         }
1805
1806         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1807                       planea_wm, planeb_wm, cwm, srwm);
1808
1809         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1810         fwater_hi = (cwm & 0x1f);
1811
1812         /* Set request length to 8 cachelines per fetch */
1813         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1814         fwater_hi = fwater_hi | (1 << 8);
1815
1816         I915_WRITE(FW_BLC, fwater_lo);
1817         I915_WRITE(FW_BLC2, fwater_hi);
1818
1819         if (enabled)
1820                 intel_set_memory_cxsr(dev_priv, true);
1821 }
1822
1823 static void i845_update_wm(struct drm_crtc *unused_crtc)
1824 {
1825         struct drm_device *dev = unused_crtc->dev;
1826         struct drm_i915_private *dev_priv = dev->dev_private;
1827         struct drm_crtc *crtc;
1828         const struct drm_display_mode *adjusted_mode;
1829         uint32_t fwater_lo;
1830         int planea_wm;
1831
1832         crtc = single_enabled_crtc(dev);
1833         if (crtc == NULL)
1834                 return;
1835
1836         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1837         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1838                                        &i845_wm_info,
1839                                        dev_priv->display.get_fifo_size(dev, 0),
1840                                        4, pessimal_latency_ns);
1841         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1842         fwater_lo |= (3<<8) | planea_wm;
1843
1844         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1845
1846         I915_WRITE(FW_BLC, fwater_lo);
1847 }
1848
1849 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1850                                     struct drm_crtc *crtc)
1851 {
1852         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1853         uint32_t pixel_rate;
1854
1855         pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1856
1857         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1858          * adjust the pixel_rate here. */
1859
1860         if (intel_crtc->config.pch_pfit.enabled) {
1861                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1862                 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1863
1864                 pipe_w = intel_crtc->config.pipe_src_w;
1865                 pipe_h = intel_crtc->config.pipe_src_h;
1866                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1867                 pfit_h = pfit_size & 0xFFFF;
1868                 if (pipe_w < pfit_w)
1869                         pipe_w = pfit_w;
1870                 if (pipe_h < pfit_h)
1871                         pipe_h = pfit_h;
1872
1873                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1874                                      pfit_w * pfit_h);
1875         }
1876
1877         return pixel_rate;
1878 }
1879
1880 /* latency must be in 0.1us units. */
1881 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1882                                uint32_t latency)
1883 {
1884         uint64_t ret;
1885
1886         if (WARN(latency == 0, "Latency value missing\n"))
1887                 return UINT_MAX;
1888
1889         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1890         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1891
1892         return ret;
1893 }
1894
1895 /* latency must be in 0.1us units. */
1896 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1897                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1898                                uint32_t latency)
1899 {
1900         uint32_t ret;
1901
1902         if (WARN(latency == 0, "Latency value missing\n"))
1903                 return UINT_MAX;
1904
1905         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1906         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1907         ret = DIV_ROUND_UP(ret, 64) + 2;
1908         return ret;
1909 }
1910
1911 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1912                            uint8_t bytes_per_pixel)
1913 {
1914         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1915 }
1916
1917 struct ilk_pipe_wm_parameters {
1918         bool active;
1919         uint32_t pipe_htotal;
1920         uint32_t pixel_rate;
1921         struct intel_plane_wm_parameters pri;
1922         struct intel_plane_wm_parameters spr;
1923         struct intel_plane_wm_parameters cur;
1924 };
1925
1926 struct ilk_wm_maximums {
1927         uint16_t pri;
1928         uint16_t spr;
1929         uint16_t cur;
1930         uint16_t fbc;
1931 };
1932
1933 /* used in computing the new watermarks state */
1934 struct intel_wm_config {
1935         unsigned int num_pipes_active;
1936         bool sprites_enabled;
1937         bool sprites_scaled;
1938 };
1939
1940 /*
1941  * For both WM_PIPE and WM_LP.
1942  * mem_value must be in 0.1us units.
1943  */
1944 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1945                                    uint32_t mem_value,
1946                                    bool is_lp)
1947 {
1948         uint32_t method1, method2;
1949
1950         if (!params->active || !params->pri.enabled)
1951                 return 0;
1952
1953         method1 = ilk_wm_method1(params->pixel_rate,
1954                                  params->pri.bytes_per_pixel,
1955                                  mem_value);
1956
1957         if (!is_lp)
1958                 return method1;
1959
1960         method2 = ilk_wm_method2(params->pixel_rate,
1961                                  params->pipe_htotal,
1962                                  params->pri.horiz_pixels,
1963                                  params->pri.bytes_per_pixel,
1964                                  mem_value);
1965
1966         return min(method1, method2);
1967 }
1968
1969 /*
1970  * For both WM_PIPE and WM_LP.
1971  * mem_value must be in 0.1us units.
1972  */
1973 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1974                                    uint32_t mem_value)
1975 {
1976         uint32_t method1, method2;
1977
1978         if (!params->active || !params->spr.enabled)
1979                 return 0;
1980
1981         method1 = ilk_wm_method1(params->pixel_rate,
1982                                  params->spr.bytes_per_pixel,
1983                                  mem_value);
1984         method2 = ilk_wm_method2(params->pixel_rate,
1985                                  params->pipe_htotal,
1986                                  params->spr.horiz_pixels,
1987                                  params->spr.bytes_per_pixel,
1988                                  mem_value);
1989         return min(method1, method2);
1990 }
1991
1992 /*
1993  * For both WM_PIPE and WM_LP.
1994  * mem_value must be in 0.1us units.
1995  */
1996 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1997                                    uint32_t mem_value)
1998 {
1999         if (!params->active || !params->cur.enabled)
2000                 return 0;
2001
2002         return ilk_wm_method2(params->pixel_rate,
2003                               params->pipe_htotal,
2004                               params->cur.horiz_pixels,
2005                               params->cur.bytes_per_pixel,
2006                               mem_value);
2007 }
2008
2009 /* Only for WM_LP. */
2010 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
2011                                    uint32_t pri_val)
2012 {
2013         if (!params->active || !params->pri.enabled)
2014                 return 0;
2015
2016         return ilk_wm_fbc(pri_val,
2017                           params->pri.horiz_pixels,
2018                           params->pri.bytes_per_pixel);
2019 }
2020
2021 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
2022 {
2023         if (INTEL_INFO(dev)->gen >= 8)
2024                 return 3072;
2025         else if (INTEL_INFO(dev)->gen >= 7)
2026                 return 768;
2027         else
2028                 return 512;
2029 }
2030
2031 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
2032                                          int level, bool is_sprite)
2033 {
2034         if (INTEL_INFO(dev)->gen >= 8)
2035                 /* BDW primary/sprite plane watermarks */
2036                 return level == 0 ? 255 : 2047;
2037         else if (INTEL_INFO(dev)->gen >= 7)
2038                 /* IVB/HSW primary/sprite plane watermarks */
2039                 return level == 0 ? 127 : 1023;
2040         else if (!is_sprite)
2041                 /* ILK/SNB primary plane watermarks */
2042                 return level == 0 ? 127 : 511;
2043         else
2044                 /* ILK/SNB sprite plane watermarks */
2045                 return level == 0 ? 63 : 255;
2046 }
2047
2048 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
2049                                           int level)
2050 {
2051         if (INTEL_INFO(dev)->gen >= 7)
2052                 return level == 0 ? 63 : 255;
2053         else
2054                 return level == 0 ? 31 : 63;
2055 }
2056
2057 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
2058 {
2059         if (INTEL_INFO(dev)->gen >= 8)
2060                 return 31;
2061         else
2062                 return 15;
2063 }
2064
2065 /* Calculate the maximum primary/sprite plane watermark */
2066 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2067                                      int level,
2068                                      const struct intel_wm_config *config,
2069                                      enum intel_ddb_partitioning ddb_partitioning,
2070                                      bool is_sprite)
2071 {
2072         unsigned int fifo_size = ilk_display_fifo_size(dev);
2073
2074         /* if sprites aren't enabled, sprites get nothing */
2075         if (is_sprite && !config->sprites_enabled)
2076                 return 0;
2077
2078         /* HSW allows LP1+ watermarks even with multiple pipes */
2079         if (level == 0 || config->num_pipes_active > 1) {
2080                 fifo_size /= INTEL_INFO(dev)->num_pipes;
2081
2082                 /*
2083                  * For some reason the non self refresh
2084                  * FIFO size is only half of the self
2085                  * refresh FIFO size on ILK/SNB.
2086                  */
2087                 if (INTEL_INFO(dev)->gen <= 6)
2088                         fifo_size /= 2;
2089         }
2090
2091         if (config->sprites_enabled) {
2092                 /* level 0 is always calculated with 1:1 split */
2093                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2094                         if (is_sprite)
2095                                 fifo_size *= 5;
2096                         fifo_size /= 6;
2097                 } else {
2098                         fifo_size /= 2;
2099                 }
2100         }
2101
2102         /* clamp to max that the registers can hold */
2103         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
2104 }
2105
2106 /* Calculate the maximum cursor plane watermark */
2107 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2108                                       int level,
2109                                       const struct intel_wm_config *config)
2110 {
2111         /* HSW LP1+ watermarks w/ multiple pipes */
2112         if (level > 0 && config->num_pipes_active > 1)
2113                 return 64;
2114
2115         /* otherwise just report max that registers can hold */
2116         return ilk_cursor_wm_reg_max(dev, level);
2117 }
2118
2119 static void ilk_compute_wm_maximums(const struct drm_device *dev,
2120                                     int level,
2121                                     const struct intel_wm_config *config,
2122                                     enum intel_ddb_partitioning ddb_partitioning,
2123                                     struct ilk_wm_maximums *max)
2124 {
2125         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2126         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2127         max->cur = ilk_cursor_wm_max(dev, level, config);
2128         max->fbc = ilk_fbc_wm_reg_max(dev);
2129 }
2130
2131 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
2132                                         int level,
2133                                         struct ilk_wm_maximums *max)
2134 {
2135         max->pri = ilk_plane_wm_reg_max(dev, level, false);
2136         max->spr = ilk_plane_wm_reg_max(dev, level, true);
2137         max->cur = ilk_cursor_wm_reg_max(dev, level);
2138         max->fbc = ilk_fbc_wm_reg_max(dev);
2139 }
2140
2141 static bool ilk_validate_wm_level(int level,
2142                                   const struct ilk_wm_maximums *max,
2143                                   struct intel_wm_level *result)
2144 {
2145         bool ret;
2146
2147         /* already determined to be invalid? */
2148         if (!result->enable)
2149                 return false;
2150
2151         result->enable = result->pri_val <= max->pri &&
2152                          result->spr_val <= max->spr &&
2153                          result->cur_val <= max->cur;
2154
2155         ret = result->enable;
2156
2157         /*
2158          * HACK until we can pre-compute everything,
2159          * and thus fail gracefully if LP0 watermarks
2160          * are exceeded...
2161          */
2162         if (level == 0 && !result->enable) {
2163                 if (result->pri_val > max->pri)
2164                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2165                                       level, result->pri_val, max->pri);
2166                 if (result->spr_val > max->spr)
2167                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2168                                       level, result->spr_val, max->spr);
2169                 if (result->cur_val > max->cur)
2170                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2171                                       level, result->cur_val, max->cur);
2172
2173                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2174                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2175                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2176                 result->enable = true;
2177         }
2178
2179         return ret;
2180 }
2181
2182 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2183                                  int level,
2184                                  const struct ilk_pipe_wm_parameters *p,
2185                                  struct intel_wm_level *result)
2186 {
2187         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2188         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2189         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2190
2191         /* WM1+ latency values stored in 0.5us units */
2192         if (level > 0) {
2193                 pri_latency *= 5;
2194                 spr_latency *= 5;
2195                 cur_latency *= 5;
2196         }
2197
2198         result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2199         result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2200         result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2201         result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2202         result->enable = true;
2203 }
2204
2205 static uint32_t
2206 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2207 {
2208         struct drm_i915_private *dev_priv = dev->dev_private;
2209         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2210         struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2211         u32 linetime, ips_linetime;
2212
2213         if (!intel_crtc_active(crtc))
2214                 return 0;
2215
2216         /* The WM are computed with base on how long it takes to fill a single
2217          * row at the given clock rate, multiplied by 8.
2218          * */
2219         linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2220                                      mode->crtc_clock);
2221         ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2222                                          intel_ddi_get_cdclk_freq(dev_priv));
2223
2224         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2225                PIPE_WM_LINETIME_TIME(linetime);
2226 }
2227
2228 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2229 {
2230         struct drm_i915_private *dev_priv = dev->dev_private;
2231
2232         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2233                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2234
2235                 wm[0] = (sskpd >> 56) & 0xFF;
2236                 if (wm[0] == 0)
2237                         wm[0] = sskpd & 0xF;
2238                 wm[1] = (sskpd >> 4) & 0xFF;
2239                 wm[2] = (sskpd >> 12) & 0xFF;
2240                 wm[3] = (sskpd >> 20) & 0x1FF;
2241                 wm[4] = (sskpd >> 32) & 0x1FF;
2242         } else if (INTEL_INFO(dev)->gen >= 6) {
2243                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2244
2245                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2246                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2247                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2248                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2249         } else if (INTEL_INFO(dev)->gen >= 5) {
2250                 uint32_t mltr = I915_READ(MLTR_ILK);
2251
2252                 /* ILK primary LP0 latency is 700 ns */
2253                 wm[0] = 7;
2254                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2255                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2256         }
2257 }
2258
2259 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2260 {
2261         /* ILK sprite LP0 latency is 1300 ns */
2262         if (INTEL_INFO(dev)->gen == 5)
2263                 wm[0] = 13;
2264 }
2265
2266 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2267 {
2268         /* ILK cursor LP0 latency is 1300 ns */
2269         if (INTEL_INFO(dev)->gen == 5)
2270                 wm[0] = 13;
2271
2272         /* WaDoubleCursorLP3Latency:ivb */
2273         if (IS_IVYBRIDGE(dev))
2274                 wm[3] *= 2;
2275 }
2276
2277 int ilk_wm_max_level(const struct drm_device *dev)
2278 {
2279         /* how many WM levels are we expecting */
2280         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2281                 return 4;
2282         else if (INTEL_INFO(dev)->gen >= 6)
2283                 return 3;
2284         else
2285                 return 2;
2286 }
2287
2288 static void intel_print_wm_latency(struct drm_device *dev,
2289                                    const char *name,
2290                                    const uint16_t wm[5])
2291 {
2292         int level, max_level = ilk_wm_max_level(dev);
2293
2294         for (level = 0; level <= max_level; level++) {
2295                 unsigned int latency = wm[level];
2296
2297                 if (latency == 0) {
2298                         DRM_ERROR("%s WM%d latency not provided\n",
2299                                   name, level);
2300                         continue;
2301                 }
2302
2303                 /* WM1+ latency values in 0.5us units */
2304                 if (level > 0)
2305                         latency *= 5;
2306
2307                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2308                               name, level, wm[level],
2309                               latency / 10, latency % 10);
2310         }
2311 }
2312
2313 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2314                                     uint16_t wm[5], uint16_t min)
2315 {
2316         int level, max_level = ilk_wm_max_level(dev_priv->dev);
2317
2318         if (wm[0] >= min)
2319                 return false;
2320
2321         wm[0] = max(wm[0], min);
2322         for (level = 1; level <= max_level; level++)
2323                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2324
2325         return true;
2326 }
2327
2328 static void snb_wm_latency_quirk(struct drm_device *dev)
2329 {
2330         struct drm_i915_private *dev_priv = dev->dev_private;
2331         bool changed;
2332
2333         /*
2334          * The BIOS provided WM memory latency values are often
2335          * inadequate for high resolution displays. Adjust them.
2336          */
2337         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2338                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2339                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2340
2341         if (!changed)
2342                 return;
2343
2344         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2345         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2346         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2347         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2348 }
2349
2350 static void ilk_setup_wm_latency(struct drm_device *dev)
2351 {
2352         struct drm_i915_private *dev_priv = dev->dev_private;
2353
2354         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2355
2356         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2357                sizeof(dev_priv->wm.pri_latency));
2358         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2359                sizeof(dev_priv->wm.pri_latency));
2360
2361         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2362         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2363
2364         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2365         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2366         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2367
2368         if (IS_GEN6(dev))
2369                 snb_wm_latency_quirk(dev);
2370 }
2371
2372 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2373                                       struct ilk_pipe_wm_parameters *p)
2374 {
2375         struct drm_device *dev = crtc->dev;
2376         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2377         enum i915_pipe pipe = intel_crtc->pipe;
2378         struct drm_plane *plane;
2379
2380         if (!intel_crtc_active(crtc))
2381                 return;
2382
2383         p->active = true;
2384         p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
2385         p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2386         p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
2387         p->cur.bytes_per_pixel = 4;
2388         p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2389         p->cur.horiz_pixels = intel_crtc->cursor_width;
2390         /* TODO: for now, assume primary and cursor planes are always enabled. */
2391         p->pri.enabled = true;
2392         p->cur.enabled = true;
2393
2394         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2395                 struct intel_plane *intel_plane = to_intel_plane(plane);
2396
2397                 if (intel_plane->pipe == pipe) {
2398                         p->spr = intel_plane->wm;
2399                         break;
2400                 }
2401         }
2402 }
2403
2404 static void ilk_compute_wm_config(struct drm_device *dev,
2405                                   struct intel_wm_config *config)
2406 {
2407         struct intel_crtc *intel_crtc;
2408
2409         /* Compute the currently _active_ config */
2410         for_each_intel_crtc(dev, intel_crtc) {
2411                 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2412
2413                 if (!wm->pipe_enabled)
2414                         continue;
2415
2416                 config->sprites_enabled |= wm->sprites_enabled;
2417                 config->sprites_scaled |= wm->sprites_scaled;
2418                 config->num_pipes_active++;
2419         }
2420 }
2421
2422 /* Compute new watermarks for the pipe */
2423 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2424                                   const struct ilk_pipe_wm_parameters *params,
2425                                   struct intel_pipe_wm *pipe_wm)
2426 {
2427         struct drm_device *dev = crtc->dev;
2428         const struct drm_i915_private *dev_priv = dev->dev_private;
2429         int level, max_level = ilk_wm_max_level(dev);
2430         /* LP0 watermark maximums depend on this pipe alone */
2431         struct intel_wm_config config = {
2432                 .num_pipes_active = 1,
2433                 .sprites_enabled = params->spr.enabled,
2434                 .sprites_scaled = params->spr.scaled,
2435         };
2436         struct ilk_wm_maximums max;
2437
2438         pipe_wm->pipe_enabled = params->active;
2439         pipe_wm->sprites_enabled = params->spr.enabled;
2440         pipe_wm->sprites_scaled = params->spr.scaled;
2441
2442         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2443         if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2444                 max_level = 1;
2445
2446         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2447         if (params->spr.scaled)
2448                 max_level = 0;
2449
2450         ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2451
2452         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2453                 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2454
2455         /* LP0 watermarks always use 1/2 DDB partitioning */
2456         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2457
2458         /* At least LP0 must be valid */
2459         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2460                 return false;
2461
2462         ilk_compute_wm_reg_maximums(dev, 1, &max);
2463
2464         for (level = 1; level <= max_level; level++) {
2465                 struct intel_wm_level wm = {};
2466
2467                 ilk_compute_wm_level(dev_priv, level, params, &wm);
2468
2469                 /*
2470                  * Disable any watermark level that exceeds the
2471                  * register maximums since such watermarks are
2472                  * always invalid.
2473                  */
2474                 if (!ilk_validate_wm_level(level, &max, &wm))
2475                         break;
2476
2477                 pipe_wm->wm[level] = wm;
2478         }
2479
2480         return true;
2481 }
2482
2483 /*
2484  * Merge the watermarks from all active pipes for a specific level.
2485  */
2486 static void ilk_merge_wm_level(struct drm_device *dev,
2487                                int level,
2488                                struct intel_wm_level *ret_wm)
2489 {
2490         struct intel_crtc *intel_crtc;
2491
2492         ret_wm->enable = true;
2493
2494         for_each_intel_crtc(dev, intel_crtc) {
2495                 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2496                 const struct intel_wm_level *wm = &active->wm[level];
2497
2498                 if (!active->pipe_enabled)
2499                         continue;
2500
2501                 /*
2502                  * The watermark values may have been used in the past,
2503                  * so we must maintain them in the registers for some
2504                  * time even if the level is now disabled.
2505                  */
2506                 if (!wm->enable)
2507                         ret_wm->enable = false;
2508
2509                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2510                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2511                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2512                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2513         }
2514 }
2515
2516 /*
2517  * Merge all low power watermarks for all active pipes.
2518  */
2519 static void ilk_wm_merge(struct drm_device *dev,
2520                          const struct intel_wm_config *config,
2521                          const struct ilk_wm_maximums *max,
2522                          struct intel_pipe_wm *merged)
2523 {
2524         int level, max_level = ilk_wm_max_level(dev);
2525         int last_enabled_level = max_level;
2526
2527         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2528         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2529             config->num_pipes_active > 1)
2530                 return;
2531
2532         /* ILK: FBC WM must be disabled always */
2533         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2534
2535         /* merge each WM1+ level */
2536         for (level = 1; level <= max_level; level++) {
2537                 struct intel_wm_level *wm = &merged->wm[level];
2538
2539                 ilk_merge_wm_level(dev, level, wm);
2540
2541                 if (level > last_enabled_level)
2542                         wm->enable = false;
2543                 else if (!ilk_validate_wm_level(level, max, wm))
2544                         /* make sure all following levels get disabled */
2545                         last_enabled_level = level - 1;
2546
2547                 /*
2548                  * The spec says it is preferred to disable
2549                  * FBC WMs instead of disabling a WM level.
2550                  */
2551                 if (wm->fbc_val > max->fbc) {
2552                         if (wm->enable)
2553                                 merged->fbc_wm_enabled = false;
2554                         wm->fbc_val = 0;
2555                 }
2556         }
2557
2558         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2559         /*
2560          * FIXME this is racy. FBC might get enabled later.
2561          * What we should check here is whether FBC can be
2562          * enabled sometime later.
2563          */
2564         if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2565                 for (level = 2; level <= max_level; level++) {
2566                         struct intel_wm_level *wm = &merged->wm[level];
2567
2568                         wm->enable = false;
2569                 }
2570         }
2571 }
2572
2573 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2574 {
2575         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2576         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2577 }
2578
2579 /* The value we need to program into the WM_LPx latency field */
2580 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2581 {
2582         struct drm_i915_private *dev_priv = dev->dev_private;
2583
2584         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2585                 return 2 * level;
2586         else
2587                 return dev_priv->wm.pri_latency[level];
2588 }
2589
2590 static void ilk_compute_wm_results(struct drm_device *dev,
2591                                    const struct intel_pipe_wm *merged,
2592                                    enum intel_ddb_partitioning partitioning,
2593                                    struct ilk_wm_values *results)
2594 {
2595         struct intel_crtc *intel_crtc;
2596         int level, wm_lp;
2597
2598         results->enable_fbc_wm = merged->fbc_wm_enabled;
2599         results->partitioning = partitioning;
2600
2601         /* LP1+ register values */
2602         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2603                 const struct intel_wm_level *r;
2604
2605                 level = ilk_wm_lp_to_level(wm_lp, merged);
2606
2607                 r = &merged->wm[level];
2608
2609                 /*
2610                  * Maintain the watermark values even if the level is
2611                  * disabled. Doing otherwise could cause underruns.
2612                  */
2613                 results->wm_lp[wm_lp - 1] =
2614                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2615                         (r->pri_val << WM1_LP_SR_SHIFT) |
2616                         r->cur_val;
2617
2618                 if (r->enable)
2619                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2620
2621                 if (INTEL_INFO(dev)->gen >= 8)
2622                         results->wm_lp[wm_lp - 1] |=
2623                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2624                 else
2625                         results->wm_lp[wm_lp - 1] |=
2626                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2627
2628                 /*
2629                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2630                  * level is disabled. Doing otherwise could cause underruns.
2631                  */
2632                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2633                         WARN_ON(wm_lp != 1);
2634                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2635                 } else
2636                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2637         }
2638
2639         /* LP0 register values */
2640         for_each_intel_crtc(dev, intel_crtc) {
2641                 enum i915_pipe pipe = intel_crtc->pipe;
2642                 const struct intel_wm_level *r =
2643                         &intel_crtc->wm.active.wm[0];
2644
2645                 if (WARN_ON(!r->enable))
2646                         continue;
2647
2648                 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2649
2650                 results->wm_pipe[pipe] =
2651                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2652                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2653                         r->cur_val;
2654         }
2655 }
2656
2657 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2658  * case both are at the same level. Prefer r1 in case they're the same. */
2659 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2660                                                   struct intel_pipe_wm *r1,
2661                                                   struct intel_pipe_wm *r2)
2662 {
2663         int level, max_level = ilk_wm_max_level(dev);
2664         int level1 = 0, level2 = 0;
2665
2666         for (level = 1; level <= max_level; level++) {
2667                 if (r1->wm[level].enable)
2668                         level1 = level;
2669                 if (r2->wm[level].enable)
2670                         level2 = level;
2671         }
2672
2673         if (level1 == level2) {
2674                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2675                         return r2;
2676                 else
2677                         return r1;
2678         } else if (level1 > level2) {
2679                 return r1;
2680         } else {
2681                 return r2;
2682         }
2683 }
2684
2685 /* dirty bits used to track which watermarks need changes */
2686 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2687 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2688 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2689 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2690 #define WM_DIRTY_FBC (1 << 24)
2691 #define WM_DIRTY_DDB (1 << 25)
2692
2693 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2694                                          const struct ilk_wm_values *old,
2695                                          const struct ilk_wm_values *new)
2696 {
2697         unsigned int dirty = 0;
2698         enum i915_pipe pipe;
2699         int wm_lp;
2700
2701         for_each_pipe(dev_priv, pipe) {
2702                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2703                         dirty |= WM_DIRTY_LINETIME(pipe);
2704                         /* Must disable LP1+ watermarks too */
2705                         dirty |= WM_DIRTY_LP_ALL;
2706                 }
2707
2708                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2709                         dirty |= WM_DIRTY_PIPE(pipe);
2710                         /* Must disable LP1+ watermarks too */
2711                         dirty |= WM_DIRTY_LP_ALL;
2712                 }
2713         }
2714
2715         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2716                 dirty |= WM_DIRTY_FBC;
2717                 /* Must disable LP1+ watermarks too */
2718                 dirty |= WM_DIRTY_LP_ALL;
2719         }
2720
2721         if (old->partitioning != new->partitioning) {
2722                 dirty |= WM_DIRTY_DDB;
2723                 /* Must disable LP1+ watermarks too */
2724                 dirty |= WM_DIRTY_LP_ALL;
2725         }
2726
2727         /* LP1+ watermarks already deemed dirty, no need to continue */
2728         if (dirty & WM_DIRTY_LP_ALL)
2729                 return dirty;
2730
2731         /* Find the lowest numbered LP1+ watermark in need of an update... */
2732         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2733                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2734                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2735                         break;
2736         }
2737
2738         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2739         for (; wm_lp <= 3; wm_lp++)
2740                 dirty |= WM_DIRTY_LP(wm_lp);
2741
2742         return dirty;
2743 }
2744
2745 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2746                                unsigned int dirty)
2747 {
2748         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2749         bool changed = false;
2750
2751         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2752                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2753                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2754                 changed = true;
2755         }
2756         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2757                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2758                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2759                 changed = true;
2760         }
2761         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2762                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2763                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2764                 changed = true;
2765         }
2766
2767         /*
2768          * Don't touch WM1S_LP_EN here.
2769          * Doing so could cause underruns.
2770          */
2771
2772         return changed;
2773 }
2774
2775 /*
2776  * The spec says we shouldn't write when we don't need, because every write
2777  * causes WMs to be re-evaluated, expending some power.
2778  */
2779 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2780                                 struct ilk_wm_values *results)
2781 {
2782         struct drm_device *dev = dev_priv->dev;
2783         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2784         unsigned int dirty;
2785         uint32_t val;
2786
2787         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2788         if (!dirty)
2789                 return;
2790
2791         _ilk_disable_lp_wm(dev_priv, dirty);
2792
2793         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2794                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2795         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2796                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2797         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2798                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2799
2800         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2801                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2802         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2803                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2804         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2805                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2806
2807         if (dirty & WM_DIRTY_DDB) {
2808                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2809                         val = I915_READ(WM_MISC);
2810                         if (results->partitioning == INTEL_DDB_PART_1_2)
2811                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2812                         else
2813                                 val |= WM_MISC_DATA_PARTITION_5_6;
2814                         I915_WRITE(WM_MISC, val);
2815                 } else {
2816                         val = I915_READ(DISP_ARB_CTL2);
2817                         if (results->partitioning == INTEL_DDB_PART_1_2)
2818                                 val &= ~DISP_DATA_PARTITION_5_6;
2819                         else
2820                                 val |= DISP_DATA_PARTITION_5_6;
2821                         I915_WRITE(DISP_ARB_CTL2, val);
2822                 }
2823         }
2824
2825         if (dirty & WM_DIRTY_FBC) {
2826                 val = I915_READ(DISP_ARB_CTL);
2827                 if (results->enable_fbc_wm)
2828                         val &= ~DISP_FBC_WM_DIS;
2829                 else
2830                         val |= DISP_FBC_WM_DIS;
2831                 I915_WRITE(DISP_ARB_CTL, val);
2832         }
2833
2834         if (dirty & WM_DIRTY_LP(1) &&
2835             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2836                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2837
2838         if (INTEL_INFO(dev)->gen >= 7) {
2839                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2840                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2841                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2842                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2843         }
2844
2845         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2846                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2847         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2848                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2849         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2850                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2851
2852         dev_priv->wm.hw = *results;
2853 }
2854
2855 static bool ilk_disable_lp_wm(struct drm_device *dev)
2856 {
2857         struct drm_i915_private *dev_priv = dev->dev_private;
2858
2859         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2860 }
2861
2862 static void ilk_update_wm(struct drm_crtc *crtc)
2863 {
2864         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2865         struct drm_device *dev = crtc->dev;
2866         struct drm_i915_private *dev_priv = dev->dev_private;
2867         struct ilk_wm_maximums max;
2868         struct ilk_pipe_wm_parameters params = {};
2869         struct ilk_wm_values results = {};
2870         enum intel_ddb_partitioning partitioning;
2871         struct intel_pipe_wm pipe_wm = {};
2872         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2873         struct intel_wm_config config = {};
2874
2875         ilk_compute_wm_parameters(crtc, &params);
2876
2877         intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2878
2879         if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2880                 return;
2881
2882         intel_crtc->wm.active = pipe_wm;
2883
2884         ilk_compute_wm_config(dev, &config);
2885
2886         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2887         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2888
2889         /* 5/6 split only in single pipe config on IVB+ */
2890         if (INTEL_INFO(dev)->gen >= 7 &&
2891             config.num_pipes_active == 1 && config.sprites_enabled) {
2892                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2893                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2894
2895                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2896         } else {
2897                 best_lp_wm = &lp_wm_1_2;
2898         }
2899
2900         partitioning = (best_lp_wm == &lp_wm_1_2) ?
2901                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2902
2903         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2904
2905         ilk_write_wm_values(dev_priv, &results);
2906 }
2907
2908 static void
2909 ilk_update_sprite_wm(struct drm_plane *plane,
2910                      struct drm_crtc *crtc,
2911                      uint32_t sprite_width, uint32_t sprite_height,
2912                      int pixel_size, bool enabled, bool scaled)
2913 {
2914         struct drm_device *dev = plane->dev;
2915         struct intel_plane *intel_plane = to_intel_plane(plane);
2916
2917         intel_plane->wm.enabled = enabled;
2918         intel_plane->wm.scaled = scaled;
2919         intel_plane->wm.horiz_pixels = sprite_width;
2920         intel_plane->wm.vert_pixels = sprite_width;
2921         intel_plane->wm.bytes_per_pixel = pixel_size;
2922
2923         /*
2924          * IVB workaround: must disable low power watermarks for at least
2925          * one frame before enabling scaling.  LP watermarks can be re-enabled
2926          * when scaling is disabled.
2927          *
2928          * WaCxSRDisabledForSpriteScaling:ivb
2929          */
2930         if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2931                 intel_wait_for_vblank(dev, intel_plane->pipe);
2932
2933         ilk_update_wm(crtc);
2934 }
2935
2936 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
2937 {
2938         struct drm_device *dev = crtc->dev;
2939         struct drm_i915_private *dev_priv = dev->dev_private;
2940         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2941         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2942         struct intel_pipe_wm *active = &intel_crtc->wm.active;
2943         enum i915_pipe pipe = intel_crtc->pipe;
2944         static const unsigned int wm0_pipe_reg[] = {
2945                 [PIPE_A] = WM0_PIPEA_ILK,
2946                 [PIPE_B] = WM0_PIPEB_ILK,
2947                 [PIPE_C] = WM0_PIPEC_IVB,
2948         };
2949
2950         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2951         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2952                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2953
2954         active->pipe_enabled = intel_crtc_active(crtc);
2955
2956         if (active->pipe_enabled) {
2957                 u32 tmp = hw->wm_pipe[pipe];
2958
2959                 /*
2960                  * For active pipes LP0 watermark is marked as
2961                  * enabled, and LP1+ watermaks as disabled since
2962                  * we can't really reverse compute them in case
2963                  * multiple pipes are active.
2964                  */
2965                 active->wm[0].enable = true;
2966                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2967                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2968                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2969                 active->linetime = hw->wm_linetime[pipe];
2970         } else {
2971                 int level, max_level = ilk_wm_max_level(dev);
2972
2973                 /*
2974                  * For inactive pipes, all watermark levels
2975                  * should be marked as enabled but zeroed,
2976                  * which is what we'd compute them to.
2977                  */
2978                 for (level = 0; level <= max_level; level++)
2979                         active->wm[level].enable = true;
2980         }
2981 }
2982
2983 void ilk_wm_get_hw_state(struct drm_device *dev)
2984 {
2985         struct drm_i915_private *dev_priv = dev->dev_private;
2986         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2987         struct drm_crtc *crtc;
2988
2989         for_each_crtc(dev, crtc)
2990                 ilk_pipe_wm_get_hw_state(crtc);
2991
2992         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
2993         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
2994         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
2995
2996         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2997         if (INTEL_INFO(dev)->gen >= 7) {
2998                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2999                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
3000         }
3001
3002         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3003                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
3004                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3005         else if (IS_IVYBRIDGE(dev))
3006                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
3007                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3008
3009         hw->enable_fbc_wm =
3010                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3011 }
3012
3013 /**
3014  * intel_update_watermarks - update FIFO watermark values based on current modes
3015  *
3016  * Calculate watermark values for the various WM regs based on current mode
3017  * and plane configuration.
3018  *
3019  * There are several cases to deal with here:
3020  *   - normal (i.e. non-self-refresh)
3021  *   - self-refresh (SR) mode
3022  *   - lines are large relative to FIFO size (buffer can hold up to 2)
3023  *   - lines are small relative to FIFO size (buffer can hold more than 2
3024  *     lines), so need to account for TLB latency
3025  *
3026  *   The normal calculation is:
3027  *     watermark = dotclock * bytes per pixel * latency
3028  *   where latency is platform & configuration dependent (we assume pessimal
3029  *   values here).
3030  *
3031  *   The SR calculation is:
3032  *     watermark = (trunc(latency/line time)+1) * surface width *
3033  *       bytes per pixel
3034  *   where
3035  *     line time = htotal / dotclock
3036  *     surface width = hdisplay for normal plane and 64 for cursor
3037  *   and latency is assumed to be high, as above.
3038  *
3039  * The final value programmed to the register should always be rounded up,
3040  * and include an extra 2 entries to account for clock crossings.
3041  *
3042  * We don't use the sprite, so we can ignore that.  And on Crestline we have
3043  * to set the non-SR watermarks to 8.
3044  */
3045 void intel_update_watermarks(struct drm_crtc *crtc)
3046 {
3047         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3048
3049         if (dev_priv->display.update_wm)
3050                 dev_priv->display.update_wm(crtc);
3051 }
3052
3053 void intel_update_sprite_watermarks(struct drm_plane *plane,
3054                                     struct drm_crtc *crtc,
3055                                     uint32_t sprite_width,
3056                                     uint32_t sprite_height,
3057                                     int pixel_size,
3058                                     bool enabled, bool scaled)
3059 {
3060         struct drm_i915_private *dev_priv = plane->dev->dev_private;
3061
3062         if (dev_priv->display.update_sprite_wm)
3063                 dev_priv->display.update_sprite_wm(plane, crtc,
3064                                                    sprite_width, sprite_height,
3065                                                    pixel_size, enabled, scaled);
3066 }
3067
3068 static struct drm_i915_gem_object *
3069 intel_alloc_context_page(struct drm_device *dev)
3070 {
3071         struct drm_i915_gem_object *ctx;
3072         int ret;
3073
3074         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3075
3076         ctx = i915_gem_alloc_object(dev, 4096);
3077         if (!ctx) {
3078                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
3079                 return NULL;
3080         }
3081
3082         ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
3083         if (ret) {
3084                 DRM_ERROR("failed to pin power context: %d\n", ret);
3085                 goto err_unref;
3086         }
3087
3088         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
3089         if (ret) {
3090                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
3091                 goto err_unpin;
3092         }
3093
3094         return ctx;
3095
3096 err_unpin:
3097         i915_gem_object_ggtt_unpin(ctx);
3098 err_unref:
3099         drm_gem_object_unreference(&ctx->base);
3100         return NULL;
3101 }
3102
3103 /**
3104  * Lock protecting IPS related data structures
3105  */
3106 struct lock mchdev_lock;
3107 LOCK_SYSINIT(mchdev, &mchdev_lock, "mchdev", LK_CANRECURSE);
3108
3109 /* Global for IPS driver to get at the current i915 device. Protected by
3110  * mchdev_lock. */
3111 static struct drm_i915_private *i915_mch_dev;
3112
3113 bool ironlake_set_drps(struct drm_device *dev, u8 val)
3114 {
3115         struct drm_i915_private *dev_priv = dev->dev_private;
3116         u16 rgvswctl;
3117
3118         assert_spin_locked(&mchdev_lock);
3119
3120         rgvswctl = I915_READ16(MEMSWCTL);
3121         if (rgvswctl & MEMCTL_CMD_STS) {
3122                 DRM_DEBUG("gpu busy, RCS change rejected\n");
3123                 return false; /* still busy with another command */
3124         }
3125
3126         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3127                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3128         I915_WRITE16(MEMSWCTL, rgvswctl);
3129         POSTING_READ16(MEMSWCTL);
3130
3131         rgvswctl |= MEMCTL_CMD_STS;
3132         I915_WRITE16(MEMSWCTL, rgvswctl);
3133
3134         return true;
3135 }
3136
3137 static void ironlake_enable_drps(struct drm_device *dev)
3138 {
3139         struct drm_i915_private *dev_priv = dev->dev_private;
3140         u32 rgvmodectl = I915_READ(MEMMODECTL);
3141         u8 fmax, fmin, fstart, vstart;
3142
3143         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3144
3145         /* Enable temp reporting */
3146         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3147         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3148
3149         /* 100ms RC evaluation intervals */
3150         I915_WRITE(RCUPEI, 100000);
3151         I915_WRITE(RCDNEI, 100000);
3152
3153         /* Set max/min thresholds to 90ms and 80ms respectively */
3154         I915_WRITE(RCBMAXAVG, 90000);
3155         I915_WRITE(RCBMINAVG, 80000);
3156
3157         I915_WRITE(MEMIHYST, 1);
3158
3159         /* Set up min, max, and cur for interrupt handling */
3160         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3161         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3162         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3163                 MEMMODE_FSTART_SHIFT;
3164
3165         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3166                 PXVFREQ_PX_SHIFT;
3167
3168         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3169         dev_priv->ips.fstart = fstart;
3170
3171         dev_priv->ips.max_delay = fstart;
3172         dev_priv->ips.min_delay = fmin;
3173         dev_priv->ips.cur_delay = fstart;
3174
3175         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3176                          fmax, fmin, fstart);
3177
3178         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3179
3180         /*
3181          * Interrupts will be enabled in ironlake_irq_postinstall
3182          */
3183
3184         I915_WRITE(VIDSTART, vstart);
3185         POSTING_READ(VIDSTART);
3186
3187         rgvmodectl |= MEMMODE_SWMODE_EN;
3188         I915_WRITE(MEMMODECTL, rgvmodectl);
3189
3190         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3191                 DRM_ERROR("stuck trying to change perf mode\n");
3192         mdelay(1);
3193
3194         ironlake_set_drps(dev, fstart);
3195
3196         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3197                 I915_READ(0x112e0);
3198         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3199         dev_priv->ips.last_count2 = I915_READ(0x112f4);
3200         getrawmonotonic(&dev_priv->ips.last_time2);
3201
3202         lockmgr(&mchdev_lock, LK_RELEASE);
3203 }
3204
3205 static void ironlake_disable_drps(struct drm_device *dev)
3206 {
3207         struct drm_i915_private *dev_priv = dev->dev_private;
3208         u16 rgvswctl;
3209
3210         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3211
3212         rgvswctl = I915_READ16(MEMSWCTL);
3213
3214         /* Ack interrupts, disable EFC interrupt */
3215         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3216         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3217         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3218         I915_WRITE(DEIIR, DE_PCU_EVENT);
3219         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3220
3221         /* Go back to the starting frequency */
3222         ironlake_set_drps(dev, dev_priv->ips.fstart);
3223         mdelay(1);
3224         rgvswctl |= MEMCTL_CMD_STS;
3225         I915_WRITE(MEMSWCTL, rgvswctl);
3226         mdelay(1);
3227
3228         lockmgr(&mchdev_lock, LK_RELEASE);
3229 }
3230
3231 /* There's a funny hw issue where the hw returns all 0 when reading from
3232  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3233  * ourselves, instead of doing a rmw cycle (which might result in us clearing
3234  * all limits and the gpu stuck at whatever frequency it is at atm).
3235  */
3236 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3237 {
3238         u32 limits;
3239
3240         /* Only set the down limit when we've reached the lowest level to avoid
3241          * getting more interrupts, otherwise leave this clear. This prevents a
3242          * race in the hw when coming out of rc6: There's a tiny window where
3243          * the hw runs at the minimal clock before selecting the desired
3244          * frequency, if the down threshold expires in that window we will not
3245          * receive a down interrupt. */
3246         limits = dev_priv->rps.max_freq_softlimit << 24;
3247         if (val <= dev_priv->rps.min_freq_softlimit)
3248                 limits |= dev_priv->rps.min_freq_softlimit << 16;
3249
3250         return limits;
3251 }
3252
3253 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3254 {
3255         int new_power;
3256
3257         new_power = dev_priv->rps.power;
3258         switch (dev_priv->rps.power) {
3259         case LOW_POWER:
3260                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3261                         new_power = BETWEEN;
3262                 break;
3263
3264         case BETWEEN:
3265                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3266                         new_power = LOW_POWER;
3267                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3268                         new_power = HIGH_POWER;
3269                 break;
3270
3271         case HIGH_POWER:
3272                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3273                         new_power = BETWEEN;
3274                 break;
3275         }
3276         /* Max/min bins are special */
3277         if (val == dev_priv->rps.min_freq_softlimit)
3278                 new_power = LOW_POWER;
3279         if (val == dev_priv->rps.max_freq_softlimit)
3280                 new_power = HIGH_POWER;
3281         if (new_power == dev_priv->rps.power)
3282                 return;
3283
3284         /* Note the units here are not exactly 1us, but 1280ns. */
3285         switch (new_power) {
3286         case LOW_POWER:
3287                 /* Upclock if more than 95% busy over 16ms */
3288                 I915_WRITE(GEN6_RP_UP_EI, 12500);
3289                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3290
3291                 /* Downclock if less than 85% busy over 32ms */
3292                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3293                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3294
3295                 I915_WRITE(GEN6_RP_CONTROL,
3296                            GEN6_RP_MEDIA_TURBO |
3297                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3298                            GEN6_RP_MEDIA_IS_GFX |
3299                            GEN6_RP_ENABLE |
3300                            GEN6_RP_UP_BUSY_AVG |
3301                            GEN6_RP_DOWN_IDLE_AVG);
3302                 break;
3303
3304         case BETWEEN:
3305                 /* Upclock if more than 90% busy over 13ms */
3306                 I915_WRITE(GEN6_RP_UP_EI, 10250);
3307                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3308
3309                 /* Downclock if less than 75% busy over 32ms */
3310                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3311                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3312
3313                 I915_WRITE(GEN6_RP_CONTROL,
3314                            GEN6_RP_MEDIA_TURBO |
3315                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3316                            GEN6_RP_MEDIA_IS_GFX |
3317                            GEN6_RP_ENABLE |
3318                            GEN6_RP_UP_BUSY_AVG |
3319                            GEN6_RP_DOWN_IDLE_AVG);
3320                 break;
3321
3322         case HIGH_POWER:
3323                 /* Upclock if more than 85% busy over 10ms */
3324                 I915_WRITE(GEN6_RP_UP_EI, 8000);
3325                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3326
3327                 /* Downclock if less than 60% busy over 32ms */
3328                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3329                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3330
3331                 I915_WRITE(GEN6_RP_CONTROL,
3332                            GEN6_RP_MEDIA_TURBO |
3333                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3334                            GEN6_RP_MEDIA_IS_GFX |
3335                            GEN6_RP_ENABLE |
3336                            GEN6_RP_UP_BUSY_AVG |
3337                            GEN6_RP_DOWN_IDLE_AVG);
3338                 break;
3339         }
3340
3341         dev_priv->rps.power = new_power;
3342         dev_priv->rps.last_adj = 0;
3343 }
3344
3345 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3346 {
3347         u32 mask = 0;
3348
3349         if (val > dev_priv->rps.min_freq_softlimit)
3350                 mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3351         if (val < dev_priv->rps.max_freq_softlimit)
3352                 mask |= GEN6_PM_RP_UP_THRESHOLD;
3353
3354         mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
3355         mask &= dev_priv->pm_rps_events;
3356
3357         /* IVB and SNB hard hangs on looping batchbuffer
3358          * if GEN6_PM_UP_EI_EXPIRED is masked.
3359          */
3360         if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
3361                 mask |= GEN6_PM_RP_UP_EI_EXPIRED;
3362
3363         if (IS_GEN8(dev_priv->dev))
3364                 mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
3365
3366         return ~mask;
3367 }
3368
3369 /* gen6_set_rps is called to update the frequency request, but should also be
3370  * called when the range (min_delay and max_delay) is modified so that we can
3371  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3372 void gen6_set_rps(struct drm_device *dev, u8 val)
3373 {
3374         struct drm_i915_private *dev_priv = dev->dev_private;
3375
3376         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3377         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3378         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3379
3380         /* min/max delay may still have been modified so be sure to
3381          * write the limits value.
3382          */
3383         if (val != dev_priv->rps.cur_freq) {
3384                 gen6_set_rps_thresholds(dev_priv, val);
3385
3386                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3387                         I915_WRITE(GEN6_RPNSWREQ,
3388                                    HSW_FREQUENCY(val));
3389                 else
3390                         I915_WRITE(GEN6_RPNSWREQ,
3391                                    GEN6_FREQUENCY(val) |
3392                                    GEN6_OFFSET(0) |
3393                                    GEN6_AGGRESSIVE_TURBO);
3394         }
3395
3396         /* Make sure we continue to get interrupts
3397          * until we hit the minimum or maximum frequencies.
3398          */
3399         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3400         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3401
3402         POSTING_READ(GEN6_RPNSWREQ);
3403
3404         dev_priv->rps.cur_freq = val;
3405         trace_intel_gpu_freq_change(val * 50);
3406 }
3407
3408 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3409  *
3410  * * If Gfx is Idle, then
3411  * 1. Mask Turbo interrupts
3412  * 2. Bring up Gfx clock
3413  * 3. Change the freq to Rpn and wait till P-Unit updates freq
3414  * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3415  * 5. Unmask Turbo interrupts
3416 */
3417 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3418 {
3419         int revision;
3420
3421         struct drm_device *dev = dev_priv->dev;
3422
3423         /* Latest VLV doesn't need to force the gfx clock */
3424         revision = pci_read_config(dev->dev, PCIR_REVID, 1);
3425         if (revision >= 0xd) {
3426                 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3427                 return;
3428         }
3429
3430         /*
3431          * When we are idle.  Drop to min voltage state.
3432          */
3433
3434         if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3435                 return;
3436
3437         /* Mask turbo interrupt so that they will not come in between */
3438         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3439
3440         vlv_force_gfx_clock(dev_priv, true);
3441
3442         dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3443
3444         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3445                                         dev_priv->rps.min_freq_softlimit);
3446
3447         if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3448                                 & GENFREQSTATUS) == 0, 5))
3449                 DRM_ERROR("timed out waiting for Punit\n");
3450
3451         vlv_force_gfx_clock(dev_priv, false);
3452
3453         I915_WRITE(GEN6_PMINTRMSK,
3454                    gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3455 }
3456
3457 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3458 {
3459         struct drm_device *dev = dev_priv->dev;
3460
3461         mutex_lock(&dev_priv->rps.hw_lock);
3462         if (dev_priv->rps.enabled) {
3463                 if (IS_CHERRYVIEW(dev))
3464                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3465                 else if (IS_VALLEYVIEW(dev))
3466                         vlv_set_rps_idle(dev_priv);
3467                 else
3468                         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3469                 dev_priv->rps.last_adj = 0;
3470         }
3471         mutex_unlock(&dev_priv->rps.hw_lock);
3472 }
3473
3474 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3475 {
3476         struct drm_device *dev = dev_priv->dev;
3477
3478         mutex_lock(&dev_priv->rps.hw_lock);
3479         if (dev_priv->rps.enabled) {
3480                 if (IS_VALLEYVIEW(dev))
3481                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3482                 else
3483                         gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3484                 dev_priv->rps.last_adj = 0;
3485         }
3486         mutex_unlock(&dev_priv->rps.hw_lock);
3487 }
3488
3489 void valleyview_set_rps(struct drm_device *dev, u8 val)
3490 {
3491         struct drm_i915_private *dev_priv = dev->dev_private;
3492
3493         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3494         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3495         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3496
3497         if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
3498                       "Odd GPU freq value\n"))
3499                 val &= ~1;
3500
3501         if (val != dev_priv->rps.cur_freq) {
3502                 DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3503                                  vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3504                                  dev_priv->rps.cur_freq,
3505                                  vlv_gpu_freq(dev_priv, val), val);
3506
3507                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3508         }
3509
3510         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3511
3512         dev_priv->rps.cur_freq = val;
3513         trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3514 }
3515
3516 static void gen8_disable_rps_interrupts(struct drm_device *dev)
3517 {
3518         struct drm_i915_private *dev_priv = dev->dev_private;
3519
3520         I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
3521         I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
3522                                    ~dev_priv->pm_rps_events);
3523         /* Complete PM interrupt masking here doesn't race with the rps work
3524          * item again unmasking PM interrupts because that is using a different
3525          * register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
3526          * leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
3527          * gen8_enable_rps will clean up. */
3528
3529         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3530         dev_priv->rps.pm_iir = 0;
3531         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3532
3533         I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3534 }
3535
3536 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3537 {
3538         struct drm_i915_private *dev_priv = dev->dev_private;
3539
3540         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3541         I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
3542                                 ~dev_priv->pm_rps_events);
3543         /* Complete PM interrupt masking here doesn't race with the rps work
3544          * item again unmasking PM interrupts because that is using a different
3545          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3546          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3547
3548         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3549         dev_priv->rps.pm_iir = 0;
3550         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3551
3552         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3553 }
3554
3555 static void gen6_disable_rps(struct drm_device *dev)
3556 {
3557         struct drm_i915_private *dev_priv = dev->dev_private;
3558
3559         I915_WRITE(GEN6_RC_CONTROL, 0);
3560         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3561
3562         if (IS_BROADWELL(dev))
3563                 gen8_disable_rps_interrupts(dev);
3564         else
3565                 gen6_disable_rps_interrupts(dev);
3566 }
3567
3568 static void cherryview_disable_rps(struct drm_device *dev)
3569 {
3570         struct drm_i915_private *dev_priv = dev->dev_private;
3571
3572         I915_WRITE(GEN6_RC_CONTROL, 0);
3573
3574         gen8_disable_rps_interrupts(dev);
3575 }
3576
3577 static void valleyview_disable_rps(struct drm_device *dev)
3578 {
3579         struct drm_i915_private *dev_priv = dev->dev_private;
3580
3581         /* we're doing forcewake before Disabling RC6,
3582          * This what the BIOS expects when going into suspend */
3583         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3584
3585         I915_WRITE(GEN6_RC_CONTROL, 0);
3586
3587         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3588
3589         gen6_disable_rps_interrupts(dev);
3590 }
3591
3592 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3593 {
3594         if (IS_VALLEYVIEW(dev)) {
3595                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
3596                         mode = GEN6_RC_CTL_RC6_ENABLE;
3597                 else
3598                         mode = 0;
3599         }
3600         DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3601                       (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3602                       (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3603                       (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3604 }
3605
3606 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3607 {
3608         /* No RC6 before Ironlake */
3609         if (INTEL_INFO(dev)->gen < 5)
3610                 return 0;
3611
3612         /* RC6 is only on Ironlake mobile not on desktop */
3613         if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
3614                 return 0;
3615
3616         /* Respect the kernel parameter if it is set */
3617         if (enable_rc6 >= 0) {
3618                 int mask;
3619
3620                 if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
3621                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
3622                                INTEL_RC6pp_ENABLE;
3623                 else
3624                         mask = INTEL_RC6_ENABLE;
3625
3626                 if ((enable_rc6 & mask) != enable_rc6)
3627                         DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
3628                                       enable_rc6 & mask, enable_rc6, mask);
3629
3630                 return enable_rc6 & mask;
3631         }
3632
3633         /* Disable RC6 on Ironlake */
3634         if (INTEL_INFO(dev)->gen == 5)
3635                 return 0;
3636
3637         if (IS_IVYBRIDGE(dev))
3638                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3639
3640         return INTEL_RC6_ENABLE;
3641 }
3642
3643 int intel_enable_rc6(const struct drm_device *dev)
3644 {
3645         return i915.enable_rc6;
3646 }
3647
3648 static void gen8_enable_rps_interrupts(struct drm_device *dev)
3649 {
3650         struct drm_i915_private *dev_priv = dev->dev_private;
3651
3652         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3653         WARN_ON(dev_priv->rps.pm_iir);
3654         gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3655         I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3656         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3657 }
3658
3659 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3660 {
3661         struct drm_i915_private *dev_priv = dev->dev_private;
3662
3663         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3664         WARN_ON(dev_priv->rps.pm_iir);
3665         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3666         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3667         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3668 }
3669
3670 static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
3671 {
3672         /* All of these values are in units of 50MHz */
3673         dev_priv->rps.cur_freq          = 0;
3674         /* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
3675         dev_priv->rps.rp1_freq          = (rp_state_cap >>  8) & 0xff;
3676         dev_priv->rps.rp0_freq          = (rp_state_cap >>  0) & 0xff;
3677         dev_priv->rps.min_freq          = (rp_state_cap >> 16) & 0xff;
3678         /* XXX: only BYT has a special efficient freq */
3679         dev_priv->rps.efficient_freq    = dev_priv->rps.rp1_freq;
3680         /* hw_max = RP0 until we check for overclocking */
3681         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
3682
3683         /* Preserve min/max settings in case of re-init */
3684         if (dev_priv->rps.max_freq_softlimit == 0)
3685                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3686
3687         if (dev_priv->rps.min_freq_softlimit == 0)
3688                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3689 }
3690
3691 static void gen8_enable_rps(struct drm_device *dev)
3692 {
3693         struct drm_i915_private *dev_priv = dev->dev_private;
3694         struct intel_engine_cs *ring;
3695         uint32_t rc6_mask = 0, rp_state_cap;
3696         int unused;
3697
3698         /* 1a: Software RC state - RC0 */
3699         I915_WRITE(GEN6_RC_STATE, 0);
3700
3701         /* 1c & 1d: Get forcewake during program sequence. Although the driver
3702          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3703         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3704
3705         /* 2a: Disable RC states. */
3706         I915_WRITE(GEN6_RC_CONTROL, 0);
3707
3708         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3709         parse_rp_state_cap(dev_priv, rp_state_cap);
3710
3711         /* 2b: Program RC6 thresholds.*/
3712         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3713         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3714         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3715         for_each_ring(ring, dev_priv, unused)
3716                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3717         I915_WRITE(GEN6_RC_SLEEP, 0);
3718         if (IS_BROADWELL(dev))
3719                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
3720         else
3721                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3722
3723         /* 3: Enable RC6 */
3724         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3725                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3726         intel_print_rc6_info(dev, rc6_mask);
3727         if (IS_BROADWELL(dev))
3728                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3729                                 GEN7_RC_CTL_TO_MODE |
3730                                 rc6_mask);
3731         else
3732                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3733                                 GEN6_RC_CTL_EI_MODE(1) |
3734                                 rc6_mask);
3735
3736         /* 4 Program defaults and thresholds for RPS*/
3737         I915_WRITE(GEN6_RPNSWREQ,
3738                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3739         I915_WRITE(GEN6_RC_VIDEO_FREQ,
3740                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3741         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
3742         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
3743
3744         /* Docs recommend 900MHz, and 300 MHz respectively */
3745         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3746                    dev_priv->rps.max_freq_softlimit << 24 |
3747                    dev_priv->rps.min_freq_softlimit << 16);
3748
3749         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
3750         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
3751         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
3752         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
3753
3754         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3755
3756         /* 5: Enable RPS */
3757         I915_WRITE(GEN6_RP_CONTROL,
3758                    GEN6_RP_MEDIA_TURBO |
3759                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3760                    GEN6_RP_MEDIA_IS_GFX |
3761                    GEN6_RP_ENABLE |
3762                    GEN6_RP_UP_BUSY_AVG |
3763                    GEN6_RP_DOWN_IDLE_AVG);
3764
3765         /* 6: Ring frequency + overclocking (our driver does this later */
3766
3767         gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3768
3769         gen8_enable_rps_interrupts(dev);
3770
3771         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3772 }
3773
3774 static void gen6_enable_rps(struct drm_device *dev)
3775 {
3776         struct drm_i915_private *dev_priv = dev->dev_private;
3777         struct intel_engine_cs *ring;
3778         u32 rp_state_cap;
3779         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3780         u32 gtfifodbg;
3781         int rc6_mode;
3782         int i, ret;
3783
3784         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3785
3786         /* Here begins a magic sequence of register writes to enable
3787          * auto-downclocking.
3788          *
3789          * Perhaps there might be some value in exposing these to
3790          * userspace...
3791          */
3792         I915_WRITE(GEN6_RC_STATE, 0);
3793
3794         /* Clear the DBG now so we don't confuse earlier errors */
3795         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3796                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3797                 I915_WRITE(GTFIFODBG, gtfifodbg);
3798         }
3799
3800         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3801
3802         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3803
3804         parse_rp_state_cap(dev_priv, rp_state_cap);
3805
3806         /* disable the counters and set deterministic thresholds */
3807         I915_WRITE(GEN6_RC_CONTROL, 0);
3808
3809         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3810         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3811         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3812         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3813         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3814
3815         for_each_ring(ring, dev_priv, i)
3816                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3817
3818         I915_WRITE(GEN6_RC_SLEEP, 0);
3819         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3820         if (IS_IVYBRIDGE(dev))
3821                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3822         else
3823                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3824         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3825         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3826
3827         /* Check if we are enabling RC6 */
3828         rc6_mode = intel_enable_rc6(dev_priv->dev);
3829         if (rc6_mode & INTEL_RC6_ENABLE)
3830                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3831
3832         /* We don't use those on Haswell */
3833         if (!IS_HASWELL(dev)) {
3834                 if (rc6_mode & INTEL_RC6p_ENABLE)
3835                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3836
3837                 if (rc6_mode & INTEL_RC6pp_ENABLE)
3838                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3839         }
3840
3841         intel_print_rc6_info(dev, rc6_mask);
3842
3843         I915_WRITE(GEN6_RC_CONTROL,
3844                    rc6_mask |
3845                    GEN6_RC_CTL_EI_MODE(1) |
3846                    GEN6_RC_CTL_HW_ENABLE);
3847
3848         /* Power down if completely idle for over 50ms */
3849         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3850         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3851
3852         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3853         if (ret)
3854                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3855
3856         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3857         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3858                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3859                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
3860                                  (pcu_mbox & 0xff) * 50);
3861                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
3862         }
3863
3864         dev_priv->rps.power = HIGH_POWER; /* force a reset */
3865         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3866
3867         gen6_enable_rps_interrupts(dev);
3868
3869         rc6vids = 0;
3870         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3871         if (IS_GEN6(dev) && ret) {
3872                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3873         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3874                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3875                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3876                 rc6vids &= 0xffff00;
3877                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3878                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3879                 if (ret)
3880                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3881         }
3882
3883         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3884 }
3885
3886 static void __gen6_update_ring_freq(struct drm_device *dev)
3887 {
3888         struct drm_i915_private *dev_priv = dev->dev_private;
3889         int min_freq = 15;
3890         unsigned int gpu_freq;
3891         unsigned int max_ia_freq, min_ring_freq;
3892         int scaling_factor = 180;
3893
3894         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3895
3896 #if 0
3897         policy = cpufreq_cpu_get(0);
3898         if (policy) {
3899                 max_ia_freq = policy->cpuinfo.max_freq;
3900                 cpufreq_cpu_put(policy);
3901         } else {
3902                 /*
3903                  * Default to measured freq if none found, PCU will ensure we
3904                  * don't go over
3905                  */
3906                 max_ia_freq = tsc_khz;
3907         }
3908 #else
3909         max_ia_freq = tsc_frequency / 1000;
3910 #endif
3911
3912         /* Convert from kHz to MHz */
3913         max_ia_freq /= 1000;
3914
3915         min_ring_freq = I915_READ(DCLK) & 0xf;
3916         /* convert DDR frequency from units of 266.6MHz to bandwidth */
3917         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3918
3919         /*
3920          * For each potential GPU frequency, load a ring frequency we'd like
3921          * to use for memory access.  We do this by specifying the IA frequency
3922          * the PCU should use as a reference to determine the ring frequency.
3923          */
3924         for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
3925              gpu_freq--) {
3926                 int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
3927                 unsigned int ia_freq = 0, ring_freq = 0;
3928
3929                 if (INTEL_INFO(dev)->gen >= 8) {
3930                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
3931                         ring_freq = max(min_ring_freq, gpu_freq);
3932                 } else if (IS_HASWELL(dev)) {
3933                         ring_freq = mult_frac(gpu_freq, 5, 4);
3934                         ring_freq = max(min_ring_freq, ring_freq);
3935                         /* leave ia_freq as the default, chosen by cpufreq */
3936                 } else {
3937                         /* On older processors, there is no separate ring
3938                          * clock domain, so in order to boost the bandwidth
3939                          * of the ring, we need to upclock the CPU (ia_freq).
3940                          *
3941                          * For GPU frequencies less than 750MHz,
3942                          * just use the lowest ring freq.
3943                          */
3944                         if (gpu_freq < min_freq)
3945                                 ia_freq = 800;
3946                         else
3947                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3948                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3949                 }
3950
3951                 sandybridge_pcode_write(dev_priv,
3952                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3953                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3954                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3955                                         gpu_freq);
3956         }
3957 }
3958
3959 void gen6_update_ring_freq(struct drm_device *dev)
3960 {
3961         struct drm_i915_private *dev_priv = dev->dev_private;
3962
3963         if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
3964                 return;
3965
3966         mutex_lock(&dev_priv->rps.hw_lock);
3967         __gen6_update_ring_freq(dev);
3968         mutex_unlock(&dev_priv->rps.hw_lock);
3969 }
3970
3971 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
3972 {
3973         u32 val, rp0;
3974
3975         val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
3976         rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
3977
3978         return rp0;
3979 }
3980
3981 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3982 {
3983         u32 val, rpe;
3984
3985         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
3986         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
3987
3988         return rpe;
3989 }
3990
3991 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
3992 {
3993         u32 val, rp1;
3994
3995         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3996         rp1 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
3997
3998         return rp1;
3999 }
4000
4001 static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
4002 {
4003         u32 val, rpn;
4004
4005         val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4006         rpn = (val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) & PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK;
4007         return rpn;
4008 }
4009
4010 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
4011 {
4012         u32 val, rp1;
4013
4014         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4015
4016         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
4017
4018         return rp1;
4019 }
4020
4021 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4022 {
4023         u32 val, rp0;
4024
4025         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4026
4027         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
4028         /* Clamp to max */
4029         rp0 = min_t(u32, rp0, 0xea);
4030
4031         return rp0;
4032 }
4033
4034 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4035 {
4036         u32 val, rpe;
4037
4038         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4039         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4040         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4041         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
4042
4043         return rpe;
4044 }
4045
4046 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4047 {
4048         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4049 }
4050
4051 /* Check that the pctx buffer wasn't move under us. */
4052 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
4053 {
4054         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4055
4056         /* DragonFly - if EDID fails vlv_pctx can wind up NULL */
4057         if (WARN_ON(!dev_priv->vlv_pctx))
4058                 return;
4059
4060         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
4061                              dev_priv->vlv_pctx->stolen->start);
4062 }
4063
4064
4065 /* Check that the pcbr address is not empty. */
4066 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
4067 {
4068         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4069
4070         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
4071 }
4072
4073 static void cherryview_setup_pctx(struct drm_device *dev)
4074 {
4075         struct drm_i915_private *dev_priv = dev->dev_private;
4076         unsigned long pctx_paddr, paddr;
4077         struct i915_gtt *gtt = &dev_priv->gtt;
4078         u32 pcbr;
4079         int pctx_size = 32*1024;
4080
4081         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4082
4083         pcbr = I915_READ(VLV_PCBR);
4084         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
4085                 paddr = (dev_priv->mm.stolen_base +
4086                          (gtt->stolen_size - pctx_size));
4087
4088                 pctx_paddr = (paddr & (~4095));
4089                 I915_WRITE(VLV_PCBR, pctx_paddr);
4090         }
4091 }
4092
4093 static void valleyview_setup_pctx(struct drm_device *dev)
4094 {
4095         struct drm_i915_private *dev_priv = dev->dev_private;
4096         struct drm_i915_gem_object *pctx;
4097         unsigned long pctx_paddr;
4098         u32 pcbr;
4099         int pctx_size = 24*1024;
4100
4101         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4102
4103         pcbr = I915_READ(VLV_PCBR);
4104         if (pcbr) {
4105                 /* BIOS set it up already, grab the pre-alloc'd space */
4106                 int pcbr_offset;
4107
4108                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
4109                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
4110                                                                       pcbr_offset,
4111                                                                       I915_GTT_OFFSET_NONE,
4112                                                                       pctx_size);
4113                 goto out;
4114         }
4115
4116         /*
4117          * From the Gunit register HAS:
4118          * The Gfx driver is expected to program this register and ensure
4119          * proper allocation within Gfx stolen memory.  For example, this
4120          * register should be programmed such than the PCBR range does not
4121          * overlap with other ranges, such as the frame buffer, protected
4122          * memory, or any other relevant ranges.
4123          */
4124         pctx = i915_gem_object_create_stolen(dev, pctx_size);
4125         if (!pctx) {
4126                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
4127                 return;
4128         }
4129
4130         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
4131         I915_WRITE(VLV_PCBR, pctx_paddr);
4132
4133 out:
4134         dev_priv->vlv_pctx = pctx;
4135 }
4136
4137 static void valleyview_cleanup_pctx(struct drm_device *dev)
4138 {
4139         struct drm_i915_private *dev_priv = dev->dev_private;
4140
4141         if (WARN_ON(!dev_priv->vlv_pctx))
4142                 return;
4143
4144         drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
4145         dev_priv->vlv_pctx = NULL;
4146 }
4147
4148 static void valleyview_init_gt_powersave(struct drm_device *dev)
4149 {
4150         struct drm_i915_private *dev_priv = dev->dev_private;
4151         u32 val;
4152
4153         valleyview_setup_pctx(dev);
4154
4155         mutex_lock(&dev_priv->rps.hw_lock);
4156
4157         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4158         switch ((val >> 6) & 3) {
4159         case 0:
4160         case 1:
4161                 dev_priv->mem_freq = 800;
4162                 break;
4163         case 2:
4164                 dev_priv->mem_freq = 1066;
4165                 break;
4166         case 3:
4167                 dev_priv->mem_freq = 1333;
4168                 break;
4169         }
4170         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
4171
4172         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
4173         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4174         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4175                          vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4176                          dev_priv->rps.max_freq);
4177
4178         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
4179         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4180                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4181                          dev_priv->rps.efficient_freq);
4182
4183         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
4184         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
4185                          vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4186                          dev_priv->rps.rp1_freq);
4187
4188         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
4189         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4190                          vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4191                          dev_priv->rps.min_freq);
4192
4193         /* Preserve min/max settings in case of re-init */
4194         if (dev_priv->rps.max_freq_softlimit == 0)
4195                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4196
4197         if (dev_priv->rps.min_freq_softlimit == 0)
4198                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4199
4200         mutex_unlock(&dev_priv->rps.hw_lock);
4201 }
4202
4203 static void cherryview_init_gt_powersave(struct drm_device *dev)
4204 {
4205         struct drm_i915_private *dev_priv = dev->dev_private;
4206         u32 val;
4207
4208         cherryview_setup_pctx(dev);
4209
4210         mutex_lock(&dev_priv->rps.hw_lock);
4211
4212         val = vlv_punit_read(dev_priv, CCK_FUSE_REG);
4213         switch ((val >> 2) & 0x7) {
4214         case 0:
4215         case 1:
4216                 dev_priv->rps.cz_freq = 200;
4217                 dev_priv->mem_freq = 1600;
4218                 break;
4219         case 2:
4220                 dev_priv->rps.cz_freq = 267;
4221                 dev_priv->mem_freq = 1600;
4222                 break;
4223         case 3:
4224                 dev_priv->rps.cz_freq = 333;
4225                 dev_priv->mem_freq = 2000;
4226                 break;
4227         case 4:
4228                 dev_priv->rps.cz_freq = 320;
4229                 dev_priv->mem_freq = 1600;
4230                 break;
4231         case 5:
4232                 dev_priv->rps.cz_freq = 400;
4233                 dev_priv->mem_freq = 1600;
4234                 break;
4235         }
4236         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
4237
4238         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
4239         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4240         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4241                          vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4242                          dev_priv->rps.max_freq);
4243
4244         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
4245         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4246                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4247                          dev_priv->rps.efficient_freq);
4248
4249         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
4250         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
4251                          vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4252                          dev_priv->rps.rp1_freq);
4253
4254         dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
4255         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4256                          vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4257                          dev_priv->rps.min_freq);
4258
4259         WARN_ONCE((dev_priv->rps.max_freq |
4260                    dev_priv->rps.efficient_freq |
4261                    dev_priv->rps.rp1_freq |
4262                    dev_priv->rps.min_freq) & 1,
4263                   "Odd GPU freq values\n");
4264
4265         /* Preserve min/max settings in case of re-init */
4266         if (dev_priv->rps.max_freq_softlimit == 0)
4267                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4268
4269         if (dev_priv->rps.min_freq_softlimit == 0)
4270                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4271
4272         mutex_unlock(&dev_priv->rps.hw_lock);
4273 }
4274
4275 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
4276 {
4277         valleyview_cleanup_pctx(dev);
4278 }
4279
4280 static void cherryview_enable_rps(struct drm_device *dev)
4281 {
4282         struct drm_i915_private *dev_priv = dev->dev_private;
4283         struct intel_engine_cs *ring;
4284         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4285         int i;
4286
4287         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4288
4289         gtfifodbg = I915_READ(GTFIFODBG);
4290         if (gtfifodbg) {
4291                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4292                                  gtfifodbg);
4293                 I915_WRITE(GTFIFODBG, gtfifodbg);
4294         }
4295
4296         cherryview_check_pctx(dev_priv);
4297
4298         /* 1a & 1b: Get forcewake during program sequence. Although the driver
4299          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4300         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4301
4302         /* 2a: Program RC6 thresholds.*/
4303         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4304         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4305         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4306
4307         for_each_ring(ring, dev_priv, i)
4308                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4309         I915_WRITE(GEN6_RC_SLEEP, 0);
4310
4311         I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4312
4313         /* allows RC6 residency counter to work */
4314         I915_WRITE(VLV_COUNTER_CONTROL,
4315                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
4316                                       VLV_MEDIA_RC6_COUNT_EN |
4317                                       VLV_RENDER_RC6_COUNT_EN));
4318
4319         /* For now we assume BIOS is allocating and populating the PCBR  */
4320         pcbr = I915_READ(VLV_PCBR);
4321
4322         DRM_DEBUG_DRIVER("PCBR offset : 0x%x\n", pcbr);
4323
4324         /* 3: Enable RC6 */
4325         if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
4326                                                 (pcbr >> VLV_PCBR_ADDR_SHIFT))
4327                 rc6_mode = GEN6_RC_CTL_EI_MODE(1);
4328
4329         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4330
4331         /* 4 Program defaults and thresholds for RPS*/
4332         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4333         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4334         I915_WRITE(GEN6_RP_UP_EI, 66000);
4335         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4336
4337         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4338
4339         /* WaDisablePwrmtrEvent:chv (pre-production hw) */
4340         I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
4341         I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);
4342
4343         /* 5: Enable RPS */
4344         I915_WRITE(GEN6_RP_CONTROL,
4345                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4346                    GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
4347                    GEN6_RP_ENABLE |
4348                    GEN6_RP_UP_BUSY_AVG |
4349                    GEN6_RP_DOWN_IDLE_AVG);
4350
4351         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4352
4353         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4354         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4355
4356         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4357         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4358                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4359                          dev_priv->rps.cur_freq);
4360
4361         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4362                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4363                          dev_priv->rps.efficient_freq);
4364
4365         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4366
4367         gen8_enable_rps_interrupts(dev);
4368
4369         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4370 }
4371
4372 static void valleyview_enable_rps(struct drm_device *dev)
4373 {
4374         struct drm_i915_private *dev_priv = dev->dev_private;
4375         struct intel_engine_cs *ring;
4376         u32 gtfifodbg, val, rc6_mode = 0;
4377         int i;
4378
4379         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4380
4381         valleyview_check_pctx(dev_priv);
4382
4383         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4384                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4385                                  gtfifodbg);
4386                 I915_WRITE(GTFIFODBG, gtfifodbg);
4387         }
4388
4389         /* If VLV, Forcewake all wells, else re-direct to regular path */
4390         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4391
4392         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4393         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4394         I915_WRITE(GEN6_RP_UP_EI, 66000);
4395         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4396
4397         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4398         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
4399
4400         I915_WRITE(GEN6_RP_CONTROL,
4401                    GEN6_RP_MEDIA_TURBO |
4402                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4403                    GEN6_RP_MEDIA_IS_GFX |
4404                    GEN6_RP_ENABLE |
4405                    GEN6_RP_UP_BUSY_AVG |
4406                    GEN6_RP_DOWN_IDLE_CONT);
4407
4408         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
4409         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4410         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4411
4412         for_each_ring(ring, dev_priv, i)
4413                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4414
4415         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4416
4417         /* allows RC6 residency counter to work */
4418         I915_WRITE(VLV_COUNTER_CONTROL,
4419                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
4420                                       VLV_RENDER_RC0_COUNT_EN |
4421                                       VLV_MEDIA_RC6_COUNT_EN |
4422                                       VLV_RENDER_RC6_COUNT_EN));
4423
4424         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4425                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
4426
4427         intel_print_rc6_info(dev, rc6_mode);
4428
4429         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4430
4431         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4432
4433         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4434         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4435
4436         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4437         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4438                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4439                          dev_priv->rps.cur_freq);
4440
4441         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4442                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4443                          dev_priv->rps.efficient_freq);
4444
4445         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4446
4447         gen6_enable_rps_interrupts(dev);
4448
4449         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4450 }
4451
4452 void ironlake_teardown_rc6(struct drm_device *dev)
4453 {
4454         struct drm_i915_private *dev_priv = dev->dev_private;
4455
4456         if (dev_priv->ips.renderctx) {
4457                 i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
4458                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
4459                 dev_priv->ips.renderctx = NULL;
4460         }
4461
4462         if (dev_priv->ips.pwrctx) {
4463                 i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
4464                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
4465                 dev_priv->ips.pwrctx = NULL;
4466         }
4467 }
4468
4469 static void ironlake_disable_rc6(struct drm_device *dev)
4470 {
4471         struct drm_i915_private *dev_priv = dev->dev_private;
4472
4473         if (I915_READ(PWRCTXA)) {
4474                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
4475                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
4476                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
4477                          50);
4478
4479                 I915_WRITE(PWRCTXA, 0);
4480                 POSTING_READ(PWRCTXA);
4481
4482                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4483                 POSTING_READ(RSTDBYCTL);
4484         }
4485 }
4486
4487 static int ironlake_setup_rc6(struct drm_device *dev)
4488 {
4489         struct drm_i915_private *dev_priv = dev->dev_private;
4490
4491         if (dev_priv->ips.renderctx == NULL)
4492                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
4493         if (!dev_priv->ips.renderctx)
4494                 return -ENOMEM;
4495
4496         if (dev_priv->ips.pwrctx == NULL)
4497                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
4498         if (!dev_priv->ips.pwrctx) {
4499                 ironlake_teardown_rc6(dev);
4500                 return -ENOMEM;
4501         }
4502
4503         return 0;
4504 }
4505
4506 static void ironlake_enable_rc6(struct drm_device *dev)
4507 {
4508         struct drm_i915_private *dev_priv = dev->dev_private;
4509         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
4510         bool was_interruptible;
4511         int ret;
4512
4513         /* rc6 disabled by default due to repeated reports of hanging during
4514          * boot and resume.
4515          */
4516         if (!intel_enable_rc6(dev))
4517                 return;
4518
4519         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4520
4521         ret = ironlake_setup_rc6(dev);
4522         if (ret)
4523                 return;
4524
4525         was_interruptible = dev_priv->mm.interruptible;
4526         dev_priv->mm.interruptible = false;
4527
4528         /*
4529          * GPU can automatically power down the render unit if given a page
4530          * to save state.
4531          */
4532         ret = intel_ring_begin(ring, 6);
4533         if (ret) {
4534                 ironlake_teardown_rc6(dev);
4535                 dev_priv->mm.interruptible = was_interruptible;
4536                 return;
4537         }
4538
4539         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
4540         intel_ring_emit(ring, MI_SET_CONTEXT);
4541         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4542                         MI_MM_SPACE_GTT |
4543                         MI_SAVE_EXT_STATE_EN |
4544                         MI_RESTORE_EXT_STATE_EN |
4545                         MI_RESTORE_INHIBIT);
4546         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
4547         intel_ring_emit(ring, MI_NOOP);
4548         intel_ring_emit(ring, MI_FLUSH);
4549         intel_ring_advance(ring);
4550
4551         /*
4552          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
4553          * does an implicit flush, combined with MI_FLUSH above, it should be
4554          * safe to assume that renderctx is valid
4555          */
4556         ret = intel_ring_idle(ring);
4557         dev_priv->mm.interruptible = was_interruptible;
4558         if (ret) {
4559                 DRM_ERROR("failed to enable ironlake power savings\n");
4560                 ironlake_teardown_rc6(dev);
4561                 return;
4562         }
4563
4564         I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4565         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4566
4567         intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
4568 }
4569
4570 static unsigned long intel_pxfreq(u32 vidfreq)
4571 {
4572         unsigned long freq;
4573         int div = (vidfreq & 0x3f0000) >> 16;
4574         int post = (vidfreq & 0x3000) >> 12;
4575         int pre = (vidfreq & 0x7);
4576
4577         if (!pre)
4578                 return 0;
4579
4580         freq = ((div * 133333) / ((1<<post) * pre));
4581
4582         return freq;
4583 }
4584
4585 static const struct cparams {
4586         u16 i;
4587         u16 t;
4588         u16 m;
4589         u16 c;
4590 } cparams[] = {
4591         { 1, 1333, 301, 28664 },
4592         { 1, 1066, 294, 24460 },
4593         { 1, 800, 294, 25192 },
4594         { 0, 1333, 276, 27605 },
4595         { 0, 1066, 276, 27605 },
4596         { 0, 800, 231, 23784 },
4597 };
4598
4599 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4600 {
4601         u64 total_count, diff, ret;
4602         u32 count1, count2, count3, m = 0, c = 0;
4603         unsigned long now = jiffies_to_msecs(jiffies), diff1;
4604         int i;
4605
4606         assert_spin_locked(&mchdev_lock);
4607
4608         diff1 = now - dev_priv->ips.last_time1;
4609
4610         /* Prevent division-by-zero if we are asking too fast.
4611          * Also, we don't get interesting results if we are polling
4612          * faster than once in 10ms, so just return the saved value
4613          * in such cases.
4614          */
4615         if (diff1 <= 10)
4616                 return dev_priv->ips.chipset_power;
4617
4618         count1 = I915_READ(DMIEC);
4619         count2 = I915_READ(DDREC);
4620         count3 = I915_READ(CSIEC);
4621
4622         total_count = count1 + count2 + count3;
4623
4624         /* FIXME: handle per-counter overflow */
4625         if (total_count < dev_priv->ips.last_count1) {
4626                 diff = ~0UL - dev_priv->ips.last_count1;
4627                 diff += total_count;
4628         } else {
4629                 diff = total_count - dev_priv->ips.last_count1;
4630         }
4631
4632         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4633                 if (cparams[i].i == dev_priv->ips.c_m &&
4634                     cparams[i].t == dev_priv->ips.r_t) {
4635                         m = cparams[i].m;
4636                         c = cparams[i].c;
4637                         break;
4638                 }
4639         }
4640
4641         diff = div_u64(diff, diff1);
4642         ret = ((m * diff) + c);
4643         ret = div_u64(ret, 10);
4644
4645         dev_priv->ips.last_count1 = total_count;
4646         dev_priv->ips.last_time1 = now;
4647
4648         dev_priv->ips.chipset_power = ret;
4649
4650         return ret;
4651 }
4652
4653 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4654 {
4655         struct drm_device *dev = dev_priv->dev;
4656         unsigned long val;
4657
4658         if (INTEL_INFO(dev)->gen != 5)
4659                 return 0;
4660
4661         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4662
4663         val = __i915_chipset_val(dev_priv);
4664
4665         lockmgr(&mchdev_lock, LK_RELEASE);
4666
4667         return val;
4668 }
4669
4670 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4671 {
4672         unsigned long m, x, b;
4673         u32 tsfs;
4674
4675         tsfs = I915_READ(TSFS);
4676
4677         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4678         x = I915_READ8(TR1);
4679
4680         b = tsfs & TSFS_INTR_MASK;
4681
4682         return ((m * x) / 127) - b;
4683 }
4684
4685 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4686 {
4687         struct drm_device *dev = dev_priv->dev;
4688         static const struct v_table {
4689                 u16 vd; /* in .1 mil */
4690                 u16 vm; /* in .1 mil */
4691         } v_table[] = {
4692                 { 0, 0, },
4693                 { 375, 0, },
4694                 { 500, 0, },
4695                 { 625, 0, },
4696                 { 750, 0, },
4697                 { 875, 0, },
4698                 { 1000, 0, },
4699                 { 1125, 0, },
4700                 { 4125, 3000, },
4701                 { 4125, 3000, },
4702                 { 4125, 3000, },
4703                 { 4125, 3000, },
4704                 { 4125, 3000, },
4705                 { 4125, 3000, },
4706                 { 4125, 3000, },
4707                 { 4125, 3000, },
4708                 { 4125, 3000, },
4709                 { 4125, 3000, },
4710                 { 4125, 3000, },
4711                 { 4125, 3000, },
4712                 { 4125, 3000, },
4713                 { 4125, 3000, },
4714                 { 4125, 3000, },
4715                 { 4125, 3000, },
4716                 { 4125, 3000, },
4717                 { 4125, 3000, },
4718                 { 4125, 3000, },
4719                 { 4125, 3000, },
4720                 { 4125, 3000, },
4721                 { 4125, 3000, },
4722                 { 4125, 3000, },
4723                 { 4125, 3000, },
4724                 { 4250, 3125, },
4725                 { 4375, 3250, },
4726                 { 4500, 3375, },
4727                 { 4625, 3500, },
4728                 { 4750, 3625, },
4729                 { 4875, 3750, },
4730                 { 5000, 3875, },
4731                 { 5125, 4000, },
4732                 { 5250, 4125, },
4733                 { 5375, 4250, },
4734                 { 5500, 4375, },
4735                 { 5625, 4500, },
4736                 { 5750, 4625, },
4737                 { 5875, 4750, },
4738                 { 6000, 4875, },
4739                 { 6125, 5000, },
4740                 { 6250, 5125, },
4741                 { 6375, 5250, },
4742                 { 6500, 5375, },
4743                 { 6625, 5500, },
4744                 { 6750, 5625, },
4745                 { 6875, 5750, },
4746                 { 7000, 5875, },
4747                 { 7125, 6000, },
4748                 { 7250, 6125, },
4749                 { 7375, 6250, },
4750                 { 7500, 6375, },
4751                 { 7625, 6500, },
4752                 { 7750, 6625, },
4753                 { 7875, 6750, },
4754                 { 8000, 6875, },
4755                 { 8125, 7000, },
4756                 { 8250, 7125, },
4757                 { 8375, 7250, },
4758                 { 8500, 7375, },
4759                 { 8625, 7500, },
4760                 { 8750, 7625, },
4761                 { 8875, 7750, },
4762                 { 9000, 7875, },
4763                 { 9125, 8000, },
4764                 { 9250, 8125, },
4765                 { 9375, 8250, },
4766                 { 9500, 8375, },
4767                 { 9625, 8500, },
4768                 { 9750, 8625, },
4769                 { 9875, 8750, },
4770                 { 10000, 8875, },
4771                 { 10125, 9000, },
4772                 { 10250, 9125, },
4773                 { 10375, 9250, },
4774                 { 10500, 9375, },
4775                 { 10625, 9500, },
4776                 { 10750, 9625, },
4777                 { 10875, 9750, },
4778                 { 11000, 9875, },
4779                 { 11125, 10000, },
4780                 { 11250, 10125, },
4781                 { 11375, 10250, },
4782                 { 11500, 10375, },
4783                 { 11625, 10500, },
4784                 { 11750, 10625, },
4785                 { 11875, 10750, },
4786                 { 12000, 10875, },
4787                 { 12125, 11000, },
4788                 { 12250, 11125, },
4789                 { 12375, 11250, },
4790                 { 12500, 11375, },
4791                 { 12625, 11500, },
4792                 { 12750, 11625, },
4793                 { 12875, 11750, },
4794                 { 13000, 11875, },
4795                 { 13125, 12000, },
4796                 { 13250, 12125, },
4797                 { 13375, 12250, },
4798                 { 13500, 12375, },
4799                 { 13625, 12500, },
4800                 { 13750, 12625, },
4801                 { 13875, 12750, },
4802                 { 14000, 12875, },
4803                 { 14125, 13000, },
4804                 { 14250, 13125, },
4805                 { 14375, 13250, },
4806                 { 14500, 13375, },
4807                 { 14625, 13500, },
4808                 { 14750, 13625, },
4809                 { 14875, 13750, },
4810                 { 15000, 13875, },
4811                 { 15125, 14000, },
4812                 { 15250, 14125, },
4813                 { 15375, 14250, },
4814                 { 15500, 14375, },
4815                 { 15625, 14500, },
4816                 { 15750, 14625, },
4817                 { 15875, 14750, },
4818                 { 16000, 14875, },
4819                 { 16125, 15000, },
4820         };
4821         if (INTEL_INFO(dev)->is_mobile)
4822                 return v_table[pxvid].vm;
4823         else
4824                 return v_table[pxvid].vd;
4825 }
4826
4827 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4828 {
4829         struct timespec now, diff1;
4830         u64 diff;
4831         unsigned long diffms;
4832         u32 count;
4833
4834         assert_spin_locked(&mchdev_lock);
4835
4836         getrawmonotonic(&now);
4837         diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4838
4839         /* Don't divide by 0 */
4840         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4841         if (!diffms)
4842                 return;
4843
4844         count = I915_READ(GFXEC);
4845
4846         if (count < dev_priv->ips.last_count2) {
4847                 diff = ~0UL - dev_priv->ips.last_count2;
4848                 diff += count;
4849         } else {
4850                 diff = count - dev_priv->ips.last_count2;
4851         }
4852
4853         dev_priv->ips.last_count2 = count;
4854         dev_priv->ips.last_time2 = now;
4855
4856         /* More magic constants... */
4857         diff = diff * 1181;
4858         diff = div_u64(diff, diffms * 10);
4859         dev_priv->ips.gfx_power = diff;
4860 }
4861
4862 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4863 {
4864         struct drm_device *dev = dev_priv->dev;
4865
4866         if (INTEL_INFO(dev)->gen != 5)
4867                 return;
4868
4869         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4870
4871         __i915_update_gfx_val(dev_priv);
4872
4873         lockmgr(&mchdev_lock, LK_RELEASE);
4874 }
4875
4876 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4877 {
4878         unsigned long t, corr, state1, corr2, state2;
4879         u32 pxvid, ext_v;
4880
4881         assert_spin_locked(&mchdev_lock);
4882
4883         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
4884         pxvid = (pxvid >> 24) & 0x7f;
4885         ext_v = pvid_to_extvid(dev_priv, pxvid);
4886
4887         state1 = ext_v;
4888
4889         t = i915_mch_val(dev_priv);
4890
4891         /* Revel in the empirically derived constants */
4892
4893         /* Correction factor in 1/100000 units */
4894         if (t > 80)
4895                 corr = ((t * 2349) + 135940);
4896         else if (t >= 50)
4897                 corr = ((t * 964) + 29317);
4898         else /* < 50 */
4899                 corr = ((t * 301) + 1004);
4900
4901         corr = corr * ((150142 * state1) / 10000 - 78642);
4902         corr /= 100000;
4903         corr2 = (corr * dev_priv->ips.corr);
4904
4905         state2 = (corr2 * state1) / 10000;
4906         state2 /= 100; /* convert to mW */
4907
4908         __i915_update_gfx_val(dev_priv);
4909
4910         return dev_priv->ips.gfx_power + state2;
4911 }
4912
4913 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4914 {
4915         struct drm_device *dev = dev_priv->dev;
4916         unsigned long val;
4917
4918         if (INTEL_INFO(dev)->gen != 5)
4919                 return 0;
4920
4921         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4922
4923         val = __i915_gfx_val(dev_priv);
4924
4925         lockmgr(&mchdev_lock, LK_RELEASE);
4926
4927         return val;
4928 }
4929
4930 /**
4931  * i915_read_mch_val - return value for IPS use
4932  *
4933  * Calculate and return a value for the IPS driver to use when deciding whether
4934  * we have thermal and power headroom to increase CPU or GPU power budget.
4935  */
4936 unsigned long i915_read_mch_val(void)
4937 {
4938         struct drm_i915_private *dev_priv;
4939         unsigned long chipset_val, graphics_val, ret = 0;
4940
4941         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4942         if (!i915_mch_dev)
4943                 goto out_unlock;
4944         dev_priv = i915_mch_dev;
4945
4946         chipset_val = __i915_chipset_val(dev_priv);
4947         graphics_val = __i915_gfx_val(dev_priv);
4948
4949         ret = chipset_val + graphics_val;
4950
4951 out_unlock:
4952         lockmgr(&mchdev_lock, LK_RELEASE);
4953
4954         return ret;
4955 }
4956
4957 /**
4958  * i915_gpu_raise - raise GPU frequency limit
4959  *
4960  * Raise the limit; IPS indicates we have thermal headroom.
4961  */
4962 bool i915_gpu_raise(void)
4963 {
4964         struct drm_i915_private *dev_priv;
4965         bool ret = true;
4966
4967         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4968         if (!i915_mch_dev) {
4969                 ret = false;
4970                 goto out_unlock;
4971         }
4972         dev_priv = i915_mch_dev;
4973
4974         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4975                 dev_priv->ips.max_delay--;
4976
4977 out_unlock:
4978         lockmgr(&mchdev_lock, LK_RELEASE);
4979
4980         return ret;
4981 }
4982
4983 /**
4984  * i915_gpu_lower - lower GPU frequency limit
4985  *
4986  * IPS indicates we're close to a thermal limit, so throttle back the GPU
4987  * frequency maximum.
4988  */
4989 bool i915_gpu_lower(void)
4990 {
4991         struct drm_i915_private *dev_priv;
4992         bool ret = true;
4993
4994         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4995         if (!i915_mch_dev) {
4996                 ret = false;
4997                 goto out_unlock;
4998         }
4999         dev_priv = i915_mch_dev;
5000
5001         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5002                 dev_priv->ips.max_delay++;
5003
5004 out_unlock:
5005         lockmgr(&mchdev_lock, LK_RELEASE);
5006
5007         return ret;
5008 }
5009
5010 /**
5011  * i915_gpu_busy - indicate GPU business to IPS
5012  *
5013  * Tell the IPS driver whether or not the GPU is busy.
5014  */
5015 bool i915_gpu_busy(void)
5016 {
5017         struct drm_i915_private *dev_priv;
5018         struct intel_engine_cs *ring;
5019         bool ret = false;
5020         int i;
5021
5022         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
5023         if (!i915_mch_dev)
5024                 goto out_unlock;
5025         dev_priv = i915_mch_dev;
5026
5027         for_each_ring(ring, dev_priv, i)
5028                 ret |= !list_empty(&ring->request_list);
5029
5030 out_unlock:
5031         lockmgr(&mchdev_lock, LK_RELEASE);
5032
5033         return ret;
5034 }
5035
5036 /**
5037  * i915_gpu_turbo_disable - disable graphics turbo
5038  *
5039  * Disable graphics turbo by resetting the max frequency and setting the
5040  * current frequency to the default.
5041  */
5042 bool i915_gpu_turbo_disable(void)
5043 {
5044         struct drm_i915_private *dev_priv;
5045         bool ret = true;
5046
5047         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
5048         if (!i915_mch_dev) {
5049                 ret = false;
5050                 goto out_unlock;
5051         }
5052         dev_priv = i915_mch_dev;
5053
5054         dev_priv->ips.max_delay = dev_priv->ips.fstart;
5055
5056         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5057                 ret = false;
5058
5059 out_unlock:
5060         lockmgr(&mchdev_lock, LK_RELEASE);
5061
5062         return ret;
5063 }
5064
5065 #if 0
5066 /**
5067  * Tells the intel_ips driver that the i915 driver is now loaded, if
5068  * IPS got loaded first.
5069  *
5070  * This awkward dance is so that neither module has to depend on the
5071  * other in order for IPS to do the appropriate communication of
5072  * GPU turbo limits to i915.
5073  */
5074 static void
5075 ips_ping_for_i915_load(void)
5076 {
5077         void (*link)(void);
5078
5079         link = symbol_get(ips_link_to_i915_driver);
5080         if (link) {
5081                 link();
5082                 symbol_put(ips_link_to_i915_driver);
5083         }
5084 }
5085 #endif
5086
5087 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
5088 {
5089         /* We only register the i915 ips part with intel-ips once everything is
5090          * set up, to avoid intel-ips sneaking in and reading bogus values. */
5091         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
5092         i915_mch_dev = dev_priv;
5093         lockmgr(&mchdev_lock, LK_RELEASE);
5094 }
5095
5096 void intel_gpu_ips_teardown(void)
5097 {
5098         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
5099         i915_mch_dev = NULL;
5100         lockmgr(&mchdev_lock, LK_RELEASE);
5101 }
5102
5103 static void intel_init_emon(struct drm_device *dev)
5104 {
5105         struct drm_i915_private *dev_priv = dev->dev_private;
5106         u32 lcfuse;
5107         u8 pxw[16];
5108         int i;
5109
5110         /* Disable to program */
5111         I915_WRITE(ECR, 0);
5112         POSTING_READ(ECR);
5113
5114         /* Program energy weights for various events */
5115         I915_WRITE(SDEW, 0x15040d00);
5116         I915_WRITE(CSIEW0, 0x007f0000);
5117         I915_WRITE(CSIEW1, 0x1e220004);
5118         I915_WRITE(CSIEW2, 0x04000004);
5119
5120         for (i = 0; i < 5; i++)
5121                 I915_WRITE(PEW + (i * 4), 0);
5122         for (i = 0; i < 3; i++)
5123                 I915_WRITE(DEW + (i * 4), 0);
5124
5125         /* Program P-state weights to account for frequency power adjustment */
5126         for (i = 0; i < 16; i++) {
5127                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5128                 unsigned long freq = intel_pxfreq(pxvidfreq);
5129                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5130                         PXVFREQ_PX_SHIFT;
5131                 unsigned long val;
5132
5133                 val = vid * vid;
5134                 val *= (freq / 1000);
5135                 val *= 255;
5136                 val /= (127*127*900);
5137                 if (val > 0xff)
5138                         DRM_ERROR("bad pxval: %ld\n", val);
5139                 pxw[i] = val;
5140         }
5141         /* Render standby states get 0 weight */
5142         pxw[14] = 0;
5143         pxw[15] = 0;
5144
5145         for (i = 0; i < 4; i++) {
5146                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5147                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5148                 I915_WRITE(PXW + (i * 4), val);
5149         }
5150
5151         /* Adjust magic regs to magic values (more experimental results) */
5152         I915_WRITE(OGW0, 0);
5153         I915_WRITE(OGW1, 0);
5154         I915_WRITE(EG0, 0x00007f00);
5155         I915_WRITE(EG1, 0x0000000e);
5156         I915_WRITE(EG2, 0x000e0000);
5157         I915_WRITE(EG3, 0x68000300);
5158         I915_WRITE(EG4, 0x42000000);
5159         I915_WRITE(EG5, 0x00140031);
5160         I915_WRITE(EG6, 0);
5161         I915_WRITE(EG7, 0);
5162
5163         for (i = 0; i < 8; i++)
5164                 I915_WRITE(PXWL + (i * 4), 0);
5165
5166         /* Enable PMON + select events */
5167         I915_WRITE(ECR, 0x80000019);
5168
5169         lcfuse = I915_READ(LCFUSE02);
5170
5171         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5172 }
5173
5174 void intel_init_gt_powersave(struct drm_device *dev)
5175 {
5176         i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
5177
5178         if (IS_CHERRYVIEW(dev))
5179                 cherryview_init_gt_powersave(dev);
5180         else if (IS_VALLEYVIEW(dev))
5181                 valleyview_init_gt_powersave(dev);
5182 }
5183
5184 void intel_cleanup_gt_powersave(struct drm_device *dev)
5185 {
5186         if (IS_CHERRYVIEW(dev))
5187                 return;
5188         else if (IS_VALLEYVIEW(dev))
5189                 valleyview_cleanup_gt_powersave(dev);
5190 }
5191
5192 /**
5193  * intel_suspend_gt_powersave - suspend PM work and helper threads
5194  * @dev: drm device
5195  *
5196  * We don't want to disable RC6 or other features here, we just want
5197  * to make sure any work we've queued has finished and won't bother
5198  * us while we're suspended.
5199  */
5200 void intel_suspend_gt_powersave(struct drm_device *dev)
5201 {
5202         struct drm_i915_private *dev_priv = dev->dev_private;
5203
5204         /* Interrupts should be disabled already to avoid re-arming. */
5205         WARN_ON(intel_irqs_enabled(dev_priv));
5206
5207 #if 0
5208         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5209 #endif
5210
5211         cancel_work_sync(&dev_priv->rps.work);
5212
5213         /* Force GPU to min freq during suspend */
5214         gen6_rps_idle(dev_priv);
5215 }
5216
5217 void intel_disable_gt_powersave(struct drm_device *dev)
5218 {
5219         struct drm_i915_private *dev_priv = dev->dev_private;
5220
5221         /* Interrupts should be disabled already to avoid re-arming. */
5222         WARN_ON(intel_irqs_enabled(dev_priv));
5223
5224         if (IS_IRONLAKE_M(dev)) {
5225                 ironlake_disable_drps(dev);
5226                 ironlake_disable_rc6(dev);
5227         } else if (INTEL_INFO(dev)->gen >= 6) {
5228                 intel_suspend_gt_powersave(dev);
5229
5230                 mutex_lock(&dev_priv->rps.hw_lock);
5231                 if (IS_CHERRYVIEW(dev))
5232                         cherryview_disable_rps(dev);
5233                 else if (IS_VALLEYVIEW(dev))
5234                         valleyview_disable_rps(dev);
5235                 else
5236                         gen6_disable_rps(dev);
5237                 dev_priv->rps.enabled = false;
5238                 mutex_unlock(&dev_priv->rps.hw_lock);
5239         }
5240 }
5241
5242 static void intel_gen6_powersave_work(struct work_struct *work)
5243 {
5244         struct drm_i915_private *dev_priv =
5245                 container_of(work, struct drm_i915_private,
5246                              rps.delayed_resume_work.work);
5247         struct drm_device *dev = dev_priv->dev;
5248
5249         mutex_lock(&dev_priv->rps.hw_lock);
5250
5251         if (IS_CHERRYVIEW(dev)) {
5252                 cherryview_enable_rps(dev);
5253         } else if (IS_VALLEYVIEW(dev)) {
5254                 valleyview_enable_rps(dev);
5255         } else if (IS_BROADWELL(dev)) {
5256                 gen8_enable_rps(dev);
5257                 __gen6_update_ring_freq(dev);
5258         } else {
5259                 gen6_enable_rps(dev);
5260                 __gen6_update_ring_freq(dev);
5261         }
5262         dev_priv->rps.enabled = true;
5263         mutex_unlock(&dev_priv->rps.hw_lock);
5264
5265         intel_runtime_pm_put(dev_priv);
5266 }
5267
5268 void intel_enable_gt_powersave(struct drm_device *dev)
5269 {
5270         struct drm_i915_private *dev_priv = dev->dev_private;
5271
5272         if (IS_IRONLAKE_M(dev)) {
5273                 mutex_lock(&dev->struct_mutex);
5274                 ironlake_enable_drps(dev);
5275                 ironlake_enable_rc6(dev);
5276                 intel_init_emon(dev);
5277                 mutex_unlock(&dev->struct_mutex);
5278         } else if (INTEL_INFO(dev)->gen >= 6) {
5279                 /*
5280                  * PCU communication is slow and this doesn't need to be
5281                  * done at any specific time, so do this out of our fast path
5282                  * to make resume and init faster.
5283                  *
5284                  * We depend on the HW RC6 power context save/restore
5285                  * mechanism when entering D3 through runtime PM suspend. So
5286                  * disable RPM until RPS/RC6 is properly setup. We can only
5287                  * get here via the driver load/system resume/runtime resume
5288                  * paths, so the _noresume version is enough (and in case of
5289                  * runtime resume it's necessary).
5290                  */
5291                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
5292                                            round_jiffies_up_relative(HZ)))
5293                         intel_runtime_pm_get_noresume(dev_priv);
5294         }
5295 }
5296
5297 void intel_reset_gt_powersave(struct drm_device *dev)
5298 {
5299         struct drm_i915_private *dev_priv = dev->dev_private;
5300
5301         dev_priv->rps.enabled = false;
5302         intel_enable_gt_powersave(dev);
5303 }
5304
5305 static void ibx_init_clock_gating(struct drm_device *dev)
5306 {
5307         struct drm_i915_private *dev_priv = dev->dev_private;
5308
5309         /*
5310          * On Ibex Peak and Cougar Point, we need to disable clock
5311          * gating for the panel power sequencer or it will fail to
5312          * start up when no ports are active.
5313          */
5314         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5315 }
5316
5317 static void g4x_disable_trickle_feed(struct drm_device *dev)
5318 {
5319         struct drm_i915_private *dev_priv = dev->dev_private;
5320         int pipe;
5321
5322         for_each_pipe(dev_priv, pipe) {
5323                 I915_WRITE(DSPCNTR(pipe),
5324                            I915_READ(DSPCNTR(pipe)) |
5325                            DISPPLANE_TRICKLE_FEED_DISABLE);
5326                 intel_flush_primary_plane(dev_priv, pipe);
5327         }
5328 }
5329
5330 static void ilk_init_lp_watermarks(struct drm_device *dev)
5331 {
5332         struct drm_i915_private *dev_priv = dev->dev_private;
5333
5334         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
5335         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
5336         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
5337
5338         /*
5339          * Don't touch WM1S_LP_EN here.
5340          * Doing so could cause underruns.
5341          */
5342 }
5343
5344 static void ironlake_init_clock_gating(struct drm_device *dev)
5345 {
5346         struct drm_i915_private *dev_priv = dev->dev_private;
5347         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5348
5349         /*
5350          * Required for FBC
5351          * WaFbcDisableDpfcClockGating:ilk
5352          */
5353         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
5354                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
5355                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5356
5357         I915_WRITE(PCH_3DCGDIS0,
5358                    MARIUNIT_CLOCK_GATE_DISABLE |
5359                    SVSMUNIT_CLOCK_GATE_DISABLE);
5360         I915_WRITE(PCH_3DCGDIS1,
5361                    VFMUNIT_CLOCK_GATE_DISABLE);
5362
5363         /*
5364          * According to the spec the following bits should be set in
5365          * order to enable memory self-refresh
5366          * The bit 22/21 of 0x42004
5367          * The bit 5 of 0x42020
5368          * The bit 15 of 0x45000
5369          */
5370         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5371                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
5372                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5373         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5374         I915_WRITE(DISP_ARB_CTL,
5375                    (I915_READ(DISP_ARB_CTL) |
5376                     DISP_FBC_WM_DIS));
5377
5378         ilk_init_lp_watermarks(dev);
5379
5380         /*
5381          * Based on the document from hardware guys the following bits
5382          * should be set unconditionally in order to enable FBC.
5383          * The bit 22 of 0x42000
5384          * The bit 22 of 0x42004
5385          * The bit 7,8,9 of 0x42020.
5386          */
5387         if (IS_IRONLAKE_M(dev)) {
5388                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
5389                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5390                            I915_READ(ILK_DISPLAY_CHICKEN1) |
5391                            ILK_FBCQ_DIS);
5392                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5393                            I915_READ(ILK_DISPLAY_CHICKEN2) |
5394                            ILK_DPARB_GATE);
5395         }
5396
5397         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5398
5399         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5400                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5401                    ILK_ELPIN_409_SELECT);
5402         I915_WRITE(_3D_CHICKEN2,
5403                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5404                    _3D_CHICKEN2_WM_READ_PIPELINED);
5405
5406         /* WaDisableRenderCachePipelinedFlush:ilk */
5407         I915_WRITE(CACHE_MODE_0,
5408                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5409
5410         /* WaDisable_RenderCache_OperationalFlush:ilk */
5411         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5412
5413         g4x_disable_trickle_feed(dev);
5414
5415         ibx_init_clock_gating(dev);
5416 }
5417
5418 static void cpt_init_clock_gating(struct drm_device *dev)
5419 {
5420         struct drm_i915_private *dev_priv = dev->dev_private;
5421         int pipe;
5422         uint32_t val;
5423
5424         /*
5425          * On Ibex Peak and Cougar Point, we need to disable clock
5426          * gating for the panel power sequencer or it will fail to
5427          * start up when no ports are active.
5428          */
5429         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
5430                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
5431                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
5432         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
5433                    DPLS_EDP_PPS_FIX_DIS);
5434         /* The below fixes the weird display corruption, a few pixels shifted
5435          * downward, on (only) LVDS of some HP laptops with IVY.
5436          */
5437         for_each_pipe(dev_priv, pipe) {
5438                 val = I915_READ(TRANS_CHICKEN2(pipe));
5439                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
5440                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5441                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
5442                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5443                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
5444                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
5445                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5446                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
5447         }
5448         /* WADP0ClockGatingDisable */
5449         for_each_pipe(dev_priv, pipe) {
5450                 I915_WRITE(TRANS_CHICKEN1(pipe),
5451                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5452         }
5453 }
5454
5455 static void gen6_check_mch_setup(struct drm_device *dev)
5456 {
5457         struct drm_i915_private *dev_priv = dev->dev_private;
5458         uint32_t tmp;
5459
5460         tmp = I915_READ(MCH_SSKPD);
5461         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
5462                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
5463                               tmp);
5464 }
5465
5466 static void gen6_init_clock_gating(struct drm_device *dev)
5467 {
5468         struct drm_i915_private *dev_priv = dev->dev_private;
5469         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5470
5471         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5472
5473         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5474                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5475                    ILK_ELPIN_409_SELECT);
5476
5477         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5478         I915_WRITE(_3D_CHICKEN,
5479                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
5480
5481         /* WaDisable_RenderCache_OperationalFlush:snb */
5482         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5483
5484         /*
5485          * BSpec recoomends 8x4 when MSAA is used,
5486          * however in practice 16x4 seems fastest.
5487          *
5488          * Note that PS/WM thread counts depend on the WIZ hashing
5489          * disable bit, which we don't touch here, but it's good
5490          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5491          */
5492         I915_WRITE(GEN6_GT_MODE,
5493                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5494
5495         ilk_init_lp_watermarks(dev);
5496
5497         I915_WRITE(CACHE_MODE_0,
5498                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5499
5500         I915_WRITE(GEN6_UCGCTL1,
5501                    I915_READ(GEN6_UCGCTL1) |
5502                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
5503                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5504
5505         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5506          * gating disable must be set.  Failure to set it results in
5507          * flickering pixels due to Z write ordering failures after
5508          * some amount of runtime in the Mesa "fire" demo, and Unigine
5509          * Sanctuary and Tropics, and apparently anything else with
5510          * alpha test or pixel discard.
5511          *
5512          * According to the spec, bit 11 (RCCUNIT) must also be set,
5513          * but we didn't debug actual testcases to find it out.
5514          *
5515          * WaDisableRCCUnitClockGating:snb
5516          * WaDisableRCPBUnitClockGating:snb
5517          */
5518         I915_WRITE(GEN6_UCGCTL2,
5519                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5520                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5521
5522         /* WaStripsFansDisableFastClipPerformanceFix:snb */
5523         I915_WRITE(_3D_CHICKEN3,
5524                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5525
5526         /*
5527          * Bspec says:
5528          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
5529          * 3DSTATE_SF number of SF output attributes is more than 16."
5530          */
5531         I915_WRITE(_3D_CHICKEN3,
5532                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
5533
5534         /*
5535          * According to the spec the following bits should be
5536          * set in order to enable memory self-refresh and fbc:
5537          * The bit21 and bit22 of 0x42000
5538          * The bit21 and bit22 of 0x42004
5539          * The bit5 and bit7 of 0x42020
5540          * The bit14 of 0x70180
5541          * The bit14 of 0x71180
5542          *
5543          * WaFbcAsynchFlipDisableFbcQueue:snb
5544          */
5545         I915_WRITE(ILK_DISPLAY_CHICKEN1,
5546                    I915_READ(ILK_DISPLAY_CHICKEN1) |
5547                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
5548         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5549                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5550                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5551         I915_WRITE(ILK_DSPCLK_GATE_D,
5552                    I915_READ(ILK_DSPCLK_GATE_D) |
5553                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
5554                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5555
5556         g4x_disable_trickle_feed(dev);
5557
5558         cpt_init_clock_gating(dev);
5559
5560         gen6_check_mch_setup(dev);
5561 }
5562
5563 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
5564 {
5565         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
5566
5567         /*
5568          * WaVSThreadDispatchOverride:ivb,vlv
5569          *
5570          * This actually overrides the dispatch
5571          * mode for all thread types.
5572          */
5573         reg &= ~GEN7_FF_SCHED_MASK;
5574         reg |= GEN7_FF_TS_SCHED_HW;
5575         reg |= GEN7_FF_VS_SCHED_HW;
5576         reg |= GEN7_FF_DS_SCHED_HW;
5577
5578         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
5579 }
5580
5581 static void lpt_init_clock_gating(struct drm_device *dev)
5582 {
5583         struct drm_i915_private *dev_priv = dev->dev_private;
5584
5585         /*
5586          * TODO: this bit should only be enabled when really needed, then
5587          * disabled when not needed anymore in order to save power.
5588          */
5589         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
5590                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
5591                            I915_READ(SOUTH_DSPCLK_GATE_D) |
5592                            PCH_LP_PARTITION_LEVEL_DISABLE);
5593
5594         /* WADPOClockGatingDisable:hsw */
5595         I915_WRITE(_TRANSA_CHICKEN1,
5596                    I915_READ(_TRANSA_CHICKEN1) |
5597                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5598 }
5599
5600 static void lpt_suspend_hw(struct drm_device *dev)
5601 {
5602         struct drm_i915_private *dev_priv = dev->dev_private;
5603
5604         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
5605                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
5606
5607                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
5608                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
5609         }
5610 }
5611
5612 static void broadwell_init_clock_gating(struct drm_device *dev)
5613 {
5614         struct drm_i915_private *dev_priv = dev->dev_private;
5615         enum i915_pipe pipe;
5616
5617         I915_WRITE(WM3_LP_ILK, 0);
5618         I915_WRITE(WM2_LP_ILK, 0);
5619         I915_WRITE(WM1_LP_ILK, 0);
5620
5621         /* FIXME(BDW): Check all the w/a, some might only apply to
5622          * pre-production hw. */
5623
5624
5625         I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
5626
5627         I915_WRITE(_3D_CHICKEN3,
5628                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2)));
5629
5630
5631         /* WaSwitchSolVfFArbitrationPriority:bdw */
5632         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5633
5634         /* WaPsrDPAMaskVBlankInSRD:bdw */
5635         I915_WRITE(CHICKEN_PAR1_1,
5636                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
5637
5638         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5639         for_each_pipe(dev_priv, pipe) {
5640                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
5641                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
5642                            BDW_DPRS_MASK_VBLANK_SRD);
5643         }
5644
5645         /* WaVSRefCountFullforceMissDisable:bdw */
5646         /* WaDSRefCountFullforceMissDisable:bdw */
5647         I915_WRITE(GEN7_FF_THREAD_MODE,
5648                    I915_READ(GEN7_FF_THREAD_MODE) &
5649                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5650
5651         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5652                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5653
5654         /* WaDisableSDEUnitClockGating:bdw */
5655         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5656                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5657
5658         lpt_init_clock_gating(dev);
5659 }
5660
5661 static void haswell_init_clock_gating(struct drm_device *dev)
5662 {
5663         struct drm_i915_private *dev_priv = dev->dev_private;
5664
5665         ilk_init_lp_watermarks(dev);
5666
5667         /* L3 caching of data atomics doesn't work -- disable it. */
5668         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
5669         I915_WRITE(HSW_ROW_CHICKEN3,
5670                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
5671
5672         /* This is required by WaCatErrorRejectionIssue:hsw */
5673         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5674                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5675                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5676
5677         /* WaVSRefCountFullforceMissDisable:hsw */
5678         I915_WRITE(GEN7_FF_THREAD_MODE,
5679                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
5680
5681         /* WaDisable_RenderCache_OperationalFlush:hsw */
5682         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5683
5684         /* enable HiZ Raw Stall Optimization */
5685         I915_WRITE(CACHE_MODE_0_GEN7,
5686                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5687
5688         /* WaDisable4x2SubspanOptimization:hsw */
5689         I915_WRITE(CACHE_MODE_1,
5690                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5691
5692         /*
5693          * BSpec recommends 8x4 when MSAA is used,
5694          * however in practice 16x4 seems fastest.
5695          *
5696          * Note that PS/WM thread counts depend on the WIZ hashing
5697          * disable bit, which we don't touch here, but it's good
5698          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5699          */
5700         I915_WRITE(GEN7_GT_MODE,
5701                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5702
5703         /* WaSwitchSolVfFArbitrationPriority:hsw */
5704         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5705
5706         /* WaRsPkgCStateDisplayPMReq:hsw */
5707         I915_WRITE(CHICKEN_PAR1_1,
5708                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5709
5710         lpt_init_clock_gating(dev);
5711 }
5712
5713 static void ivybridge_init_clock_gating(struct drm_device *dev)
5714 {
5715         struct drm_i915_private *dev_priv = dev->dev_private;
5716         uint32_t snpcr;
5717
5718         ilk_init_lp_watermarks(dev);
5719
5720         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5721
5722         /* WaDisableEarlyCull:ivb */
5723         I915_WRITE(_3D_CHICKEN3,
5724                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5725
5726         /* WaDisableBackToBackFlipFix:ivb */
5727         I915_WRITE(IVB_CHICKEN3,
5728                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5729                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5730
5731         /* WaDisablePSDDualDispatchEnable:ivb */
5732         if (IS_IVB_GT1(dev))
5733                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5734                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5735
5736         /* WaDisable_RenderCache_OperationalFlush:ivb */
5737         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5738
5739         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5740         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5741                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5742
5743         /* WaApplyL3ControlAndL3ChickenMode:ivb */
5744         I915_WRITE(GEN7_L3CNTLREG1,
5745                         GEN7_WA_FOR_GEN7_L3_CONTROL);
5746         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5747                    GEN7_WA_L3_CHICKEN_MODE);
5748         if (IS_IVB_GT1(dev))
5749                 I915_WRITE(GEN7_ROW_CHICKEN2,
5750                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5751         else {
5752                 /* must write both registers */
5753                 I915_WRITE(GEN7_ROW_CHICKEN2,
5754                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5755                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5756                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5757         }
5758
5759         /* WaForceL3Serialization:ivb */
5760         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5761                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5762
5763         /*
5764          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5765          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5766          */
5767         I915_WRITE(GEN6_UCGCTL2,
5768                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5769
5770         /* This is required by WaCatErrorRejectionIssue:ivb */
5771         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5772                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5773                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5774
5775         g4x_disable_trickle_feed(dev);
5776
5777         gen7_setup_fixed_func_scheduler(dev_priv);
5778
5779         if (0) { /* causes HiZ corruption on ivb:gt1 */
5780                 /* enable HiZ Raw Stall Optimization */
5781                 I915_WRITE(CACHE_MODE_0_GEN7,
5782                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5783         }
5784
5785         /* WaDisable4x2SubspanOptimization:ivb */
5786         I915_WRITE(CACHE_MODE_1,
5787                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5788
5789         /*
5790          * BSpec recommends 8x4 when MSAA is used,
5791          * however in practice 16x4 seems fastest.
5792          *
5793          * Note that PS/WM thread counts depend on the WIZ hashing
5794          * disable bit, which we don't touch here, but it's good
5795          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5796          */
5797         I915_WRITE(GEN7_GT_MODE,
5798                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5799
5800         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5801         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5802         snpcr |= GEN6_MBC_SNPCR_MED;
5803         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5804
5805         if (!HAS_PCH_NOP(dev))
5806                 cpt_init_clock_gating(dev);
5807
5808         gen6_check_mch_setup(dev);
5809 }
5810
5811 static void valleyview_init_clock_gating(struct drm_device *dev)
5812 {
5813         struct drm_i915_private *dev_priv = dev->dev_private;
5814
5815         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5816
5817         /* WaDisableEarlyCull:vlv */
5818         I915_WRITE(_3D_CHICKEN3,
5819                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5820
5821         /* WaDisableBackToBackFlipFix:vlv */
5822         I915_WRITE(IVB_CHICKEN3,
5823                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5824                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5825
5826         /* WaPsdDispatchEnable:vlv */
5827         /* WaDisablePSDDualDispatchEnable:vlv */
5828         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5829                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5830                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5831
5832         /* WaDisable_RenderCache_OperationalFlush:vlv */
5833         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5834
5835         /* WaForceL3Serialization:vlv */
5836         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5837                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5838
5839         /* WaDisableDopClockGating:vlv */
5840         I915_WRITE(GEN7_ROW_CHICKEN2,
5841                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5842
5843         /* This is required by WaCatErrorRejectionIssue:vlv */
5844         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5845                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5846                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5847
5848         gen7_setup_fixed_func_scheduler(dev_priv);
5849
5850         /*
5851          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5852          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5853          */
5854         I915_WRITE(GEN6_UCGCTL2,
5855                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5856
5857         /* WaDisableL3Bank2xClockGate:vlv
5858          * Disabling L3 clock gating- MMIO 940c[25] = 1
5859          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
5860         I915_WRITE(GEN7_UCGCTL4,
5861                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5862
5863         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5864
5865         /*
5866          * BSpec says this must be set, even though
5867          * WaDisable4x2SubspanOptimization isn't listed for VLV.
5868          */
5869         I915_WRITE(CACHE_MODE_1,
5870                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5871
5872         /*
5873          * WaIncreaseL3CreditsForVLVB0:vlv
5874          * This is the hardware default actually.
5875          */
5876         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
5877
5878         /*
5879          * WaDisableVLVClockGating_VBIIssue:vlv
5880          * Disable clock gating on th GCFG unit to prevent a delay
5881          * in the reporting of vblank events.
5882          */
5883         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
5884 }
5885
5886 static void cherryview_init_clock_gating(struct drm_device *dev)
5887 {
5888         struct drm_i915_private *dev_priv = dev->dev_private;
5889
5890         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5891
5892         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5893
5894         /* WaVSRefCountFullforceMissDisable:chv */
5895         /* WaDSRefCountFullforceMissDisable:chv */
5896         I915_WRITE(GEN7_FF_THREAD_MODE,
5897                    I915_READ(GEN7_FF_THREAD_MODE) &
5898                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5899
5900         /* WaDisableSemaphoreAndSyncFlipWait:chv */
5901         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5902                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5903
5904         /* WaDisableCSUnitClockGating:chv */
5905         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
5906                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5907
5908         /* WaDisableSDEUnitClockGating:chv */
5909         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5910                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5911
5912         /* WaDisableGunitClockGating:chv (pre-production hw) */
5913         I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
5914                    GINT_DIS);
5915
5916         /* WaDisableFfDopClockGating:chv (pre-production hw) */
5917         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5918                    _MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));
5919
5920         /* WaDisableDopClockGating:chv (pre-production hw) */
5921         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
5922                    GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
5923 }
5924
5925 static void g4x_init_clock_gating(struct drm_device *dev)
5926 {
5927         struct drm_i915_private *dev_priv = dev->dev_private;
5928         uint32_t dspclk_gate;
5929
5930         I915_WRITE(RENCLK_GATE_D1, 0);
5931         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5932                    GS_UNIT_CLOCK_GATE_DISABLE |
5933                    CL_UNIT_CLOCK_GATE_DISABLE);
5934         I915_WRITE(RAMCLK_GATE_D, 0);
5935         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5936                 OVRUNIT_CLOCK_GATE_DISABLE |
5937                 OVCUNIT_CLOCK_GATE_DISABLE;
5938         if (IS_GM45(dev))
5939                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5940         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5941
5942         /* WaDisableRenderCachePipelinedFlush */
5943         I915_WRITE(CACHE_MODE_0,
5944                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5945
5946         /* WaDisable_RenderCache_OperationalFlush:g4x */
5947         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5948
5949         g4x_disable_trickle_feed(dev);
5950 }
5951
5952 static void crestline_init_clock_gating(struct drm_device *dev)
5953 {
5954         struct drm_i915_private *dev_priv = dev->dev_private;
5955
5956         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5957         I915_WRITE(RENCLK_GATE_D2, 0);
5958         I915_WRITE(DSPCLK_GATE_D, 0);
5959         I915_WRITE(RAMCLK_GATE_D, 0);
5960         I915_WRITE16(DEUC, 0);
5961         I915_WRITE(MI_ARB_STATE,
5962                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5963
5964         /* WaDisable_RenderCache_OperationalFlush:gen4 */
5965         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5966 }
5967
5968 static void broadwater_init_clock_gating(struct drm_device *dev)
5969 {
5970         struct drm_i915_private *dev_priv = dev->dev_private;
5971
5972         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5973                    I965_RCC_CLOCK_GATE_DISABLE |
5974                    I965_RCPB_CLOCK_GATE_DISABLE |
5975                    I965_ISC_CLOCK_GATE_DISABLE |
5976                    I965_FBC_CLOCK_GATE_DISABLE);
5977         I915_WRITE(RENCLK_GATE_D2, 0);
5978         I915_WRITE(MI_ARB_STATE,
5979                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5980
5981         /* WaDisable_RenderCache_OperationalFlush:gen4 */
5982         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5983 }
5984
5985 static void gen3_init_clock_gating(struct drm_device *dev)
5986 {
5987         struct drm_i915_private *dev_priv = dev->dev_private;
5988         u32 dstate = I915_READ(D_STATE);
5989
5990         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5991                 DSTATE_DOT_CLOCK_GATING;
5992         I915_WRITE(D_STATE, dstate);
5993
5994         if (IS_PINEVIEW(dev))
5995                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5996
5997         /* IIR "flip pending" means done if this bit is set */
5998         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5999
6000         /* interrupts should cause a wake up from C3 */
6001         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6002
6003         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
6004         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6005
6006         I915_WRITE(MI_ARB_STATE,
6007                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6008 }
6009
6010 static void i85x_init_clock_gating(struct drm_device *dev)
6011 {
6012         struct drm_i915_private *dev_priv = dev->dev_private;
6013
6014         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6015
6016         /* interrupts should cause a wake up from C3 */
6017         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
6018                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6019
6020         I915_WRITE(MEM_MODE,
6021                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6022 }
6023
6024 static void i830_init_clock_gating(struct drm_device *dev)
6025 {
6026         struct drm_i915_private *dev_priv = dev->dev_private;
6027
6028         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6029
6030         I915_WRITE(MEM_MODE,
6031                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
6032                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6033 }
6034
6035 void intel_init_clock_gating(struct drm_device *dev)
6036 {
6037         struct drm_i915_private *dev_priv = dev->dev_private;
6038
6039         dev_priv->display.init_clock_gating(dev);
6040 }
6041
6042 void intel_suspend_hw(struct drm_device *dev)
6043 {
6044         if (HAS_PCH_LPT(dev))
6045                 lpt_suspend_hw(dev);
6046 }
6047
6048 #define for_each_power_well(i, power_well, domain_mask, power_domains)  \
6049         for (i = 0;                                                     \
6050              i < (power_domains)->power_well_count &&                   \
6051                  ((power_well) = &(power_domains)->power_wells[i]);     \
6052              i++)                                                       \
6053                 if ((power_well)->domains & (domain_mask))
6054
6055 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
6056         for (i = (power_domains)->power_well_count - 1;                  \
6057              i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
6058              i--)                                                        \
6059                 if ((power_well)->domains & (domain_mask))
6060
6061 /**
6062  * We should only use the power well if we explicitly asked the hardware to
6063  * enable it, so check if it's enabled and also check if we've requested it to
6064  * be enabled.
6065  */
6066 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
6067                                    struct i915_power_well *power_well)
6068 {
6069         return I915_READ(HSW_PWR_WELL_DRIVER) ==
6070                      (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
6071 }
6072
6073 bool intel_display_power_enabled_unlocked(struct drm_i915_private *dev_priv,
6074                                           enum intel_display_power_domain domain)
6075 {
6076         struct i915_power_domains *power_domains;
6077         struct i915_power_well *power_well;
6078         bool is_enabled;
6079         int i;
6080
6081         if (dev_priv->pm.suspended)
6082                 return false;
6083
6084         power_domains = &dev_priv->power_domains;
6085
6086         is_enabled = true;
6087
6088         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
6089                 if (power_well->always_on)
6090                         continue;
6091
6092                 if (!power_well->hw_enabled) {
6093                         is_enabled = false;
6094                         break;
6095                 }
6096         }
6097
6098         return is_enabled;
6099 }
6100
6101 bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
6102                                  enum intel_display_power_domain domain)
6103 {
6104         struct i915_power_domains *power_domains;
6105         bool ret;
6106
6107         power_domains = &dev_priv->power_domains;
6108
6109         mutex_lock(&power_domains->lock);
6110         ret = intel_display_power_enabled_unlocked(dev_priv, domain);
6111         mutex_unlock(&power_domains->lock);
6112
6113         return ret;
6114 }
6115
6116 /*
6117  * Starting with Haswell, we have a "Power Down Well" that can be turned off
6118  * when not needed anymore. We have 4 registers that can request the power well
6119  * to be enabled, and it will only be disabled if none of the registers is
6120  * requesting it to be enabled.
6121  */
6122 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
6123 {
6124         struct drm_device *dev = dev_priv->dev;
6125
6126         /*
6127          * After we re-enable the power well, if we touch VGA register 0x3d5
6128          * we'll get unclaimed register interrupts. This stops after we write
6129          * anything to the VGA MSR register. The vgacon module uses this
6130          * register all the time, so if we unbind our driver and, as a
6131          * consequence, bind vgacon, we'll get stuck in an infinite loop at
6132          * console_unlock(). So make here we touch the VGA MSR register, making
6133          * sure vgacon can keep working normally without triggering interrupts
6134          * and error messages.
6135          */
6136 #if 0
6137         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6138         outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
6139         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6140 #endif
6141
6142         if (IS_BROADWELL(dev))
6143                 gen8_irq_power_well_post_enable(dev_priv);
6144 }
6145
6146 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
6147                                struct i915_power_well *power_well, bool enable)
6148 {
6149         bool is_enabled, enable_requested;
6150         uint32_t tmp;
6151
6152         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
6153         is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
6154         enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
6155
6156         if (enable) {
6157                 if (!enable_requested)
6158                         I915_WRITE(HSW_PWR_WELL_DRIVER,
6159                                    HSW_PWR_WELL_ENABLE_REQUEST);
6160
6161                 if (!is_enabled) {
6162                         DRM_DEBUG_KMS("Enabling power well\n");
6163                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
6164                                       HSW_PWR_WELL_STATE_ENABLED), 20))
6165                                 DRM_ERROR("Timeout enabling power well\n");
6166                 }
6167
6168                 hsw_power_well_post_enable(dev_priv);
6169         } else {
6170                 if (enable_requested) {
6171                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
6172                         POSTING_READ(HSW_PWR_WELL_DRIVER);
6173                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
6174                 }
6175         }
6176 }
6177
6178 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
6179                                    struct i915_power_well *power_well)
6180 {
6181         hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
6182
6183         /*
6184          * We're taking over the BIOS, so clear any requests made by it since
6185          * the driver is in charge now.
6186          */
6187         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
6188                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
6189 }
6190
6191 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
6192                                   struct i915_power_well *power_well)
6193 {
6194         hsw_set_power_well(dev_priv, power_well, true);
6195 }
6196
6197 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
6198                                    struct i915_power_well *power_well)
6199 {
6200         hsw_set_power_well(dev_priv, power_well, false);
6201 }
6202
6203 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
6204                                            struct i915_power_well *power_well)
6205 {
6206 }
6207
6208 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
6209                                              struct i915_power_well *power_well)
6210 {
6211         return true;
6212 }
6213
6214 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
6215                                struct i915_power_well *power_well, bool enable)
6216 {
6217         enum punit_power_well power_well_id = power_well->data;
6218         u32 mask;
6219         u32 state;
6220         u32 ctrl;
6221
6222         mask = PUNIT_PWRGT_MASK(power_well_id);
6223         state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
6224                          PUNIT_PWRGT_PWR_GATE(power_well_id);
6225
6226         mutex_lock(&dev_priv->rps.hw_lock);
6227
6228 #define COND \
6229         ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
6230
6231         if (COND)
6232                 goto out;
6233
6234         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
6235         ctrl &= ~mask;
6236         ctrl |= state;
6237         vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
6238
6239         if (wait_for(COND, 100))
6240                 DRM_ERROR("timout setting power well state %08x (%08x)\n",
6241                           state,
6242                           vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
6243
6244 #undef COND
6245
6246 out:
6247         mutex_unlock(&dev_priv->rps.hw_lock);
6248 }
6249
6250 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
6251                                    struct i915_power_well *power_well)
6252 {
6253         vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
6254 }
6255
6256 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
6257                                   struct i915_power_well *power_well)
6258 {
6259         vlv_set_power_well(dev_priv, power_well, true);
6260 }
6261
6262 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
6263                                    struct i915_power_well *power_well)
6264 {
6265         vlv_set_power_well(dev_priv, power_well, false);
6266 }
6267
6268 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
6269                                    struct i915_power_well *power_well)
6270 {
6271         int power_well_id = power_well->data;
6272         bool enabled = false;
6273         u32 mask;
6274         u32 state;
6275         u32 ctrl;
6276
6277         mask = PUNIT_PWRGT_MASK(power_well_id);
6278         ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
6279
6280         mutex_lock(&dev_priv->rps.hw_lock);
6281
6282         state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
6283         /*
6284          * We only ever set the power-on and power-gate states, anything
6285          * else is unexpected.
6286          */
6287         WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
6288                 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
6289         if (state == ctrl)
6290                 enabled = true;
6291
6292         /*
6293          * A transient state at this point would mean some unexpected party
6294          * is poking at the power controls too.
6295          */
6296         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
6297         WARN_ON(ctrl != state);
6298
6299         mutex_unlock(&dev_priv->rps.hw_lock);
6300
6301         return enabled;
6302 }
6303
6304 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
6305                                           struct i915_power_well *power_well)
6306 {
6307         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
6308
6309         vlv_set_power_well(dev_priv, power_well, true);
6310
6311         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
6312         valleyview_enable_display_irqs(dev_priv);
6313         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
6314
6315         /*
6316          * During driver initialization/resume we can avoid restoring the
6317          * part of the HW/SW state that will be inited anyway explicitly.
6318          */
6319         if (dev_priv->power_domains.initializing)
6320                 return;
6321
6322         intel_hpd_init(dev_priv->dev);
6323
6324         i915_redisable_vga_power_on(dev_priv->dev);
6325 }
6326
6327 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
6328                                            struct i915_power_well *power_well)
6329 {
6330         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
6331
6332         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
6333         valleyview_disable_display_irqs(dev_priv);
6334         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
6335
6336         vlv_set_power_well(dev_priv, power_well, false);
6337
6338         vlv_power_sequencer_reset(dev_priv);
6339 }
6340
6341 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
6342                                            struct i915_power_well *power_well)
6343 {
6344         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
6345
6346         /*
6347          * Enable the CRI clock source so we can get at the
6348          * display and the reference clock for VGA
6349          * hotplug / manual detection.
6350          */
6351         I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
6352                    DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
6353         udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
6354
6355         vlv_set_power_well(dev_priv, power_well, true);
6356
6357         /*
6358          * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
6359          *  6.  De-assert cmn_reset/side_reset. Same as VLV X0.
6360          *   a. GUnit 0x2110 bit[0] set to 1 (def 0)
6361          *   b. The other bits such as sfr settings / modesel may all
6362          *      be set to 0.
6363          *
6364          * This should only be done on init and resume from S3 with
6365          * both PLLs disabled, or we risk losing DPIO and PLL
6366          * synchronization.
6367          */
6368         I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
6369 }
6370
6371 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
6372                                             struct i915_power_well *power_well)
6373 {
6374         enum i915_pipe pipe;
6375
6376         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
6377
6378         for_each_pipe(dev_priv, pipe)
6379                 assert_pll_disabled(dev_priv, pipe);
6380
6381         /* Assert common reset */
6382         I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
6383
6384         vlv_set_power_well(dev_priv, power_well, false);
6385 }
6386
6387 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
6388                                            struct i915_power_well *power_well)
6389 {
6390         enum dpio_phy phy;
6391
6392         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
6393                      power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
6394
6395         /*
6396          * Enable the CRI clock source so we can get at the
6397          * display and the reference clock for VGA
6398          * hotplug / manual detection.
6399          */
6400         if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
6401                 phy = DPIO_PHY0;
6402                 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
6403                            DPLL_REFA_CLK_ENABLE_VLV);
6404                 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
6405                            DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
6406         } else {
6407                 phy = DPIO_PHY1;
6408                 I915_WRITE(DPLL(PIPE_C), I915_READ(DPLL(PIPE_C)) |
6409                            DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
6410         }
6411         udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
6412         vlv_set_power_well(dev_priv, power_well, true);
6413
6414         /* Poll for phypwrgood signal */
6415         if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
6416                 DRM_ERROR("Display PHY %d is not power up\n", phy);
6417
6418         I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) |
6419                    PHY_COM_LANE_RESET_DEASSERT(phy));
6420 }
6421
6422 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
6423                                             struct i915_power_well *power_well)
6424 {
6425         enum dpio_phy phy;
6426
6427         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
6428                      power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
6429
6430         if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
6431                 phy = DPIO_PHY0;
6432                 assert_pll_disabled(dev_priv, PIPE_A);
6433                 assert_pll_disabled(dev_priv, PIPE_B);
6434         } else {
6435                 phy = DPIO_PHY1;
6436                 assert_pll_disabled(dev_priv, PIPE_C);
6437         }
6438
6439         I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) &
6440                    ~PHY_COM_LANE_RESET_DEASSERT(phy));
6441
6442         vlv_set_power_well(dev_priv, power_well, false);
6443 }
6444
6445 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
6446                                         struct i915_power_well *power_well)
6447 {
6448         enum i915_pipe pipe = power_well->data;
6449         bool enabled;
6450         u32 state, ctrl;
6451
6452         mutex_lock(&dev_priv->rps.hw_lock);
6453
6454         state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
6455         /*
6456          * We only ever set the power-on and power-gate states, anything
6457          * else is unexpected.
6458          */
6459         WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
6460         enabled = state == DP_SSS_PWR_ON(pipe);
6461
6462         /*
6463          * A transient state at this point would mean some unexpected party
6464          * is poking at the power controls too.
6465          */
6466         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
6467         WARN_ON(ctrl << 16 != state);
6468
6469         mutex_unlock(&dev_priv->rps.hw_lock);
6470
6471         return enabled;
6472 }
6473
6474 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
6475                                     struct i915_power_well *power_well,
6476                                     bool enable)
6477 {
6478         enum i915_pipe pipe = power_well->data;
6479         u32 state;
6480         u32 ctrl;
6481
6482         state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
6483
6484         mutex_lock(&dev_priv->rps.hw_lock);
6485
6486 #define COND \
6487         ((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
6488
6489         if (COND)
6490                 goto out;
6491
6492         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6493         ctrl &= ~DP_SSC_MASK(pipe);
6494         ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
6495         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
6496
6497         if (wait_for(COND, 100))
6498                 DRM_ERROR("timout setting power well state %08x (%08x)\n",
6499                           state,
6500                           vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
6501
6502 #undef COND
6503
6504 out:
6505         mutex_unlock(&dev_priv->rps.hw_lock);
6506 }
6507
6508 static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
6509                                         struct i915_power_well *power_well)
6510 {
6511         chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
6512 }
6513
6514 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
6515                                        struct i915_power_well *power_well)
6516 {
6517         WARN_ON_ONCE(power_well->data != PIPE_A &&
6518                      power_well->data != PIPE_B &&
6519                      power_well->data != PIPE_C);
6520
6521         chv_set_pipe_power_well(dev_priv, power_well, true);
6522 }
6523
6524 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
6525                                         struct i915_power_well *power_well)
6526 {
6527         WARN_ON_ONCE(power_well->data != PIPE_A &&
6528                      power_well->data != PIPE_B &&
6529                      power_well->data != PIPE_C);
6530
6531         chv_set_pipe_power_well(dev_priv, power_well, false);
6532 }
6533
6534 static void check_power_well_state(struct drm_i915_private *dev_priv,
6535                                    struct i915_power_well *power_well)
6536 {
6537         bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
6538
6539         if (power_well->always_on || !i915.disable_power_well) {
6540                 if (!enabled)
6541                         goto mismatch;
6542
6543                 return;
6544         }
6545
6546         if (enabled != (power_well->count > 0))
6547                 goto mismatch;
6548
6549         return;
6550
6551 mismatch:
6552         WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
6553                   power_well->name, power_well->always_on, enabled,
6554                   power_well->count, i915.disable_power_well);
6555 }
6556
6557 void intel_display_power_get(struct drm_i915_private *dev_priv,
6558                              enum intel_display_power_domain domain)
6559 {
6560         struct i915_power_domains *power_domains;
6561         struct i915_power_well *power_well;
6562         int i;
6563
6564         intel_runtime_pm_get(dev_priv);
6565
6566         power_domains = &dev_priv->power_domains;
6567
6568         mutex_lock(&power_domains->lock);
6569
6570         for_each_power_well(i, power_well, BIT(domain), power_domains) {
6571                 if (!power_well->count++) {
6572                         DRM_DEBUG_KMS("enabling %s\n", power_well->name);
6573                         power_well->ops->enable(dev_priv, power_well);
6574                         power_well->hw_enabled = true;
6575                 }
6576
6577                 check_power_well_state(dev_priv, power_well);
6578         }
6579
6580         power_domains->domain_use_count[domain]++;
6581
6582         mutex_unlock(&power_domains->lock);
6583 }
6584
6585 void intel_display_power_put(struct drm_i915_private *dev_priv,
6586                              enum intel_display_power_domain domain)
6587 {
6588         struct i915_power_domains *power_domains;
6589         struct i915_power_well *power_well;
6590         int i;
6591
6592         power_domains = &dev_priv->power_domains;
6593
6594         mutex_lock(&power_domains->lock);
6595
6596         WARN_ON(!power_domains->domain_use_count[domain]);
6597         power_domains->domain_use_count[domain]--;
6598
6599         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
6600                 WARN_ON(!power_well->count);
6601
6602                 if (!--power_well->count && i915.disable_power_well) {
6603                         DRM_DEBUG_KMS("disabling %s\n", power_well->name);
6604                         power_well->hw_enabled = false;
6605                         power_well->ops->disable(dev_priv, power_well);
6606                 }
6607
6608                 check_power_well_state(dev_priv, power_well);
6609         }
6610
6611         mutex_unlock(&power_domains->lock);
6612
6613         intel_runtime_pm_put(dev_priv);
6614 }
6615
6616 static struct i915_power_domains *hsw_pwr;
6617
6618 /* Display audio driver power well request */
6619 int i915_request_power_well(void)
6620 {
6621         struct drm_i915_private *dev_priv;
6622
6623         if (!hsw_pwr)
6624                 return -ENODEV;
6625
6626         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6627                                 power_domains);
6628         intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
6629         return 0;
6630 }
6631
6632 /* Display audio driver power well release */
6633 int i915_release_power_well(void)
6634 {
6635         struct drm_i915_private *dev_priv;
6636
6637         if (!hsw_pwr)
6638                 return -ENODEV;
6639
6640         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6641                                 power_domains);
6642         intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
6643         return 0;
6644 }
6645
6646 /*
6647  * Private interface for the audio driver to get CDCLK in kHz.
6648  *
6649  * Caller must request power well using i915_request_power_well() prior to
6650  * making the call.
6651  */
6652 int i915_get_cdclk_freq(void)
6653 {
6654         struct drm_i915_private *dev_priv;
6655
6656         if (!hsw_pwr)
6657                 return -ENODEV;
6658
6659         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6660                                 power_domains);
6661
6662         return intel_ddi_get_cdclk_freq(dev_priv);
6663 }
6664
6665 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
6666
6667 #define HSW_ALWAYS_ON_POWER_DOMAINS (                   \
6668         BIT(POWER_DOMAIN_PIPE_A) |                      \
6669         BIT(POWER_DOMAIN_TRANSCODER_EDP) |              \
6670         BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) |          \
6671         BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) |          \
6672         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |          \
6673         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |          \
6674         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |          \
6675         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |          \
6676         BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |          \
6677         BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |          \
6678         BIT(POWER_DOMAIN_PORT_CRT) |                    \
6679         BIT(POWER_DOMAIN_PLLS) |                        \
6680         BIT(POWER_DOMAIN_INIT))
6681 #define HSW_DISPLAY_POWER_DOMAINS (                             \
6682         (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |    \
6683         BIT(POWER_DOMAIN_INIT))
6684
6685 #define BDW_ALWAYS_ON_POWER_DOMAINS (                   \
6686         HSW_ALWAYS_ON_POWER_DOMAINS |                   \
6687         BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
6688 #define BDW_DISPLAY_POWER_DOMAINS (                             \
6689         (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |    \
6690         BIT(POWER_DOMAIN_INIT))
6691
6692 #define VLV_ALWAYS_ON_POWER_DOMAINS     BIT(POWER_DOMAIN_INIT)
6693 #define VLV_DISPLAY_POWER_DOMAINS       POWER_DOMAIN_MASK
6694
6695 #define VLV_DPIO_CMN_BC_POWER_DOMAINS (         \
6696         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
6697         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6698         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
6699         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6700         BIT(POWER_DOMAIN_PORT_CRT) |            \
6701         BIT(POWER_DOMAIN_INIT))
6702
6703 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (  \
6704         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
6705         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6706         BIT(POWER_DOMAIN_INIT))
6707
6708 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (  \
6709         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6710         BIT(POWER_DOMAIN_INIT))
6711
6712 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (  \
6713         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
6714         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6715         BIT(POWER_DOMAIN_INIT))
6716
6717 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (  \
6718         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6719         BIT(POWER_DOMAIN_INIT))
6720
6721 #define CHV_PIPE_A_POWER_DOMAINS (      \
6722         BIT(POWER_DOMAIN_PIPE_A) |      \
6723         BIT(POWER_DOMAIN_INIT))
6724
6725 #define CHV_PIPE_B_POWER_DOMAINS (      \
6726         BIT(POWER_DOMAIN_PIPE_B) |      \
6727         BIT(POWER_DOMAIN_INIT))
6728
6729 #define CHV_PIPE_C_POWER_DOMAINS (      \
6730         BIT(POWER_DOMAIN_PIPE_C) |      \
6731         BIT(POWER_DOMAIN_INIT))
6732
6733 #define CHV_DPIO_CMN_BC_POWER_DOMAINS (         \
6734         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
6735         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6736         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
6737         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6738         BIT(POWER_DOMAIN_INIT))
6739
6740 #define CHV_DPIO_CMN_D_POWER_DOMAINS (          \
6741         BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |  \
6742         BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |  \
6743         BIT(POWER_DOMAIN_INIT))
6744
6745 #define CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS (  \
6746         BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |  \
6747         BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |  \
6748         BIT(POWER_DOMAIN_INIT))
6749
6750 #define CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS (  \
6751         BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |  \
6752         BIT(POWER_DOMAIN_INIT))
6753
6754 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
6755         .sync_hw = i9xx_always_on_power_well_noop,
6756         .enable = i9xx_always_on_power_well_noop,
6757         .disable = i9xx_always_on_power_well_noop,
6758         .is_enabled = i9xx_always_on_power_well_enabled,
6759 };
6760
6761 static const struct i915_power_well_ops chv_pipe_power_well_ops = {
6762         .sync_hw = chv_pipe_power_well_sync_hw,
6763         .enable = chv_pipe_power_well_enable,
6764         .disable = chv_pipe_power_well_disable,
6765         .is_enabled = chv_pipe_power_well_enabled,
6766 };
6767
6768 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
6769         .sync_hw = vlv_power_well_sync_hw,
6770         .enable = chv_dpio_cmn_power_well_enable,
6771         .disable = chv_dpio_cmn_power_well_disable,
6772         .is_enabled = vlv_power_well_enabled,
6773 };
6774
6775 static struct i915_power_well i9xx_always_on_power_well[] = {
6776         {
6777                 .name = "always-on",
6778                 .always_on = 1,
6779                 .domains = POWER_DOMAIN_MASK,
6780                 .ops = &i9xx_always_on_power_well_ops,
6781         },
6782 };
6783
6784 static const struct i915_power_well_ops hsw_power_well_ops = {
6785         .sync_hw = hsw_power_well_sync_hw,
6786         .enable = hsw_power_well_enable,
6787         .disable = hsw_power_well_disable,
6788         .is_enabled = hsw_power_well_enabled,
6789 };
6790
6791 static struct i915_power_well hsw_power_wells[] = {
6792         {
6793                 .name = "always-on",
6794                 .always_on = 1,
6795                 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
6796                 .ops = &i9xx_always_on_power_well_ops,
6797         },
6798 #if 0
6799         {
6800                 .name = "display",
6801                 .domains = VLV_DISPLAY_POWER_DOMAINS,
6802                 .data = PUNIT_POWER_WELL_DISP2D,
6803                 .ops = &vlv_display_power_well_ops,
6804         },
6805 #endif
6806         {
6807                 .name = "display",
6808                 .domains = HSW_DISPLAY_POWER_DOMAINS,
6809                 .ops = &hsw_power_well_ops,
6810         },
6811 };
6812
6813 static struct i915_power_well bdw_power_wells[] = {
6814         {
6815                 .name = "always-on",
6816                 .always_on = 1,
6817                 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
6818                 .ops = &i9xx_always_on_power_well_ops,
6819         },
6820         {
6821                 .name = "display",
6822                 .domains = BDW_DISPLAY_POWER_DOMAINS,
6823                 .ops = &hsw_power_well_ops,
6824         },
6825 };
6826
6827 static const struct i915_power_well_ops vlv_display_power_well_ops = {
6828         .sync_hw = vlv_power_well_sync_hw,
6829         .enable = vlv_display_power_well_enable,
6830         .disable = vlv_display_power_well_disable,
6831         .is_enabled = vlv_power_well_enabled,
6832 };
6833
6834 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
6835         .sync_hw = vlv_power_well_sync_hw,
6836         .enable = vlv_dpio_cmn_power_well_enable,
6837         .disable = vlv_dpio_cmn_power_well_disable,
6838         .is_enabled = vlv_power_well_enabled,
6839 };
6840
6841 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
6842         .sync_hw = vlv_power_well_sync_hw,
6843         .enable = vlv_power_well_enable,
6844         .disable = vlv_power_well_disable,
6845         .is_enabled = vlv_power_well_enabled,
6846 };
6847
6848 static struct i915_power_well vlv_power_wells[] = {
6849         {
6850                 .name = "always-on",
6851                 .always_on = 1,
6852                 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
6853                 .ops = &i9xx_always_on_power_well_ops,
6854         },
6855         {
6856                 .name = "display",
6857                 .domains = VLV_DISPLAY_POWER_DOMAINS,
6858                 .data = PUNIT_POWER_WELL_DISP2D,
6859                 .ops = &vlv_display_power_well_ops,
6860         },
6861         {
6862                 .name = "dpio-tx-b-01",
6863                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6864                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6865                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6866                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6867                 .ops = &vlv_dpio_power_well_ops,
6868                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
6869         },
6870         {
6871                 .name = "dpio-tx-b-23",
6872                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6873                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6874                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6875                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6876                 .ops = &vlv_dpio_power_well_ops,
6877                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
6878         },
6879         {
6880                 .name = "dpio-tx-c-01",
6881                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6882                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6883                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6884                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6885                 .ops = &vlv_dpio_power_well_ops,
6886                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
6887         },
6888         {
6889                 .name = "dpio-tx-c-23",
6890                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6891                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6892                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6893                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6894                 .ops = &vlv_dpio_power_well_ops,
6895                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
6896         },
6897         {
6898                 .name = "dpio-common",
6899                 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
6900                 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
6901                 .ops = &vlv_dpio_cmn_power_well_ops,
6902         },
6903 };
6904
6905 static struct i915_power_well chv_power_wells[] = {
6906         {
6907                 .name = "always-on",
6908                 .always_on = 1,
6909                 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
6910                 .ops = &i9xx_always_on_power_well_ops,
6911         },
6912 #if 0
6913         {
6914                 .name = "display",
6915                 .domains = VLV_DISPLAY_POWER_DOMAINS,
6916                 .data = PUNIT_POWER_WELL_DISP2D,
6917                 .ops = &vlv_display_power_well_ops,
6918         },
6919         {
6920                 .name = "pipe-a",
6921                 .domains = CHV_PIPE_A_POWER_DOMAINS,
6922                 .data = PIPE_A,
6923                 .ops = &chv_pipe_power_well_ops,
6924         },
6925         {
6926                 .name = "pipe-b",
6927                 .domains = CHV_PIPE_B_POWER_DOMAINS,
6928                 .data = PIPE_B,
6929                 .ops = &chv_pipe_power_well_ops,
6930         },
6931         {
6932                 .name = "pipe-c",
6933                 .domains = CHV_PIPE_C_POWER_DOMAINS,
6934                 .data = PIPE_C,
6935                 .ops = &chv_pipe_power_well_ops,
6936         },
6937 #endif
6938         {
6939                 .name = "dpio-common-bc",
6940                 /*
6941                  * XXX: cmnreset for one PHY seems to disturb the other.
6942                  * As a workaround keep both powered on at the same
6943                  * time for now.
6944                  */
6945                 .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
6946                 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
6947                 .ops = &chv_dpio_cmn_power_well_ops,
6948         },
6949         {
6950                 .name = "dpio-common-d",
6951                 /*
6952                  * XXX: cmnreset for one PHY seems to disturb the other.
6953                  * As a workaround keep both powered on at the same
6954                  * time for now.
6955                  */
6956                 .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
6957                 .data = PUNIT_POWER_WELL_DPIO_CMN_D,
6958                 .ops = &chv_dpio_cmn_power_well_ops,
6959         },
6960 #if 0
6961         {
6962                 .name = "dpio-tx-b-01",
6963                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6964                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
6965                 .ops = &vlv_dpio_power_well_ops,
6966                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
6967         },
6968         {
6969                 .name = "dpio-tx-b-23",
6970                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6971                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
6972                 .ops = &vlv_dpio_power_well_ops,
6973                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
6974         },
6975         {
6976                 .name = "dpio-tx-c-01",
6977                 .domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6978                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6979                 .ops = &vlv_dpio_power_well_ops,
6980                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
6981         },
6982         {
6983                 .name = "dpio-tx-c-23",
6984                 .domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6985                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6986                 .ops = &vlv_dpio_power_well_ops,
6987                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
6988         },
6989         {
6990                 .name = "dpio-tx-d-01",
6991                 .domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
6992                            CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
6993                 .ops = &vlv_dpio_power_well_ops,
6994                 .data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_01,
6995         },
6996         {
6997                 .name = "dpio-tx-d-23",
6998                 .domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
6999                            CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
7000                 .ops = &vlv_dpio_power_well_ops,
7001                 .data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_23,
7002         },
7003 #endif
7004 };
7005
7006 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
7007                                                  enum punit_power_well power_well_id)
7008 {
7009         struct i915_power_domains *power_domains = &dev_priv->power_domains;
7010         struct i915_power_well *power_well;
7011         int i;
7012
7013         for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
7014                 if (power_well->data == power_well_id)
7015                         return power_well;
7016         }
7017
7018         return NULL;
7019 }
7020
7021 #define set_power_wells(power_domains, __power_wells) ({                \
7022         (power_domains)->power_wells = (__power_wells);                 \
7023         (power_domains)->power_well_count = ARRAY_SIZE(__power_wells);  \
7024 })
7025
7026 int intel_power_domains_init(struct drm_i915_private *dev_priv)
7027 {
7028         struct i915_power_domains *power_domains = &dev_priv->power_domains;
7029
7030         lockinit(&power_domains->lock, "i915pl", 0, LK_CANRECURSE);
7031
7032         /*
7033          * The enabling order will be from lower to higher indexed wells,
7034          * the disabling order is reversed.
7035          */
7036         if (IS_HASWELL(dev_priv->dev)) {
7037                 set_power_wells(power_domains, hsw_power_wells);
7038                 hsw_pwr = power_domains;
7039         } else if (IS_BROADWELL(dev_priv->dev)) {
7040                 set_power_wells(power_domains, bdw_power_wells);
7041                 hsw_pwr = power_domains;
7042         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
7043                 set_power_wells(power_domains, chv_power_wells);
7044         } else if (IS_VALLEYVIEW(dev_priv->dev)) {
7045                 set_power_wells(power_domains, vlv_power_wells);
7046         } else {
7047                 set_power_wells(power_domains, i9xx_always_on_power_well);
7048         }
7049
7050         return 0;
7051 }
7052
7053 void intel_power_domains_remove(struct drm_i915_private *dev_priv)
7054 {
7055         hsw_pwr = NULL;
7056 }
7057
7058 static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
7059 {
7060         struct i915_power_domains *power_domains = &dev_priv->power_domains;
7061         struct i915_power_well *power_well;
7062         int i;
7063
7064         mutex_lock(&power_domains->lock);
7065         for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
7066                 power_well->ops->sync_hw(dev_priv, power_well);
7067                 power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
7068                                                                      power_well);
7069         }
7070         mutex_unlock(&power_domains->lock);
7071 }
7072
7073 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
7074 {
7075         struct i915_power_well *cmn =
7076                 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
7077         struct i915_power_well *disp2d =
7078                 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
7079
7080         /* nothing to do if common lane is already off */
7081         if (!cmn->ops->is_enabled(dev_priv, cmn))
7082                 return;
7083
7084         /* If the display might be already active skip this */
7085         if (disp2d->ops->is_enabled(dev_priv, disp2d) &&
7086             I915_READ(DPIO_CTL) & DPIO_CMNRST)
7087                 return;
7088
7089         DRM_DEBUG_KMS("toggling display PHY side reset\n");
7090
7091         /* cmnlane needs DPLL registers */
7092         disp2d->ops->enable(dev_priv, disp2d);
7093
7094         /*
7095          * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
7096          * Need to assert and de-assert PHY SB reset by gating the
7097          * common lane power, then un-gating it.
7098          * Simply ungating isn't enough to reset the PHY enough to get
7099          * ports and lanes running.
7100          */
7101         cmn->ops->disable(dev_priv, cmn);
7102 }
7103
7104 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
7105 {
7106         struct drm_device *dev = dev_priv->dev;
7107         struct i915_power_domains *power_domains = &dev_priv->power_domains;
7108
7109         power_domains->initializing = true;
7110
7111         if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
7112                 mutex_lock(&power_domains->lock);
7113                 vlv_cmnlane_wa(dev_priv);
7114                 mutex_unlock(&power_domains->lock);
7115         }
7116
7117         /* For now, we need the power well to be always enabled. */
7118         intel_display_set_init_power(dev_priv, true);
7119         intel_power_domains_resume(dev_priv);
7120         power_domains->initializing = false;
7121 }
7122
7123 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
7124 {
7125         intel_runtime_pm_get(dev_priv);
7126 }
7127
7128 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
7129 {
7130         intel_runtime_pm_put(dev_priv);
7131 }
7132
7133 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
7134 {
7135 #if 0
7136         struct drm_device *dev = dev_priv->dev;
7137         struct device *device = &dev->pdev->dev;
7138
7139         if (!HAS_RUNTIME_PM(dev))
7140                 return;
7141
7142         pm_runtime_get_sync(device);
7143         WARN(dev_priv->pm.suspended, "Device still suspended.\n");
7144 #endif
7145 }
7146
7147 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
7148 {
7149         struct drm_device *dev = dev_priv->dev;
7150 #if 0
7151         struct device *device = &dev->pdev->dev;
7152 #endif
7153
7154         if (!HAS_RUNTIME_PM(dev))
7155                 return;
7156
7157         WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
7158 #if 0
7159         pm_runtime_get_noresume(device);
7160 #endif
7161 }
7162
7163 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
7164 {
7165 #if 0
7166         struct drm_device *dev = dev_priv->dev;
7167         struct device *device = &dev->pdev->dev;
7168
7169         if (!HAS_RUNTIME_PM(dev))
7170                 return;
7171
7172         pm_runtime_mark_last_busy(device);
7173         pm_runtime_put_autosuspend(device);
7174 #endif
7175 }
7176
7177 void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
7178 {
7179         struct drm_device *dev = dev_priv->dev;
7180 #if 0
7181         struct device *device = &dev->pdev->dev;
7182 #endif
7183
7184         if (!HAS_RUNTIME_PM(dev))
7185                 return;
7186
7187 #if 0
7188         pm_runtime_set_active(device);
7189
7190         /*
7191          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
7192          * requirement.
7193          */
7194         if (!intel_enable_rc6(dev)) {
7195                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
7196                 return;
7197         }
7198
7199         pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
7200         pm_runtime_mark_last_busy(device);
7201         pm_runtime_use_autosuspend(device);
7202
7203         pm_runtime_put_autosuspend(device);
7204 #endif
7205 }
7206
7207 void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
7208 {
7209 #if 0
7210         struct drm_device *dev = dev_priv->dev;
7211         struct device *device = &dev->pdev->dev;
7212
7213         if (!HAS_RUNTIME_PM(dev))
7214                 return;
7215
7216         if (!intel_enable_rc6(dev))
7217                 return;
7218
7219         /* Make sure we're not suspended first. */
7220         pm_runtime_get_sync(device);
7221         pm_runtime_disable(device);
7222 #endif
7223 }
7224
7225 /* Set up chip specific power management-related functions */
7226 void intel_init_pm(struct drm_device *dev)
7227 {
7228         struct drm_i915_private *dev_priv = dev->dev_private;
7229
7230         if (HAS_FBC(dev)) {
7231                 if (INTEL_INFO(dev)->gen >= 7) {
7232                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7233                         dev_priv->display.enable_fbc = gen7_enable_fbc;
7234                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
7235                 } else if (INTEL_INFO(dev)->gen >= 5) {
7236                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7237                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
7238                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
7239                 } else if (IS_GM45(dev)) {
7240                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
7241                         dev_priv->display.enable_fbc = g4x_enable_fbc;
7242                         dev_priv->display.disable_fbc = g4x_disable_fbc;
7243                 } else {
7244                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
7245                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
7246                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
7247
7248                         /* This value was pulled out of someone's hat */
7249                         I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
7250                 }
7251         }
7252
7253         /* For cxsr */
7254         if (IS_PINEVIEW(dev))
7255                 i915_pineview_get_mem_freq(dev);
7256         else if (IS_GEN5(dev))
7257                 i915_ironlake_get_mem_freq(dev);
7258
7259         /* For FIFO watermark updates */
7260         if (HAS_PCH_SPLIT(dev)) {
7261                 ilk_setup_wm_latency(dev);
7262
7263                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7264                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7265                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7266                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7267                         dev_priv->display.update_wm = ilk_update_wm;
7268                         dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
7269                 } else {
7270                         DRM_DEBUG_KMS("Failed to read display plane latency. "
7271                                       "Disable CxSR\n");
7272                 }
7273
7274                 if (IS_GEN5(dev))
7275                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7276                 else if (IS_GEN6(dev))
7277                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7278                 else if (IS_IVYBRIDGE(dev))
7279                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7280                 else if (IS_HASWELL(dev))
7281                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7282                 else if (INTEL_INFO(dev)->gen == 8)
7283                         dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7284         } else if (IS_CHERRYVIEW(dev)) {
7285                 dev_priv->display.update_wm = cherryview_update_wm;
7286                 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
7287                 dev_priv->display.init_clock_gating =
7288                         cherryview_init_clock_gating;
7289         } else if (IS_VALLEYVIEW(dev)) {
7290                 dev_priv->display.update_wm = valleyview_update_wm;
7291                 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
7292                 dev_priv->display.init_clock_gating =
7293                         valleyview_init_clock_gating;
7294         } else if (IS_PINEVIEW(dev)) {
7295                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7296                                             dev_priv->is_ddr3,
7297                                             dev_priv->fsb_freq,
7298                                             dev_priv->mem_freq)) {
7299                         DRM_INFO("failed to find known CxSR latency "
7300                                  "(found ddr%s fsb freq %d, mem freq %d), "
7301                                  "disabling CxSR\n",
7302                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
7303                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7304                         /* Disable CxSR and never update its watermark again */
7305                         intel_set_memory_cxsr(dev_priv, false);
7306                         dev_priv->display.update_wm = NULL;
7307                 } else
7308                         dev_priv->display.update_wm = pineview_update_wm;
7309                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7310         } else if (IS_G4X(dev)) {
7311                 dev_priv->display.update_wm = g4x_update_wm;
7312                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7313         } else if (IS_GEN4(dev)) {
7314                 dev_priv->display.update_wm = i965_update_wm;
7315                 if (IS_CRESTLINE(dev))
7316                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7317                 else if (IS_BROADWATER(dev))
7318                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7319         } else if (IS_GEN3(dev)) {
7320                 dev_priv->display.update_wm = i9xx_update_wm;
7321                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7322                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7323         } else if (IS_GEN2(dev)) {
7324                 if (INTEL_INFO(dev)->num_pipes == 1) {
7325                         dev_priv->display.update_wm = i845_update_wm;
7326                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7327                 } else {
7328                         dev_priv->display.update_wm = i9xx_update_wm;
7329                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7330                 }
7331
7332                 if (IS_I85X(dev) || IS_I865G(dev))
7333                         dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7334                 else
7335                         dev_priv->display.init_clock_gating = i830_init_clock_gating;
7336         } else {
7337                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7338         }
7339 }
7340
7341 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
7342 {
7343         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7344
7345         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7346                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7347                 return -EAGAIN;
7348         }
7349
7350         I915_WRITE(GEN6_PCODE_DATA, *val);
7351         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7352
7353         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7354                      500)) {
7355                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7356                 return -ETIMEDOUT;
7357         }
7358
7359         *val = I915_READ(GEN6_PCODE_DATA);
7360         I915_WRITE(GEN6_PCODE_DATA, 0);
7361
7362         return 0;
7363 }
7364
7365 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
7366 {
7367         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7368
7369         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7370                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7371                 return -EAGAIN;
7372         }
7373
7374         I915_WRITE(GEN6_PCODE_DATA, val);
7375         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7376
7377         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7378                      500)) {
7379                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7380                 return -ETIMEDOUT;
7381         }
7382
7383         I915_WRITE(GEN6_PCODE_DATA, 0);
7384
7385         return 0;
7386 }
7387
7388 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7389 {
7390         int div;
7391
7392         /* 4 x czclk */
7393         switch (dev_priv->mem_freq) {
7394         case 800:
7395                 div = 10;
7396                 break;
7397         case 1066:
7398                 div = 12;
7399                 break;
7400         case 1333:
7401                 div = 16;
7402                 break;
7403         default:
7404                 return -1;
7405         }
7406
7407         return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
7408 }
7409
7410 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7411 {
7412         int mul;
7413
7414         /* 4 x czclk */
7415         switch (dev_priv->mem_freq) {
7416         case 800:
7417                 mul = 10;
7418                 break;
7419         case 1066:
7420                 mul = 12;
7421                 break;
7422         case 1333:
7423                 mul = 16;
7424                 break;
7425         default:
7426                 return -1;
7427         }
7428
7429         return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
7430 }
7431
7432 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7433 {
7434         int div, freq;
7435
7436         switch (dev_priv->rps.cz_freq) {
7437         case 200:
7438                 div = 5;
7439                 break;
7440         case 267:
7441                 div = 6;
7442                 break;
7443         case 320:
7444         case 333:
7445         case 400:
7446                 div = 8;
7447                 break;
7448         default:
7449                 return -1;
7450         }
7451
7452         freq = (DIV_ROUND_CLOSEST((dev_priv->rps.cz_freq * val), 2 * div) / 2);
7453
7454         return freq;
7455 }
7456
7457 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7458 {
7459         int mul, opcode;
7460
7461         switch (dev_priv->rps.cz_freq) {
7462         case 200:
7463                 mul = 5;
7464                 break;
7465         case 267:
7466                 mul = 6;
7467                 break;
7468         case 320:
7469         case 333:
7470         case 400:
7471                 mul = 8;
7472                 break;
7473         default:
7474                 return -1;
7475         }
7476
7477         /* CHV needs even values */
7478         opcode = (DIV_ROUND_CLOSEST((val * 2 * mul), dev_priv->rps.cz_freq) * 2);
7479
7480         return opcode;
7481 }
7482
7483 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7484 {
7485         int ret = -1;
7486
7487         if (IS_CHERRYVIEW(dev_priv->dev))
7488                 ret = chv_gpu_freq(dev_priv, val);
7489         else if (IS_VALLEYVIEW(dev_priv->dev))
7490                 ret = byt_gpu_freq(dev_priv, val);
7491
7492         return ret;
7493 }
7494
7495 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7496 {
7497         int ret = -1;
7498
7499         if (IS_CHERRYVIEW(dev_priv->dev))
7500                 ret = chv_freq_opcode(dev_priv, val);
7501         else if (IS_VALLEYVIEW(dev_priv->dev))
7502                 ret = byt_freq_opcode(dev_priv, val);
7503
7504         return ret;
7505 }
7506
7507 void intel_pm_setup(struct drm_device *dev)
7508 {
7509         struct drm_i915_private *dev_priv = dev->dev_private;
7510
7511         lockinit(&dev_priv->rps.hw_lock, "i915 rps.hw_lock", 0, LK_CANRECURSE);
7512
7513         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7514                           intel_gen6_powersave_work);
7515
7516         dev_priv->pm.suspended = false;
7517         dev_priv->pm._irqs_disabled = false;
7518 }