kernel - Fix improper assertion panic in vinvalbuf()
[dragonfly.git] / sys / kern / kern_timeout.c
1 /*
2  * Copyright (c) 2004 The DragonFly Project.  All rights reserved.
3  * 
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  * 
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  * 
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 /*
35  * Copyright (c) 1982, 1986, 1991, 1993
36  *      The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *      This product includes software developed by the University of
54  *      California, Berkeley and its contributors.
55  * 4. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  *      From: @(#)kern_clock.c  8.5 (Berkeley) 1/21/94
72  * $FreeBSD: src/sys/kern/kern_timeout.c,v 1.59.2.1 2001/11/13 18:24:52 archie Exp $
73  */
74 /*
75  * DRAGONFLY BGL STATUS
76  *
77  *      All the API functions should be MP safe.
78  *
79  *      The callback functions will be flagged as being MP safe if the
80  *      timeout structure is initialized with callout_init_mp() instead of
81  *      callout_init().
82  *
83  *      The helper threads cannot be made preempt-capable until after we
84  *      clean up all the uses of splsoftclock() and related interlocks (which
85  *      require the related functions to be MP safe as well).
86  */
87 /*
88  * The callout mechanism is based on the work of Adam M. Costello and 
89  * George Varghese, published in a technical report entitled "Redesigning
90  * the BSD Callout and Timer Facilities" and modified slightly for inclusion
91  * in FreeBSD by Justin T. Gibbs.  The original work on the data structures
92  * used in this implementation was published by G. Varghese and T. Lauck in
93  * the paper "Hashed and Hierarchical Timing Wheels: Data Structures for
94  * the Efficient Implementation of a Timer Facility" in the Proceedings of
95  * the 11th ACM Annual Symposium on Operating Systems Principles,
96  * Austin, Texas Nov 1987.
97  *
98  * The per-cpu augmentation was done by Matthew Dillon.
99  */
100
101 #include <sys/param.h>
102 #include <sys/systm.h>
103 #include <sys/callout.h>
104 #include <sys/kernel.h>
105 #include <sys/interrupt.h>
106 #include <sys/thread.h>
107
108 #include <sys/thread2.h>
109 #include <sys/mplock2.h>
110
111 #ifndef MAX_SOFTCLOCK_STEPS
112 #define MAX_SOFTCLOCK_STEPS 100 /* Maximum allowed value of steps. */
113 #endif
114
115
116 struct softclock_pcpu {
117         struct callout_tailq *callwheel;
118         struct callout * volatile next;
119         struct callout *running;/* currently running callout */
120         int softticks;          /* softticks index */
121         int curticks;           /* per-cpu ticks counter */
122         int isrunning;
123         struct thread thread;
124
125 };
126
127 typedef struct softclock_pcpu *softclock_pcpu_t;
128
129 /*
130  * TODO:
131  *      allocate more timeout table slots when table overflows.
132  */
133 static MALLOC_DEFINE(M_CALLOUT, "callout", "callout structures");
134 static int callwheelsize;
135 static int callwheelmask;
136 static struct softclock_pcpu softclock_pcpu_ary[MAXCPU];
137
138 static void softclock_handler(void *arg);
139
140 static void
141 swi_softclock_setup(void *arg)
142 {
143         int cpu;
144         int i;
145
146         /*
147          * Figure out how large a callwheel we need.  It must be a power of 2.
148          */
149         callwheelsize = 1;
150         while (callwheelsize < ncallout)
151                 callwheelsize <<= 1;
152         callwheelmask = callwheelsize - 1;
153
154         /*
155          * Initialize per-cpu data structures.
156          */
157         for (cpu = 0; cpu < ncpus; ++cpu) {
158                 softclock_pcpu_t sc;
159
160                 sc = &softclock_pcpu_ary[cpu];
161
162                 sc->callwheel = kmalloc(sizeof(*sc->callwheel) * callwheelsize,
163                                         M_CALLOUT, M_WAITOK|M_ZERO);
164                 for (i = 0; i < callwheelsize; ++i)
165                         TAILQ_INIT(&sc->callwheel[i]);
166
167                 /*
168                  * Mark the softclock handler as being an interrupt thread
169                  * even though it really isn't, but do not allow it to
170                  * preempt other threads (do not assign td_preemptable).
171                  *
172                  * Kernel code now assumes that callouts do not preempt
173                  * the cpu they were scheduled on.
174                  */
175                 lwkt_create(softclock_handler, sc, NULL,
176                             &sc->thread, TDF_NOSTART | TDF_INTTHREAD,
177                             cpu, "softclock %d", cpu);
178         }
179 }
180
181 /*
182  * Must occur after ncpus has been initialized.
183  */
184 SYSINIT(softclock_setup, SI_BOOT2_SOFTCLOCK, SI_ORDER_SECOND,
185         swi_softclock_setup, NULL);
186
187 /*
188  * This routine is called from the hardclock() (basically a FASTint/IPI) on
189  * each cpu in the system.  sc->curticks is this cpu's notion of the timebase.
190  * It IS NOT NECESSARILY SYNCHRONIZED WITH 'ticks'!  sc->softticks is where
191  * the callwheel is currently indexed.
192  *
193  * WARNING!  The MP lock is not necessarily held on call, nor can it be
194  * safely obtained.
195  *
196  * sc->softticks is adjusted by either this routine or our helper thread
197  * depending on whether the helper thread is running or not.
198  */
199 void
200 hardclock_softtick(globaldata_t gd)
201 {
202         softclock_pcpu_t sc;
203
204         sc = &softclock_pcpu_ary[gd->gd_cpuid];
205         ++sc->curticks;
206         if (sc->isrunning)
207                 return;
208         if (sc->softticks == sc->curticks) {
209                 /*
210                  * in sync, only wakeup the thread if there is something to
211                  * do.
212                  */
213                 if (TAILQ_FIRST(&sc->callwheel[sc->softticks & callwheelmask]))
214                 {
215                         sc->isrunning = 1;
216                         lwkt_schedule(&sc->thread);
217                 } else {
218                         ++sc->softticks;
219                 }
220         } else {
221                 /*
222                  * out of sync, wakeup the thread unconditionally so it can
223                  * catch up.
224                  */
225                 sc->isrunning = 1;
226                 lwkt_schedule(&sc->thread);
227         }
228 }
229
230 /*
231  * This procedure is the main loop of our per-cpu helper thread.  The
232  * sc->isrunning flag prevents us from racing hardclock_softtick() and
233  * a critical section is sufficient to interlock sc->curticks and protect
234  * us from remote IPI's / list removal.
235  *
236  * The thread starts with the MP lock released and not in a critical
237  * section.  The loop itself is MP safe while individual callbacks
238  * may or may not be, so we obtain or release the MP lock as appropriate.
239  */
240 static void
241 softclock_handler(void *arg)
242 {
243         softclock_pcpu_t sc;
244         struct callout *c;
245         struct callout_tailq *bucket;
246         void (*c_func)(void *);
247         void *c_arg;
248         int mpsafe = 1;
249
250         /*
251          * Run the callout thread at the same priority as other kernel
252          * threads so it can be round-robined.
253          */
254         /*lwkt_setpri_self(TDPRI_SOFT_NORM);*/
255
256         sc = arg;
257         crit_enter();
258 loop:
259         while (sc->softticks != (int)(sc->curticks + 1)) {
260                 bucket = &sc->callwheel[sc->softticks & callwheelmask];
261
262                 for (c = TAILQ_FIRST(bucket); c; c = sc->next) {
263                         if (c->c_time != sc->softticks) {
264                                 sc->next = TAILQ_NEXT(c, c_links.tqe);
265                                 continue;
266                         }
267                         if (c->c_flags & CALLOUT_MPSAFE) {
268                                 if (mpsafe == 0) {
269                                         mpsafe = 1;
270                                         rel_mplock();
271                                 }
272                         } else {
273                                 /*
274                                  * The request might be removed while we 
275                                  * are waiting to get the MP lock.  If it
276                                  * was removed sc->next will point to the
277                                  * next valid request or NULL, loop up.
278                                  */
279                                 if (mpsafe) {
280                                         mpsafe = 0;
281                                         sc->next = c;
282                                         get_mplock();
283                                         if (c != sc->next)
284                                                 continue;
285                                 }
286                         }
287                         sc->next = TAILQ_NEXT(c, c_links.tqe);
288                         TAILQ_REMOVE(bucket, c, c_links.tqe);
289
290                         sc->running = c;
291                         c_func = c->c_func;
292                         c_arg = c->c_arg;
293                         c->c_func = NULL;
294                         KKASSERT(c->c_flags & CALLOUT_DID_INIT);
295                         c->c_flags &= ~CALLOUT_PENDING;
296                         crit_exit();
297                         c_func(c_arg);
298                         crit_enter();
299                         sc->running = NULL;
300                         /* NOTE: list may have changed */
301                 }
302                 ++sc->softticks;
303         }
304         sc->isrunning = 0;
305         lwkt_deschedule_self(&sc->thread);      /* == curthread */
306         lwkt_switch();
307         goto loop;
308         /* NOT REACHED */
309 }
310
311 /*
312  * New interface; clients allocate their own callout structures.
313  *
314  * callout_reset() - establish or change a timeout
315  * callout_stop() - disestablish a timeout
316  * callout_init() - initialize a callout structure so that it can
317  *                      safely be passed to callout_reset() and callout_stop()
318  * callout_init_mp() - same but any installed functions must be MP safe.
319  *
320  * <sys/callout.h> defines three convenience macros:
321  *
322  * callout_active() - returns truth if callout has not been serviced
323  * callout_pending() - returns truth if callout is still waiting for timeout
324  * callout_deactivate() - marks the callout as having been serviced
325  */
326
327 /*
328  * Start or restart a timeout.  Install the callout structure in the 
329  * callwheel.  Callers may legally pass any value, even if 0 or negative,
330  * but since the sc->curticks index may have already been processed a
331  * minimum timeout of 1 tick will be enforced.
332  *
333  * The callout is installed on and will be processed on the current cpu's
334  * callout wheel.
335  *
336  * WARNING! This function may be called from any cpu but the caller must
337  * serialize callout_stop() and callout_reset() calls on the passed
338  * structure regardless of cpu.
339  */
340 void
341 callout_reset(struct callout *c, int to_ticks, void (*ftn)(void *), 
342                 void *arg)
343 {
344         softclock_pcpu_t sc;
345         globaldata_t gd;
346
347 #ifdef INVARIANTS
348         if ((c->c_flags & CALLOUT_DID_INIT) == 0) {
349                 callout_init(c);
350                 kprintf(
351                     "callout_reset(%p) from %p: callout was not initialized\n",
352                     c, ((int **)&c)[-1]);
353                 print_backtrace(-1);
354         }
355 #endif
356         gd = mycpu;
357         sc = &softclock_pcpu_ary[gd->gd_cpuid];
358         crit_enter_gd(gd);
359
360         if (c->c_flags & CALLOUT_ACTIVE)
361                 callout_stop(c);
362
363         if (to_ticks <= 0)
364                 to_ticks = 1;
365
366         c->c_arg = arg;
367         c->c_flags |= (CALLOUT_ACTIVE | CALLOUT_PENDING);
368         c->c_func = ftn;
369         c->c_time = sc->curticks + to_ticks;
370         c->c_gd = gd;
371
372         TAILQ_INSERT_TAIL(&sc->callwheel[c->c_time & callwheelmask], 
373                           c, c_links.tqe);
374         crit_exit_gd(gd);
375 }
376
377 struct callout_remote_arg {
378         struct callout  *c;
379         void            (*ftn)(void *);
380         void            *arg;
381         int             to_ticks;
382 };
383
384 static void
385 callout_reset_ipi(void *arg)
386 {
387         struct callout_remote_arg *rmt = arg;
388
389         callout_reset(rmt->c, rmt->to_ticks, rmt->ftn, rmt->arg);
390 }
391
392 void
393 callout_reset_bycpu(struct callout *c, int to_ticks, void (*ftn)(void *),
394     void *arg, int cpuid)
395 {
396         KASSERT(cpuid >= 0 && cpuid < ncpus, ("invalid cpuid %d", cpuid));
397
398         if (cpuid == mycpuid) {
399                 callout_reset(c, to_ticks, ftn, arg);
400         } else {
401                 struct globaldata *target_gd;
402                 struct callout_remote_arg rmt;
403                 int seq;
404
405                 rmt.c = c;
406                 rmt.ftn = ftn;
407                 rmt.arg = arg;
408                 rmt.to_ticks = to_ticks;
409
410                 target_gd = globaldata_find(cpuid);
411
412                 seq = lwkt_send_ipiq(target_gd, callout_reset_ipi, &rmt);
413                 lwkt_wait_ipiq(target_gd, seq);
414         }
415 }
416
417 /*
418  * Stop a running timer.  WARNING!  If called on a cpu other then the one
419  * the callout was started on this function will liveloop on its IPI to
420  * the target cpu to process the request.  It is possible for the callout
421  * to execute in that case.
422  *
423  * WARNING! This function may be called from any cpu but the caller must
424  * serialize callout_stop() and callout_reset() calls on the passed
425  * structure regardless of cpu.
426  *
427  * WARNING! This routine may be called from an IPI
428  *
429  * WARNING! This function can return while it's c_func is still running
430  *          in the callout thread, a secondary check may be needed.
431  *          Use callout_stop_sync() to wait for any callout function to
432  *          complete before returning, being sure that no deadlock is
433  *          possible if you do.
434  */
435 int
436 callout_stop(struct callout *c)
437 {
438         globaldata_t gd = mycpu;
439         globaldata_t tgd;
440         softclock_pcpu_t sc;
441
442 #ifdef INVARIANTS
443         if ((c->c_flags & CALLOUT_DID_INIT) == 0) {
444                 callout_init(c);
445                 kprintf(
446                     "callout_stop(%p) from %p: callout was not initialized\n",
447                     c, ((int **)&c)[-1]);
448                 print_backtrace(-1);
449         }
450 #endif
451         crit_enter_gd(gd);
452
453         /*
454          * Don't attempt to delete a callout that's not on the queue.  The
455          * callout may not have a cpu assigned to it.  Callers do not have
456          * to be on the issuing cpu but must still serialize access to the
457          * callout structure.
458          *
459          * We are not cpu-localized here and cannot safely modify the
460          * flags field in the callout structure.  Note that most of the
461          * time CALLOUT_ACTIVE will be 0 if CALLOUT_PENDING is also 0.
462          *
463          * If we race another cpu's dispatch of this callout it is possible
464          * for CALLOUT_ACTIVE to be set with CALLOUT_PENDING unset.  This
465          * will cause us to fall through and synchronize with the other
466          * cpu.
467          */
468         if ((c->c_flags & CALLOUT_PENDING) == 0) {
469                 if ((c->c_flags & CALLOUT_ACTIVE) == 0) {
470                         crit_exit_gd(gd);
471                         return (0);
472                 }
473                 if (c->c_gd == NULL || c->c_gd == gd) {
474                         c->c_flags &= ~CALLOUT_ACTIVE;
475                         crit_exit_gd(gd);
476                         return (0);
477                 }
478         }
479         if ((tgd = c->c_gd) != gd) {
480                 /*
481                  * If the callout is owned by a different CPU we have to
482                  * execute the function synchronously on the target cpu.
483                  */
484                 int seq;
485
486                 cpu_ccfence();  /* don't let tgd alias c_gd */
487                 seq = lwkt_send_ipiq(tgd, (void *)callout_stop, c);
488                 lwkt_wait_ipiq(tgd, seq);
489         } else {
490                 /*
491                  * If the callout is owned by the same CPU we can
492                  * process it directly, but if we are racing our helper
493                  * thread (sc->next), we have to adjust sc->next.  The
494                  * race is interlocked by a critical section.
495                  */
496                 sc = &softclock_pcpu_ary[gd->gd_cpuid];
497
498                 c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
499                 if (sc->next == c)
500                         sc->next = TAILQ_NEXT(c, c_links.tqe);
501
502                 TAILQ_REMOVE(&sc->callwheel[c->c_time & callwheelmask], 
503                                 c, c_links.tqe);
504                 c->c_func = NULL;
505         }
506         crit_exit_gd(gd);
507         return (1);
508 }
509
510 /*
511  * Issue a callout_stop() and ensure that any callout race completes
512  * before returning.  Does NOT de-initialized the callout.
513  */
514 void
515 callout_stop_sync(struct callout *c)
516 {
517         softclock_pcpu_t sc;
518
519         while (c->c_flags & CALLOUT_DID_INIT) {
520                 callout_stop(c);
521                 if (c->c_gd) {
522                         sc = &softclock_pcpu_ary[c->c_gd->gd_cpuid];
523                         if (sc->running == c) {
524                                 while (sc->running == c)
525                                         tsleep(&sc->running, 0, "crace", 1);
526                         }
527                 }
528                 if ((c->c_flags & (CALLOUT_PENDING | CALLOUT_ACTIVE)) == 0)
529                         break;
530                 kprintf("Warning: %s: callout race\n", curthread->td_comm);
531         }
532 }
533
534 /*
535  * Terminate a callout
536  *
537  * This function will stop any pending callout and also block while the
538  * callout's function is running.  It should only be used in cases where
539  * no deadlock is possible (due to the callout function acquiring locks
540  * that the current caller of callout_terminate() already holds), when
541  * the caller is ready to destroy the callout structure.
542  *
543  * This function clears the CALLOUT_DID_INIT flag.
544  *
545  * lwkt_token locks are ok.
546  */
547 void
548 callout_terminate(struct callout *c)
549 {
550         softclock_pcpu_t sc;
551
552         if (c->c_flags & CALLOUT_DID_INIT) {
553                 callout_stop(c);
554                 sc = &softclock_pcpu_ary[c->c_gd->gd_cpuid];
555                 if (sc->running == c) {
556                         while (sc->running == c)
557                                 tsleep(&sc->running, 0, "crace", 1);
558                 }
559                 KKASSERT((c->c_flags & (CALLOUT_PENDING|CALLOUT_ACTIVE)) == 0);
560                 c->c_flags &= ~CALLOUT_DID_INIT;
561         }
562 }
563
564 /*
565  * Prepare a callout structure for use by callout_reset() and/or 
566  * callout_stop().  The MP version of this routine requires that the callback
567  * function installed by callout_reset() be MP safe.
568  *
569  * The init functions can be called from any cpu and do not have to be
570  * called from the cpu that the timer will eventually run on.
571  */
572 void
573 callout_init(struct callout *c)
574 {
575         bzero(c, sizeof *c);
576         c->c_flags = CALLOUT_DID_INIT;
577 }
578
579 void
580 callout_init_mp(struct callout *c)
581 {
582         callout_init(c);
583         c->c_flags |= CALLOUT_MPSAFE;
584 }
585
586 /* What, are you joking?  This is nuts! -Matt */
587 #if 0
588 #ifdef APM_FIXUP_CALLTODO
589 /* 
590  * Adjust the kernel calltodo timeout list.  This routine is used after 
591  * an APM resume to recalculate the calltodo timer list values with the 
592  * number of hz's we have been sleeping.  The next hardclock() will detect 
593  * that there are fired timers and run softclock() to execute them.
594  *
595  * Please note, I have not done an exhaustive analysis of what code this
596  * might break.  I am motivated to have my select()'s and alarm()'s that
597  * have expired during suspend firing upon resume so that the applications
598  * which set the timer can do the maintanence the timer was for as close
599  * as possible to the originally intended time.  Testing this code for a 
600  * week showed that resuming from a suspend resulted in 22 to 25 timers 
601  * firing, which seemed independant on whether the suspend was 2 hours or
602  * 2 days.  Your milage may vary.   - Ken Key <key@cs.utk.edu>
603  */
604 void
605 adjust_timeout_calltodo(struct timeval *time_change)
606 {
607         struct callout *p;
608         unsigned long delta_ticks;
609
610         /* 
611          * How many ticks were we asleep?
612          * (stolen from tvtohz()).
613          */
614
615         /* Don't do anything */
616         if (time_change->tv_sec < 0)
617                 return;
618         else if (time_change->tv_sec <= LONG_MAX / 1000000)
619                 delta_ticks = (time_change->tv_sec * 1000000 +
620                                time_change->tv_usec + (tick - 1)) / tick + 1;
621         else if (time_change->tv_sec <= LONG_MAX / hz)
622                 delta_ticks = time_change->tv_sec * hz +
623                               (time_change->tv_usec + (tick - 1)) / tick + 1;
624         else
625                 delta_ticks = LONG_MAX;
626
627         if (delta_ticks > INT_MAX)
628                 delta_ticks = INT_MAX;
629
630         /* 
631          * Now rip through the timer calltodo list looking for timers
632          * to expire.
633          */
634
635         /* don't collide with softclock() */
636         crit_enter();
637         for (p = calltodo.c_next; p != NULL; p = p->c_next) {
638                 p->c_time -= delta_ticks;
639
640                 /* Break if the timer had more time on it than delta_ticks */
641                 if (p->c_time > 0)
642                         break;
643
644                 /* take back the ticks the timer didn't use (p->c_time <= 0) */
645                 delta_ticks = -p->c_time;
646         }
647         crit_exit();
648
649         return;
650 }
651 #endif /* APM_FIXUP_CALLTODO */
652 #endif
653