drm: Start using flush_delayed_work()
[dragonfly.git] / sys / dev / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include "i915_drv.h"
29 #include "intel_drv.h"
30 #include <linux/module.h>
31 #include <machine/clock.h>
32
33 /**
34  * DOC: RC6
35  *
36  * RC6 is a special power stage which allows the GPU to enter an very
37  * low-voltage mode when idle, using down to 0V while at this stage.  This
38  * stage is entered automatically when the GPU is idle when RC6 support is
39  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
40  *
41  * There are different RC6 modes available in Intel GPU, which differentiate
42  * among each other with the latency required to enter and leave RC6 and
43  * voltage consumed by the GPU in different states.
44  *
45  * The combination of the following flags define which states GPU is allowed
46  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
47  * RC6pp is deepest RC6. Their support by hardware varies according to the
48  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
49  * which brings the most power savings; deeper states save more power, but
50  * require higher latency to switch to and wake up.
51  */
52 #define INTEL_RC6_ENABLE                        (1<<0)
53 #define INTEL_RC6p_ENABLE                       (1<<1)
54 #define INTEL_RC6pp_ENABLE                      (1<<2)
55
56 static void gen9_init_clock_gating(struct drm_device *dev)
57 {
58         struct drm_i915_private *dev_priv = dev->dev_private;
59
60         /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
61         I915_WRITE(CHICKEN_PAR1_1,
62                    I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
63
64         I915_WRITE(GEN8_CONFIG0,
65                    I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
66
67         /* WaEnableChickenDCPR:skl,bxt,kbl */
68         I915_WRITE(GEN8_CHICKEN_DCPR_1,
69                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
70
71         /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
72         /* WaFbcWakeMemOn:skl,bxt,kbl */
73         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
74                    DISP_FBC_WM_DIS |
75                    DISP_FBC_MEMORY_WAKE);
76
77         /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
78         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
79                    ILK_DPFC_DISABLE_DUMMY0);
80 }
81
82 static void bxt_init_clock_gating(struct drm_device *dev)
83 {
84         struct drm_i915_private *dev_priv = dev->dev_private;
85
86         gen9_init_clock_gating(dev);
87
88         /* WaDisableSDEUnitClockGating:bxt */
89         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
90                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
91
92         /*
93          * FIXME:
94          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
95          */
96         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
97                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
98
99         /*
100          * Wa: Backlight PWM may stop in the asserted state, causing backlight
101          * to stay fully on.
102          */
103         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
104                 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
105                            PWM1_GATING_DIS | PWM2_GATING_DIS);
106 }
107
108 static void i915_pineview_get_mem_freq(struct drm_device *dev)
109 {
110         struct drm_i915_private *dev_priv = dev->dev_private;
111         u32 tmp;
112
113         tmp = I915_READ(CLKCFG);
114
115         switch (tmp & CLKCFG_FSB_MASK) {
116         case CLKCFG_FSB_533:
117                 dev_priv->fsb_freq = 533; /* 133*4 */
118                 break;
119         case CLKCFG_FSB_800:
120                 dev_priv->fsb_freq = 800; /* 200*4 */
121                 break;
122         case CLKCFG_FSB_667:
123                 dev_priv->fsb_freq =  667; /* 167*4 */
124                 break;
125         case CLKCFG_FSB_400:
126                 dev_priv->fsb_freq = 400; /* 100*4 */
127                 break;
128         }
129
130         switch (tmp & CLKCFG_MEM_MASK) {
131         case CLKCFG_MEM_533:
132                 dev_priv->mem_freq = 533;
133                 break;
134         case CLKCFG_MEM_667:
135                 dev_priv->mem_freq = 667;
136                 break;
137         case CLKCFG_MEM_800:
138                 dev_priv->mem_freq = 800;
139                 break;
140         }
141
142         /* detect pineview DDR3 setting */
143         tmp = I915_READ(CSHRDDR3CTL);
144         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
145 }
146
147 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
148 {
149         struct drm_i915_private *dev_priv = dev->dev_private;
150         u16 ddrpll, csipll;
151
152         ddrpll = I915_READ16(DDRMPLL1);
153         csipll = I915_READ16(CSIPLL0);
154
155         switch (ddrpll & 0xff) {
156         case 0xc:
157                 dev_priv->mem_freq = 800;
158                 break;
159         case 0x10:
160                 dev_priv->mem_freq = 1066;
161                 break;
162         case 0x14:
163                 dev_priv->mem_freq = 1333;
164                 break;
165         case 0x18:
166                 dev_priv->mem_freq = 1600;
167                 break;
168         default:
169                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
170                                  ddrpll & 0xff);
171                 dev_priv->mem_freq = 0;
172                 break;
173         }
174
175         dev_priv->ips.r_t = dev_priv->mem_freq;
176
177         switch (csipll & 0x3ff) {
178         case 0x00c:
179                 dev_priv->fsb_freq = 3200;
180                 break;
181         case 0x00e:
182                 dev_priv->fsb_freq = 3733;
183                 break;
184         case 0x010:
185                 dev_priv->fsb_freq = 4266;
186                 break;
187         case 0x012:
188                 dev_priv->fsb_freq = 4800;
189                 break;
190         case 0x014:
191                 dev_priv->fsb_freq = 5333;
192                 break;
193         case 0x016:
194                 dev_priv->fsb_freq = 5866;
195                 break;
196         case 0x018:
197                 dev_priv->fsb_freq = 6400;
198                 break;
199         default:
200                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
201                                  csipll & 0x3ff);
202                 dev_priv->fsb_freq = 0;
203                 break;
204         }
205
206         if (dev_priv->fsb_freq == 3200) {
207                 dev_priv->ips.c_m = 0;
208         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
209                 dev_priv->ips.c_m = 1;
210         } else {
211                 dev_priv->ips.c_m = 2;
212         }
213 }
214
215 static const struct cxsr_latency cxsr_latency_table[] = {
216         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
217         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
218         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
219         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
220         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
221
222         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
223         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
224         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
225         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
226         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
227
228         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
229         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
230         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
231         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
232         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
233
234         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
235         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
236         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
237         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
238         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
239
240         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
241         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
242         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
243         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
244         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
245
246         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
247         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
248         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
249         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
250         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
251 };
252
253 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
254                                                          int is_ddr3,
255                                                          int fsb,
256                                                          int mem)
257 {
258         const struct cxsr_latency *latency;
259         int i;
260
261         if (fsb == 0 || mem == 0)
262                 return NULL;
263
264         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
265                 latency = &cxsr_latency_table[i];
266                 if (is_desktop == latency->is_desktop &&
267                     is_ddr3 == latency->is_ddr3 &&
268                     fsb == latency->fsb_freq && mem == latency->mem_freq)
269                         return latency;
270         }
271
272         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
273
274         return NULL;
275 }
276
277 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
278 {
279         u32 val;
280
281         mutex_lock(&dev_priv->rps.hw_lock);
282
283         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
284         if (enable)
285                 val &= ~FORCE_DDR_HIGH_FREQ;
286         else
287                 val |= FORCE_DDR_HIGH_FREQ;
288         val &= ~FORCE_DDR_LOW_FREQ;
289         val |= FORCE_DDR_FREQ_REQ_ACK;
290         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
291
292         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
293                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
294                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
295
296         mutex_unlock(&dev_priv->rps.hw_lock);
297 }
298
299 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
300 {
301         u32 val;
302
303         mutex_lock(&dev_priv->rps.hw_lock);
304
305         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
306         if (enable)
307                 val |= DSP_MAXFIFO_PM5_ENABLE;
308         else
309                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
310         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
311
312         mutex_unlock(&dev_priv->rps.hw_lock);
313 }
314
315 #define FW_WM(value, plane) \
316         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
317
318 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
319 {
320         struct drm_device *dev = dev_priv->dev;
321         u32 val;
322
323         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
324                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
325                 POSTING_READ(FW_BLC_SELF_VLV);
326                 dev_priv->wm.vlv.cxsr = enable;
327         } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
328                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
329                 POSTING_READ(FW_BLC_SELF);
330         } else if (IS_PINEVIEW(dev)) {
331                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
332                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
333                 I915_WRITE(DSPFW3, val);
334                 POSTING_READ(DSPFW3);
335         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
336                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
337                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
338                 I915_WRITE(FW_BLC_SELF, val);
339                 POSTING_READ(FW_BLC_SELF);
340         } else if (IS_I915GM(dev)) {
341                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
342                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
343                 I915_WRITE(INSTPM, val);
344                 POSTING_READ(INSTPM);
345         } else {
346                 return;
347         }
348
349         DRM_DEBUG_KMS("memory self-refresh is %s\n",
350                       enable ? "enabled" : "disabled");
351 }
352
353
354 /*
355  * Latency for FIFO fetches is dependent on several factors:
356  *   - memory configuration (speed, channels)
357  *   - chipset
358  *   - current MCH state
359  * It can be fairly high in some situations, so here we assume a fairly
360  * pessimal value.  It's a tradeoff between extra memory fetches (if we
361  * set this value too high, the FIFO will fetch frequently to stay full)
362  * and power consumption (set it too low to save power and we might see
363  * FIFO underruns and display "flicker").
364  *
365  * A value of 5us seems to be a good balance; safe for very low end
366  * platforms but not overly aggressive on lower latency configs.
367  */
368 static const int pessimal_latency_ns = 5000;
369
370 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
371         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
372
373 static int vlv_get_fifo_size(struct drm_device *dev,
374                               enum i915_pipe pipe, int plane)
375 {
376         struct drm_i915_private *dev_priv = dev->dev_private;
377         int sprite0_start, sprite1_start, size;
378
379         switch (pipe) {
380                 uint32_t dsparb, dsparb2, dsparb3;
381         case PIPE_A:
382                 dsparb = I915_READ(DSPARB);
383                 dsparb2 = I915_READ(DSPARB2);
384                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
385                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
386                 break;
387         case PIPE_B:
388                 dsparb = I915_READ(DSPARB);
389                 dsparb2 = I915_READ(DSPARB2);
390                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
391                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
392                 break;
393         case PIPE_C:
394                 dsparb2 = I915_READ(DSPARB2);
395                 dsparb3 = I915_READ(DSPARB3);
396                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
397                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
398                 break;
399         default:
400                 return 0;
401         }
402
403         switch (plane) {
404         case 0:
405                 size = sprite0_start;
406                 break;
407         case 1:
408                 size = sprite1_start - sprite0_start;
409                 break;
410         case 2:
411                 size = 512 - 1 - sprite1_start;
412                 break;
413         default:
414                 return 0;
415         }
416
417         DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
418                       pipe_name(pipe), plane == 0 ? "primary" : "sprite",
419                       plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
420                       size);
421
422         return size;
423 }
424
425 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
426 {
427         struct drm_i915_private *dev_priv = dev->dev_private;
428         uint32_t dsparb = I915_READ(DSPARB);
429         int size;
430
431         size = dsparb & 0x7f;
432         if (plane)
433                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
434
435         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
436                       plane ? "B" : "A", size);
437
438         return size;
439 }
440
441 static int i830_get_fifo_size(struct drm_device *dev, int plane)
442 {
443         struct drm_i915_private *dev_priv = dev->dev_private;
444         uint32_t dsparb = I915_READ(DSPARB);
445         int size;
446
447         size = dsparb & 0x1ff;
448         if (plane)
449                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
450         size >>= 1; /* Convert to cachelines */
451
452         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
453                       plane ? "B" : "A", size);
454
455         return size;
456 }
457
458 static int i845_get_fifo_size(struct drm_device *dev, int plane)
459 {
460         struct drm_i915_private *dev_priv = dev->dev_private;
461         uint32_t dsparb = I915_READ(DSPARB);
462         int size;
463
464         size = dsparb & 0x7f;
465         size >>= 2; /* Convert to cachelines */
466
467         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
468                       plane ? "B" : "A",
469                       size);
470
471         return size;
472 }
473
474 /* Pineview has different values for various configs */
475 static const struct intel_watermark_params pineview_display_wm = {
476         .fifo_size = PINEVIEW_DISPLAY_FIFO,
477         .max_wm = PINEVIEW_MAX_WM,
478         .default_wm = PINEVIEW_DFT_WM,
479         .guard_size = PINEVIEW_GUARD_WM,
480         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
481 };
482 static const struct intel_watermark_params pineview_display_hplloff_wm = {
483         .fifo_size = PINEVIEW_DISPLAY_FIFO,
484         .max_wm = PINEVIEW_MAX_WM,
485         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
486         .guard_size = PINEVIEW_GUARD_WM,
487         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
488 };
489 static const struct intel_watermark_params pineview_cursor_wm = {
490         .fifo_size = PINEVIEW_CURSOR_FIFO,
491         .max_wm = PINEVIEW_CURSOR_MAX_WM,
492         .default_wm = PINEVIEW_CURSOR_DFT_WM,
493         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
494         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
495 };
496 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
497         .fifo_size = PINEVIEW_CURSOR_FIFO,
498         .max_wm = PINEVIEW_CURSOR_MAX_WM,
499         .default_wm = PINEVIEW_CURSOR_DFT_WM,
500         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
501         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
502 };
503 static const struct intel_watermark_params g4x_wm_info = {
504         .fifo_size = G4X_FIFO_SIZE,
505         .max_wm = G4X_MAX_WM,
506         .default_wm = G4X_MAX_WM,
507         .guard_size = 2,
508         .cacheline_size = G4X_FIFO_LINE_SIZE,
509 };
510 static const struct intel_watermark_params g4x_cursor_wm_info = {
511         .fifo_size = I965_CURSOR_FIFO,
512         .max_wm = I965_CURSOR_MAX_WM,
513         .default_wm = I965_CURSOR_DFT_WM,
514         .guard_size = 2,
515         .cacheline_size = G4X_FIFO_LINE_SIZE,
516 };
517 static const struct intel_watermark_params i965_cursor_wm_info = {
518         .fifo_size = I965_CURSOR_FIFO,
519         .max_wm = I965_CURSOR_MAX_WM,
520         .default_wm = I965_CURSOR_DFT_WM,
521         .guard_size = 2,
522         .cacheline_size = I915_FIFO_LINE_SIZE,
523 };
524 static const struct intel_watermark_params i945_wm_info = {
525         .fifo_size = I945_FIFO_SIZE,
526         .max_wm = I915_MAX_WM,
527         .default_wm = 1,
528         .guard_size = 2,
529         .cacheline_size = I915_FIFO_LINE_SIZE,
530 };
531 static const struct intel_watermark_params i915_wm_info = {
532         .fifo_size = I915_FIFO_SIZE,
533         .max_wm = I915_MAX_WM,
534         .default_wm = 1,
535         .guard_size = 2,
536         .cacheline_size = I915_FIFO_LINE_SIZE,
537 };
538 static const struct intel_watermark_params i830_a_wm_info = {
539         .fifo_size = I855GM_FIFO_SIZE,
540         .max_wm = I915_MAX_WM,
541         .default_wm = 1,
542         .guard_size = 2,
543         .cacheline_size = I830_FIFO_LINE_SIZE,
544 };
545 static const struct intel_watermark_params i830_bc_wm_info = {
546         .fifo_size = I855GM_FIFO_SIZE,
547         .max_wm = I915_MAX_WM/2,
548         .default_wm = 1,
549         .guard_size = 2,
550         .cacheline_size = I830_FIFO_LINE_SIZE,
551 };
552 static const struct intel_watermark_params i845_wm_info = {
553         .fifo_size = I830_FIFO_SIZE,
554         .max_wm = I915_MAX_WM,
555         .default_wm = 1,
556         .guard_size = 2,
557         .cacheline_size = I830_FIFO_LINE_SIZE,
558 };
559
560 /**
561  * intel_calculate_wm - calculate watermark level
562  * @clock_in_khz: pixel clock
563  * @wm: chip FIFO params
564  * @cpp: bytes per pixel
565  * @latency_ns: memory latency for the platform
566  *
567  * Calculate the watermark level (the level at which the display plane will
568  * start fetching from memory again).  Each chip has a different display
569  * FIFO size and allocation, so the caller needs to figure that out and pass
570  * in the correct intel_watermark_params structure.
571  *
572  * As the pixel clock runs, the FIFO will be drained at a rate that depends
573  * on the pixel size.  When it reaches the watermark level, it'll start
574  * fetching FIFO line sized based chunks from memory until the FIFO fills
575  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
576  * will occur, and a display engine hang could result.
577  */
578 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
579                                         const struct intel_watermark_params *wm,
580                                         int fifo_size, int cpp,
581                                         unsigned long latency_ns)
582 {
583         long entries_required, wm_size;
584
585         /*
586          * Note: we need to make sure we don't overflow for various clock &
587          * latency values.
588          * clocks go from a few thousand to several hundred thousand.
589          * latency is usually a few thousand
590          */
591         entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
592                 1000;
593         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
594
595         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
596
597         wm_size = fifo_size - (entries_required + wm->guard_size);
598
599         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
600
601         /* Don't promote wm_size to unsigned... */
602         if (wm_size > (long)wm->max_wm)
603                 wm_size = wm->max_wm;
604         if (wm_size <= 0)
605                 wm_size = wm->default_wm;
606
607         /*
608          * Bspec seems to indicate that the value shouldn't be lower than
609          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
610          * Lets go for 8 which is the burst size since certain platforms
611          * already use a hardcoded 8 (which is what the spec says should be
612          * done).
613          */
614         if (wm_size <= 8)
615                 wm_size = 8;
616
617         return wm_size;
618 }
619
620 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
621 {
622         struct drm_crtc *crtc, *enabled = NULL;
623
624         for_each_crtc(dev, crtc) {
625                 if (intel_crtc_active(crtc)) {
626                         if (enabled)
627                                 return NULL;
628                         enabled = crtc;
629                 }
630         }
631
632         return enabled;
633 }
634
635 static void pineview_update_wm(struct drm_crtc *unused_crtc)
636 {
637         struct drm_device *dev = unused_crtc->dev;
638         struct drm_i915_private *dev_priv = dev->dev_private;
639         struct drm_crtc *crtc;
640         const struct cxsr_latency *latency;
641         u32 reg;
642         unsigned long wm;
643
644         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
645                                          dev_priv->fsb_freq, dev_priv->mem_freq);
646         if (!latency) {
647                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
648                 intel_set_memory_cxsr(dev_priv, false);
649                 return;
650         }
651
652         crtc = single_enabled_crtc(dev);
653         if (crtc) {
654                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
655                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
656                 int clock = adjusted_mode->crtc_clock;
657
658                 /* Display SR */
659                 wm = intel_calculate_wm(clock, &pineview_display_wm,
660                                         pineview_display_wm.fifo_size,
661                                         cpp, latency->display_sr);
662                 reg = I915_READ(DSPFW1);
663                 reg &= ~DSPFW_SR_MASK;
664                 reg |= FW_WM(wm, SR);
665                 I915_WRITE(DSPFW1, reg);
666                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
667
668                 /* cursor SR */
669                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
670                                         pineview_display_wm.fifo_size,
671                                         cpp, latency->cursor_sr);
672                 reg = I915_READ(DSPFW3);
673                 reg &= ~DSPFW_CURSOR_SR_MASK;
674                 reg |= FW_WM(wm, CURSOR_SR);
675                 I915_WRITE(DSPFW3, reg);
676
677                 /* Display HPLL off SR */
678                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
679                                         pineview_display_hplloff_wm.fifo_size,
680                                         cpp, latency->display_hpll_disable);
681                 reg = I915_READ(DSPFW3);
682                 reg &= ~DSPFW_HPLL_SR_MASK;
683                 reg |= FW_WM(wm, HPLL_SR);
684                 I915_WRITE(DSPFW3, reg);
685
686                 /* cursor HPLL off SR */
687                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
688                                         pineview_display_hplloff_wm.fifo_size,
689                                         cpp, latency->cursor_hpll_disable);
690                 reg = I915_READ(DSPFW3);
691                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
692                 reg |= FW_WM(wm, HPLL_CURSOR);
693                 I915_WRITE(DSPFW3, reg);
694                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
695
696                 intel_set_memory_cxsr(dev_priv, true);
697         } else {
698                 intel_set_memory_cxsr(dev_priv, false);
699         }
700 }
701
702 static bool g4x_compute_wm0(struct drm_device *dev,
703                             int plane,
704                             const struct intel_watermark_params *display,
705                             int display_latency_ns,
706                             const struct intel_watermark_params *cursor,
707                             int cursor_latency_ns,
708                             int *plane_wm,
709                             int *cursor_wm)
710 {
711         struct drm_crtc *crtc;
712         const struct drm_display_mode *adjusted_mode;
713         int htotal, hdisplay, clock, cpp;
714         int line_time_us, line_count;
715         int entries, tlb_miss;
716
717         crtc = intel_get_crtc_for_plane(dev, plane);
718         if (!intel_crtc_active(crtc)) {
719                 *cursor_wm = cursor->guard_size;
720                 *plane_wm = display->guard_size;
721                 return false;
722         }
723
724         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
725         clock = adjusted_mode->crtc_clock;
726         htotal = adjusted_mode->crtc_htotal;
727         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
728         cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
729
730         /* Use the small buffer method to calculate plane watermark */
731         entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
732         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
733         if (tlb_miss > 0)
734                 entries += tlb_miss;
735         entries = DIV_ROUND_UP(entries, display->cacheline_size);
736         *plane_wm = entries + display->guard_size;
737         if (*plane_wm > (int)display->max_wm)
738                 *plane_wm = display->max_wm;
739
740         /* Use the large buffer method to calculate cursor watermark */
741         line_time_us = max(htotal * 1000 / clock, 1);
742         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
743         entries = line_count * crtc->cursor->state->crtc_w * cpp;
744         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
745         if (tlb_miss > 0)
746                 entries += tlb_miss;
747         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
748         *cursor_wm = entries + cursor->guard_size;
749         if (*cursor_wm > (int)cursor->max_wm)
750                 *cursor_wm = (int)cursor->max_wm;
751
752         return true;
753 }
754
755 /*
756  * Check the wm result.
757  *
758  * If any calculated watermark values is larger than the maximum value that
759  * can be programmed into the associated watermark register, that watermark
760  * must be disabled.
761  */
762 static bool g4x_check_srwm(struct drm_device *dev,
763                            int display_wm, int cursor_wm,
764                            const struct intel_watermark_params *display,
765                            const struct intel_watermark_params *cursor)
766 {
767         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
768                       display_wm, cursor_wm);
769
770         if (display_wm > display->max_wm) {
771                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
772                               display_wm, display->max_wm);
773                 return false;
774         }
775
776         if (cursor_wm > cursor->max_wm) {
777                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
778                               cursor_wm, cursor->max_wm);
779                 return false;
780         }
781
782         if (!(display_wm || cursor_wm)) {
783                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
784                 return false;
785         }
786
787         return true;
788 }
789
790 static bool g4x_compute_srwm(struct drm_device *dev,
791                              int plane,
792                              int latency_ns,
793                              const struct intel_watermark_params *display,
794                              const struct intel_watermark_params *cursor,
795                              int *display_wm, int *cursor_wm)
796 {
797         struct drm_crtc *crtc;
798         const struct drm_display_mode *adjusted_mode;
799         int hdisplay, htotal, cpp, clock;
800         unsigned long line_time_us;
801         int line_count, line_size;
802         int small, large;
803         int entries;
804
805         if (!latency_ns) {
806                 *display_wm = *cursor_wm = 0;
807                 return false;
808         }
809
810         crtc = intel_get_crtc_for_plane(dev, plane);
811         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
812         clock = adjusted_mode->crtc_clock;
813         htotal = adjusted_mode->crtc_htotal;
814         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
815         cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
816
817         line_time_us = max(htotal * 1000 / clock, 1);
818         line_count = (latency_ns / line_time_us + 1000) / 1000;
819         line_size = hdisplay * cpp;
820
821         /* Use the minimum of the small and large buffer method for primary */
822         small = ((clock * cpp / 1000) * latency_ns) / 1000;
823         large = line_count * line_size;
824
825         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
826         *display_wm = entries + display->guard_size;
827
828         /* calculate the self-refresh watermark for display cursor */
829         entries = line_count * cpp * crtc->cursor->state->crtc_w;
830         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
831         *cursor_wm = entries + cursor->guard_size;
832
833         return g4x_check_srwm(dev,
834                               *display_wm, *cursor_wm,
835                               display, cursor);
836 }
837
838 #define FW_WM_VLV(value, plane) \
839         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
840
841 static void vlv_write_wm_values(struct intel_crtc *crtc,
842                                 const struct vlv_wm_values *wm)
843 {
844         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
845         enum i915_pipe pipe = crtc->pipe;
846
847         I915_WRITE(VLV_DDL(pipe),
848                    (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
849                    (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
850                    (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
851                    (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
852
853         I915_WRITE(DSPFW1,
854                    FW_WM(wm->sr.plane, SR) |
855                    FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
856                    FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
857                    FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
858         I915_WRITE(DSPFW2,
859                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
860                    FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
861                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
862         I915_WRITE(DSPFW3,
863                    FW_WM(wm->sr.cursor, CURSOR_SR));
864
865         if (IS_CHERRYVIEW(dev_priv)) {
866                 I915_WRITE(DSPFW7_CHV,
867                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
868                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
869                 I915_WRITE(DSPFW8_CHV,
870                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
871                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
872                 I915_WRITE(DSPFW9_CHV,
873                            FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
874                            FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
875                 I915_WRITE(DSPHOWM,
876                            FW_WM(wm->sr.plane >> 9, SR_HI) |
877                            FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
878                            FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
879                            FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
880                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
881                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
882                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
883                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
884                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
885                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
886         } else {
887                 I915_WRITE(DSPFW7,
888                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
889                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
890                 I915_WRITE(DSPHOWM,
891                            FW_WM(wm->sr.plane >> 9, SR_HI) |
892                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
893                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
894                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
895                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
896                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
897                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
898         }
899
900         /* zero (unused) WM1 watermarks */
901         I915_WRITE(DSPFW4, 0);
902         I915_WRITE(DSPFW5, 0);
903         I915_WRITE(DSPFW6, 0);
904         I915_WRITE(DSPHOWM1, 0);
905
906         POSTING_READ(DSPFW1);
907 }
908
909 #undef FW_WM_VLV
910
911 enum vlv_wm_level {
912         VLV_WM_LEVEL_PM2,
913         VLV_WM_LEVEL_PM5,
914         VLV_WM_LEVEL_DDR_DVFS,
915 };
916
917 /* latency must be in 0.1us units. */
918 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
919                                    unsigned int pipe_htotal,
920                                    unsigned int horiz_pixels,
921                                    unsigned int cpp,
922                                    unsigned int latency)
923 {
924         unsigned int ret;
925
926         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
927         ret = (ret + 1) * horiz_pixels * cpp;
928         ret = DIV_ROUND_UP(ret, 64);
929
930         return ret;
931 }
932
933 static void vlv_setup_wm_latency(struct drm_device *dev)
934 {
935         struct drm_i915_private *dev_priv = dev->dev_private;
936
937         /* all latencies in usec */
938         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
939
940         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
941
942         if (IS_CHERRYVIEW(dev_priv)) {
943                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
944                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
945
946                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
947         }
948 }
949
950 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
951                                      struct intel_crtc *crtc,
952                                      const struct intel_plane_state *state,
953                                      int level)
954 {
955         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
956         int clock, htotal, cpp, width, wm;
957
958         if (dev_priv->wm.pri_latency[level] == 0)
959                 return USHRT_MAX;
960
961         if (!state->visible)
962                 return 0;
963
964         cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
965         clock = crtc->config->base.adjusted_mode.crtc_clock;
966         htotal = crtc->config->base.adjusted_mode.crtc_htotal;
967         width = crtc->config->pipe_src_w;
968         if (WARN_ON(htotal == 0))
969                 htotal = 1;
970
971         if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
972                 /*
973                  * FIXME the formula gives values that are
974                  * too big for the cursor FIFO, and hence we
975                  * would never be able to use cursors. For
976                  * now just hardcode the watermark.
977                  */
978                 wm = 63;
979         } else {
980                 wm = vlv_wm_method2(clock, htotal, width, cpp,
981                                     dev_priv->wm.pri_latency[level] * 10);
982         }
983
984         return min_t(int, wm, USHRT_MAX);
985 }
986
987 static void vlv_compute_fifo(struct intel_crtc *crtc)
988 {
989         struct drm_device *dev = crtc->base.dev;
990         struct vlv_wm_state *wm_state = &crtc->wm_state;
991         struct intel_plane *plane;
992         unsigned int total_rate = 0;
993         const int fifo_size = 512 - 1;
994         int fifo_extra, fifo_left = fifo_size;
995
996         for_each_intel_plane_on_crtc(dev, crtc, plane) {
997                 struct intel_plane_state *state =
998                         to_intel_plane_state(plane->base.state);
999
1000                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1001                         continue;
1002
1003                 if (state->visible) {
1004                         wm_state->num_active_planes++;
1005                         total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1006                 }
1007         }
1008
1009         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1010                 struct intel_plane_state *state =
1011                         to_intel_plane_state(plane->base.state);
1012                 unsigned int rate;
1013
1014                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1015                         plane->wm.fifo_size = 63;
1016                         continue;
1017                 }
1018
1019                 if (!state->visible) {
1020                         plane->wm.fifo_size = 0;
1021                         continue;
1022                 }
1023
1024                 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1025                 plane->wm.fifo_size = fifo_size * rate / total_rate;
1026                 fifo_left -= plane->wm.fifo_size;
1027         }
1028
1029         fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1030
1031         /* spread the remainder evenly */
1032         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1033                 int plane_extra;
1034
1035                 if (fifo_left == 0)
1036                         break;
1037
1038                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1039                         continue;
1040
1041                 /* give it all to the first plane if none are active */
1042                 if (plane->wm.fifo_size == 0 &&
1043                     wm_state->num_active_planes)
1044                         continue;
1045
1046                 plane_extra = min(fifo_extra, fifo_left);
1047                 plane->wm.fifo_size += plane_extra;
1048                 fifo_left -= plane_extra;
1049         }
1050
1051         WARN_ON(fifo_left != 0);
1052 }
1053
1054 static void vlv_invert_wms(struct intel_crtc *crtc)
1055 {
1056         struct vlv_wm_state *wm_state = &crtc->wm_state;
1057         int level;
1058
1059         for (level = 0; level < wm_state->num_levels; level++) {
1060                 struct drm_device *dev = crtc->base.dev;
1061                 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1062                 struct intel_plane *plane;
1063
1064                 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1065                 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1066
1067                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1068                         switch (plane->base.type) {
1069                                 int sprite;
1070                         case DRM_PLANE_TYPE_CURSOR:
1071                                 wm_state->wm[level].cursor = plane->wm.fifo_size -
1072                                         wm_state->wm[level].cursor;
1073                                 break;
1074                         case DRM_PLANE_TYPE_PRIMARY:
1075                                 wm_state->wm[level].primary = plane->wm.fifo_size -
1076                                         wm_state->wm[level].primary;
1077                                 break;
1078                         case DRM_PLANE_TYPE_OVERLAY:
1079                                 sprite = plane->plane;
1080                                 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1081                                         wm_state->wm[level].sprite[sprite];
1082                                 break;
1083                         }
1084                 }
1085         }
1086 }
1087
1088 static void vlv_compute_wm(struct intel_crtc *crtc)
1089 {
1090         struct drm_device *dev = crtc->base.dev;
1091         struct vlv_wm_state *wm_state = &crtc->wm_state;
1092         struct intel_plane *plane;
1093         int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1094         int level;
1095
1096         memset(wm_state, 0, sizeof(*wm_state));
1097
1098         wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1099         wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1100
1101         wm_state->num_active_planes = 0;
1102
1103         vlv_compute_fifo(crtc);
1104
1105         if (wm_state->num_active_planes != 1)
1106                 wm_state->cxsr = false;
1107
1108         if (wm_state->cxsr) {
1109                 for (level = 0; level < wm_state->num_levels; level++) {
1110                         wm_state->sr[level].plane = sr_fifo_size;
1111                         wm_state->sr[level].cursor = 63;
1112                 }
1113         }
1114
1115         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1116                 struct intel_plane_state *state =
1117                         to_intel_plane_state(plane->base.state);
1118
1119                 if (!state->visible)
1120                         continue;
1121
1122                 /* normal watermarks */
1123                 for (level = 0; level < wm_state->num_levels; level++) {
1124                         int wm = vlv_compute_wm_level(plane, crtc, state, level);
1125                         int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1126
1127                         /* hack */
1128                         if (WARN_ON(level == 0 && wm > max_wm))
1129                                 wm = max_wm;
1130
1131                         if (wm > plane->wm.fifo_size)
1132                                 break;
1133
1134                         switch (plane->base.type) {
1135                                 int sprite;
1136                         case DRM_PLANE_TYPE_CURSOR:
1137                                 wm_state->wm[level].cursor = wm;
1138                                 break;
1139                         case DRM_PLANE_TYPE_PRIMARY:
1140                                 wm_state->wm[level].primary = wm;
1141                                 break;
1142                         case DRM_PLANE_TYPE_OVERLAY:
1143                                 sprite = plane->plane;
1144                                 wm_state->wm[level].sprite[sprite] = wm;
1145                                 break;
1146                         }
1147                 }
1148
1149                 wm_state->num_levels = level;
1150
1151                 if (!wm_state->cxsr)
1152                         continue;
1153
1154                 /* maxfifo watermarks */
1155                 switch (plane->base.type) {
1156                         int sprite, level;
1157                 case DRM_PLANE_TYPE_CURSOR:
1158                         for (level = 0; level < wm_state->num_levels; level++)
1159                                 wm_state->sr[level].cursor =
1160                                         wm_state->wm[level].cursor;
1161                         break;
1162                 case DRM_PLANE_TYPE_PRIMARY:
1163                         for (level = 0; level < wm_state->num_levels; level++)
1164                                 wm_state->sr[level].plane =
1165                                         min(wm_state->sr[level].plane,
1166                                             wm_state->wm[level].primary);
1167                         break;
1168                 case DRM_PLANE_TYPE_OVERLAY:
1169                         sprite = plane->plane;
1170                         for (level = 0; level < wm_state->num_levels; level++)
1171                                 wm_state->sr[level].plane =
1172                                         min(wm_state->sr[level].plane,
1173                                             wm_state->wm[level].sprite[sprite]);
1174                         break;
1175                 }
1176         }
1177
1178         /* clear any (partially) filled invalid levels */
1179         for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1180                 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1181                 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1182         }
1183
1184         vlv_invert_wms(crtc);
1185 }
1186
1187 #define VLV_FIFO(plane, value) \
1188         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1189
1190 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1191 {
1192         struct drm_device *dev = crtc->base.dev;
1193         struct drm_i915_private *dev_priv = to_i915(dev);
1194         struct intel_plane *plane;
1195         int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1196
1197         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1198                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1199                         WARN_ON(plane->wm.fifo_size != 63);
1200                         continue;
1201                 }
1202
1203                 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1204                         sprite0_start = plane->wm.fifo_size;
1205                 else if (plane->plane == 0)
1206                         sprite1_start = sprite0_start + plane->wm.fifo_size;
1207                 else
1208                         fifo_size = sprite1_start + plane->wm.fifo_size;
1209         }
1210
1211         WARN_ON(fifo_size != 512 - 1);
1212
1213         DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1214                       pipe_name(crtc->pipe), sprite0_start,
1215                       sprite1_start, fifo_size);
1216
1217         switch (crtc->pipe) {
1218                 uint32_t dsparb, dsparb2, dsparb3;
1219         case PIPE_A:
1220                 dsparb = I915_READ(DSPARB);
1221                 dsparb2 = I915_READ(DSPARB2);
1222
1223                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1224                             VLV_FIFO(SPRITEB, 0xff));
1225                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1226                            VLV_FIFO(SPRITEB, sprite1_start));
1227
1228                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1229                              VLV_FIFO(SPRITEB_HI, 0x1));
1230                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1231                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1232
1233                 I915_WRITE(DSPARB, dsparb);
1234                 I915_WRITE(DSPARB2, dsparb2);
1235                 break;
1236         case PIPE_B:
1237                 dsparb = I915_READ(DSPARB);
1238                 dsparb2 = I915_READ(DSPARB2);
1239
1240                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1241                             VLV_FIFO(SPRITED, 0xff));
1242                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1243                            VLV_FIFO(SPRITED, sprite1_start));
1244
1245                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1246                              VLV_FIFO(SPRITED_HI, 0xff));
1247                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1248                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1249
1250                 I915_WRITE(DSPARB, dsparb);
1251                 I915_WRITE(DSPARB2, dsparb2);
1252                 break;
1253         case PIPE_C:
1254                 dsparb3 = I915_READ(DSPARB3);
1255                 dsparb2 = I915_READ(DSPARB2);
1256
1257                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1258                              VLV_FIFO(SPRITEF, 0xff));
1259                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1260                             VLV_FIFO(SPRITEF, sprite1_start));
1261
1262                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1263                              VLV_FIFO(SPRITEF_HI, 0xff));
1264                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1265                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1266
1267                 I915_WRITE(DSPARB3, dsparb3);
1268                 I915_WRITE(DSPARB2, dsparb2);
1269                 break;
1270         default:
1271                 break;
1272         }
1273 }
1274
1275 #undef VLV_FIFO
1276
1277 static void vlv_merge_wm(struct drm_device *dev,
1278                          struct vlv_wm_values *wm)
1279 {
1280         struct intel_crtc *crtc;
1281         int num_active_crtcs = 0;
1282
1283         wm->level = to_i915(dev)->wm.max_level;
1284         wm->cxsr = true;
1285
1286         for_each_intel_crtc(dev, crtc) {
1287                 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1288
1289                 if (!crtc->active)
1290                         continue;
1291
1292                 if (!wm_state->cxsr)
1293                         wm->cxsr = false;
1294
1295                 num_active_crtcs++;
1296                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1297         }
1298
1299         if (num_active_crtcs != 1)
1300                 wm->cxsr = false;
1301
1302         if (num_active_crtcs > 1)
1303                 wm->level = VLV_WM_LEVEL_PM2;
1304
1305         for_each_intel_crtc(dev, crtc) {
1306                 struct vlv_wm_state *wm_state = &crtc->wm_state;
1307                 enum i915_pipe pipe = crtc->pipe;
1308
1309                 if (!crtc->active)
1310                         continue;
1311
1312                 wm->pipe[pipe] = wm_state->wm[wm->level];
1313                 if (wm->cxsr)
1314                         wm->sr = wm_state->sr[wm->level];
1315
1316                 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1317                 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1318                 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1319                 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1320         }
1321 }
1322
1323 static void vlv_update_wm(struct drm_crtc *crtc)
1324 {
1325         struct drm_device *dev = crtc->dev;
1326         struct drm_i915_private *dev_priv = dev->dev_private;
1327         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1328         enum i915_pipe pipe = intel_crtc->pipe;
1329         struct vlv_wm_values wm = {};
1330
1331         vlv_compute_wm(intel_crtc);
1332         vlv_merge_wm(dev, &wm);
1333
1334         if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1335                 /* FIXME should be part of crtc atomic commit */
1336                 vlv_pipe_set_fifo_size(intel_crtc);
1337                 return;
1338         }
1339
1340         if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1341             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1342                 chv_set_memory_dvfs(dev_priv, false);
1343
1344         if (wm.level < VLV_WM_LEVEL_PM5 &&
1345             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1346                 chv_set_memory_pm5(dev_priv, false);
1347
1348         if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1349                 intel_set_memory_cxsr(dev_priv, false);
1350
1351         /* FIXME should be part of crtc atomic commit */
1352         vlv_pipe_set_fifo_size(intel_crtc);
1353
1354         vlv_write_wm_values(intel_crtc, &wm);
1355
1356         DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1357                       "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1358                       pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1359                       wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1360                       wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1361
1362         if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1363                 intel_set_memory_cxsr(dev_priv, true);
1364
1365         if (wm.level >= VLV_WM_LEVEL_PM5 &&
1366             dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1367                 chv_set_memory_pm5(dev_priv, true);
1368
1369         if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1370             dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1371                 chv_set_memory_dvfs(dev_priv, true);
1372
1373         dev_priv->wm.vlv = wm;
1374 }
1375
1376 #define single_plane_enabled(mask) is_power_of_2(mask)
1377
1378 static void g4x_update_wm(struct drm_crtc *crtc)
1379 {
1380         struct drm_device *dev = crtc->dev;
1381         static const int sr_latency_ns = 12000;
1382         struct drm_i915_private *dev_priv = dev->dev_private;
1383         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1384         int plane_sr, cursor_sr;
1385         unsigned int enabled = 0;
1386         bool cxsr_enabled;
1387
1388         if (g4x_compute_wm0(dev, PIPE_A,
1389                             &g4x_wm_info, pessimal_latency_ns,
1390                             &g4x_cursor_wm_info, pessimal_latency_ns,
1391                             &planea_wm, &cursora_wm))
1392                 enabled |= 1 << PIPE_A;
1393
1394         if (g4x_compute_wm0(dev, PIPE_B,
1395                             &g4x_wm_info, pessimal_latency_ns,
1396                             &g4x_cursor_wm_info, pessimal_latency_ns,
1397                             &planeb_wm, &cursorb_wm))
1398                 enabled |= 1 << PIPE_B;
1399
1400         if (single_plane_enabled(enabled) &&
1401             g4x_compute_srwm(dev, ffs(enabled) - 1,
1402                              sr_latency_ns,
1403                              &g4x_wm_info,
1404                              &g4x_cursor_wm_info,
1405                              &plane_sr, &cursor_sr)) {
1406                 cxsr_enabled = true;
1407         } else {
1408                 cxsr_enabled = false;
1409                 intel_set_memory_cxsr(dev_priv, false);
1410                 plane_sr = cursor_sr = 0;
1411         }
1412
1413         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1414                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1415                       planea_wm, cursora_wm,
1416                       planeb_wm, cursorb_wm,
1417                       plane_sr, cursor_sr);
1418
1419         I915_WRITE(DSPFW1,
1420                    FW_WM(plane_sr, SR) |
1421                    FW_WM(cursorb_wm, CURSORB) |
1422                    FW_WM(planeb_wm, PLANEB) |
1423                    FW_WM(planea_wm, PLANEA));
1424         I915_WRITE(DSPFW2,
1425                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1426                    FW_WM(cursora_wm, CURSORA));
1427         /* HPLL off in SR has some issues on G4x... disable it */
1428         I915_WRITE(DSPFW3,
1429                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1430                    FW_WM(cursor_sr, CURSOR_SR));
1431
1432         if (cxsr_enabled)
1433                 intel_set_memory_cxsr(dev_priv, true);
1434 }
1435
1436 static void i965_update_wm(struct drm_crtc *unused_crtc)
1437 {
1438         struct drm_device *dev = unused_crtc->dev;
1439         struct drm_i915_private *dev_priv = dev->dev_private;
1440         struct drm_crtc *crtc;
1441         int srwm = 1;
1442         int cursor_sr = 16;
1443         bool cxsr_enabled;
1444
1445         /* Calc sr entries for one plane configs */
1446         crtc = single_enabled_crtc(dev);
1447         if (crtc) {
1448                 /* self-refresh has much higher latency */
1449                 static const int sr_latency_ns = 12000;
1450                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1451                 int clock = adjusted_mode->crtc_clock;
1452                 int htotal = adjusted_mode->crtc_htotal;
1453                 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1454                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1455                 unsigned long line_time_us;
1456                 int entries;
1457
1458                 line_time_us = max(htotal * 1000 / clock, 1);
1459
1460                 /* Use ns/us then divide to preserve precision */
1461                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1462                         cpp * hdisplay;
1463                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1464                 srwm = I965_FIFO_SIZE - entries;
1465                 if (srwm < 0)
1466                         srwm = 1;
1467                 srwm &= 0x1ff;
1468                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1469                               entries, srwm);
1470
1471                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1472                         cpp * crtc->cursor->state->crtc_w;
1473                 entries = DIV_ROUND_UP(entries,
1474                                           i965_cursor_wm_info.cacheline_size);
1475                 cursor_sr = i965_cursor_wm_info.fifo_size -
1476                         (entries + i965_cursor_wm_info.guard_size);
1477
1478                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1479                         cursor_sr = i965_cursor_wm_info.max_wm;
1480
1481                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1482                               "cursor %d\n", srwm, cursor_sr);
1483
1484                 cxsr_enabled = true;
1485         } else {
1486                 cxsr_enabled = false;
1487                 /* Turn off self refresh if both pipes are enabled */
1488                 intel_set_memory_cxsr(dev_priv, false);
1489         }
1490
1491         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1492                       srwm);
1493
1494         /* 965 has limitations... */
1495         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1496                    FW_WM(8, CURSORB) |
1497                    FW_WM(8, PLANEB) |
1498                    FW_WM(8, PLANEA));
1499         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1500                    FW_WM(8, PLANEC_OLD));
1501         /* update cursor SR watermark */
1502         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1503
1504         if (cxsr_enabled)
1505                 intel_set_memory_cxsr(dev_priv, true);
1506 }
1507
1508 #undef FW_WM
1509
1510 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1511 {
1512         struct drm_device *dev = unused_crtc->dev;
1513         struct drm_i915_private *dev_priv = dev->dev_private;
1514         const struct intel_watermark_params *wm_info;
1515         uint32_t fwater_lo;
1516         uint32_t fwater_hi;
1517         int cwm, srwm = 1;
1518         int fifo_size;
1519         int planea_wm, planeb_wm;
1520         struct drm_crtc *crtc, *enabled = NULL;
1521
1522         if (IS_I945GM(dev))
1523                 wm_info = &i945_wm_info;
1524         else if (!IS_GEN2(dev))
1525                 wm_info = &i915_wm_info;
1526         else
1527                 wm_info = &i830_a_wm_info;
1528
1529         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1530         crtc = intel_get_crtc_for_plane(dev, 0);
1531         if (intel_crtc_active(crtc)) {
1532                 const struct drm_display_mode *adjusted_mode;
1533                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1534                 if (IS_GEN2(dev))
1535                         cpp = 4;
1536
1537                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1538                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1539                                                wm_info, fifo_size, cpp,
1540                                                pessimal_latency_ns);
1541                 enabled = crtc;
1542         } else {
1543                 planea_wm = fifo_size - wm_info->guard_size;
1544                 if (planea_wm > (long)wm_info->max_wm)
1545                         planea_wm = wm_info->max_wm;
1546         }
1547
1548         if (IS_GEN2(dev))
1549                 wm_info = &i830_bc_wm_info;
1550
1551         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1552         crtc = intel_get_crtc_for_plane(dev, 1);
1553         if (intel_crtc_active(crtc)) {
1554                 const struct drm_display_mode *adjusted_mode;
1555                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1556                 if (IS_GEN2(dev))
1557                         cpp = 4;
1558
1559                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1560                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1561                                                wm_info, fifo_size, cpp,
1562                                                pessimal_latency_ns);
1563                 if (enabled == NULL)
1564                         enabled = crtc;
1565                 else
1566                         enabled = NULL;
1567         } else {
1568                 planeb_wm = fifo_size - wm_info->guard_size;
1569                 if (planeb_wm > (long)wm_info->max_wm)
1570                         planeb_wm = wm_info->max_wm;
1571         }
1572
1573         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1574
1575         if (IS_I915GM(dev) && enabled) {
1576                 struct drm_i915_gem_object *obj;
1577
1578                 obj = intel_fb_obj(enabled->primary->state->fb);
1579
1580                 /* self-refresh seems busted with untiled */
1581                 if (obj->tiling_mode == I915_TILING_NONE)
1582                         enabled = NULL;
1583         }
1584
1585         /*
1586          * Overlay gets an aggressive default since video jitter is bad.
1587          */
1588         cwm = 2;
1589
1590         /* Play safe and disable self-refresh before adjusting watermarks. */
1591         intel_set_memory_cxsr(dev_priv, false);
1592
1593         /* Calc sr entries for one plane configs */
1594         if (HAS_FW_BLC(dev) && enabled) {
1595                 /* self-refresh has much higher latency */
1596                 static const int sr_latency_ns = 6000;
1597                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1598                 int clock = adjusted_mode->crtc_clock;
1599                 int htotal = adjusted_mode->crtc_htotal;
1600                 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1601                 int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1602                 unsigned long line_time_us;
1603                 int entries;
1604
1605                 line_time_us = max(htotal * 1000 / clock, 1);
1606
1607                 /* Use ns/us then divide to preserve precision */
1608                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1609                         cpp * hdisplay;
1610                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1611                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1612                 srwm = wm_info->fifo_size - entries;
1613                 if (srwm < 0)
1614                         srwm = 1;
1615
1616                 if (IS_I945G(dev) || IS_I945GM(dev))
1617                         I915_WRITE(FW_BLC_SELF,
1618                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1619                 else if (IS_I915GM(dev))
1620                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1621         }
1622
1623         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1624                       planea_wm, planeb_wm, cwm, srwm);
1625
1626         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1627         fwater_hi = (cwm & 0x1f);
1628
1629         /* Set request length to 8 cachelines per fetch */
1630         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1631         fwater_hi = fwater_hi | (1 << 8);
1632
1633         I915_WRITE(FW_BLC, fwater_lo);
1634         I915_WRITE(FW_BLC2, fwater_hi);
1635
1636         if (enabled)
1637                 intel_set_memory_cxsr(dev_priv, true);
1638 }
1639
1640 static void i845_update_wm(struct drm_crtc *unused_crtc)
1641 {
1642         struct drm_device *dev = unused_crtc->dev;
1643         struct drm_i915_private *dev_priv = dev->dev_private;
1644         struct drm_crtc *crtc;
1645         const struct drm_display_mode *adjusted_mode;
1646         uint32_t fwater_lo;
1647         int planea_wm;
1648
1649         crtc = single_enabled_crtc(dev);
1650         if (crtc == NULL)
1651                 return;
1652
1653         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1654         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1655                                        &i845_wm_info,
1656                                        dev_priv->display.get_fifo_size(dev, 0),
1657                                        4, pessimal_latency_ns);
1658         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1659         fwater_lo |= (3<<8) | planea_wm;
1660
1661         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1662
1663         I915_WRITE(FW_BLC, fwater_lo);
1664 }
1665
1666 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1667 {
1668         uint32_t pixel_rate;
1669
1670         pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1671
1672         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1673          * adjust the pixel_rate here. */
1674
1675         if (pipe_config->pch_pfit.enabled) {
1676                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1677                 uint32_t pfit_size = pipe_config->pch_pfit.size;
1678
1679                 pipe_w = pipe_config->pipe_src_w;
1680                 pipe_h = pipe_config->pipe_src_h;
1681
1682                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1683                 pfit_h = pfit_size & 0xFFFF;
1684                 if (pipe_w < pfit_w)
1685                         pipe_w = pfit_w;
1686                 if (pipe_h < pfit_h)
1687                         pipe_h = pfit_h;
1688
1689                 if (WARN_ON(!pfit_w || !pfit_h))
1690                         return pixel_rate;
1691
1692                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1693                                      pfit_w * pfit_h);
1694         }
1695
1696         return pixel_rate;
1697 }
1698
1699 /* latency must be in 0.1us units. */
1700 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1701 {
1702         uint64_t ret;
1703
1704         if (WARN(latency == 0, "Latency value missing\n"))
1705                 return UINT_MAX;
1706
1707         ret = (uint64_t) pixel_rate * cpp * latency;
1708         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1709
1710         return ret;
1711 }
1712
1713 /* latency must be in 0.1us units. */
1714 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1715                                uint32_t horiz_pixels, uint8_t cpp,
1716                                uint32_t latency)
1717 {
1718         uint32_t ret;
1719
1720         if (WARN(latency == 0, "Latency value missing\n"))
1721                 return UINT_MAX;
1722         if (WARN_ON(!pipe_htotal))
1723                 return UINT_MAX;
1724
1725         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1726         ret = (ret + 1) * horiz_pixels * cpp;
1727         ret = DIV_ROUND_UP(ret, 64) + 2;
1728         return ret;
1729 }
1730
1731 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1732                            uint8_t cpp)
1733 {
1734         /*
1735          * Neither of these should be possible since this function shouldn't be
1736          * called if the CRTC is off or the plane is invisible.  But let's be
1737          * extra paranoid to avoid a potential divide-by-zero if we screw up
1738          * elsewhere in the driver.
1739          */
1740         if (WARN_ON(!cpp))
1741                 return 0;
1742         if (WARN_ON(!horiz_pixels))
1743                 return 0;
1744
1745         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1746 }
1747
1748 struct ilk_wm_maximums {
1749         uint16_t pri;
1750         uint16_t spr;
1751         uint16_t cur;
1752         uint16_t fbc;
1753 };
1754
1755 /*
1756  * For both WM_PIPE and WM_LP.
1757  * mem_value must be in 0.1us units.
1758  */
1759 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1760                                    const struct intel_plane_state *pstate,
1761                                    uint32_t mem_value,
1762                                    bool is_lp)
1763 {
1764         int cpp = pstate->base.fb ?
1765                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1766         uint32_t method1, method2;
1767
1768         if (!cstate->base.active || !pstate->visible)
1769                 return 0;
1770
1771         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1772
1773         if (!is_lp)
1774                 return method1;
1775
1776         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1777                                  cstate->base.adjusted_mode.crtc_htotal,
1778                                  drm_rect_width(&pstate->dst),
1779                                  cpp, mem_value);
1780
1781         return min(method1, method2);
1782 }
1783
1784 /*
1785  * For both WM_PIPE and WM_LP.
1786  * mem_value must be in 0.1us units.
1787  */
1788 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1789                                    const struct intel_plane_state *pstate,
1790                                    uint32_t mem_value)
1791 {
1792         int cpp = pstate->base.fb ?
1793                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1794         uint32_t method1, method2;
1795
1796         if (!cstate->base.active || !pstate->visible)
1797                 return 0;
1798
1799         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1800         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1801                                  cstate->base.adjusted_mode.crtc_htotal,
1802                                  drm_rect_width(&pstate->dst),
1803                                  cpp, mem_value);
1804         return min(method1, method2);
1805 }
1806
1807 /*
1808  * For both WM_PIPE and WM_LP.
1809  * mem_value must be in 0.1us units.
1810  */
1811 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1812                                    const struct intel_plane_state *pstate,
1813                                    uint32_t mem_value)
1814 {
1815         /*
1816          * We treat the cursor plane as always-on for the purposes of watermark
1817          * calculation.  Until we have two-stage watermark programming merged,
1818          * this is necessary to avoid flickering.
1819          */
1820         int cpp = 4;
1821         int width = pstate->visible ? pstate->base.crtc_w : 64;
1822
1823         if (!cstate->base.active)
1824                 return 0;
1825
1826         return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1827                               cstate->base.adjusted_mode.crtc_htotal,
1828                               width, cpp, mem_value);
1829 }
1830
1831 /* Only for WM_LP. */
1832 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1833                                    const struct intel_plane_state *pstate,
1834                                    uint32_t pri_val)
1835 {
1836         int cpp = pstate->base.fb ?
1837                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1838
1839         if (!cstate->base.active || !pstate->visible)
1840                 return 0;
1841
1842         return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1843 }
1844
1845 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1846 {
1847         if (INTEL_INFO(dev)->gen >= 8)
1848                 return 3072;
1849         else if (INTEL_INFO(dev)->gen >= 7)
1850                 return 768;
1851         else
1852                 return 512;
1853 }
1854
1855 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1856                                          int level, bool is_sprite)
1857 {
1858         if (INTEL_INFO(dev)->gen >= 8)
1859                 /* BDW primary/sprite plane watermarks */
1860                 return level == 0 ? 255 : 2047;
1861         else if (INTEL_INFO(dev)->gen >= 7)
1862                 /* IVB/HSW primary/sprite plane watermarks */
1863                 return level == 0 ? 127 : 1023;
1864         else if (!is_sprite)
1865                 /* ILK/SNB primary plane watermarks */
1866                 return level == 0 ? 127 : 511;
1867         else
1868                 /* ILK/SNB sprite plane watermarks */
1869                 return level == 0 ? 63 : 255;
1870 }
1871
1872 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1873                                           int level)
1874 {
1875         if (INTEL_INFO(dev)->gen >= 7)
1876                 return level == 0 ? 63 : 255;
1877         else
1878                 return level == 0 ? 31 : 63;
1879 }
1880
1881 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1882 {
1883         if (INTEL_INFO(dev)->gen >= 8)
1884                 return 31;
1885         else
1886                 return 15;
1887 }
1888
1889 /* Calculate the maximum primary/sprite plane watermark */
1890 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1891                                      int level,
1892                                      const struct intel_wm_config *config,
1893                                      enum intel_ddb_partitioning ddb_partitioning,
1894                                      bool is_sprite)
1895 {
1896         unsigned int fifo_size = ilk_display_fifo_size(dev);
1897
1898         /* if sprites aren't enabled, sprites get nothing */
1899         if (is_sprite && !config->sprites_enabled)
1900                 return 0;
1901
1902         /* HSW allows LP1+ watermarks even with multiple pipes */
1903         if (level == 0 || config->num_pipes_active > 1) {
1904                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1905
1906                 /*
1907                  * For some reason the non self refresh
1908                  * FIFO size is only half of the self
1909                  * refresh FIFO size on ILK/SNB.
1910                  */
1911                 if (INTEL_INFO(dev)->gen <= 6)
1912                         fifo_size /= 2;
1913         }
1914
1915         if (config->sprites_enabled) {
1916                 /* level 0 is always calculated with 1:1 split */
1917                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1918                         if (is_sprite)
1919                                 fifo_size *= 5;
1920                         fifo_size /= 6;
1921                 } else {
1922                         fifo_size /= 2;
1923                 }
1924         }
1925
1926         /* clamp to max that the registers can hold */
1927         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1928 }
1929
1930 /* Calculate the maximum cursor plane watermark */
1931 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1932                                       int level,
1933                                       const struct intel_wm_config *config)
1934 {
1935         /* HSW LP1+ watermarks w/ multiple pipes */
1936         if (level > 0 && config->num_pipes_active > 1)
1937                 return 64;
1938
1939         /* otherwise just report max that registers can hold */
1940         return ilk_cursor_wm_reg_max(dev, level);
1941 }
1942
1943 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1944                                     int level,
1945                                     const struct intel_wm_config *config,
1946                                     enum intel_ddb_partitioning ddb_partitioning,
1947                                     struct ilk_wm_maximums *max)
1948 {
1949         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1950         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1951         max->cur = ilk_cursor_wm_max(dev, level, config);
1952         max->fbc = ilk_fbc_wm_reg_max(dev);
1953 }
1954
1955 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1956                                         int level,
1957                                         struct ilk_wm_maximums *max)
1958 {
1959         max->pri = ilk_plane_wm_reg_max(dev, level, false);
1960         max->spr = ilk_plane_wm_reg_max(dev, level, true);
1961         max->cur = ilk_cursor_wm_reg_max(dev, level);
1962         max->fbc = ilk_fbc_wm_reg_max(dev);
1963 }
1964
1965 static bool ilk_validate_wm_level(int level,
1966                                   const struct ilk_wm_maximums *max,
1967                                   struct intel_wm_level *result)
1968 {
1969         bool ret;
1970
1971         /* already determined to be invalid? */
1972         if (!result->enable)
1973                 return false;
1974
1975         result->enable = result->pri_val <= max->pri &&
1976                          result->spr_val <= max->spr &&
1977                          result->cur_val <= max->cur;
1978
1979         ret = result->enable;
1980
1981         /*
1982          * HACK until we can pre-compute everything,
1983          * and thus fail gracefully if LP0 watermarks
1984          * are exceeded...
1985          */
1986         if (level == 0 && !result->enable) {
1987                 if (result->pri_val > max->pri)
1988                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1989                                       level, result->pri_val, max->pri);
1990                 if (result->spr_val > max->spr)
1991                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1992                                       level, result->spr_val, max->spr);
1993                 if (result->cur_val > max->cur)
1994                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1995                                       level, result->cur_val, max->cur);
1996
1997                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1998                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1999                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2000                 result->enable = true;
2001         }
2002
2003         return ret;
2004 }
2005
2006 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2007                                  const struct intel_crtc *intel_crtc,
2008                                  int level,
2009                                  struct intel_crtc_state *cstate,
2010                                  struct intel_plane_state *pristate,
2011                                  struct intel_plane_state *sprstate,
2012                                  struct intel_plane_state *curstate,
2013                                  struct intel_wm_level *result)
2014 {
2015         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2016         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2017         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2018
2019         /* WM1+ latency values stored in 0.5us units */
2020         if (level > 0) {
2021                 pri_latency *= 5;
2022                 spr_latency *= 5;
2023                 cur_latency *= 5;
2024         }
2025
2026         if (pristate) {
2027                 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2028                                                      pri_latency, level);
2029                 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2030         }
2031
2032         if (sprstate)
2033                 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2034
2035         if (curstate)
2036                 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2037
2038         result->enable = true;
2039 }
2040
2041 static uint32_t
2042 hsw_compute_linetime_wm(struct drm_device *dev,
2043                         struct intel_crtc_state *cstate)
2044 {
2045         struct drm_i915_private *dev_priv = dev->dev_private;
2046         const struct drm_display_mode *adjusted_mode =
2047                 &cstate->base.adjusted_mode;
2048         u32 linetime, ips_linetime;
2049
2050         if (!cstate->base.active)
2051                 return 0;
2052         if (WARN_ON(adjusted_mode->crtc_clock == 0))
2053                 return 0;
2054         if (WARN_ON(dev_priv->cdclk_freq == 0))
2055                 return 0;
2056
2057         /* The WM are computed with base on how long it takes to fill a single
2058          * row at the given clock rate, multiplied by 8.
2059          * */
2060         linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2061                                      adjusted_mode->crtc_clock);
2062         ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2063                                          dev_priv->cdclk_freq);
2064
2065         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2066                PIPE_WM_LINETIME_TIME(linetime);
2067 }
2068
2069 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2070 {
2071         struct drm_i915_private *dev_priv = dev->dev_private;
2072
2073         if (IS_GEN9(dev)) {
2074                 uint32_t val;
2075                 int ret, i;
2076                 int level, max_level = ilk_wm_max_level(dev);
2077
2078                 /* read the first set of memory latencies[0:3] */
2079                 val = 0; /* data0 to be programmed to 0 for first set */
2080                 mutex_lock(&dev_priv->rps.hw_lock);
2081                 ret = sandybridge_pcode_read(dev_priv,
2082                                              GEN9_PCODE_READ_MEM_LATENCY,
2083                                              &val);
2084                 mutex_unlock(&dev_priv->rps.hw_lock);
2085
2086                 if (ret) {
2087                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2088                         return;
2089                 }
2090
2091                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2092                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2093                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2094                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2095                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2096                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2097                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2098
2099                 /* read the second set of memory latencies[4:7] */
2100                 val = 1; /* data0 to be programmed to 1 for second set */
2101                 mutex_lock(&dev_priv->rps.hw_lock);
2102                 ret = sandybridge_pcode_read(dev_priv,
2103                                              GEN9_PCODE_READ_MEM_LATENCY,
2104                                              &val);
2105                 mutex_unlock(&dev_priv->rps.hw_lock);
2106                 if (ret) {
2107                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2108                         return;
2109                 }
2110
2111                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2112                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2113                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2114                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2115                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2116                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2117                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2118
2119                 /*
2120                  * WaWmMemoryReadLatency:skl
2121                  *
2122                  * punit doesn't take into account the read latency so we need
2123                  * to add 2us to the various latency levels we retrieve from
2124                  * the punit.
2125                  *   - W0 is a bit special in that it's the only level that
2126                  *   can't be disabled if we want to have display working, so
2127                  *   we always add 2us there.
2128                  *   - For levels >=1, punit returns 0us latency when they are
2129                  *   disabled, so we respect that and don't add 2us then
2130                  *
2131                  * Additionally, if a level n (n > 1) has a 0us latency, all
2132                  * levels m (m >= n) need to be disabled. We make sure to
2133                  * sanitize the values out of the punit to satisfy this
2134                  * requirement.
2135                  */
2136                 wm[0] += 2;
2137                 for (level = 1; level <= max_level; level++)
2138                         if (wm[level] != 0)
2139                                 wm[level] += 2;
2140                         else {
2141                                 for (i = level + 1; i <= max_level; i++)
2142                                         wm[i] = 0;
2143
2144                                 break;
2145                         }
2146         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2147                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2148
2149                 wm[0] = (sskpd >> 56) & 0xFF;
2150                 if (wm[0] == 0)
2151                         wm[0] = sskpd & 0xF;
2152                 wm[1] = (sskpd >> 4) & 0xFF;
2153                 wm[2] = (sskpd >> 12) & 0xFF;
2154                 wm[3] = (sskpd >> 20) & 0x1FF;
2155                 wm[4] = (sskpd >> 32) & 0x1FF;
2156         } else if (INTEL_INFO(dev)->gen >= 6) {
2157                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2158
2159                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2160                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2161                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2162                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2163         } else if (INTEL_INFO(dev)->gen >= 5) {
2164                 uint32_t mltr = I915_READ(MLTR_ILK);
2165
2166                 /* ILK primary LP0 latency is 700 ns */
2167                 wm[0] = 7;
2168                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2169                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2170         }
2171 }
2172
2173 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2174 {
2175         /* ILK sprite LP0 latency is 1300 ns */
2176         if (INTEL_INFO(dev)->gen == 5)
2177                 wm[0] = 13;
2178 }
2179
2180 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2181 {
2182         /* ILK cursor LP0 latency is 1300 ns */
2183         if (INTEL_INFO(dev)->gen == 5)
2184                 wm[0] = 13;
2185
2186         /* WaDoubleCursorLP3Latency:ivb */
2187         if (IS_IVYBRIDGE(dev))
2188                 wm[3] *= 2;
2189 }
2190
2191 int ilk_wm_max_level(const struct drm_device *dev)
2192 {
2193         /* how many WM levels are we expecting */
2194         if (INTEL_INFO(dev)->gen >= 9)
2195                 return 7;
2196         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2197                 return 4;
2198         else if (INTEL_INFO(dev)->gen >= 6)
2199                 return 3;
2200         else
2201                 return 2;
2202 }
2203
2204 static void intel_print_wm_latency(struct drm_device *dev,
2205                                    const char *name,
2206                                    const uint16_t wm[8])
2207 {
2208         int level, max_level = ilk_wm_max_level(dev);
2209
2210         for (level = 0; level <= max_level; level++) {
2211                 unsigned int latency = wm[level];
2212
2213                 if (latency == 0) {
2214                         DRM_ERROR("%s WM%d latency not provided\n",
2215                                   name, level);
2216                         continue;
2217                 }
2218
2219                 /*
2220                  * - latencies are in us on gen9.
2221                  * - before then, WM1+ latency values are in 0.5us units
2222                  */
2223                 if (IS_GEN9(dev))
2224                         latency *= 10;
2225                 else if (level > 0)
2226                         latency *= 5;
2227
2228                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2229                               name, level, wm[level],
2230                               latency / 10, latency % 10);
2231         }
2232 }
2233
2234 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2235                                     uint16_t wm[5], uint16_t min)
2236 {
2237         int level, max_level = ilk_wm_max_level(dev_priv->dev);
2238
2239         if (wm[0] >= min)
2240                 return false;
2241
2242         wm[0] = max(wm[0], min);
2243         for (level = 1; level <= max_level; level++)
2244                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2245
2246         return true;
2247 }
2248
2249 static void snb_wm_latency_quirk(struct drm_device *dev)
2250 {
2251         struct drm_i915_private *dev_priv = dev->dev_private;
2252         bool changed;
2253
2254         /*
2255          * The BIOS provided WM memory latency values are often
2256          * inadequate for high resolution displays. Adjust them.
2257          */
2258         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2259                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2260                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2261
2262         if (!changed)
2263                 return;
2264
2265         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2266         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2267         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2268         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2269 }
2270
2271 static void ilk_setup_wm_latency(struct drm_device *dev)
2272 {
2273         struct drm_i915_private *dev_priv = dev->dev_private;
2274
2275         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2276
2277         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2278                sizeof(dev_priv->wm.pri_latency));
2279         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2280                sizeof(dev_priv->wm.pri_latency));
2281
2282         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2283         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2284
2285         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2286         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2287         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2288
2289         if (IS_GEN6(dev))
2290                 snb_wm_latency_quirk(dev);
2291 }
2292
2293 static void skl_setup_wm_latency(struct drm_device *dev)
2294 {
2295         struct drm_i915_private *dev_priv = dev->dev_private;
2296
2297         intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2298         intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2299 }
2300
2301 static bool ilk_validate_pipe_wm(struct drm_device *dev,
2302                                  struct intel_pipe_wm *pipe_wm)
2303 {
2304         /* LP0 watermark maximums depend on this pipe alone */
2305         const struct intel_wm_config config = {
2306                 .num_pipes_active = 1,
2307                 .sprites_enabled = pipe_wm->sprites_enabled,
2308                 .sprites_scaled = pipe_wm->sprites_scaled,
2309         };
2310         struct ilk_wm_maximums max;
2311
2312         /* LP0 watermarks always use 1/2 DDB partitioning */
2313         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2314
2315         /* At least LP0 must be valid */
2316         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
2317                 DRM_DEBUG_KMS("LP0 watermark invalid\n");
2318                 return false;
2319         }
2320
2321         return true;
2322 }
2323
2324 /* Compute new watermarks for the pipe */
2325 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2326 {
2327         struct drm_atomic_state *state = cstate->base.state;
2328         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2329         struct intel_pipe_wm *pipe_wm;
2330         struct drm_device *dev = state->dev;
2331         const struct drm_i915_private *dev_priv = dev->dev_private;
2332         struct intel_plane *intel_plane;
2333         struct intel_plane_state *pristate = NULL;
2334         struct intel_plane_state *sprstate = NULL;
2335         struct intel_plane_state *curstate = NULL;
2336         int level, max_level = ilk_wm_max_level(dev), usable_level;
2337         struct ilk_wm_maximums max;
2338
2339         pipe_wm = &cstate->wm.optimal.ilk;
2340
2341         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2342                 struct intel_plane_state *ps;
2343
2344                 ps = intel_atomic_get_existing_plane_state(state,
2345                                                            intel_plane);
2346                 if (!ps)
2347                         continue;
2348
2349                 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2350                         pristate = ps;
2351                 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2352                         sprstate = ps;
2353                 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2354                         curstate = ps;
2355         }
2356
2357         pipe_wm->pipe_enabled = cstate->base.active;
2358         if (sprstate) {
2359                 pipe_wm->sprites_enabled = sprstate->visible;
2360                 pipe_wm->sprites_scaled = sprstate->visible &&
2361                         (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2362                          drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2363         }
2364
2365         usable_level = max_level;
2366
2367         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2368         if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2369                 usable_level = 1;
2370
2371         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2372         if (pipe_wm->sprites_scaled)
2373                 usable_level = 0;
2374
2375         ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2376                              pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
2377
2378         memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
2379         pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2380
2381         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2382                 pipe_wm->linetime = hsw_compute_linetime_wm(dev, cstate);
2383
2384         if (!ilk_validate_pipe_wm(dev, pipe_wm))
2385                 return -EINVAL;
2386
2387         ilk_compute_wm_reg_maximums(dev, 1, &max);
2388
2389         for (level = 1; level <= max_level; level++) {
2390                 struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2391
2392                 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2393                                      pristate, sprstate, curstate, wm);
2394
2395                 /*
2396                  * Disable any watermark level that exceeds the
2397                  * register maximums since such watermarks are
2398                  * always invalid.
2399                  */
2400                 if (level > usable_level)
2401                         continue;
2402
2403                 if (ilk_validate_wm_level(level, &max, wm))
2404                         pipe_wm->wm[level] = *wm;
2405                 else
2406                         usable_level = level;
2407         }
2408
2409         return 0;
2410 }
2411
2412 /*
2413  * Build a set of 'intermediate' watermark values that satisfy both the old
2414  * state and the new state.  These can be programmed to the hardware
2415  * immediately.
2416  */
2417 static int ilk_compute_intermediate_wm(struct drm_device *dev,
2418                                        struct intel_crtc *intel_crtc,
2419                                        struct intel_crtc_state *newstate)
2420 {
2421         struct intel_pipe_wm *a = &newstate->wm.intermediate;
2422         struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2423         int level, max_level = ilk_wm_max_level(dev);
2424
2425         /*
2426          * Start with the final, target watermarks, then combine with the
2427          * currently active watermarks to get values that are safe both before
2428          * and after the vblank.
2429          */
2430         *a = newstate->wm.optimal.ilk;
2431         a->pipe_enabled |= b->pipe_enabled;
2432         a->sprites_enabled |= b->sprites_enabled;
2433         a->sprites_scaled |= b->sprites_scaled;
2434
2435         for (level = 0; level <= max_level; level++) {
2436                 struct intel_wm_level *a_wm = &a->wm[level];
2437                 const struct intel_wm_level *b_wm = &b->wm[level];
2438
2439                 a_wm->enable &= b_wm->enable;
2440                 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
2441                 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
2442                 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
2443                 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
2444         }
2445
2446         /*
2447          * We need to make sure that these merged watermark values are
2448          * actually a valid configuration themselves.  If they're not,
2449          * there's no safe way to transition from the old state to
2450          * the new state, so we need to fail the atomic transaction.
2451          */
2452         if (!ilk_validate_pipe_wm(dev, a))
2453                 return -EINVAL;
2454
2455         /*
2456          * If our intermediate WM are identical to the final WM, then we can
2457          * omit the post-vblank programming; only update if it's different.
2458          */
2459         if (memcmp(a, &newstate->wm.optimal.ilk, sizeof(*a)) == 0)
2460                 newstate->wm.need_postvbl_update = false;
2461
2462         return 0;
2463 }
2464
2465 /*
2466  * Merge the watermarks from all active pipes for a specific level.
2467  */
2468 static void ilk_merge_wm_level(struct drm_device *dev,
2469                                int level,
2470                                struct intel_wm_level *ret_wm)
2471 {
2472         struct intel_crtc *intel_crtc;
2473
2474         ret_wm->enable = true;
2475
2476         for_each_intel_crtc(dev, intel_crtc) {
2477                 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2478                 const struct intel_wm_level *wm = &active->wm[level];
2479
2480                 if (!active->pipe_enabled)
2481                         continue;
2482
2483                 /*
2484                  * The watermark values may have been used in the past,
2485                  * so we must maintain them in the registers for some
2486                  * time even if the level is now disabled.
2487                  */
2488                 if (!wm->enable)
2489                         ret_wm->enable = false;
2490
2491                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2492                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2493                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2494                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2495         }
2496 }
2497
2498 /*
2499  * Merge all low power watermarks for all active pipes.
2500  */
2501 static void ilk_wm_merge(struct drm_device *dev,
2502                          const struct intel_wm_config *config,
2503                          const struct ilk_wm_maximums *max,
2504                          struct intel_pipe_wm *merged)
2505 {
2506         struct drm_i915_private *dev_priv = dev->dev_private;
2507         int level, max_level = ilk_wm_max_level(dev);
2508         int last_enabled_level = max_level;
2509
2510         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2511         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2512             config->num_pipes_active > 1)
2513                 last_enabled_level = 0;
2514
2515         /* ILK: FBC WM must be disabled always */
2516         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2517
2518         /* merge each WM1+ level */
2519         for (level = 1; level <= max_level; level++) {
2520                 struct intel_wm_level *wm = &merged->wm[level];
2521
2522                 ilk_merge_wm_level(dev, level, wm);
2523
2524                 if (level > last_enabled_level)
2525                         wm->enable = false;
2526                 else if (!ilk_validate_wm_level(level, max, wm))
2527                         /* make sure all following levels get disabled */
2528                         last_enabled_level = level - 1;
2529
2530                 /*
2531                  * The spec says it is preferred to disable
2532                  * FBC WMs instead of disabling a WM level.
2533                  */
2534                 if (wm->fbc_val > max->fbc) {
2535                         if (wm->enable)
2536                                 merged->fbc_wm_enabled = false;
2537                         wm->fbc_val = 0;
2538                 }
2539         }
2540
2541         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2542         /*
2543          * FIXME this is racy. FBC might get enabled later.
2544          * What we should check here is whether FBC can be
2545          * enabled sometime later.
2546          */
2547         if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2548             intel_fbc_is_active(dev_priv)) {
2549                 for (level = 2; level <= max_level; level++) {
2550                         struct intel_wm_level *wm = &merged->wm[level];
2551
2552                         wm->enable = false;
2553                 }
2554         }
2555 }
2556
2557 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2558 {
2559         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2560         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2561 }
2562
2563 /* The value we need to program into the WM_LPx latency field */
2564 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2565 {
2566         struct drm_i915_private *dev_priv = dev->dev_private;
2567
2568         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2569                 return 2 * level;
2570         else
2571                 return dev_priv->wm.pri_latency[level];
2572 }
2573
2574 static void ilk_compute_wm_results(struct drm_device *dev,
2575                                    const struct intel_pipe_wm *merged,
2576                                    enum intel_ddb_partitioning partitioning,
2577                                    struct ilk_wm_values *results)
2578 {
2579         struct intel_crtc *intel_crtc;
2580         int level, wm_lp;
2581
2582         results->enable_fbc_wm = merged->fbc_wm_enabled;
2583         results->partitioning = partitioning;
2584
2585         /* LP1+ register values */
2586         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2587                 const struct intel_wm_level *r;
2588
2589                 level = ilk_wm_lp_to_level(wm_lp, merged);
2590
2591                 r = &merged->wm[level];
2592
2593                 /*
2594                  * Maintain the watermark values even if the level is
2595                  * disabled. Doing otherwise could cause underruns.
2596                  */
2597                 results->wm_lp[wm_lp - 1] =
2598                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2599                         (r->pri_val << WM1_LP_SR_SHIFT) |
2600                         r->cur_val;
2601
2602                 if (r->enable)
2603                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2604
2605                 if (INTEL_INFO(dev)->gen >= 8)
2606                         results->wm_lp[wm_lp - 1] |=
2607                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2608                 else
2609                         results->wm_lp[wm_lp - 1] |=
2610                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2611
2612                 /*
2613                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2614                  * level is disabled. Doing otherwise could cause underruns.
2615                  */
2616                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2617                         WARN_ON(wm_lp != 1);
2618                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2619                 } else
2620                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2621         }
2622
2623         /* LP0 register values */
2624         for_each_intel_crtc(dev, intel_crtc) {
2625                 enum i915_pipe pipe = intel_crtc->pipe;
2626                 const struct intel_wm_level *r =
2627                         &intel_crtc->wm.active.ilk.wm[0];
2628
2629                 if (WARN_ON(!r->enable))
2630                         continue;
2631
2632                 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2633
2634                 results->wm_pipe[pipe] =
2635                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2636                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2637                         r->cur_val;
2638         }
2639 }
2640
2641 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2642  * case both are at the same level. Prefer r1 in case they're the same. */
2643 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2644                                                   struct intel_pipe_wm *r1,
2645                                                   struct intel_pipe_wm *r2)
2646 {
2647         int level, max_level = ilk_wm_max_level(dev);
2648         int level1 = 0, level2 = 0;
2649
2650         for (level = 1; level <= max_level; level++) {
2651                 if (r1->wm[level].enable)
2652                         level1 = level;
2653                 if (r2->wm[level].enable)
2654                         level2 = level;
2655         }
2656
2657         if (level1 == level2) {
2658                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2659                         return r2;
2660                 else
2661                         return r1;
2662         } else if (level1 > level2) {
2663                 return r1;
2664         } else {
2665                 return r2;
2666         }
2667 }
2668
2669 /* dirty bits used to track which watermarks need changes */
2670 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2671 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2672 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2673 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2674 #define WM_DIRTY_FBC (1 << 24)
2675 #define WM_DIRTY_DDB (1 << 25)
2676
2677 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2678                                          const struct ilk_wm_values *old,
2679                                          const struct ilk_wm_values *new)
2680 {
2681         unsigned int dirty = 0;
2682         enum i915_pipe pipe;
2683         int wm_lp;
2684
2685         for_each_pipe(dev_priv, pipe) {
2686                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2687                         dirty |= WM_DIRTY_LINETIME(pipe);
2688                         /* Must disable LP1+ watermarks too */
2689                         dirty |= WM_DIRTY_LP_ALL;
2690                 }
2691
2692                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2693                         dirty |= WM_DIRTY_PIPE(pipe);
2694                         /* Must disable LP1+ watermarks too */
2695                         dirty |= WM_DIRTY_LP_ALL;
2696                 }
2697         }
2698
2699         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2700                 dirty |= WM_DIRTY_FBC;
2701                 /* Must disable LP1+ watermarks too */
2702                 dirty |= WM_DIRTY_LP_ALL;
2703         }
2704
2705         if (old->partitioning != new->partitioning) {
2706                 dirty |= WM_DIRTY_DDB;
2707                 /* Must disable LP1+ watermarks too */
2708                 dirty |= WM_DIRTY_LP_ALL;
2709         }
2710
2711         /* LP1+ watermarks already deemed dirty, no need to continue */
2712         if (dirty & WM_DIRTY_LP_ALL)
2713                 return dirty;
2714
2715         /* Find the lowest numbered LP1+ watermark in need of an update... */
2716         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2717                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2718                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2719                         break;
2720         }
2721
2722         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2723         for (; wm_lp <= 3; wm_lp++)
2724                 dirty |= WM_DIRTY_LP(wm_lp);
2725
2726         return dirty;
2727 }
2728
2729 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2730                                unsigned int dirty)
2731 {
2732         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2733         bool changed = false;
2734
2735         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2736                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2737                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2738                 changed = true;
2739         }
2740         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2741                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2742                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2743                 changed = true;
2744         }
2745         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2746                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2747                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2748                 changed = true;
2749         }
2750
2751         /*
2752          * Don't touch WM1S_LP_EN here.
2753          * Doing so could cause underruns.
2754          */
2755
2756         return changed;
2757 }
2758
2759 /*
2760  * The spec says we shouldn't write when we don't need, because every write
2761  * causes WMs to be re-evaluated, expending some power.
2762  */
2763 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2764                                 struct ilk_wm_values *results)
2765 {
2766         struct drm_device *dev = dev_priv->dev;
2767         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2768         unsigned int dirty;
2769         uint32_t val;
2770
2771         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2772         if (!dirty)
2773                 return;
2774
2775         _ilk_disable_lp_wm(dev_priv, dirty);
2776
2777         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2778                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2779         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2780                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2781         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2782                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2783
2784         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2785                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2786         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2787                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2788         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2789                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2790
2791         if (dirty & WM_DIRTY_DDB) {
2792                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2793                         val = I915_READ(WM_MISC);
2794                         if (results->partitioning == INTEL_DDB_PART_1_2)
2795                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2796                         else
2797                                 val |= WM_MISC_DATA_PARTITION_5_6;
2798                         I915_WRITE(WM_MISC, val);
2799                 } else {
2800                         val = I915_READ(DISP_ARB_CTL2);
2801                         if (results->partitioning == INTEL_DDB_PART_1_2)
2802                                 val &= ~DISP_DATA_PARTITION_5_6;
2803                         else
2804                                 val |= DISP_DATA_PARTITION_5_6;
2805                         I915_WRITE(DISP_ARB_CTL2, val);
2806                 }
2807         }
2808
2809         if (dirty & WM_DIRTY_FBC) {
2810                 val = I915_READ(DISP_ARB_CTL);
2811                 if (results->enable_fbc_wm)
2812                         val &= ~DISP_FBC_WM_DIS;
2813                 else
2814                         val |= DISP_FBC_WM_DIS;
2815                 I915_WRITE(DISP_ARB_CTL, val);
2816         }
2817
2818         if (dirty & WM_DIRTY_LP(1) &&
2819             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2820                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2821
2822         if (INTEL_INFO(dev)->gen >= 7) {
2823                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2824                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2825                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2826                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2827         }
2828
2829         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2830                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2831         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2832                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2833         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2834                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2835
2836         dev_priv->wm.hw = *results;
2837 }
2838
2839 bool ilk_disable_lp_wm(struct drm_device *dev)
2840 {
2841         struct drm_i915_private *dev_priv = dev->dev_private;
2842
2843         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2844 }
2845
2846 /*
2847  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2848  * different active planes.
2849  */
2850
2851 #define SKL_DDB_SIZE            896     /* in blocks */
2852 #define BXT_DDB_SIZE            512
2853
2854 /*
2855  * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
2856  * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2857  * other universal planes are in indices 1..n.  Note that this may leave unused
2858  * indices between the top "sprite" plane and the cursor.
2859  */
2860 static int
2861 skl_wm_plane_id(const struct intel_plane *plane)
2862 {
2863         switch (plane->base.type) {
2864         case DRM_PLANE_TYPE_PRIMARY:
2865                 return 0;
2866         case DRM_PLANE_TYPE_CURSOR:
2867                 return PLANE_CURSOR;
2868         case DRM_PLANE_TYPE_OVERLAY:
2869                 return plane->plane + 1;
2870         default:
2871                 MISSING_CASE(plane->base.type);
2872                 return plane->plane;
2873         }
2874 }
2875
2876 static void
2877 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2878                                    const struct intel_crtc_state *cstate,
2879                                    const struct intel_wm_config *config,
2880                                    struct skl_ddb_entry *alloc /* out */)
2881 {
2882         struct drm_crtc *for_crtc = cstate->base.crtc;
2883         struct drm_crtc *crtc;
2884         unsigned int pipe_size, ddb_size;
2885         int nth_active_pipe;
2886
2887         if (!cstate->base.active) {
2888                 alloc->start = 0;
2889                 alloc->end = 0;
2890                 return;
2891         }
2892
2893         if (IS_BROXTON(dev))
2894                 ddb_size = BXT_DDB_SIZE;
2895         else
2896                 ddb_size = SKL_DDB_SIZE;
2897
2898         ddb_size -= 4; /* 4 blocks for bypass path allocation */
2899
2900         nth_active_pipe = 0;
2901         for_each_crtc(dev, crtc) {
2902                 if (!to_intel_crtc(crtc)->active)
2903                         continue;
2904
2905                 if (crtc == for_crtc)
2906                         break;
2907
2908                 nth_active_pipe++;
2909         }
2910
2911         pipe_size = ddb_size / config->num_pipes_active;
2912         alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2913         alloc->end = alloc->start + pipe_size;
2914 }
2915
2916 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2917 {
2918         if (config->num_pipes_active == 1)
2919                 return 32;
2920
2921         return 8;
2922 }
2923
2924 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2925 {
2926         entry->start = reg & 0x3ff;
2927         entry->end = (reg >> 16) & 0x3ff;
2928         if (entry->end)
2929                 entry->end += 1;
2930 }
2931
2932 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2933                           struct skl_ddb_allocation *ddb /* out */)
2934 {
2935         enum i915_pipe pipe;
2936         int plane;
2937         u32 val;
2938
2939         memset(ddb, 0, sizeof(*ddb));
2940
2941         for_each_pipe(dev_priv, pipe) {
2942                 enum intel_display_power_domain power_domain;
2943
2944                 power_domain = POWER_DOMAIN_PIPE(pipe);
2945                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2946                         continue;
2947
2948                 for_each_plane(dev_priv, pipe, plane) {
2949                         val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2950                         skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2951                                                    val);
2952                 }
2953
2954                 val = I915_READ(CUR_BUF_CFG(pipe));
2955                 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2956                                            val);
2957
2958                 intel_display_power_put(dev_priv, power_domain);
2959         }
2960 }
2961
2962 static unsigned int
2963 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
2964                              struct drm_plane_state *pstate,
2965                              int y)
2966 {
2967         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
2968         struct drm_framebuffer *fb = pstate->fb;
2969         uint32_t width = 0, height = 0;
2970
2971         width = drm_rect_width(&intel_pstate->src) >> 16;
2972         height = drm_rect_height(&intel_pstate->src) >> 16;
2973
2974         if (intel_rotation_90_or_270(pstate->rotation))
2975                 swap(width, height);
2976
2977         /* for planar format */
2978         if (fb->pixel_format == DRM_FORMAT_NV12) {
2979                 if (y)  /* y-plane data rate */
2980                         return width * height *
2981                                 drm_format_plane_cpp(fb->pixel_format, 0);
2982                 else    /* uv-plane data rate */
2983                         return (width / 2) * (height / 2) *
2984                                 drm_format_plane_cpp(fb->pixel_format, 1);
2985         }
2986
2987         /* for packed formats */
2988         return width * height * drm_format_plane_cpp(fb->pixel_format, 0);
2989 }
2990
2991 /*
2992  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2993  * a 8192x4096@32bpp framebuffer:
2994  *   3 * 4096 * 8192  * 4 < 2^32
2995  */
2996 static unsigned int
2997 skl_get_total_relative_data_rate(const struct intel_crtc_state *cstate)
2998 {
2999         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3000         struct drm_device *dev = intel_crtc->base.dev;
3001         struct intel_plane *intel_plane;
3002         unsigned int total_data_rate = 0;
3003
3004         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3005                 struct drm_plane_state *pstate = intel_plane->base.state;
3006
3007                 if (pstate->fb == NULL)
3008                         continue;
3009
3010                 if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
3011                         continue;
3012
3013                 /* packed/uv */
3014                 total_data_rate += skl_plane_relative_data_rate(cstate,
3015                                                                 pstate,
3016                                                                 0);
3017
3018                 if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
3019                         /* y-plane */
3020                         total_data_rate += skl_plane_relative_data_rate(cstate,
3021                                                                         pstate,
3022                                                                         1);
3023         }
3024
3025         return total_data_rate;
3026 }
3027
3028 static void
3029 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3030                       struct skl_ddb_allocation *ddb /* out */)
3031 {
3032         struct drm_crtc *crtc = cstate->base.crtc;
3033         struct drm_device *dev = crtc->dev;
3034         struct drm_i915_private *dev_priv = to_i915(dev);
3035         struct intel_wm_config *config = &dev_priv->wm.config;
3036         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3037         struct intel_plane *intel_plane;
3038         enum i915_pipe pipe = intel_crtc->pipe;
3039         struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3040         uint16_t alloc_size, start, cursor_blocks;
3041         uint16_t minimum[I915_MAX_PLANES];
3042         uint16_t y_minimum[I915_MAX_PLANES];
3043         unsigned int total_data_rate;
3044
3045         skl_ddb_get_pipe_allocation_limits(dev, cstate, config, alloc);
3046         alloc_size = skl_ddb_entry_size(alloc);
3047         if (alloc_size == 0) {
3048                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3049                 memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
3050                        sizeof(ddb->plane[pipe][PLANE_CURSOR]));
3051                 return;
3052         }
3053
3054         cursor_blocks = skl_cursor_allocation(config);
3055         ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
3056         ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3057
3058         alloc_size -= cursor_blocks;
3059         alloc->end -= cursor_blocks;
3060
3061         /* 1. Allocate the mininum required blocks for each active plane */
3062         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3063                 struct drm_plane *plane = &intel_plane->base;
3064                 struct drm_framebuffer *fb = plane->state->fb;
3065                 int id = skl_wm_plane_id(intel_plane);
3066
3067                 if (!to_intel_plane_state(plane->state)->visible)
3068                         continue;
3069
3070                 if (plane->type == DRM_PLANE_TYPE_CURSOR)
3071                         continue;
3072
3073                 minimum[id] = 8;
3074                 alloc_size -= minimum[id];
3075                 y_minimum[id] = (fb->pixel_format == DRM_FORMAT_NV12) ? 8 : 0;
3076                 alloc_size -= y_minimum[id];
3077         }
3078
3079         /*
3080          * 2. Distribute the remaining space in proportion to the amount of
3081          * data each plane needs to fetch from memory.
3082          *
3083          * FIXME: we may not allocate every single block here.
3084          */
3085         total_data_rate = skl_get_total_relative_data_rate(cstate);
3086
3087         start = alloc->start;
3088         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3089                 struct drm_plane *plane = &intel_plane->base;
3090                 struct drm_plane_state *pstate = intel_plane->base.state;
3091                 unsigned int data_rate, y_data_rate;
3092                 uint16_t plane_blocks, y_plane_blocks = 0;
3093                 int id = skl_wm_plane_id(intel_plane);
3094
3095                 if (!to_intel_plane_state(pstate)->visible)
3096                         continue;
3097                 if (plane->type == DRM_PLANE_TYPE_CURSOR)
3098                         continue;
3099
3100                 data_rate = skl_plane_relative_data_rate(cstate, pstate, 0);
3101
3102                 /*
3103                  * allocation for (packed formats) or (uv-plane part of planar format):
3104                  * promote the expression to 64 bits to avoid overflowing, the
3105                  * result is < available as data_rate / total_data_rate < 1
3106                  */
3107                 plane_blocks = minimum[id];
3108                 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3109                                         total_data_rate);
3110
3111                 ddb->plane[pipe][id].start = start;
3112                 ddb->plane[pipe][id].end = start + plane_blocks;
3113
3114                 start += plane_blocks;
3115
3116                 /*
3117                  * allocation for y_plane part of planar format:
3118                  */
3119                 if (pstate->fb->pixel_format == DRM_FORMAT_NV12) {
3120                         y_data_rate = skl_plane_relative_data_rate(cstate,
3121                                                                    pstate,
3122                                                                    1);
3123                         y_plane_blocks = y_minimum[id];
3124                         y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3125                                                 total_data_rate);
3126
3127                         ddb->y_plane[pipe][id].start = start;
3128                         ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3129
3130                         start += y_plane_blocks;
3131                 }
3132
3133         }
3134
3135 }
3136
3137 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3138 {
3139         /* TODO: Take into account the scalers once we support them */
3140         return config->base.adjusted_mode.crtc_clock;
3141 }
3142
3143 /*
3144  * The max latency should be 257 (max the punit can code is 255 and we add 2us
3145  * for the read latency) and cpp should always be <= 8, so that
3146  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3147  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3148 */
3149 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3150 {
3151         uint32_t wm_intermediate_val, ret;
3152
3153         if (latency == 0)
3154                 return UINT_MAX;
3155
3156         wm_intermediate_val = latency * pixel_rate * cpp / 512;
3157         ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3158
3159         return ret;
3160 }
3161
3162 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3163                                uint32_t horiz_pixels, uint8_t cpp,
3164                                uint64_t tiling, uint32_t latency)
3165 {
3166         uint32_t ret;
3167         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3168         uint32_t wm_intermediate_val;
3169
3170         if (latency == 0)
3171                 return UINT_MAX;
3172
3173         plane_bytes_per_line = horiz_pixels * cpp;
3174
3175         if (tiling == I915_FORMAT_MOD_Y_TILED ||
3176             tiling == I915_FORMAT_MOD_Yf_TILED) {
3177                 plane_bytes_per_line *= 4;
3178                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3179                 plane_blocks_per_line /= 4;
3180         } else {
3181                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3182         }
3183
3184         wm_intermediate_val = latency * pixel_rate;
3185         ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3186                                 plane_blocks_per_line;
3187
3188         return ret;
3189 }
3190
3191 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3192                                        const struct intel_crtc *intel_crtc)
3193 {
3194         struct drm_device *dev = intel_crtc->base.dev;
3195         struct drm_i915_private *dev_priv = dev->dev_private;
3196         const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3197
3198         /*
3199          * If ddb allocation of pipes changed, it may require recalculation of
3200          * watermarks
3201          */
3202         if (memcmp(new_ddb->pipe, cur_ddb->pipe, sizeof(new_ddb->pipe)))
3203                 return true;
3204
3205         return false;
3206 }
3207
3208 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3209                                  struct intel_crtc_state *cstate,
3210                                  struct intel_plane *intel_plane,
3211                                  uint16_t ddb_allocation,
3212                                  int level,
3213                                  uint16_t *out_blocks, /* out */
3214                                  uint8_t *out_lines /* out */)
3215 {
3216         struct drm_plane *plane = &intel_plane->base;
3217         struct drm_framebuffer *fb = plane->state->fb;
3218         struct intel_plane_state *intel_pstate =
3219                                         to_intel_plane_state(plane->state);
3220         uint32_t latency = dev_priv->wm.skl_latency[level];
3221         uint32_t method1, method2;
3222         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3223         uint32_t res_blocks, res_lines;
3224         uint32_t selected_result;
3225         uint8_t cpp;
3226         uint32_t width = 0, height = 0;
3227
3228         if (latency == 0 || !cstate->base.active || !intel_pstate->visible)
3229                 return false;
3230
3231         width = drm_rect_width(&intel_pstate->src) >> 16;
3232         height = drm_rect_height(&intel_pstate->src) >> 16;
3233
3234         if (intel_rotation_90_or_270(plane->state->rotation))
3235                 swap(width, height);
3236
3237         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3238         method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
3239                                  cpp, latency);
3240         method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
3241                                  cstate->base.adjusted_mode.crtc_htotal,
3242                                  width,
3243                                  cpp,
3244                                  fb->modifier[0],
3245                                  latency);
3246
3247         plane_bytes_per_line = width * cpp;
3248         plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3249
3250         if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3251             fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3252                 uint32_t min_scanlines = 4;
3253                 uint32_t y_tile_minimum;
3254                 if (intel_rotation_90_or_270(plane->state->rotation)) {
3255                         int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3256                                 drm_format_plane_cpp(fb->pixel_format, 1) :
3257                                 drm_format_plane_cpp(fb->pixel_format, 0);
3258
3259                         switch (cpp) {
3260                         case 1:
3261                                 min_scanlines = 16;
3262                                 break;
3263                         case 2:
3264                                 min_scanlines = 8;
3265                                 break;
3266                         case 8:
3267                                 WARN(1, "Unsupported pixel depth for rotation");
3268                         }
3269                 }
3270                 y_tile_minimum = plane_blocks_per_line * min_scanlines;
3271                 selected_result = max(method2, y_tile_minimum);
3272         } else {
3273                 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3274                         selected_result = min(method1, method2);
3275                 else
3276                         selected_result = method1;
3277         }
3278
3279         res_blocks = selected_result + 1;
3280         res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3281
3282         if (level >= 1 && level <= 7) {
3283                 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3284                     fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3285                         res_lines += 4;
3286                 else
3287                         res_blocks++;
3288         }
3289
3290         if (res_blocks >= ddb_allocation || res_lines > 31)
3291                 return false;
3292
3293         *out_blocks = res_blocks;
3294         *out_lines = res_lines;
3295
3296         return true;
3297 }
3298
3299 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3300                                  struct skl_ddb_allocation *ddb,
3301                                  struct intel_crtc_state *cstate,
3302                                  int level,
3303                                  struct skl_wm_level *result)
3304 {
3305         struct drm_device *dev = dev_priv->dev;
3306         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3307         struct intel_plane *intel_plane;
3308         uint16_t ddb_blocks;
3309         enum i915_pipe pipe = intel_crtc->pipe;
3310
3311         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3312                 int i = skl_wm_plane_id(intel_plane);
3313
3314                 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3315
3316                 result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3317                                                 cstate,
3318                                                 intel_plane,
3319                                                 ddb_blocks,
3320                                                 level,
3321                                                 &result->plane_res_b[i],
3322                                                 &result->plane_res_l[i]);
3323         }
3324 }
3325
3326 static uint32_t
3327 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3328 {
3329         if (!cstate->base.active)
3330                 return 0;
3331
3332         if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3333                 return 0;
3334
3335         return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3336                             skl_pipe_pixel_rate(cstate));
3337 }
3338
3339 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3340                                       struct skl_wm_level *trans_wm /* out */)
3341 {
3342         struct drm_crtc *crtc = cstate->base.crtc;
3343         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3344         struct intel_plane *intel_plane;
3345
3346         if (!cstate->base.active)
3347                 return;
3348
3349         /* Until we know more, just disable transition WMs */
3350         for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3351                 int i = skl_wm_plane_id(intel_plane);
3352
3353                 trans_wm->plane_en[i] = false;
3354         }
3355 }
3356
3357 static void skl_compute_pipe_wm(struct intel_crtc_state *cstate,
3358                                 struct skl_ddb_allocation *ddb,
3359                                 struct skl_pipe_wm *pipe_wm)
3360 {
3361         struct drm_device *dev = cstate->base.crtc->dev;
3362         const struct drm_i915_private *dev_priv = dev->dev_private;
3363         int level, max_level = ilk_wm_max_level(dev);
3364
3365         for (level = 0; level <= max_level; level++) {
3366                 skl_compute_wm_level(dev_priv, ddb, cstate,
3367                                      level, &pipe_wm->wm[level]);
3368         }
3369         pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3370
3371         skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3372 }
3373
3374 static void skl_compute_wm_results(struct drm_device *dev,
3375                                    struct skl_pipe_wm *p_wm,
3376                                    struct skl_wm_values *r,
3377                                    struct intel_crtc *intel_crtc)
3378 {
3379         int level, max_level = ilk_wm_max_level(dev);
3380         enum i915_pipe pipe = intel_crtc->pipe;
3381         uint32_t temp;
3382         int i;
3383
3384         for (level = 0; level <= max_level; level++) {
3385                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3386                         temp = 0;
3387
3388                         temp |= p_wm->wm[level].plane_res_l[i] <<
3389                                         PLANE_WM_LINES_SHIFT;
3390                         temp |= p_wm->wm[level].plane_res_b[i];
3391                         if (p_wm->wm[level].plane_en[i])
3392                                 temp |= PLANE_WM_EN;
3393
3394                         r->plane[pipe][i][level] = temp;
3395                 }
3396
3397                 temp = 0;
3398
3399                 temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3400                 temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3401
3402                 if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3403                         temp |= PLANE_WM_EN;
3404
3405                 r->plane[pipe][PLANE_CURSOR][level] = temp;
3406
3407         }
3408
3409         /* transition WMs */
3410         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3411                 temp = 0;
3412                 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3413                 temp |= p_wm->trans_wm.plane_res_b[i];
3414                 if (p_wm->trans_wm.plane_en[i])
3415                         temp |= PLANE_WM_EN;
3416
3417                 r->plane_trans[pipe][i] = temp;
3418         }
3419
3420         temp = 0;
3421         temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3422         temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3423         if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3424                 temp |= PLANE_WM_EN;
3425
3426         r->plane_trans[pipe][PLANE_CURSOR] = temp;
3427
3428         r->wm_linetime[pipe] = p_wm->linetime;
3429 }
3430
3431 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3432                                 i915_reg_t reg,
3433                                 const struct skl_ddb_entry *entry)
3434 {
3435         if (entry->end)
3436                 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3437         else
3438                 I915_WRITE(reg, 0);
3439 }
3440
3441 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3442                                 const struct skl_wm_values *new)
3443 {
3444         struct drm_device *dev = dev_priv->dev;
3445         struct intel_crtc *crtc;
3446
3447         for_each_intel_crtc(dev, crtc) {
3448                 int i, level, max_level = ilk_wm_max_level(dev);
3449                 enum i915_pipe pipe = crtc->pipe;
3450
3451                 if (!new->dirty[pipe])
3452                         continue;
3453
3454                 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3455
3456                 for (level = 0; level <= max_level; level++) {
3457                         for (i = 0; i < intel_num_planes(crtc); i++)
3458                                 I915_WRITE(PLANE_WM(pipe, i, level),
3459                                            new->plane[pipe][i][level]);
3460                         I915_WRITE(CUR_WM(pipe, level),
3461                                    new->plane[pipe][PLANE_CURSOR][level]);
3462                 }
3463                 for (i = 0; i < intel_num_planes(crtc); i++)
3464                         I915_WRITE(PLANE_WM_TRANS(pipe, i),
3465                                    new->plane_trans[pipe][i]);
3466                 I915_WRITE(CUR_WM_TRANS(pipe),
3467                            new->plane_trans[pipe][PLANE_CURSOR]);
3468
3469                 for (i = 0; i < intel_num_planes(crtc); i++) {
3470                         skl_ddb_entry_write(dev_priv,
3471                                             PLANE_BUF_CFG(pipe, i),
3472                                             &new->ddb.plane[pipe][i]);
3473                         skl_ddb_entry_write(dev_priv,
3474                                             PLANE_NV12_BUF_CFG(pipe, i),
3475                                             &new->ddb.y_plane[pipe][i]);
3476                 }
3477
3478                 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3479                                     &new->ddb.plane[pipe][PLANE_CURSOR]);
3480         }
3481 }
3482
3483 /*
3484  * When setting up a new DDB allocation arrangement, we need to correctly
3485  * sequence the times at which the new allocations for the pipes are taken into
3486  * account or we'll have pipes fetching from space previously allocated to
3487  * another pipe.
3488  *
3489  * Roughly the sequence looks like:
3490  *  1. re-allocate the pipe(s) with the allocation being reduced and not
3491  *     overlapping with a previous light-up pipe (another way to put it is:
3492  *     pipes with their new allocation strickly included into their old ones).
3493  *  2. re-allocate the other pipes that get their allocation reduced
3494  *  3. allocate the pipes having their allocation increased
3495  *
3496  * Steps 1. and 2. are here to take care of the following case:
3497  * - Initially DDB looks like this:
3498  *     |   B    |   C    |
3499  * - enable pipe A.
3500  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3501  *   allocation
3502  *     |  A  |  B  |  C  |
3503  *
3504  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3505  */
3506
3507 static void
3508 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum i915_pipe pipe, int pass)
3509 {
3510         int plane;
3511
3512         DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3513
3514         for_each_plane(dev_priv, pipe, plane) {
3515                 I915_WRITE(PLANE_SURF(pipe, plane),
3516                            I915_READ(PLANE_SURF(pipe, plane)));
3517         }
3518         I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3519 }
3520
3521 static bool
3522 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3523                             const struct skl_ddb_allocation *new,
3524                             enum i915_pipe pipe)
3525 {
3526         uint16_t old_size, new_size;
3527
3528         old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3529         new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3530
3531         return old_size != new_size &&
3532                new->pipe[pipe].start >= old->pipe[pipe].start &&
3533                new->pipe[pipe].end <= old->pipe[pipe].end;
3534 }
3535
3536 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3537                                 struct skl_wm_values *new_values)
3538 {
3539         struct drm_device *dev = dev_priv->dev;
3540         struct skl_ddb_allocation *cur_ddb, *new_ddb;
3541         bool reallocated[I915_MAX_PIPES] = {};
3542         struct intel_crtc *crtc;
3543         enum i915_pipe pipe;
3544
3545         new_ddb = &new_values->ddb;
3546         cur_ddb = &dev_priv->wm.skl_hw.ddb;
3547
3548         /*
3549          * First pass: flush the pipes with the new allocation contained into
3550          * the old space.
3551          *
3552          * We'll wait for the vblank on those pipes to ensure we can safely
3553          * re-allocate the freed space without this pipe fetching from it.
3554          */
3555         for_each_intel_crtc(dev, crtc) {
3556                 if (!crtc->active)
3557                         continue;
3558
3559                 pipe = crtc->pipe;
3560
3561                 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3562                         continue;
3563
3564                 skl_wm_flush_pipe(dev_priv, pipe, 1);
3565                 intel_wait_for_vblank(dev, pipe);
3566
3567                 reallocated[pipe] = true;
3568         }
3569
3570
3571         /*
3572          * Second pass: flush the pipes that are having their allocation
3573          * reduced, but overlapping with a previous allocation.
3574          *
3575          * Here as well we need to wait for the vblank to make sure the freed
3576          * space is not used anymore.
3577          */
3578         for_each_intel_crtc(dev, crtc) {
3579                 if (!crtc->active)
3580                         continue;
3581
3582                 pipe = crtc->pipe;
3583
3584                 if (reallocated[pipe])
3585                         continue;
3586
3587                 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3588                     skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3589                         skl_wm_flush_pipe(dev_priv, pipe, 2);
3590                         intel_wait_for_vblank(dev, pipe);
3591                         reallocated[pipe] = true;
3592                 }
3593         }
3594
3595         /*
3596          * Third pass: flush the pipes that got more space allocated.
3597          *
3598          * We don't need to actively wait for the update here, next vblank
3599          * will just get more DDB space with the correct WM values.
3600          */
3601         for_each_intel_crtc(dev, crtc) {
3602                 if (!crtc->active)
3603                         continue;
3604
3605                 pipe = crtc->pipe;
3606
3607                 /*
3608                  * At this point, only the pipes more space than before are
3609                  * left to re-allocate.
3610                  */
3611                 if (reallocated[pipe])
3612                         continue;
3613
3614                 skl_wm_flush_pipe(dev_priv, pipe, 3);
3615         }
3616 }
3617
3618 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3619                                struct skl_ddb_allocation *ddb, /* out */
3620                                struct skl_pipe_wm *pipe_wm /* out */)
3621 {
3622         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3623         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3624
3625         skl_allocate_pipe_ddb(cstate, ddb);
3626         skl_compute_pipe_wm(cstate, ddb, pipe_wm);
3627
3628         if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3629                 return false;
3630
3631         intel_crtc->wm.active.skl = *pipe_wm;
3632
3633         return true;
3634 }
3635
3636 static void skl_update_other_pipe_wm(struct drm_device *dev,
3637                                      struct drm_crtc *crtc,
3638                                      struct skl_wm_values *r)
3639 {
3640         struct intel_crtc *intel_crtc;
3641         struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3642
3643         /*
3644          * If the WM update hasn't changed the allocation for this_crtc (the
3645          * crtc we are currently computing the new WM values for), other
3646          * enabled crtcs will keep the same allocation and we don't need to
3647          * recompute anything for them.
3648          */
3649         if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3650                 return;
3651
3652         /*
3653          * Otherwise, because of this_crtc being freshly enabled/disabled, the
3654          * other active pipes need new DDB allocation and WM values.
3655          */
3656         for_each_intel_crtc(dev, intel_crtc) {
3657                 struct skl_pipe_wm pipe_wm = {};
3658                 bool wm_changed;
3659
3660                 if (this_crtc->pipe == intel_crtc->pipe)
3661                         continue;
3662
3663                 if (!intel_crtc->active)
3664                         continue;
3665
3666                 wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3667                                                 &r->ddb, &pipe_wm);
3668
3669                 /*
3670                  * If we end up re-computing the other pipe WM values, it's
3671                  * because it was really needed, so we expect the WM values to
3672                  * be different.
3673                  */
3674                 WARN_ON(!wm_changed);
3675
3676                 skl_compute_wm_results(dev, &pipe_wm, r, intel_crtc);
3677                 r->dirty[intel_crtc->pipe] = true;
3678         }
3679 }
3680
3681 static void skl_clear_wm(struct skl_wm_values *watermarks, enum i915_pipe pipe)
3682 {
3683         watermarks->wm_linetime[pipe] = 0;
3684         memset(watermarks->plane[pipe], 0,
3685                sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3686         memset(watermarks->plane_trans[pipe],
3687                0, sizeof(uint32_t) * I915_MAX_PLANES);
3688         watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3689
3690         /* Clear ddb entries for pipe */
3691         memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3692         memset(&watermarks->ddb.plane[pipe], 0,
3693                sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3694         memset(&watermarks->ddb.y_plane[pipe], 0,
3695                sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3696         memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
3697                sizeof(struct skl_ddb_entry));
3698
3699 }
3700
3701 static void skl_update_wm(struct drm_crtc *crtc)
3702 {
3703         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3704         struct drm_device *dev = crtc->dev;
3705         struct drm_i915_private *dev_priv = dev->dev_private;
3706         struct skl_wm_values *results = &dev_priv->wm.skl_results;
3707         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3708         struct skl_pipe_wm *pipe_wm = &cstate->wm.optimal.skl;
3709
3710
3711         /* Clear all dirty flags */
3712         memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3713
3714         skl_clear_wm(results, intel_crtc->pipe);
3715
3716         if (!skl_update_pipe_wm(crtc, &results->ddb, pipe_wm))
3717                 return;
3718
3719         skl_compute_wm_results(dev, pipe_wm, results, intel_crtc);
3720         results->dirty[intel_crtc->pipe] = true;
3721
3722         skl_update_other_pipe_wm(dev, crtc, results);
3723         skl_write_wm_values(dev_priv, results);
3724         skl_flush_wm_values(dev_priv, results);
3725
3726         /* store the new configuration */
3727         dev_priv->wm.skl_hw = *results;
3728 }
3729
3730 static void ilk_compute_wm_config(struct drm_device *dev,
3731                                   struct intel_wm_config *config)
3732 {
3733         struct intel_crtc *crtc;
3734
3735         /* Compute the currently _active_ config */
3736         for_each_intel_crtc(dev, crtc) {
3737                 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
3738
3739                 if (!wm->pipe_enabled)
3740                         continue;
3741
3742                 config->sprites_enabled |= wm->sprites_enabled;
3743                 config->sprites_scaled |= wm->sprites_scaled;
3744                 config->num_pipes_active++;
3745         }
3746 }
3747
3748 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
3749 {
3750         struct drm_device *dev = dev_priv->dev;
3751         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3752         struct ilk_wm_maximums max;
3753         struct intel_wm_config config = {};
3754         struct ilk_wm_values results = {};
3755         enum intel_ddb_partitioning partitioning;
3756
3757         ilk_compute_wm_config(dev, &config);
3758
3759         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3760         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3761
3762         /* 5/6 split only in single pipe config on IVB+ */
3763         if (INTEL_INFO(dev)->gen >= 7 &&
3764             config.num_pipes_active == 1 && config.sprites_enabled) {
3765                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3766                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3767
3768                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3769         } else {
3770                 best_lp_wm = &lp_wm_1_2;
3771         }
3772
3773         partitioning = (best_lp_wm == &lp_wm_1_2) ?
3774                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3775
3776         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3777
3778         ilk_write_wm_values(dev_priv, &results);
3779 }
3780
3781 static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
3782 {
3783         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
3784         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3785
3786         mutex_lock(&dev_priv->wm.wm_mutex);
3787         intel_crtc->wm.active.ilk = cstate->wm.intermediate;
3788         ilk_program_watermarks(dev_priv);
3789         mutex_unlock(&dev_priv->wm.wm_mutex);
3790 }
3791
3792 static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
3793 {
3794         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
3795         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3796
3797         mutex_lock(&dev_priv->wm.wm_mutex);
3798         if (cstate->wm.need_postvbl_update) {
3799                 intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;
3800                 ilk_program_watermarks(dev_priv);
3801         }
3802         mutex_unlock(&dev_priv->wm.wm_mutex);
3803 }
3804
3805 static void skl_pipe_wm_active_state(uint32_t val,
3806                                      struct skl_pipe_wm *active,
3807                                      bool is_transwm,
3808                                      bool is_cursor,
3809                                      int i,
3810                                      int level)
3811 {
3812         bool is_enabled = (val & PLANE_WM_EN) != 0;
3813
3814         if (!is_transwm) {
3815                 if (!is_cursor) {
3816                         active->wm[level].plane_en[i] = is_enabled;
3817                         active->wm[level].plane_res_b[i] =
3818                                         val & PLANE_WM_BLOCKS_MASK;
3819                         active->wm[level].plane_res_l[i] =
3820                                         (val >> PLANE_WM_LINES_SHIFT) &
3821                                                 PLANE_WM_LINES_MASK;
3822                 } else {
3823                         active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
3824                         active->wm[level].plane_res_b[PLANE_CURSOR] =
3825                                         val & PLANE_WM_BLOCKS_MASK;
3826                         active->wm[level].plane_res_l[PLANE_CURSOR] =
3827                                         (val >> PLANE_WM_LINES_SHIFT) &
3828                                                 PLANE_WM_LINES_MASK;
3829                 }
3830         } else {
3831                 if (!is_cursor) {
3832                         active->trans_wm.plane_en[i] = is_enabled;
3833                         active->trans_wm.plane_res_b[i] =
3834                                         val & PLANE_WM_BLOCKS_MASK;
3835                         active->trans_wm.plane_res_l[i] =
3836                                         (val >> PLANE_WM_LINES_SHIFT) &
3837                                                 PLANE_WM_LINES_MASK;
3838                 } else {
3839                         active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
3840                         active->trans_wm.plane_res_b[PLANE_CURSOR] =
3841                                         val & PLANE_WM_BLOCKS_MASK;
3842                         active->trans_wm.plane_res_l[PLANE_CURSOR] =
3843                                         (val >> PLANE_WM_LINES_SHIFT) &
3844                                                 PLANE_WM_LINES_MASK;
3845                 }
3846         }
3847 }
3848
3849 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3850 {
3851         struct drm_device *dev = crtc->dev;
3852         struct drm_i915_private *dev_priv = dev->dev_private;
3853         struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3854         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3855         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3856         struct skl_pipe_wm *active = &cstate->wm.optimal.skl;
3857         enum i915_pipe pipe = intel_crtc->pipe;
3858         int level, i, max_level;
3859         uint32_t temp;
3860
3861         max_level = ilk_wm_max_level(dev);
3862
3863         hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3864
3865         for (level = 0; level <= max_level; level++) {
3866                 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3867                         hw->plane[pipe][i][level] =
3868                                         I915_READ(PLANE_WM(pipe, i, level));
3869                 hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3870         }
3871
3872         for (i = 0; i < intel_num_planes(intel_crtc); i++)
3873                 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3874         hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3875
3876         if (!intel_crtc->active)
3877                 return;
3878
3879         hw->dirty[pipe] = true;
3880
3881         active->linetime = hw->wm_linetime[pipe];
3882
3883         for (level = 0; level <= max_level; level++) {
3884                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3885                         temp = hw->plane[pipe][i][level];
3886                         skl_pipe_wm_active_state(temp, active, false,
3887                                                 false, i, level);
3888                 }
3889                 temp = hw->plane[pipe][PLANE_CURSOR][level];
3890                 skl_pipe_wm_active_state(temp, active, false, true, i, level);
3891         }
3892
3893         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3894                 temp = hw->plane_trans[pipe][i];
3895                 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3896         }
3897
3898         temp = hw->plane_trans[pipe][PLANE_CURSOR];
3899         skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3900
3901         intel_crtc->wm.active.skl = *active;
3902 }
3903
3904 void skl_wm_get_hw_state(struct drm_device *dev)
3905 {
3906         struct drm_i915_private *dev_priv = dev->dev_private;
3907         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3908         struct drm_crtc *crtc;
3909
3910         skl_ddb_get_hw_state(dev_priv, ddb);
3911         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3912                 skl_pipe_wm_get_hw_state(crtc);
3913 }
3914
3915 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3916 {
3917         struct drm_device *dev = crtc->dev;
3918         struct drm_i915_private *dev_priv = dev->dev_private;
3919         struct ilk_wm_values *hw = &dev_priv->wm.hw;
3920         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3921         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3922         struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
3923         enum i915_pipe pipe = intel_crtc->pipe;
3924         static const i915_reg_t wm0_pipe_reg[] = {
3925                 [PIPE_A] = WM0_PIPEA_ILK,
3926                 [PIPE_B] = WM0_PIPEB_ILK,
3927                 [PIPE_C] = WM0_PIPEC_IVB,
3928         };
3929
3930         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3931         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3932                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3933
3934         memset(active, 0, sizeof(*active));
3935
3936         active->pipe_enabled = intel_crtc->active;
3937
3938         if (active->pipe_enabled) {
3939                 u32 tmp = hw->wm_pipe[pipe];
3940
3941                 /*
3942                  * For active pipes LP0 watermark is marked as
3943                  * enabled, and LP1+ watermaks as disabled since
3944                  * we can't really reverse compute them in case
3945                  * multiple pipes are active.
3946                  */
3947                 active->wm[0].enable = true;
3948                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3949                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3950                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3951                 active->linetime = hw->wm_linetime[pipe];
3952         } else {
3953                 int level, max_level = ilk_wm_max_level(dev);
3954
3955                 /*
3956                  * For inactive pipes, all watermark levels
3957                  * should be marked as enabled but zeroed,
3958                  * which is what we'd compute them to.
3959                  */
3960                 for (level = 0; level <= max_level; level++)
3961                         active->wm[level].enable = true;
3962         }
3963
3964         intel_crtc->wm.active.ilk = *active;
3965 }
3966
3967 #define _FW_WM(value, plane) \
3968         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3969 #define _FW_WM_VLV(value, plane) \
3970         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3971
3972 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3973                                struct vlv_wm_values *wm)
3974 {
3975         enum i915_pipe pipe;
3976         uint32_t tmp;
3977
3978         for_each_pipe(dev_priv, pipe) {
3979                 tmp = I915_READ(VLV_DDL(pipe));
3980
3981                 wm->ddl[pipe].primary =
3982                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3983                 wm->ddl[pipe].cursor =
3984                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3985                 wm->ddl[pipe].sprite[0] =
3986                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3987                 wm->ddl[pipe].sprite[1] =
3988                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3989         }
3990
3991         tmp = I915_READ(DSPFW1);
3992         wm->sr.plane = _FW_WM(tmp, SR);
3993         wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
3994         wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
3995         wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
3996
3997         tmp = I915_READ(DSPFW2);
3998         wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
3999         wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
4000         wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
4001
4002         tmp = I915_READ(DSPFW3);
4003         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
4004
4005         if (IS_CHERRYVIEW(dev_priv)) {
4006                 tmp = I915_READ(DSPFW7_CHV);
4007                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4008                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4009
4010                 tmp = I915_READ(DSPFW8_CHV);
4011                 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
4012                 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
4013
4014                 tmp = I915_READ(DSPFW9_CHV);
4015                 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
4016                 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
4017
4018                 tmp = I915_READ(DSPHOWM);
4019                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4020                 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4021                 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4022                 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
4023                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4024                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4025                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4026                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4027                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4028                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4029         } else {
4030                 tmp = I915_READ(DSPFW7);
4031                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4032                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4033
4034                 tmp = I915_READ(DSPHOWM);
4035                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4036                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4037                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4038                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4039                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4040                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4041                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4042         }
4043 }
4044
4045 #undef _FW_WM
4046 #undef _FW_WM_VLV
4047
4048 void vlv_wm_get_hw_state(struct drm_device *dev)
4049 {
4050         struct drm_i915_private *dev_priv = to_i915(dev);
4051         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4052         struct intel_plane *plane;
4053         enum i915_pipe pipe;
4054         u32 val;
4055
4056         vlv_read_wm_values(dev_priv, wm);
4057
4058         for_each_intel_plane(dev, plane) {
4059                 switch (plane->base.type) {
4060                         int sprite;
4061                 case DRM_PLANE_TYPE_CURSOR:
4062                         plane->wm.fifo_size = 63;
4063                         break;
4064                 case DRM_PLANE_TYPE_PRIMARY:
4065                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4066                         break;
4067                 case DRM_PLANE_TYPE_OVERLAY:
4068                         sprite = plane->plane;
4069                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4070                         break;
4071                 }
4072         }
4073
4074         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4075         wm->level = VLV_WM_LEVEL_PM2;
4076
4077         if (IS_CHERRYVIEW(dev_priv)) {
4078                 mutex_lock(&dev_priv->rps.hw_lock);
4079
4080                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4081                 if (val & DSP_MAXFIFO_PM5_ENABLE)
4082                         wm->level = VLV_WM_LEVEL_PM5;
4083
4084                 /*
4085                  * If DDR DVFS is disabled in the BIOS, Punit
4086                  * will never ack the request. So if that happens
4087                  * assume we don't have to enable/disable DDR DVFS
4088                  * dynamically. To test that just set the REQ_ACK
4089                  * bit to poke the Punit, but don't change the
4090                  * HIGH/LOW bits so that we don't actually change
4091                  * the current state.
4092                  */
4093                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4094                 val |= FORCE_DDR_FREQ_REQ_ACK;
4095                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4096
4097                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4098                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4099                         DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4100                                       "assuming DDR DVFS is disabled\n");
4101                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4102                 } else {
4103                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4104                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4105                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4106                 }
4107
4108                 mutex_unlock(&dev_priv->rps.hw_lock);
4109         }
4110
4111         for_each_pipe(dev_priv, pipe)
4112                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4113                               pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4114                               wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4115
4116         DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4117                       wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4118 }
4119
4120 void ilk_wm_get_hw_state(struct drm_device *dev)
4121 {
4122         struct drm_i915_private *dev_priv = dev->dev_private;
4123         struct ilk_wm_values *hw = &dev_priv->wm.hw;
4124         struct drm_crtc *crtc;
4125
4126         for_each_crtc(dev, crtc)
4127                 ilk_pipe_wm_get_hw_state(crtc);
4128
4129         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4130         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4131         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4132
4133         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4134         if (INTEL_INFO(dev)->gen >= 7) {
4135                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4136                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4137         }
4138
4139         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4140                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4141                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4142         else if (IS_IVYBRIDGE(dev))
4143                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4144                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4145
4146         hw->enable_fbc_wm =
4147                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4148 }
4149
4150 /**
4151  * intel_update_watermarks - update FIFO watermark values based on current modes
4152  *
4153  * Calculate watermark values for the various WM regs based on current mode
4154  * and plane configuration.
4155  *
4156  * There are several cases to deal with here:
4157  *   - normal (i.e. non-self-refresh)
4158  *   - self-refresh (SR) mode
4159  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4160  *   - lines are small relative to FIFO size (buffer can hold more than 2
4161  *     lines), so need to account for TLB latency
4162  *
4163  *   The normal calculation is:
4164  *     watermark = dotclock * bytes per pixel * latency
4165  *   where latency is platform & configuration dependent (we assume pessimal
4166  *   values here).
4167  *
4168  *   The SR calculation is:
4169  *     watermark = (trunc(latency/line time)+1) * surface width *
4170  *       bytes per pixel
4171  *   where
4172  *     line time = htotal / dotclock
4173  *     surface width = hdisplay for normal plane and 64 for cursor
4174  *   and latency is assumed to be high, as above.
4175  *
4176  * The final value programmed to the register should always be rounded up,
4177  * and include an extra 2 entries to account for clock crossings.
4178  *
4179  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4180  * to set the non-SR watermarks to 8.
4181  */
4182 void intel_update_watermarks(struct drm_crtc *crtc)
4183 {
4184         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4185
4186         if (dev_priv->display.update_wm)
4187                 dev_priv->display.update_wm(crtc);
4188 }
4189
4190 /*
4191  * Lock protecting IPS related data structures
4192  */
4193 struct lock mchdev_lock;
4194 LOCK_SYSINIT(mchdev, &mchdev_lock, "mchdev", LK_CANRECURSE);
4195
4196 /* Global for IPS driver to get at the current i915 device. Protected by
4197  * mchdev_lock. */
4198 static struct drm_i915_private *i915_mch_dev;
4199
4200 bool ironlake_set_drps(struct drm_device *dev, u8 val)
4201 {
4202         struct drm_i915_private *dev_priv = dev->dev_private;
4203         u16 rgvswctl;
4204
4205         assert_spin_locked(&mchdev_lock);
4206
4207         rgvswctl = I915_READ16(MEMSWCTL);
4208         if (rgvswctl & MEMCTL_CMD_STS) {
4209                 DRM_DEBUG("gpu busy, RCS change rejected\n");
4210                 return false; /* still busy with another command */
4211         }
4212
4213         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4214                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4215         I915_WRITE16(MEMSWCTL, rgvswctl);
4216         POSTING_READ16(MEMSWCTL);
4217
4218         rgvswctl |= MEMCTL_CMD_STS;
4219         I915_WRITE16(MEMSWCTL, rgvswctl);
4220
4221         return true;
4222 }
4223
4224 static void ironlake_enable_drps(struct drm_device *dev)
4225 {
4226         struct drm_i915_private *dev_priv = dev->dev_private;
4227         u32 rgvmodectl;
4228         u8 fmax, fmin, fstart, vstart;
4229
4230         spin_lock_irq(&mchdev_lock);
4231
4232         rgvmodectl = I915_READ(MEMMODECTL);
4233
4234         /* Enable temp reporting */
4235         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4236         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4237
4238         /* 100ms RC evaluation intervals */
4239         I915_WRITE(RCUPEI, 100000);
4240         I915_WRITE(RCDNEI, 100000);
4241
4242         /* Set max/min thresholds to 90ms and 80ms respectively */
4243         I915_WRITE(RCBMAXAVG, 90000);
4244         I915_WRITE(RCBMINAVG, 80000);
4245
4246         I915_WRITE(MEMIHYST, 1);
4247
4248         /* Set up min, max, and cur for interrupt handling */
4249         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4250         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4251         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4252                 MEMMODE_FSTART_SHIFT;
4253
4254         vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4255                 PXVFREQ_PX_SHIFT;
4256
4257         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4258         dev_priv->ips.fstart = fstart;
4259
4260         dev_priv->ips.max_delay = fstart;
4261         dev_priv->ips.min_delay = fmin;
4262         dev_priv->ips.cur_delay = fstart;
4263
4264         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4265                          fmax, fmin, fstart);
4266
4267         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4268
4269         /*
4270          * Interrupts will be enabled in ironlake_irq_postinstall
4271          */
4272
4273         I915_WRITE(VIDSTART, vstart);
4274         POSTING_READ(VIDSTART);
4275
4276         rgvmodectl |= MEMMODE_SWMODE_EN;
4277         I915_WRITE(MEMMODECTL, rgvmodectl);
4278
4279         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4280                 DRM_ERROR("stuck trying to change perf mode\n");
4281         mdelay(1);
4282
4283         ironlake_set_drps(dev, fstart);
4284
4285         dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4286                 I915_READ(DDREC) + I915_READ(CSIEC);
4287         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4288         dev_priv->ips.last_count2 = I915_READ(GFXEC);
4289         dev_priv->ips.last_time2 = ktime_get_raw_ns();
4290
4291         spin_unlock_irq(&mchdev_lock);
4292 }
4293
4294 static void ironlake_disable_drps(struct drm_device *dev)
4295 {
4296         struct drm_i915_private *dev_priv = dev->dev_private;
4297         u16 rgvswctl;
4298
4299         spin_lock_irq(&mchdev_lock);
4300
4301         rgvswctl = I915_READ16(MEMSWCTL);
4302
4303         /* Ack interrupts, disable EFC interrupt */
4304         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4305         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4306         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4307         I915_WRITE(DEIIR, DE_PCU_EVENT);
4308         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4309
4310         /* Go back to the starting frequency */
4311         ironlake_set_drps(dev, dev_priv->ips.fstart);
4312         mdelay(1);
4313         rgvswctl |= MEMCTL_CMD_STS;
4314         I915_WRITE(MEMSWCTL, rgvswctl);
4315         mdelay(1);
4316
4317         spin_unlock_irq(&mchdev_lock);
4318 }
4319
4320 /* There's a funny hw issue where the hw returns all 0 when reading from
4321  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4322  * ourselves, instead of doing a rmw cycle (which might result in us clearing
4323  * all limits and the gpu stuck at whatever frequency it is at atm).
4324  */
4325 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4326 {
4327         u32 limits;
4328
4329         /* Only set the down limit when we've reached the lowest level to avoid
4330          * getting more interrupts, otherwise leave this clear. This prevents a
4331          * race in the hw when coming out of rc6: There's a tiny window where
4332          * the hw runs at the minimal clock before selecting the desired
4333          * frequency, if the down threshold expires in that window we will not
4334          * receive a down interrupt. */
4335         if (IS_GEN9(dev_priv)) {
4336                 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4337                 if (val <= dev_priv->rps.min_freq_softlimit)
4338                         limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4339         } else {
4340                 limits = dev_priv->rps.max_freq_softlimit << 24;
4341                 if (val <= dev_priv->rps.min_freq_softlimit)
4342                         limits |= dev_priv->rps.min_freq_softlimit << 16;
4343         }
4344
4345         return limits;
4346 }
4347
4348 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4349 {
4350         int new_power;
4351         u32 threshold_up = 0, threshold_down = 0; /* in % */
4352         u32 ei_up = 0, ei_down = 0;
4353
4354         new_power = dev_priv->rps.power;
4355         switch (dev_priv->rps.power) {
4356         case LOW_POWER:
4357                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4358                         new_power = BETWEEN;
4359                 break;
4360
4361         case BETWEEN:
4362                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4363                         new_power = LOW_POWER;
4364                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4365                         new_power = HIGH_POWER;
4366                 break;
4367
4368         case HIGH_POWER:
4369                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4370                         new_power = BETWEEN;
4371                 break;
4372         }
4373         /* Max/min bins are special */
4374         if (val <= dev_priv->rps.min_freq_softlimit)
4375                 new_power = LOW_POWER;
4376         if (val >= dev_priv->rps.max_freq_softlimit)
4377                 new_power = HIGH_POWER;
4378         if (new_power == dev_priv->rps.power)
4379                 return;
4380
4381         /* Note the units here are not exactly 1us, but 1280ns. */
4382         switch (new_power) {
4383         case LOW_POWER:
4384                 /* Upclock if more than 95% busy over 16ms */
4385                 ei_up = 16000;
4386                 threshold_up = 95;
4387
4388                 /* Downclock if less than 85% busy over 32ms */
4389                 ei_down = 32000;
4390                 threshold_down = 85;
4391                 break;
4392
4393         case BETWEEN:
4394                 /* Upclock if more than 90% busy over 13ms */
4395                 ei_up = 13000;
4396                 threshold_up = 90;
4397
4398                 /* Downclock if less than 75% busy over 32ms */
4399                 ei_down = 32000;
4400                 threshold_down = 75;
4401                 break;
4402
4403         case HIGH_POWER:
4404                 /* Upclock if more than 85% busy over 10ms */
4405                 ei_up = 10000;
4406                 threshold_up = 85;
4407
4408                 /* Downclock if less than 60% busy over 32ms */
4409                 ei_down = 32000;
4410                 threshold_down = 60;
4411                 break;
4412         }
4413
4414         I915_WRITE(GEN6_RP_UP_EI,
4415                 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4416         I915_WRITE(GEN6_RP_UP_THRESHOLD,
4417                 GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4418
4419         I915_WRITE(GEN6_RP_DOWN_EI,
4420                 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4421         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4422                 GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4423
4424          I915_WRITE(GEN6_RP_CONTROL,
4425                     GEN6_RP_MEDIA_TURBO |
4426                     GEN6_RP_MEDIA_HW_NORMAL_MODE |
4427                     GEN6_RP_MEDIA_IS_GFX |
4428                     GEN6_RP_ENABLE |
4429                     GEN6_RP_UP_BUSY_AVG |
4430                     GEN6_RP_DOWN_IDLE_AVG);
4431
4432         dev_priv->rps.power = new_power;
4433         dev_priv->rps.up_threshold = threshold_up;
4434         dev_priv->rps.down_threshold = threshold_down;
4435         dev_priv->rps.last_adj = 0;
4436 }
4437
4438 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4439 {
4440         u32 mask = 0;
4441
4442         if (val > dev_priv->rps.min_freq_softlimit)
4443                 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4444         if (val < dev_priv->rps.max_freq_softlimit)
4445                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4446
4447         mask &= dev_priv->pm_rps_events;
4448
4449         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4450 }
4451
4452 /* gen6_set_rps is called to update the frequency request, but should also be
4453  * called when the range (min_delay and max_delay) is modified so that we can
4454  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4455 static void gen6_set_rps(struct drm_device *dev, u8 val)
4456 {
4457         struct drm_i915_private *dev_priv = dev->dev_private;
4458
4459         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4460         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
4461                 return;
4462
4463         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4464         WARN_ON(val > dev_priv->rps.max_freq);
4465         WARN_ON(val < dev_priv->rps.min_freq);
4466
4467         /* min/max delay may still have been modified so be sure to
4468          * write the limits value.
4469          */
4470         if (val != dev_priv->rps.cur_freq) {
4471                 gen6_set_rps_thresholds(dev_priv, val);
4472
4473                 if (IS_GEN9(dev))
4474                         I915_WRITE(GEN6_RPNSWREQ,
4475                                    GEN9_FREQUENCY(val));
4476                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4477                         I915_WRITE(GEN6_RPNSWREQ,
4478                                    HSW_FREQUENCY(val));
4479                 else
4480                         I915_WRITE(GEN6_RPNSWREQ,
4481                                    GEN6_FREQUENCY(val) |
4482                                    GEN6_OFFSET(0) |
4483                                    GEN6_AGGRESSIVE_TURBO);
4484         }
4485
4486         /* Make sure we continue to get interrupts
4487          * until we hit the minimum or maximum frequencies.
4488          */
4489         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4490         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4491
4492         POSTING_READ(GEN6_RPNSWREQ);
4493
4494         dev_priv->rps.cur_freq = val;
4495         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4496 }
4497
4498 static void valleyview_set_rps(struct drm_device *dev, u8 val)
4499 {
4500         struct drm_i915_private *dev_priv = dev->dev_private;
4501
4502         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4503         WARN_ON(val > dev_priv->rps.max_freq);
4504         WARN_ON(val < dev_priv->rps.min_freq);
4505
4506         if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4507                       "Odd GPU freq value\n"))
4508                 val &= ~1;
4509
4510         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4511
4512         if (val != dev_priv->rps.cur_freq) {
4513                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4514                 if (!IS_CHERRYVIEW(dev_priv))
4515                         gen6_set_rps_thresholds(dev_priv, val);
4516         }
4517
4518         dev_priv->rps.cur_freq = val;
4519         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4520 }
4521
4522 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4523  *
4524  * * If Gfx is Idle, then
4525  * 1. Forcewake Media well.
4526  * 2. Request idle freq.
4527  * 3. Release Forcewake of Media well.
4528 */
4529 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4530 {
4531         u32 val = dev_priv->rps.idle_freq;
4532
4533         if (dev_priv->rps.cur_freq <= val)
4534                 return;
4535
4536         /* Wake up the media well, as that takes a lot less
4537          * power than the Render well. */
4538         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4539         valleyview_set_rps(dev_priv->dev, val);
4540         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4541 }
4542
4543 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4544 {
4545         mutex_lock(&dev_priv->rps.hw_lock);
4546         if (dev_priv->rps.enabled) {
4547                 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4548                         gen6_rps_reset_ei(dev_priv);
4549                 I915_WRITE(GEN6_PMINTRMSK,
4550                            gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4551         }
4552         mutex_unlock(&dev_priv->rps.hw_lock);
4553 }
4554
4555 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4556 {
4557         struct drm_device *dev = dev_priv->dev;
4558
4559         mutex_lock(&dev_priv->rps.hw_lock);
4560         if (dev_priv->rps.enabled) {
4561                 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4562                         vlv_set_rps_idle(dev_priv);
4563                 else
4564                         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4565                 dev_priv->rps.last_adj = 0;
4566                 I915_WRITE(GEN6_PMINTRMSK,
4567                            gen6_sanitize_rps_pm_mask(dev_priv, ~0));
4568         }
4569         mutex_unlock(&dev_priv->rps.hw_lock);
4570
4571         lockmgr(&dev_priv->rps.client_lock, LK_EXCLUSIVE);
4572         while (!list_empty(&dev_priv->rps.clients))
4573                 list_del_init(dev_priv->rps.clients.next);
4574         lockmgr(&dev_priv->rps.client_lock, LK_RELEASE);
4575 }
4576
4577 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4578                     struct intel_rps_client *rps,
4579                     unsigned long submitted)
4580 {
4581         /* This is intentionally racy! We peek at the state here, then
4582          * validate inside the RPS worker.
4583          */
4584         if (!(dev_priv->mm.busy &&
4585               dev_priv->rps.enabled &&
4586               dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4587                 return;
4588
4589         /* Force a RPS boost (and don't count it against the client) if
4590          * the GPU is severely congested.
4591          */
4592         if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4593                 rps = NULL;
4594
4595         lockmgr(&dev_priv->rps.client_lock, LK_EXCLUSIVE);
4596         if (rps == NULL || list_empty(&rps->link)) {
4597                 spin_lock_irq(&dev_priv->irq_lock);
4598                 if (dev_priv->rps.interrupts_enabled) {
4599                         dev_priv->rps.client_boost = true;
4600                         queue_work(dev_priv->wq, &dev_priv->rps.work);
4601                 }
4602                 spin_unlock_irq(&dev_priv->irq_lock);
4603
4604                 if (rps != NULL) {
4605                         list_add(&rps->link, &dev_priv->rps.clients);
4606                         rps->boosts++;
4607                 } else
4608                         dev_priv->rps.boosts++;
4609         }
4610         lockmgr(&dev_priv->rps.client_lock, LK_RELEASE);
4611 }
4612
4613 void intel_set_rps(struct drm_device *dev, u8 val)
4614 {
4615         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4616                 valleyview_set_rps(dev, val);
4617         else
4618                 gen6_set_rps(dev, val);
4619 }
4620
4621 static void gen9_disable_rc6(struct drm_device *dev)
4622 {
4623         struct drm_i915_private *dev_priv = dev->dev_private;
4624
4625         I915_WRITE(GEN6_RC_CONTROL, 0);
4626         I915_WRITE(GEN9_PG_ENABLE, 0);
4627 }
4628
4629 static void gen9_disable_rps(struct drm_device *dev)
4630 {
4631         struct drm_i915_private *dev_priv = dev->dev_private;
4632
4633         I915_WRITE(GEN6_RP_CONTROL, 0);
4634 }
4635
4636 static void gen6_disable_rps(struct drm_device *dev)
4637 {
4638         struct drm_i915_private *dev_priv = dev->dev_private;
4639
4640         I915_WRITE(GEN6_RC_CONTROL, 0);
4641         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4642         I915_WRITE(GEN6_RP_CONTROL, 0);
4643 }
4644
4645 static void cherryview_disable_rps(struct drm_device *dev)
4646 {
4647         struct drm_i915_private *dev_priv = dev->dev_private;
4648
4649         I915_WRITE(GEN6_RC_CONTROL, 0);
4650 }
4651
4652 static void valleyview_disable_rps(struct drm_device *dev)
4653 {
4654         struct drm_i915_private *dev_priv = dev->dev_private;
4655
4656         /* we're doing forcewake before Disabling RC6,
4657          * This what the BIOS expects when going into suspend */
4658         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4659
4660         I915_WRITE(GEN6_RC_CONTROL, 0);
4661
4662         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4663 }
4664
4665 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4666 {
4667         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
4668                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4669                         mode = GEN6_RC_CTL_RC6_ENABLE;
4670                 else
4671                         mode = 0;
4672         }
4673         if (HAS_RC6p(dev))
4674                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4675                               onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
4676                               onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
4677                               onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
4678
4679         else
4680                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4681                               onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
4682 }
4683
4684 static bool bxt_check_bios_rc6_setup(const struct drm_device *dev)
4685 {
4686         struct drm_i915_private *dev_priv = to_i915(dev);
4687         struct i915_ggtt *ggtt = &dev_priv->ggtt;
4688         bool enable_rc6 = true;
4689         unsigned long rc6_ctx_base;
4690
4691         if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
4692                 DRM_DEBUG_KMS("RC6 Base location not set properly.\n");
4693                 enable_rc6 = false;
4694         }
4695
4696         /*
4697          * The exact context size is not known for BXT, so assume a page size
4698          * for this check.
4699          */
4700         rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
4701         if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
4702               (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
4703                                         ggtt->stolen_reserved_size))) {
4704                 DRM_DEBUG_KMS("RC6 Base address not as expected.\n");
4705                 enable_rc6 = false;
4706         }
4707
4708         if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
4709               ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
4710               ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
4711               ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
4712                 DRM_DEBUG_KMS("Engine Idle wait time not set properly.\n");
4713                 enable_rc6 = false;
4714         }
4715
4716         if (!(I915_READ(GEN6_RC_CONTROL) & (GEN6_RC_CTL_RC6_ENABLE |
4717                                             GEN6_RC_CTL_HW_ENABLE)) &&
4718             ((I915_READ(GEN6_RC_CONTROL) & GEN6_RC_CTL_HW_ENABLE) ||
4719              !(I915_READ(GEN6_RC_STATE) & RC6_STATE))) {
4720                 DRM_DEBUG_KMS("HW/SW RC6 is not enabled by BIOS.\n");
4721                 enable_rc6 = false;
4722         }
4723
4724         return enable_rc6;
4725 }
4726
4727 int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4728 {
4729         /* No RC6 before Ironlake and code is gone for ilk. */
4730         if (INTEL_INFO(dev)->gen < 6)
4731                 return 0;
4732
4733         if (!enable_rc6)
4734                 return 0;
4735
4736         if (IS_BROXTON(dev) && !bxt_check_bios_rc6_setup(dev)) {
4737                 DRM_INFO("RC6 disabled by BIOS\n");
4738                 return 0;
4739         }
4740
4741         /* Respect the kernel parameter if it is set */
4742         if (enable_rc6 >= 0) {
4743                 int mask;
4744
4745                 if (HAS_RC6p(dev))
4746                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4747                                INTEL_RC6pp_ENABLE;
4748                 else
4749                         mask = INTEL_RC6_ENABLE;
4750
4751                 if ((enable_rc6 & mask) != enable_rc6)
4752                         DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4753                                       enable_rc6 & mask, enable_rc6, mask);
4754
4755                 return enable_rc6 & mask;
4756         }
4757
4758         if (IS_IVYBRIDGE(dev))
4759                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4760
4761         return INTEL_RC6_ENABLE;
4762 }
4763
4764 int intel_enable_rc6(const struct drm_device *dev)
4765 {
4766         return i915.enable_rc6;
4767 }
4768
4769 static void gen6_init_rps_frequencies(struct drm_device *dev)
4770 {
4771         struct drm_i915_private *dev_priv = dev->dev_private;
4772         uint32_t rp_state_cap;
4773         u32 ddcc_status = 0;
4774         int ret;
4775
4776         /* All of these values are in units of 50MHz */
4777         dev_priv->rps.cur_freq          = 0;
4778         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4779         if (IS_BROXTON(dev)) {
4780                 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4781                 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4782                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4783                 dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
4784         } else {
4785                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4786                 dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
4787                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4788                 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4789         }
4790
4791         /* hw_max = RP0 until we check for overclocking */
4792         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
4793
4794         dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4795         if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
4796             IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4797                 ret = sandybridge_pcode_read(dev_priv,
4798                                         HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4799                                         &ddcc_status);
4800                 if (0 == ret)
4801                         dev_priv->rps.efficient_freq =
4802                                 clamp_t(u8,
4803                                         ((ddcc_status >> 8) & 0xff),
4804                                         dev_priv->rps.min_freq,
4805                                         dev_priv->rps.max_freq);
4806         }
4807
4808         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4809                 /* Store the frequency values in 16.66 MHZ units, which is
4810                    the natural hardware unit for SKL */
4811                 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4812                 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4813                 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4814                 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4815                 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4816         }
4817
4818         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4819
4820         /* Preserve min/max settings in case of re-init */
4821         if (dev_priv->rps.max_freq_softlimit == 0)
4822                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4823
4824         if (dev_priv->rps.min_freq_softlimit == 0) {
4825                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4826                         dev_priv->rps.min_freq_softlimit =
4827                                 max_t(int, dev_priv->rps.efficient_freq,
4828                                       intel_freq_opcode(dev_priv, 450));
4829                 else
4830                         dev_priv->rps.min_freq_softlimit =
4831                                 dev_priv->rps.min_freq;
4832         }
4833 }
4834
4835 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
4836 static void gen9_enable_rps(struct drm_device *dev)
4837 {
4838         struct drm_i915_private *dev_priv = dev->dev_private;
4839
4840         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4841
4842         gen6_init_rps_frequencies(dev);
4843
4844         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4845         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4846                 /*
4847                  * BIOS could leave the Hw Turbo enabled, so need to explicitly
4848                  * clear out the Control register just to avoid inconsitency
4849                  * with debugfs interface, which will show  Turbo as enabled
4850                  * only and that is not expected by the User after adding the
4851                  * WaGsvDisableTurbo. Apart from this there is no problem even
4852                  * if the Turbo is left enabled in the Control register, as the
4853                  * Up/Down interrupts would remain masked.
4854                  */
4855                 gen9_disable_rps(dev);
4856                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4857                 return;
4858         }
4859
4860         /* Program defaults and thresholds for RPS*/
4861         I915_WRITE(GEN6_RC_VIDEO_FREQ,
4862                 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4863
4864         /* 1 second timeout*/
4865         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4866                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
4867
4868         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4869
4870         /* Leaning on the below call to gen6_set_rps to program/setup the
4871          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4872          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4873         dev_priv->rps.power = HIGH_POWER; /* force a reset */
4874         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4875
4876         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4877 }
4878
4879 static void gen9_enable_rc6(struct drm_device *dev)
4880 {
4881         struct drm_i915_private *dev_priv = dev->dev_private;
4882         struct intel_engine_cs *engine;
4883         uint32_t rc6_mask = 0;
4884
4885         /* 1a: Software RC state - RC0 */
4886         I915_WRITE(GEN6_RC_STATE, 0);
4887
4888         /* 1b: Get forcewake during program sequence. Although the driver
4889          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4890         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4891
4892         /* 2a: Disable RC states. */
4893         I915_WRITE(GEN6_RC_CONTROL, 0);
4894
4895         /* 2b: Program RC6 thresholds.*/
4896
4897         /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4898         if (IS_SKYLAKE(dev))
4899                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4900         else
4901                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4902         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4903         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4904         for_each_engine(engine, dev_priv)
4905                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
4906
4907         if (HAS_GUC_UCODE(dev))
4908                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4909
4910         I915_WRITE(GEN6_RC_SLEEP, 0);
4911
4912         /* 2c: Program Coarse Power Gating Policies. */
4913         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4914         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4915
4916         /* 3a: Enable RC6 */
4917         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4918                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4919         DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
4920         /* WaRsUseTimeoutMode */
4921         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
4922             IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4923                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
4924                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4925                            GEN7_RC_CTL_TO_MODE |
4926                            rc6_mask);
4927         } else {
4928                 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4929                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4930                            GEN6_RC_CTL_EI_MODE(1) |
4931                            rc6_mask);
4932         }
4933
4934         /*
4935          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4936          * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4937          */
4938         if (NEEDS_WaRsDisableCoarsePowerGating(dev))
4939                 I915_WRITE(GEN9_PG_ENABLE, 0);
4940         else
4941                 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4942                                 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4943
4944         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4945
4946 }
4947
4948 static void gen8_enable_rps(struct drm_device *dev)
4949 {
4950         struct drm_i915_private *dev_priv = dev->dev_private;
4951         struct intel_engine_cs *engine;
4952         uint32_t rc6_mask = 0;
4953
4954         /* 1a: Software RC state - RC0 */
4955         I915_WRITE(GEN6_RC_STATE, 0);
4956
4957         /* 1c & 1d: Get forcewake during program sequence. Although the driver
4958          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4959         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4960
4961         /* 2a: Disable RC states. */
4962         I915_WRITE(GEN6_RC_CONTROL, 0);
4963
4964         /* Initialize rps frequencies */
4965         gen6_init_rps_frequencies(dev);
4966
4967         /* 2b: Program RC6 thresholds.*/
4968         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4969         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4970         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4971         for_each_engine(engine, dev_priv)
4972                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
4973         I915_WRITE(GEN6_RC_SLEEP, 0);
4974         if (IS_BROADWELL(dev))
4975                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4976         else
4977                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4978
4979         /* 3: Enable RC6 */
4980         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4981                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4982         intel_print_rc6_info(dev, rc6_mask);
4983         if (IS_BROADWELL(dev))
4984                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4985                                 GEN7_RC_CTL_TO_MODE |
4986                                 rc6_mask);
4987         else
4988                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4989                                 GEN6_RC_CTL_EI_MODE(1) |
4990                                 rc6_mask);
4991
4992         /* 4 Program defaults and thresholds for RPS*/
4993         I915_WRITE(GEN6_RPNSWREQ,
4994                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4995         I915_WRITE(GEN6_RC_VIDEO_FREQ,
4996                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4997         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4998         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4999
5000         /* Docs recommend 900MHz, and 300 MHz respectively */
5001         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
5002                    dev_priv->rps.max_freq_softlimit << 24 |
5003                    dev_priv->rps.min_freq_softlimit << 16);
5004
5005         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
5006         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
5007         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
5008         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
5009
5010         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5011
5012         /* 5: Enable RPS */
5013         I915_WRITE(GEN6_RP_CONTROL,
5014                    GEN6_RP_MEDIA_TURBO |
5015                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5016                    GEN6_RP_MEDIA_IS_GFX |
5017                    GEN6_RP_ENABLE |
5018                    GEN6_RP_UP_BUSY_AVG |
5019                    GEN6_RP_DOWN_IDLE_AVG);
5020
5021         /* 6: Ring frequency + overclocking (our driver does this later */
5022
5023         dev_priv->rps.power = HIGH_POWER; /* force a reset */
5024         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5025
5026         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5027 }
5028
5029 static void gen6_enable_rps(struct drm_device *dev)
5030 {
5031         struct drm_i915_private *dev_priv = dev->dev_private;
5032         struct intel_engine_cs *engine;
5033         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
5034         u32 gtfifodbg;
5035         int rc6_mode;
5036         int ret;
5037
5038         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5039
5040         /* Here begins a magic sequence of register writes to enable
5041          * auto-downclocking.
5042          *
5043          * Perhaps there might be some value in exposing these to
5044          * userspace...
5045          */
5046         I915_WRITE(GEN6_RC_STATE, 0);
5047
5048         /* Clear the DBG now so we don't confuse earlier errors */
5049         gtfifodbg = I915_READ(GTFIFODBG);
5050         if (gtfifodbg) {
5051                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
5052                 I915_WRITE(GTFIFODBG, gtfifodbg);
5053         }
5054
5055         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5056
5057         /* Initialize rps frequencies */
5058         gen6_init_rps_frequencies(dev);
5059
5060         /* disable the counters and set deterministic thresholds */
5061         I915_WRITE(GEN6_RC_CONTROL, 0);
5062
5063         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5064         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5065         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5066         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5067         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5068
5069         for_each_engine(engine, dev_priv)
5070                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5071
5072         I915_WRITE(GEN6_RC_SLEEP, 0);
5073         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5074         if (IS_IVYBRIDGE(dev))
5075                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5076         else
5077                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5078         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5079         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5080
5081         /* Check if we are enabling RC6 */
5082         rc6_mode = intel_enable_rc6(dev_priv->dev);
5083         if (rc6_mode & INTEL_RC6_ENABLE)
5084                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5085
5086         /* We don't use those on Haswell */
5087         if (!IS_HASWELL(dev)) {
5088                 if (rc6_mode & INTEL_RC6p_ENABLE)
5089                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5090
5091                 if (rc6_mode & INTEL_RC6pp_ENABLE)
5092                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5093         }
5094
5095         intel_print_rc6_info(dev, rc6_mask);
5096
5097         I915_WRITE(GEN6_RC_CONTROL,
5098                    rc6_mask |
5099                    GEN6_RC_CTL_EI_MODE(1) |
5100                    GEN6_RC_CTL_HW_ENABLE);
5101
5102         /* Power down if completely idle for over 50ms */
5103         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5104         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5105
5106         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5107         if (ret)
5108                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5109
5110         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5111         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5112                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5113                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5114                                  (pcu_mbox & 0xff) * 50);
5115                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
5116         }
5117
5118         dev_priv->rps.power = HIGH_POWER; /* force a reset */
5119         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5120
5121         rc6vids = 0;
5122         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5123         if (IS_GEN6(dev) && ret) {
5124                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5125         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5126                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5127                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5128                 rc6vids &= 0xffff00;
5129                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5130                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5131                 if (ret)
5132                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5133         }
5134
5135         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5136 }
5137
5138 static void __gen6_update_ring_freq(struct drm_device *dev)
5139 {
5140         struct drm_i915_private *dev_priv = dev->dev_private;
5141         int min_freq = 15;
5142         unsigned int gpu_freq;
5143         unsigned int max_ia_freq, min_ring_freq;
5144         unsigned int max_gpu_freq, min_gpu_freq;
5145         int scaling_factor = 180;
5146
5147         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5148
5149 #if 0
5150         policy = cpufreq_cpu_get(0);
5151         if (policy) {
5152                 max_ia_freq = policy->cpuinfo.max_freq;
5153                 cpufreq_cpu_put(policy);
5154         } else {
5155                 /*
5156                  * Default to measured freq if none found, PCU will ensure we
5157                  * don't go over
5158                  */
5159                 max_ia_freq = tsc_khz;
5160         }
5161 #else
5162         max_ia_freq = tsc_frequency / 1000;
5163 #endif
5164
5165         /* Convert from kHz to MHz */
5166         max_ia_freq /= 1000;
5167
5168         min_ring_freq = I915_READ(DCLK) & 0xf;
5169         /* convert DDR frequency from units of 266.6MHz to bandwidth */
5170         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5171
5172         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5173                 /* Convert GT frequency to 50 HZ units */
5174                 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5175                 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5176         } else {
5177                 min_gpu_freq = dev_priv->rps.min_freq;
5178                 max_gpu_freq = dev_priv->rps.max_freq;
5179         }
5180
5181         /*
5182          * For each potential GPU frequency, load a ring frequency we'd like
5183          * to use for memory access.  We do this by specifying the IA frequency
5184          * the PCU should use as a reference to determine the ring frequency.
5185          */
5186         for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5187                 int diff = max_gpu_freq - gpu_freq;
5188                 unsigned int ia_freq = 0, ring_freq = 0;
5189
5190                 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5191                         /*
5192                          * ring_freq = 2 * GT. ring_freq is in 100MHz units
5193                          * No floor required for ring frequency on SKL.
5194                          */
5195                         ring_freq = gpu_freq;
5196                 } else if (INTEL_INFO(dev)->gen >= 8) {
5197                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
5198                         ring_freq = max(min_ring_freq, gpu_freq);
5199                 } else if (IS_HASWELL(dev)) {
5200                         ring_freq = mult_frac(gpu_freq, 5, 4);
5201                         ring_freq = max(min_ring_freq, ring_freq);
5202                         /* leave ia_freq as the default, chosen by cpufreq */
5203                 } else {
5204                         /* On older processors, there is no separate ring
5205                          * clock domain, so in order to boost the bandwidth
5206                          * of the ring, we need to upclock the CPU (ia_freq).
5207                          *
5208                          * For GPU frequencies less than 750MHz,
5209                          * just use the lowest ring freq.
5210                          */
5211                         if (gpu_freq < min_freq)
5212                                 ia_freq = 800;
5213                         else
5214                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5215                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5216                 }
5217
5218                 sandybridge_pcode_write(dev_priv,
5219                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5220                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5221                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5222                                         gpu_freq);
5223         }
5224 }
5225
5226 void gen6_update_ring_freq(struct drm_device *dev)
5227 {
5228         struct drm_i915_private *dev_priv = dev->dev_private;
5229
5230         if (!HAS_CORE_RING_FREQ(dev))
5231                 return;
5232
5233         mutex_lock(&dev_priv->rps.hw_lock);
5234         __gen6_update_ring_freq(dev);
5235         mutex_unlock(&dev_priv->rps.hw_lock);
5236 }
5237
5238 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5239 {
5240         struct drm_device *dev = dev_priv->dev;
5241         u32 val, rp0;
5242
5243         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5244
5245         switch (INTEL_INFO(dev)->eu_total) {
5246         case 8:
5247                 /* (2 * 4) config */
5248                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5249                 break;
5250         case 12:
5251                 /* (2 * 6) config */
5252                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5253                 break;
5254         case 16:
5255                 /* (2 * 8) config */
5256         default:
5257                 /* Setting (2 * 8) Min RP0 for any other combination */
5258                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5259                 break;
5260         }
5261
5262         rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5263
5264         return rp0;
5265 }
5266
5267 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5268 {
5269         u32 val, rpe;
5270
5271         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5272         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5273
5274         return rpe;
5275 }
5276
5277 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5278 {
5279         u32 val, rp1;
5280
5281         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5282         rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5283
5284         return rp1;
5285 }
5286
5287 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5288 {
5289         u32 val, rp1;
5290
5291         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5292
5293         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5294
5295         return rp1;
5296 }
5297
5298 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5299 {
5300         u32 val, rp0;
5301
5302         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5303
5304         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5305         /* Clamp to max */
5306         rp0 = min_t(u32, rp0, 0xea);
5307
5308         return rp0;
5309 }
5310
5311 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5312 {
5313         u32 val, rpe;
5314
5315         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5316         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5317         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5318         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5319
5320         return rpe;
5321 }
5322
5323 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5324 {
5325         u32 val;
5326
5327         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5328         /*
5329          * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5330          * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5331          * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5332          * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5333          * to make sure it matches what Punit accepts.
5334          */
5335         return max_t(u32, val, 0xc0);
5336 }
5337
5338 /* Check that the pctx buffer wasn't move under us. */
5339 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5340 {
5341         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5342
5343         /* DragonFly - if EDID fails vlv_pctx can wind up NULL */
5344         if (WARN_ON(!dev_priv->vlv_pctx))
5345                 return;
5346
5347         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5348                              dev_priv->vlv_pctx->stolen->start);
5349 }
5350
5351
5352 /* Check that the pcbr address is not empty. */
5353 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5354 {
5355         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5356
5357         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5358 }
5359
5360 static void cherryview_setup_pctx(struct drm_device *dev)
5361 {
5362         struct drm_i915_private *dev_priv = to_i915(dev);
5363         struct i915_ggtt *ggtt = &dev_priv->ggtt;
5364         unsigned long pctx_paddr, paddr;
5365         u32 pcbr;
5366         int pctx_size = 32*1024;
5367
5368         pcbr = I915_READ(VLV_PCBR);
5369         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5370                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5371                 paddr = (dev_priv->mm.stolen_base +
5372                          (ggtt->stolen_size - pctx_size));
5373
5374                 pctx_paddr = (paddr & (~4095));
5375                 I915_WRITE(VLV_PCBR, pctx_paddr);
5376         }
5377
5378         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5379 }
5380
5381 static void valleyview_setup_pctx(struct drm_device *dev)
5382 {
5383         struct drm_i915_private *dev_priv = dev->dev_private;
5384         struct drm_i915_gem_object *pctx;
5385         unsigned long pctx_paddr;
5386         u32 pcbr;
5387         int pctx_size = 24*1024;
5388
5389         mutex_lock(&dev->struct_mutex);
5390
5391         pcbr = I915_READ(VLV_PCBR);
5392         if (pcbr) {
5393                 /* BIOS set it up already, grab the pre-alloc'd space */
5394                 int pcbr_offset;
5395
5396                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5397                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5398                                                                       pcbr_offset,
5399                                                                       I915_GTT_OFFSET_NONE,
5400                                                                       pctx_size);
5401                 goto out;
5402         }
5403
5404         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5405
5406         /*
5407          * From the Gunit register HAS:
5408          * The Gfx driver is expected to program this register and ensure
5409          * proper allocation within Gfx stolen memory.  For example, this
5410          * register should be programmed such than the PCBR range does not
5411          * overlap with other ranges, such as the frame buffer, protected
5412          * memory, or any other relevant ranges.
5413          */
5414         pctx = i915_gem_object_create_stolen(dev, pctx_size);
5415         if (!pctx) {
5416                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5417                 goto out;
5418         }
5419
5420         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5421         I915_WRITE(VLV_PCBR, pctx_paddr);
5422
5423 out:
5424         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5425         dev_priv->vlv_pctx = pctx;
5426         mutex_unlock(&dev->struct_mutex);
5427 }
5428
5429 static void valleyview_cleanup_pctx(struct drm_device *dev)
5430 {
5431         struct drm_i915_private *dev_priv = dev->dev_private;
5432
5433         if (WARN_ON(!dev_priv->vlv_pctx))
5434                 return;
5435
5436         drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5437         dev_priv->vlv_pctx = NULL;
5438 }
5439
5440 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
5441 {
5442         dev_priv->rps.gpll_ref_freq =
5443                 vlv_get_cck_clock(dev_priv, "GPLL ref",
5444                                   CCK_GPLL_CLOCK_CONTROL,
5445                                   dev_priv->czclk_freq);
5446
5447         DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
5448                          dev_priv->rps.gpll_ref_freq);
5449 }
5450
5451 static void valleyview_init_gt_powersave(struct drm_device *dev)
5452 {
5453         struct drm_i915_private *dev_priv = dev->dev_private;
5454         u32 val;
5455
5456         valleyview_setup_pctx(dev);
5457
5458         vlv_init_gpll_ref_freq(dev_priv);
5459
5460         mutex_lock(&dev_priv->rps.hw_lock);
5461
5462         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5463         switch ((val >> 6) & 3) {
5464         case 0:
5465         case 1:
5466                 dev_priv->mem_freq = 800;
5467                 break;
5468         case 2:
5469                 dev_priv->mem_freq = 1066;
5470                 break;
5471         case 3:
5472                 dev_priv->mem_freq = 1333;
5473                 break;
5474         }
5475         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5476
5477         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5478         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5479         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5480                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5481                          dev_priv->rps.max_freq);
5482
5483         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5484         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5485                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5486                          dev_priv->rps.efficient_freq);
5487
5488         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5489         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5490                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5491                          dev_priv->rps.rp1_freq);
5492
5493         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5494         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5495                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5496                          dev_priv->rps.min_freq);
5497
5498         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5499
5500         /* Preserve min/max settings in case of re-init */
5501         if (dev_priv->rps.max_freq_softlimit == 0)
5502                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5503
5504         if (dev_priv->rps.min_freq_softlimit == 0)
5505                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5506
5507         mutex_unlock(&dev_priv->rps.hw_lock);
5508 }
5509
5510 static void cherryview_init_gt_powersave(struct drm_device *dev)
5511 {
5512         struct drm_i915_private *dev_priv = dev->dev_private;
5513         u32 val;
5514
5515         cherryview_setup_pctx(dev);
5516
5517         vlv_init_gpll_ref_freq(dev_priv);
5518
5519         mutex_lock(&dev_priv->rps.hw_lock);
5520
5521         mutex_lock(&dev_priv->sb_lock);
5522         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5523         mutex_unlock(&dev_priv->sb_lock);
5524
5525         switch ((val >> 2) & 0x7) {
5526         case 3:
5527                 dev_priv->mem_freq = 2000;
5528                 break;
5529         default:
5530                 dev_priv->mem_freq = 1600;
5531                 break;
5532         }
5533         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5534
5535         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5536         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5537         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5538                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5539                          dev_priv->rps.max_freq);
5540
5541         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5542         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5543                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5544                          dev_priv->rps.efficient_freq);
5545
5546         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5547         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5548                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5549                          dev_priv->rps.rp1_freq);
5550
5551         /* PUnit validated range is only [RPe, RP0] */
5552         dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5553         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5554                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5555                          dev_priv->rps.min_freq);
5556
5557         WARN_ONCE((dev_priv->rps.max_freq |
5558                    dev_priv->rps.efficient_freq |
5559                    dev_priv->rps.rp1_freq |
5560                    dev_priv->rps.min_freq) & 1,
5561                   "Odd GPU freq values\n");
5562
5563         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5564
5565         /* Preserve min/max settings in case of re-init */
5566         if (dev_priv->rps.max_freq_softlimit == 0)
5567                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5568
5569         if (dev_priv->rps.min_freq_softlimit == 0)
5570                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5571
5572         mutex_unlock(&dev_priv->rps.hw_lock);
5573 }
5574
5575 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5576 {
5577         valleyview_cleanup_pctx(dev);
5578 }
5579
5580 static void cherryview_enable_rps(struct drm_device *dev)
5581 {
5582         struct drm_i915_private *dev_priv = dev->dev_private;
5583         struct intel_engine_cs *engine;
5584         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5585
5586         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5587
5588         gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
5589                                              GT_FIFO_FREE_ENTRIES_CHV);
5590         if (gtfifodbg) {
5591                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5592                                  gtfifodbg);
5593                 I915_WRITE(GTFIFODBG, gtfifodbg);
5594         }
5595
5596         cherryview_check_pctx(dev_priv);
5597
5598         /* 1a & 1b: Get forcewake during program sequence. Although the driver
5599          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5600         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5601
5602         /*  Disable RC states. */
5603         I915_WRITE(GEN6_RC_CONTROL, 0);
5604
5605         /* 2a: Program RC6 thresholds.*/
5606         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5607         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5608         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5609
5610         for_each_engine(engine, dev_priv)
5611                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5612         I915_WRITE(GEN6_RC_SLEEP, 0);
5613
5614         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5615         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5616
5617         /* allows RC6 residency counter to work */
5618         I915_WRITE(VLV_COUNTER_CONTROL,
5619                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5620                                       VLV_MEDIA_RC6_COUNT_EN |
5621                                       VLV_RENDER_RC6_COUNT_EN));
5622
5623         /* For now we assume BIOS is allocating and populating the PCBR  */
5624         pcbr = I915_READ(VLV_PCBR);
5625
5626         /* 3: Enable RC6 */
5627         if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5628                                                 (pcbr >> VLV_PCBR_ADDR_SHIFT))
5629                 rc6_mode = GEN7_RC_CTL_TO_MODE;
5630
5631         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5632
5633         /* 4 Program defaults and thresholds for RPS*/
5634         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5635         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5636         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5637         I915_WRITE(GEN6_RP_UP_EI, 66000);
5638         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5639
5640         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5641
5642         /* 5: Enable RPS */
5643         I915_WRITE(GEN6_RP_CONTROL,
5644                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5645                    GEN6_RP_MEDIA_IS_GFX |
5646                    GEN6_RP_ENABLE |
5647                    GEN6_RP_UP_BUSY_AVG |
5648                    GEN6_RP_DOWN_IDLE_AVG);
5649
5650         /* Setting Fixed Bias */
5651         val = VLV_OVERRIDE_EN |
5652                   VLV_SOC_TDP_EN |
5653                   CHV_BIAS_CPU_50_SOC_50;
5654         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5655
5656         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5657
5658         /* RPS code assumes GPLL is used */
5659         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5660
5661         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5662         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5663
5664         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5665         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5666                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5667                          dev_priv->rps.cur_freq);
5668
5669         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5670                          intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
5671                          dev_priv->rps.idle_freq);
5672
5673         valleyview_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5674
5675         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5676 }
5677
5678 static void valleyview_enable_rps(struct drm_device *dev)
5679 {
5680         struct drm_i915_private *dev_priv = dev->dev_private;
5681         struct intel_engine_cs *engine;
5682         u32 gtfifodbg, val, rc6_mode = 0;
5683
5684         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5685
5686         valleyview_check_pctx(dev_priv);
5687
5688         gtfifodbg = I915_READ(GTFIFODBG);
5689         if (gtfifodbg) {
5690                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5691                                  gtfifodbg);
5692                 I915_WRITE(GTFIFODBG, gtfifodbg);
5693         }
5694
5695         /* If VLV, Forcewake all wells, else re-direct to regular path */
5696         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5697
5698         /*  Disable RC states. */
5699         I915_WRITE(GEN6_RC_CONTROL, 0);
5700
5701         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5702         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5703         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5704         I915_WRITE(GEN6_RP_UP_EI, 66000);
5705         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5706
5707         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5708
5709         I915_WRITE(GEN6_RP_CONTROL,
5710                    GEN6_RP_MEDIA_TURBO |
5711                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5712                    GEN6_RP_MEDIA_IS_GFX |
5713                    GEN6_RP_ENABLE |
5714                    GEN6_RP_UP_BUSY_AVG |
5715                    GEN6_RP_DOWN_IDLE_CONT);
5716
5717         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5718         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5719         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5720
5721         for_each_engine(engine, dev_priv)
5722                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5723
5724         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5725
5726         /* allows RC6 residency counter to work */
5727         I915_WRITE(VLV_COUNTER_CONTROL,
5728                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5729                                       VLV_RENDER_RC0_COUNT_EN |
5730                                       VLV_MEDIA_RC6_COUNT_EN |
5731                                       VLV_RENDER_RC6_COUNT_EN));
5732
5733         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5734                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5735
5736         intel_print_rc6_info(dev, rc6_mode);
5737
5738         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5739
5740         /* Setting Fixed Bias */
5741         val = VLV_OVERRIDE_EN |
5742                   VLV_SOC_TDP_EN |
5743                   VLV_BIAS_CPU_125_SOC_875;
5744         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5745
5746         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5747
5748         /* RPS code assumes GPLL is used */
5749         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5750
5751         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5752         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5753
5754         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5755         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5756                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5757                          dev_priv->rps.cur_freq);
5758
5759         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5760                          intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
5761                          dev_priv->rps.idle_freq);
5762
5763         valleyview_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5764
5765         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5766 }
5767
5768 static unsigned long intel_pxfreq(u32 vidfreq)
5769 {
5770         unsigned long freq;
5771         int div = (vidfreq & 0x3f0000) >> 16;
5772         int post = (vidfreq & 0x3000) >> 12;
5773         int pre = (vidfreq & 0x7);
5774
5775         if (!pre)
5776                 return 0;
5777
5778         freq = ((div * 133333) / ((1<<post) * pre));
5779
5780         return freq;
5781 }
5782
5783 static const struct cparams {
5784         u16 i;
5785         u16 t;
5786         u16 m;
5787         u16 c;
5788 } cparams[] = {
5789         { 1, 1333, 301, 28664 },
5790         { 1, 1066, 294, 24460 },
5791         { 1, 800, 294, 25192 },
5792         { 0, 1333, 276, 27605 },
5793         { 0, 1066, 276, 27605 },
5794         { 0, 800, 231, 23784 },
5795 };
5796
5797 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5798 {
5799         u64 total_count, diff, ret;
5800         u32 count1, count2, count3, m = 0, c = 0;
5801         unsigned long now = jiffies_to_msecs(jiffies), diff1;
5802         int i;
5803
5804         assert_spin_locked(&mchdev_lock);
5805
5806         diff1 = now - dev_priv->ips.last_time1;
5807
5808         /* Prevent division-by-zero if we are asking too fast.
5809          * Also, we don't get interesting results if we are polling
5810          * faster than once in 10ms, so just return the saved value
5811          * in such cases.
5812          */
5813         if (diff1 <= 10)
5814                 return dev_priv->ips.chipset_power;
5815
5816         count1 = I915_READ(DMIEC);
5817         count2 = I915_READ(DDREC);
5818         count3 = I915_READ(CSIEC);
5819
5820         total_count = count1 + count2 + count3;
5821
5822         /* FIXME: handle per-counter overflow */
5823         if (total_count < dev_priv->ips.last_count1) {
5824                 diff = ~0UL - dev_priv->ips.last_count1;
5825                 diff += total_count;
5826         } else {
5827                 diff = total_count - dev_priv->ips.last_count1;
5828         }
5829
5830         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5831                 if (cparams[i].i == dev_priv->ips.c_m &&
5832                     cparams[i].t == dev_priv->ips.r_t) {
5833                         m = cparams[i].m;
5834                         c = cparams[i].c;
5835                         break;
5836                 }
5837         }
5838
5839         diff = div_u64(diff, diff1);
5840         ret = ((m * diff) + c);
5841         ret = div_u64(ret, 10);
5842
5843         dev_priv->ips.last_count1 = total_count;
5844         dev_priv->ips.last_time1 = now;
5845
5846         dev_priv->ips.chipset_power = ret;
5847
5848         return ret;
5849 }
5850
5851 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5852 {
5853         struct drm_device *dev = dev_priv->dev;
5854         unsigned long val;
5855
5856         if (INTEL_INFO(dev)->gen != 5)
5857                 return 0;
5858
5859         spin_lock_irq(&mchdev_lock);
5860
5861         val = __i915_chipset_val(dev_priv);
5862
5863         spin_unlock_irq(&mchdev_lock);
5864
5865         return val;
5866 }
5867
5868 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5869 {
5870         unsigned long m, x, b;
5871         u32 tsfs;
5872
5873         tsfs = I915_READ(TSFS);
5874
5875         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5876         x = I915_READ8(TR1);
5877
5878         b = tsfs & TSFS_INTR_MASK;
5879
5880         return ((m * x) / 127) - b;
5881 }
5882
5883 static int _pxvid_to_vd(u8 pxvid)
5884 {
5885         if (pxvid == 0)
5886                 return 0;
5887
5888         if (pxvid >= 8 && pxvid < 31)
5889                 pxvid = 31;
5890
5891         return (pxvid + 2) * 125;
5892 }
5893
5894 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5895 {
5896         struct drm_device *dev = dev_priv->dev;
5897         const int vd = _pxvid_to_vd(pxvid);
5898         const int vm = vd - 1125;
5899
5900         if (INTEL_INFO(dev)->is_mobile)
5901                 return vm > 0 ? vm : 0;
5902
5903         return vd;
5904 }
5905
5906 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5907 {
5908         u64 now, diff, diffms;
5909         u32 count;
5910
5911         assert_spin_locked(&mchdev_lock);
5912
5913         now = ktime_get_raw_ns();
5914         diffms = now - dev_priv->ips.last_time2;
5915         do_div(diffms, NSEC_PER_MSEC);
5916
5917         /* Don't divide by 0 */
5918         if (!diffms)
5919                 return;
5920
5921         count = I915_READ(GFXEC);
5922
5923         if (count < dev_priv->ips.last_count2) {
5924                 diff = ~0UL - dev_priv->ips.last_count2;
5925                 diff += count;
5926         } else {
5927                 diff = count - dev_priv->ips.last_count2;
5928         }
5929
5930         dev_priv->ips.last_count2 = count;
5931         dev_priv->ips.last_time2 = now;
5932
5933         /* More magic constants... */
5934         diff = diff * 1181;
5935         diff = div_u64(diff, diffms * 10);
5936         dev_priv->ips.gfx_power = diff;
5937 }
5938
5939 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5940 {
5941         struct drm_device *dev = dev_priv->dev;
5942
5943         if (INTEL_INFO(dev)->gen != 5)
5944                 return;
5945
5946         spin_lock_irq(&mchdev_lock);
5947
5948         __i915_update_gfx_val(dev_priv);
5949
5950         spin_unlock_irq(&mchdev_lock);
5951 }
5952
5953 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5954 {
5955         unsigned long t, corr, state1, corr2, state2;
5956         u32 pxvid, ext_v;
5957
5958         assert_spin_locked(&mchdev_lock);
5959
5960         pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5961         pxvid = (pxvid >> 24) & 0x7f;
5962         ext_v = pvid_to_extvid(dev_priv, pxvid);
5963
5964         state1 = ext_v;
5965
5966         t = i915_mch_val(dev_priv);
5967
5968         /* Revel in the empirically derived constants */
5969
5970         /* Correction factor in 1/100000 units */
5971         if (t > 80)
5972                 corr = ((t * 2349) + 135940);
5973         else if (t >= 50)
5974                 corr = ((t * 964) + 29317);
5975         else /* < 50 */
5976                 corr = ((t * 301) + 1004);
5977
5978         corr = corr * ((150142 * state1) / 10000 - 78642);
5979         corr /= 100000;
5980         corr2 = (corr * dev_priv->ips.corr);
5981
5982         state2 = (corr2 * state1) / 10000;
5983         state2 /= 100; /* convert to mW */
5984
5985         __i915_update_gfx_val(dev_priv);
5986
5987         return dev_priv->ips.gfx_power + state2;
5988 }
5989
5990 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5991 {
5992         struct drm_device *dev = dev_priv->dev;
5993         unsigned long val;
5994
5995         if (INTEL_INFO(dev)->gen != 5)
5996                 return 0;
5997
5998         spin_lock_irq(&mchdev_lock);
5999
6000         val = __i915_gfx_val(dev_priv);
6001
6002         spin_unlock_irq(&mchdev_lock);
6003
6004         return val;
6005 }
6006
6007 /**
6008  * i915_read_mch_val - return value for IPS use
6009  *
6010  * Calculate and return a value for the IPS driver to use when deciding whether
6011  * we have thermal and power headroom to increase CPU or GPU power budget.
6012  */
6013 unsigned long i915_read_mch_val(void)
6014 {
6015         struct drm_i915_private *dev_priv;
6016         unsigned long chipset_val, graphics_val, ret = 0;
6017
6018         spin_lock_irq(&mchdev_lock);
6019         if (!i915_mch_dev)
6020                 goto out_unlock;
6021         dev_priv = i915_mch_dev;
6022
6023         chipset_val = __i915_chipset_val(dev_priv);
6024         graphics_val = __i915_gfx_val(dev_priv);
6025
6026         ret = chipset_val + graphics_val;
6027
6028 out_unlock:
6029         spin_unlock_irq(&mchdev_lock);
6030
6031         return ret;
6032 }
6033
6034 /**
6035  * i915_gpu_raise - raise GPU frequency limit
6036  *
6037  * Raise the limit; IPS indicates we have thermal headroom.
6038  */
6039 bool i915_gpu_raise(void)
6040 {
6041         struct drm_i915_private *dev_priv;
6042         bool ret = true;
6043
6044         spin_lock_irq(&mchdev_lock);
6045         if (!i915_mch_dev) {
6046                 ret = false;
6047                 goto out_unlock;
6048         }
6049         dev_priv = i915_mch_dev;
6050
6051         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
6052                 dev_priv->ips.max_delay--;
6053
6054 out_unlock:
6055         spin_unlock_irq(&mchdev_lock);
6056
6057         return ret;
6058 }
6059
6060 /**
6061  * i915_gpu_lower - lower GPU frequency limit
6062  *
6063  * IPS indicates we're close to a thermal limit, so throttle back the GPU
6064  * frequency maximum.
6065  */
6066 bool i915_gpu_lower(void)
6067 {
6068         struct drm_i915_private *dev_priv;
6069         bool ret = true;
6070
6071         spin_lock_irq(&mchdev_lock);
6072         if (!i915_mch_dev) {
6073                 ret = false;
6074                 goto out_unlock;
6075         }
6076         dev_priv = i915_mch_dev;
6077
6078         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6079                 dev_priv->ips.max_delay++;
6080
6081 out_unlock:
6082         spin_unlock_irq(&mchdev_lock);
6083
6084         return ret;
6085 }
6086
6087 /**
6088  * i915_gpu_busy - indicate GPU business to IPS
6089  *
6090  * Tell the IPS driver whether or not the GPU is busy.
6091  */
6092 bool i915_gpu_busy(void)
6093 {
6094         struct drm_i915_private *dev_priv;
6095         struct intel_engine_cs *engine;
6096         bool ret = false;
6097
6098         spin_lock_irq(&mchdev_lock);
6099         if (!i915_mch_dev)
6100                 goto out_unlock;
6101         dev_priv = i915_mch_dev;
6102
6103         for_each_engine(engine, dev_priv)
6104                 ret |= !list_empty(&engine->request_list);
6105
6106 out_unlock:
6107         spin_unlock_irq(&mchdev_lock);
6108
6109         return ret;
6110 }
6111
6112 /**
6113  * i915_gpu_turbo_disable - disable graphics turbo
6114  *
6115  * Disable graphics turbo by resetting the max frequency and setting the
6116  * current frequency to the default.
6117  */
6118 bool i915_gpu_turbo_disable(void)
6119 {
6120         struct drm_i915_private *dev_priv;
6121         bool ret = true;
6122
6123         spin_lock_irq(&mchdev_lock);
6124         if (!i915_mch_dev) {
6125                 ret = false;
6126                 goto out_unlock;
6127         }
6128         dev_priv = i915_mch_dev;
6129
6130         dev_priv->ips.max_delay = dev_priv->ips.fstart;
6131
6132         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
6133                 ret = false;
6134
6135 out_unlock:
6136         spin_unlock_irq(&mchdev_lock);
6137
6138         return ret;
6139 }
6140
6141 #if 0
6142 /**
6143  * Tells the intel_ips driver that the i915 driver is now loaded, if
6144  * IPS got loaded first.
6145  *
6146  * This awkward dance is so that neither module has to depend on the
6147  * other in order for IPS to do the appropriate communication of
6148  * GPU turbo limits to i915.
6149  */
6150 static void
6151 ips_ping_for_i915_load(void)
6152 {
6153         void (*link)(void);
6154
6155         link = symbol_get(ips_link_to_i915_driver);
6156         if (link) {
6157                 link();
6158                 symbol_put(ips_link_to_i915_driver);
6159         }
6160 }
6161 #endif
6162
6163 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6164 {
6165         /* We only register the i915 ips part with intel-ips once everything is
6166          * set up, to avoid intel-ips sneaking in and reading bogus values. */
6167         spin_lock_irq(&mchdev_lock);
6168         i915_mch_dev = dev_priv;
6169         spin_unlock_irq(&mchdev_lock);
6170
6171 }
6172
6173 void intel_gpu_ips_teardown(void)
6174 {
6175         spin_lock_irq(&mchdev_lock);
6176         i915_mch_dev = NULL;
6177         spin_unlock_irq(&mchdev_lock);
6178 }
6179
6180 static void intel_init_emon(struct drm_device *dev)
6181 {
6182         struct drm_i915_private *dev_priv = dev->dev_private;
6183         u32 lcfuse;
6184         u8 pxw[16];
6185         int i;
6186
6187         /* Disable to program */
6188         I915_WRITE(ECR, 0);
6189         POSTING_READ(ECR);
6190
6191         /* Program energy weights for various events */
6192         I915_WRITE(SDEW, 0x15040d00);
6193         I915_WRITE(CSIEW0, 0x007f0000);
6194         I915_WRITE(CSIEW1, 0x1e220004);
6195         I915_WRITE(CSIEW2, 0x04000004);
6196
6197         for (i = 0; i < 5; i++)
6198                 I915_WRITE(PEW(i), 0);
6199         for (i = 0; i < 3; i++)
6200                 I915_WRITE(DEW(i), 0);
6201
6202         /* Program P-state weights to account for frequency power adjustment */
6203         for (i = 0; i < 16; i++) {
6204                 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6205                 unsigned long freq = intel_pxfreq(pxvidfreq);
6206                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6207                         PXVFREQ_PX_SHIFT;
6208                 unsigned long val;
6209
6210                 val = vid * vid;
6211                 val *= (freq / 1000);
6212                 val *= 255;
6213                 val /= (127*127*900);
6214                 if (val > 0xff)
6215                         DRM_ERROR("bad pxval: %ld\n", val);
6216                 pxw[i] = val;
6217         }
6218         /* Render standby states get 0 weight */
6219         pxw[14] = 0;
6220         pxw[15] = 0;
6221
6222         for (i = 0; i < 4; i++) {
6223                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6224                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6225                 I915_WRITE(PXW(i), val);
6226         }
6227
6228         /* Adjust magic regs to magic values (more experimental results) */
6229         I915_WRITE(OGW0, 0);
6230         I915_WRITE(OGW1, 0);
6231         I915_WRITE(EG0, 0x00007f00);
6232         I915_WRITE(EG1, 0x0000000e);
6233         I915_WRITE(EG2, 0x000e0000);
6234         I915_WRITE(EG3, 0x68000300);
6235         I915_WRITE(EG4, 0x42000000);
6236         I915_WRITE(EG5, 0x00140031);
6237         I915_WRITE(EG6, 0);
6238         I915_WRITE(EG7, 0);
6239
6240         for (i = 0; i < 8; i++)
6241                 I915_WRITE(PXWL(i), 0);
6242
6243         /* Enable PMON + select events */
6244         I915_WRITE(ECR, 0x80000019);
6245
6246         lcfuse = I915_READ(LCFUSE02);
6247
6248         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6249 }
6250
6251 void intel_init_gt_powersave(struct drm_device *dev)
6252 {
6253         struct drm_i915_private *dev_priv = dev->dev_private;
6254
6255         /*
6256          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6257          * requirement.
6258          */
6259         if (!i915.enable_rc6) {
6260                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6261                 intel_runtime_pm_get(dev_priv);
6262         }
6263
6264         if (IS_CHERRYVIEW(dev))
6265                 cherryview_init_gt_powersave(dev);
6266         else if (IS_VALLEYVIEW(dev))
6267                 valleyview_init_gt_powersave(dev);
6268 }
6269
6270 void intel_cleanup_gt_powersave(struct drm_device *dev)
6271 {
6272         struct drm_i915_private *dev_priv = dev->dev_private;
6273
6274         if (IS_CHERRYVIEW(dev))
6275                 return;
6276         else if (IS_VALLEYVIEW(dev))
6277                 valleyview_cleanup_gt_powersave(dev);
6278
6279         if (!i915.enable_rc6)
6280                 intel_runtime_pm_put(dev_priv);
6281 }
6282
6283 static void gen6_suspend_rps(struct drm_device *dev)
6284 {
6285         struct drm_i915_private *dev_priv = dev->dev_private;
6286
6287         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6288
6289         gen6_disable_rps_interrupts(dev);
6290 }
6291
6292 /**
6293  * intel_suspend_gt_powersave - suspend PM work and helper threads
6294  * @dev: drm device
6295  *
6296  * We don't want to disable RC6 or other features here, we just want
6297  * to make sure any work we've queued has finished and won't bother
6298  * us while we're suspended.
6299  */
6300 void intel_suspend_gt_powersave(struct drm_device *dev)
6301 {
6302         struct drm_i915_private *dev_priv = dev->dev_private;
6303
6304         if (INTEL_INFO(dev)->gen < 6)
6305                 return;
6306
6307         gen6_suspend_rps(dev);
6308
6309         /* Force GPU to min freq during suspend */
6310         gen6_rps_idle(dev_priv);
6311 }
6312
6313 void intel_disable_gt_powersave(struct drm_device *dev)
6314 {
6315         struct drm_i915_private *dev_priv = dev->dev_private;
6316
6317         if (IS_IRONLAKE_M(dev)) {
6318                 ironlake_disable_drps(dev);
6319         } else if (INTEL_INFO(dev)->gen >= 6) {
6320                 intel_suspend_gt_powersave(dev);
6321
6322                 mutex_lock(&dev_priv->rps.hw_lock);
6323                 if (INTEL_INFO(dev)->gen >= 9) {
6324                         gen9_disable_rc6(dev);
6325                         gen9_disable_rps(dev);
6326                 } else if (IS_CHERRYVIEW(dev))
6327                         cherryview_disable_rps(dev);
6328                 else if (IS_VALLEYVIEW(dev))
6329                         valleyview_disable_rps(dev);
6330                 else
6331                         gen6_disable_rps(dev);
6332
6333                 dev_priv->rps.enabled = false;
6334                 mutex_unlock(&dev_priv->rps.hw_lock);
6335         }
6336 }
6337
6338 static void intel_gen6_powersave_work(struct work_struct *work)
6339 {
6340         struct drm_i915_private *dev_priv =
6341                 container_of(work, struct drm_i915_private,
6342                              rps.delayed_resume_work.work);
6343         struct drm_device *dev = dev_priv->dev;
6344
6345         mutex_lock(&dev_priv->rps.hw_lock);
6346
6347         gen6_reset_rps_interrupts(dev);
6348
6349         if (IS_CHERRYVIEW(dev)) {
6350                 cherryview_enable_rps(dev);
6351         } else if (IS_VALLEYVIEW(dev)) {
6352                 valleyview_enable_rps(dev);
6353         } else if (INTEL_INFO(dev)->gen >= 9) {
6354                 gen9_enable_rc6(dev);
6355                 gen9_enable_rps(dev);
6356                 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
6357                         __gen6_update_ring_freq(dev);
6358         } else if (IS_BROADWELL(dev)) {
6359                 gen8_enable_rps(dev);
6360                 __gen6_update_ring_freq(dev);
6361         } else {
6362                 gen6_enable_rps(dev);
6363                 __gen6_update_ring_freq(dev);
6364         }
6365
6366         WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6367         WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6368
6369         WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6370         WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6371
6372         dev_priv->rps.enabled = true;
6373
6374         gen6_enable_rps_interrupts(dev);
6375
6376         mutex_unlock(&dev_priv->rps.hw_lock);
6377
6378         intel_runtime_pm_put(dev_priv);
6379 }
6380
6381 void intel_enable_gt_powersave(struct drm_device *dev)
6382 {
6383         struct drm_i915_private *dev_priv = dev->dev_private;
6384
6385         /* Powersaving is controlled by the host when inside a VM */
6386         if (intel_vgpu_active(dev))
6387                 return;
6388
6389         if (IS_IRONLAKE_M(dev)) {
6390                 ironlake_enable_drps(dev);
6391                 mutex_lock(&dev->struct_mutex);
6392                 intel_init_emon(dev);
6393                 mutex_unlock(&dev->struct_mutex);
6394         } else if (INTEL_INFO(dev)->gen >= 6) {
6395                 /*
6396                  * PCU communication is slow and this doesn't need to be
6397                  * done at any specific time, so do this out of our fast path
6398                  * to make resume and init faster.
6399                  *
6400                  * We depend on the HW RC6 power context save/restore
6401                  * mechanism when entering D3 through runtime PM suspend. So
6402                  * disable RPM until RPS/RC6 is properly setup. We can only
6403                  * get here via the driver load/system resume/runtime resume
6404                  * paths, so the _noresume version is enough (and in case of
6405                  * runtime resume it's necessary).
6406                  */
6407                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6408                                            round_jiffies_up_relative(HZ)))
6409                         intel_runtime_pm_get_noresume(dev_priv);
6410         }
6411 }
6412
6413 void intel_reset_gt_powersave(struct drm_device *dev)
6414 {
6415         struct drm_i915_private *dev_priv = dev->dev_private;
6416
6417         if (INTEL_INFO(dev)->gen < 6)
6418                 return;
6419
6420         gen6_suspend_rps(dev);
6421         dev_priv->rps.enabled = false;
6422 }
6423
6424 static void ibx_init_clock_gating(struct drm_device *dev)
6425 {
6426         struct drm_i915_private *dev_priv = dev->dev_private;
6427
6428         /*
6429          * On Ibex Peak and Cougar Point, we need to disable clock
6430          * gating for the panel power sequencer or it will fail to
6431          * start up when no ports are active.
6432          */
6433         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6434 }
6435
6436 static void g4x_disable_trickle_feed(struct drm_device *dev)
6437 {
6438         struct drm_i915_private *dev_priv = dev->dev_private;
6439         enum i915_pipe pipe;
6440
6441         for_each_pipe(dev_priv, pipe) {
6442                 I915_WRITE(DSPCNTR(pipe),
6443                            I915_READ(DSPCNTR(pipe)) |
6444                            DISPPLANE_TRICKLE_FEED_DISABLE);
6445
6446                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6447                 POSTING_READ(DSPSURF(pipe));
6448         }
6449 }
6450
6451 static void ilk_init_lp_watermarks(struct drm_device *dev)
6452 {
6453         struct drm_i915_private *dev_priv = dev->dev_private;
6454
6455         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6456         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6457         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6458
6459         /*
6460          * Don't touch WM1S_LP_EN here.
6461          * Doing so could cause underruns.
6462          */
6463 }
6464
6465 static void ironlake_init_clock_gating(struct drm_device *dev)
6466 {
6467         struct drm_i915_private *dev_priv = dev->dev_private;
6468         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6469
6470         /*
6471          * Required for FBC
6472          * WaFbcDisableDpfcClockGating:ilk
6473          */
6474         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6475                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6476                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6477
6478         I915_WRITE(PCH_3DCGDIS0,
6479                    MARIUNIT_CLOCK_GATE_DISABLE |
6480                    SVSMUNIT_CLOCK_GATE_DISABLE);
6481         I915_WRITE(PCH_3DCGDIS1,
6482                    VFMUNIT_CLOCK_GATE_DISABLE);
6483
6484         /*
6485          * According to the spec the following bits should be set in
6486          * order to enable memory self-refresh
6487          * The bit 22/21 of 0x42004
6488          * The bit 5 of 0x42020
6489          * The bit 15 of 0x45000
6490          */
6491         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6492                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
6493                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6494         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6495         I915_WRITE(DISP_ARB_CTL,
6496                    (I915_READ(DISP_ARB_CTL) |
6497                     DISP_FBC_WM_DIS));
6498
6499         ilk_init_lp_watermarks(dev);
6500
6501         /*
6502          * Based on the document from hardware guys the following bits
6503          * should be set unconditionally in order to enable FBC.
6504          * The bit 22 of 0x42000
6505          * The bit 22 of 0x42004
6506          * The bit 7,8,9 of 0x42020.
6507          */
6508         if (IS_IRONLAKE_M(dev)) {
6509                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6510                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6511                            I915_READ(ILK_DISPLAY_CHICKEN1) |
6512                            ILK_FBCQ_DIS);
6513                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6514                            I915_READ(ILK_DISPLAY_CHICKEN2) |
6515                            ILK_DPARB_GATE);
6516         }
6517
6518         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6519
6520         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6521                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6522                    ILK_ELPIN_409_SELECT);
6523         I915_WRITE(_3D_CHICKEN2,
6524                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6525                    _3D_CHICKEN2_WM_READ_PIPELINED);
6526
6527         /* WaDisableRenderCachePipelinedFlush:ilk */
6528         I915_WRITE(CACHE_MODE_0,
6529                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6530
6531         /* WaDisable_RenderCache_OperationalFlush:ilk */
6532         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6533
6534         g4x_disable_trickle_feed(dev);
6535
6536         ibx_init_clock_gating(dev);
6537 }
6538
6539 static void cpt_init_clock_gating(struct drm_device *dev)
6540 {
6541         struct drm_i915_private *dev_priv = dev->dev_private;
6542         int pipe;
6543         uint32_t val;
6544
6545         /*
6546          * On Ibex Peak and Cougar Point, we need to disable clock
6547          * gating for the panel power sequencer or it will fail to
6548          * start up when no ports are active.
6549          */
6550         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6551                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6552                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
6553         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6554                    DPLS_EDP_PPS_FIX_DIS);
6555         /* The below fixes the weird display corruption, a few pixels shifted
6556          * downward, on (only) LVDS of some HP laptops with IVY.
6557          */
6558         for_each_pipe(dev_priv, pipe) {
6559                 val = I915_READ(TRANS_CHICKEN2(pipe));
6560                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6561                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6562                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6563                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6564                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6565                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6566                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6567                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6568         }
6569         /* WADP0ClockGatingDisable */
6570         for_each_pipe(dev_priv, pipe) {
6571                 I915_WRITE(TRANS_CHICKEN1(pipe),
6572                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6573         }
6574 }
6575
6576 static void gen6_check_mch_setup(struct drm_device *dev)
6577 {
6578         struct drm_i915_private *dev_priv = dev->dev_private;
6579         uint32_t tmp;
6580
6581         tmp = I915_READ(MCH_SSKPD);
6582         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6583                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6584                               tmp);
6585 }
6586
6587 static void gen6_init_clock_gating(struct drm_device *dev)
6588 {
6589         struct drm_i915_private *dev_priv = dev->dev_private;
6590         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6591
6592         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6593
6594         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6595                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6596                    ILK_ELPIN_409_SELECT);
6597
6598         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6599         I915_WRITE(_3D_CHICKEN,
6600                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6601
6602         /* WaDisable_RenderCache_OperationalFlush:snb */
6603         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6604
6605         /*
6606          * BSpec recoomends 8x4 when MSAA is used,
6607          * however in practice 16x4 seems fastest.
6608          *
6609          * Note that PS/WM thread counts depend on the WIZ hashing
6610          * disable bit, which we don't touch here, but it's good
6611          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6612          */
6613         I915_WRITE(GEN6_GT_MODE,
6614                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6615
6616         ilk_init_lp_watermarks(dev);
6617
6618         I915_WRITE(CACHE_MODE_0,
6619                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6620
6621         I915_WRITE(GEN6_UCGCTL1,
6622                    I915_READ(GEN6_UCGCTL1) |
6623                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6624                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6625
6626         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6627          * gating disable must be set.  Failure to set it results in
6628          * flickering pixels due to Z write ordering failures after
6629          * some amount of runtime in the Mesa "fire" demo, and Unigine
6630          * Sanctuary and Tropics, and apparently anything else with
6631          * alpha test or pixel discard.
6632          *
6633          * According to the spec, bit 11 (RCCUNIT) must also be set,
6634          * but we didn't debug actual testcases to find it out.
6635          *
6636          * WaDisableRCCUnitClockGating:snb
6637          * WaDisableRCPBUnitClockGating:snb
6638          */
6639         I915_WRITE(GEN6_UCGCTL2,
6640                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6641                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6642
6643         /* WaStripsFansDisableFastClipPerformanceFix:snb */
6644         I915_WRITE(_3D_CHICKEN3,
6645                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6646
6647         /*
6648          * Bspec says:
6649          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6650          * 3DSTATE_SF number of SF output attributes is more than 16."
6651          */
6652         I915_WRITE(_3D_CHICKEN3,
6653                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6654
6655         /*
6656          * According to the spec the following bits should be
6657          * set in order to enable memory self-refresh and fbc:
6658          * The bit21 and bit22 of 0x42000
6659          * The bit21 and bit22 of 0x42004
6660          * The bit5 and bit7 of 0x42020
6661          * The bit14 of 0x70180
6662          * The bit14 of 0x71180
6663          *
6664          * WaFbcAsynchFlipDisableFbcQueue:snb
6665          */
6666         I915_WRITE(ILK_DISPLAY_CHICKEN1,
6667                    I915_READ(ILK_DISPLAY_CHICKEN1) |
6668                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6669         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6670                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6671                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6672         I915_WRITE(ILK_DSPCLK_GATE_D,
6673                    I915_READ(ILK_DSPCLK_GATE_D) |
6674                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6675                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6676
6677         g4x_disable_trickle_feed(dev);
6678
6679         cpt_init_clock_gating(dev);
6680
6681         gen6_check_mch_setup(dev);
6682 }
6683
6684 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6685 {
6686         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6687
6688         /*
6689          * WaVSThreadDispatchOverride:ivb,vlv
6690          *
6691          * This actually overrides the dispatch
6692          * mode for all thread types.
6693          */
6694         reg &= ~GEN7_FF_SCHED_MASK;
6695         reg |= GEN7_FF_TS_SCHED_HW;
6696         reg |= GEN7_FF_VS_SCHED_HW;
6697         reg |= GEN7_FF_DS_SCHED_HW;
6698
6699         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6700 }
6701
6702 static void lpt_init_clock_gating(struct drm_device *dev)
6703 {
6704         struct drm_i915_private *dev_priv = dev->dev_private;
6705
6706         /*
6707          * TODO: this bit should only be enabled when really needed, then
6708          * disabled when not needed anymore in order to save power.
6709          */
6710         if (HAS_PCH_LPT_LP(dev))
6711                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6712                            I915_READ(SOUTH_DSPCLK_GATE_D) |
6713                            PCH_LP_PARTITION_LEVEL_DISABLE);
6714
6715         /* WADPOClockGatingDisable:hsw */
6716         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6717                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6718                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6719 }
6720
6721 static void lpt_suspend_hw(struct drm_device *dev)
6722 {
6723         struct drm_i915_private *dev_priv = dev->dev_private;
6724
6725         if (HAS_PCH_LPT_LP(dev)) {
6726                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6727
6728                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6729                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6730         }
6731 }
6732
6733 static void kabylake_init_clock_gating(struct drm_device *dev)
6734 {
6735         struct drm_i915_private *dev_priv = dev->dev_private;
6736
6737         gen9_init_clock_gating(dev);
6738
6739         /* WaDisableSDEUnitClockGating:kbl */
6740         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
6741                 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6742                            GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6743
6744         /* WaDisableGamClockGating:kbl */
6745         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
6746                 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6747                            GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
6748
6749         /* WaFbcNukeOnHostModify:kbl */
6750         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
6751                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
6752 }
6753
6754 static void skylake_init_clock_gating(struct drm_device *dev)
6755 {
6756         struct drm_i915_private *dev_priv = dev->dev_private;
6757
6758         gen9_init_clock_gating(dev);
6759
6760         /* WaFbcNukeOnHostModify:skl */
6761         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
6762                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
6763 }
6764
6765 static void broadwell_init_clock_gating(struct drm_device *dev)
6766 {
6767         struct drm_i915_private *dev_priv = dev->dev_private;
6768         enum i915_pipe pipe;
6769         uint32_t misccpctl;
6770
6771         ilk_init_lp_watermarks(dev);
6772
6773         /* WaSwitchSolVfFArbitrationPriority:bdw */
6774         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6775
6776         /* WaPsrDPAMaskVBlankInSRD:bdw */
6777         I915_WRITE(CHICKEN_PAR1_1,
6778                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6779
6780         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6781         for_each_pipe(dev_priv, pipe) {
6782                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6783                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
6784                            BDW_DPRS_MASK_VBLANK_SRD);
6785         }
6786
6787         /* WaVSRefCountFullforceMissDisable:bdw */
6788         /* WaDSRefCountFullforceMissDisable:bdw */
6789         I915_WRITE(GEN7_FF_THREAD_MODE,
6790                    I915_READ(GEN7_FF_THREAD_MODE) &
6791                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6792
6793         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6794                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6795
6796         /* WaDisableSDEUnitClockGating:bdw */
6797         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6798                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6799
6800         /*
6801          * WaProgramL3SqcReg1Default:bdw
6802          * WaTempDisableDOPClkGating:bdw
6803          */
6804         misccpctl = I915_READ(GEN7_MISCCPCTL);
6805         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6806         I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6807         /*
6808          * Wait at least 100 clocks before re-enabling clock gating. See
6809          * the definition of L3SQCREG1 in BSpec.
6810          */
6811         POSTING_READ(GEN8_L3SQCREG1);
6812         udelay(1);
6813         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6814
6815         /*
6816          * WaGttCachingOffByDefault:bdw
6817          * GTT cache may not work with big pages, so if those
6818          * are ever enabled GTT cache may need to be disabled.
6819          */
6820         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6821
6822         lpt_init_clock_gating(dev);
6823 }
6824
6825 static void haswell_init_clock_gating(struct drm_device *dev)
6826 {
6827         struct drm_i915_private *dev_priv = dev->dev_private;
6828
6829         ilk_init_lp_watermarks(dev);
6830
6831         /* L3 caching of data atomics doesn't work -- disable it. */
6832         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6833         I915_WRITE(HSW_ROW_CHICKEN3,
6834                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6835
6836         /* This is required by WaCatErrorRejectionIssue:hsw */
6837         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6838                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6839                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6840
6841         /* WaVSRefCountFullforceMissDisable:hsw */
6842         I915_WRITE(GEN7_FF_THREAD_MODE,
6843                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6844
6845         /* WaDisable_RenderCache_OperationalFlush:hsw */
6846         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6847
6848         /* enable HiZ Raw Stall Optimization */
6849         I915_WRITE(CACHE_MODE_0_GEN7,
6850                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6851
6852         /* WaDisable4x2SubspanOptimization:hsw */
6853         I915_WRITE(CACHE_MODE_1,
6854                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6855
6856         /*
6857          * BSpec recommends 8x4 when MSAA is used,
6858          * however in practice 16x4 seems fastest.
6859          *
6860          * Note that PS/WM thread counts depend on the WIZ hashing
6861          * disable bit, which we don't touch here, but it's good
6862          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6863          */
6864         I915_WRITE(GEN7_GT_MODE,
6865                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6866
6867         /* WaSampleCChickenBitEnable:hsw */
6868         I915_WRITE(HALF_SLICE_CHICKEN3,
6869                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6870
6871         /* WaSwitchSolVfFArbitrationPriority:hsw */
6872         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6873
6874         /* WaRsPkgCStateDisplayPMReq:hsw */
6875         I915_WRITE(CHICKEN_PAR1_1,
6876                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6877
6878         lpt_init_clock_gating(dev);
6879 }
6880
6881 static void ivybridge_init_clock_gating(struct drm_device *dev)
6882 {
6883         struct drm_i915_private *dev_priv = dev->dev_private;
6884         uint32_t snpcr;
6885
6886         ilk_init_lp_watermarks(dev);
6887
6888         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6889
6890         /* WaDisableEarlyCull:ivb */
6891         I915_WRITE(_3D_CHICKEN3,
6892                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6893
6894         /* WaDisableBackToBackFlipFix:ivb */
6895         I915_WRITE(IVB_CHICKEN3,
6896                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6897                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
6898
6899         /* WaDisablePSDDualDispatchEnable:ivb */
6900         if (IS_IVB_GT1(dev))
6901                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6902                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6903
6904         /* WaDisable_RenderCache_OperationalFlush:ivb */
6905         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6906
6907         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6908         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6909                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6910
6911         /* WaApplyL3ControlAndL3ChickenMode:ivb */
6912         I915_WRITE(GEN7_L3CNTLREG1,
6913                         GEN7_WA_FOR_GEN7_L3_CONTROL);
6914         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6915                    GEN7_WA_L3_CHICKEN_MODE);
6916         if (IS_IVB_GT1(dev))
6917                 I915_WRITE(GEN7_ROW_CHICKEN2,
6918                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6919         else {
6920                 /* must write both registers */
6921                 I915_WRITE(GEN7_ROW_CHICKEN2,
6922                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6923                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6924                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6925         }
6926
6927         /* WaForceL3Serialization:ivb */
6928         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6929                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6930
6931         /*
6932          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6933          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6934          */
6935         I915_WRITE(GEN6_UCGCTL2,
6936                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6937
6938         /* This is required by WaCatErrorRejectionIssue:ivb */
6939         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6940                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6941                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6942
6943         g4x_disable_trickle_feed(dev);
6944
6945         gen7_setup_fixed_func_scheduler(dev_priv);
6946
6947         if (0) { /* causes HiZ corruption on ivb:gt1 */
6948                 /* enable HiZ Raw Stall Optimization */
6949                 I915_WRITE(CACHE_MODE_0_GEN7,
6950                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6951         }
6952
6953         /* WaDisable4x2SubspanOptimization:ivb */
6954         I915_WRITE(CACHE_MODE_1,
6955                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6956
6957         /*
6958          * BSpec recommends 8x4 when MSAA is used,
6959          * however in practice 16x4 seems fastest.
6960          *
6961          * Note that PS/WM thread counts depend on the WIZ hashing
6962          * disable bit, which we don't touch here, but it's good
6963          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6964          */
6965         I915_WRITE(GEN7_GT_MODE,
6966                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6967
6968         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6969         snpcr &= ~GEN6_MBC_SNPCR_MASK;
6970         snpcr |= GEN6_MBC_SNPCR_MED;
6971         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6972
6973         if (!HAS_PCH_NOP(dev))
6974                 cpt_init_clock_gating(dev);
6975
6976         gen6_check_mch_setup(dev);
6977 }
6978
6979 static void valleyview_init_clock_gating(struct drm_device *dev)
6980 {
6981         struct drm_i915_private *dev_priv = dev->dev_private;
6982
6983         /* WaDisableEarlyCull:vlv */
6984         I915_WRITE(_3D_CHICKEN3,
6985                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6986
6987         /* WaDisableBackToBackFlipFix:vlv */
6988         I915_WRITE(IVB_CHICKEN3,
6989                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6990                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
6991
6992         /* WaPsdDispatchEnable:vlv */
6993         /* WaDisablePSDDualDispatchEnable:vlv */
6994         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6995                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6996                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6997
6998         /* WaDisable_RenderCache_OperationalFlush:vlv */
6999         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7000
7001         /* WaForceL3Serialization:vlv */
7002         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7003                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7004
7005         /* WaDisableDopClockGating:vlv */
7006         I915_WRITE(GEN7_ROW_CHICKEN2,
7007                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7008
7009         /* This is required by WaCatErrorRejectionIssue:vlv */
7010         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7011                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7012                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7013
7014         gen7_setup_fixed_func_scheduler(dev_priv);
7015
7016         /*
7017          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7018          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7019          */
7020         I915_WRITE(GEN6_UCGCTL2,
7021                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7022
7023         /* WaDisableL3Bank2xClockGate:vlv
7024          * Disabling L3 clock gating- MMIO 940c[25] = 1
7025          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7026         I915_WRITE(GEN7_UCGCTL4,
7027                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7028
7029         /*
7030          * BSpec says this must be set, even though
7031          * WaDisable4x2SubspanOptimization isn't listed for VLV.
7032          */
7033         I915_WRITE(CACHE_MODE_1,
7034                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7035
7036         /*
7037          * BSpec recommends 8x4 when MSAA is used,
7038          * however in practice 16x4 seems fastest.
7039          *
7040          * Note that PS/WM thread counts depend on the WIZ hashing
7041          * disable bit, which we don't touch here, but it's good
7042          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7043          */
7044         I915_WRITE(GEN7_GT_MODE,
7045                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7046
7047         /*
7048          * WaIncreaseL3CreditsForVLVB0:vlv
7049          * This is the hardware default actually.
7050          */
7051         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7052
7053         /*
7054          * WaDisableVLVClockGating_VBIIssue:vlv
7055          * Disable clock gating on th GCFG unit to prevent a delay
7056          * in the reporting of vblank events.
7057          */
7058         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7059 }
7060
7061 static void cherryview_init_clock_gating(struct drm_device *dev)
7062 {
7063         struct drm_i915_private *dev_priv = dev->dev_private;
7064
7065         /* WaVSRefCountFullforceMissDisable:chv */
7066         /* WaDSRefCountFullforceMissDisable:chv */
7067         I915_WRITE(GEN7_FF_THREAD_MODE,
7068                    I915_READ(GEN7_FF_THREAD_MODE) &
7069                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7070
7071         /* WaDisableSemaphoreAndSyncFlipWait:chv */
7072         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7073                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7074
7075         /* WaDisableCSUnitClockGating:chv */
7076         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7077                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7078
7079         /* WaDisableSDEUnitClockGating:chv */
7080         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7081                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7082
7083         /*
7084          * GTT cache may not work with big pages, so if those
7085          * are ever enabled GTT cache may need to be disabled.
7086          */
7087         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7088 }
7089
7090 static void g4x_init_clock_gating(struct drm_device *dev)
7091 {
7092         struct drm_i915_private *dev_priv = dev->dev_private;
7093         uint32_t dspclk_gate;
7094
7095         I915_WRITE(RENCLK_GATE_D1, 0);
7096         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7097                    GS_UNIT_CLOCK_GATE_DISABLE |
7098                    CL_UNIT_CLOCK_GATE_DISABLE);
7099         I915_WRITE(RAMCLK_GATE_D, 0);
7100         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7101                 OVRUNIT_CLOCK_GATE_DISABLE |
7102                 OVCUNIT_CLOCK_GATE_DISABLE;
7103         if (IS_GM45(dev))
7104                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7105         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7106
7107         /* WaDisableRenderCachePipelinedFlush */
7108         I915_WRITE(CACHE_MODE_0,
7109                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7110
7111         /* WaDisable_RenderCache_OperationalFlush:g4x */
7112         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7113
7114         g4x_disable_trickle_feed(dev);
7115 }
7116
7117 static void crestline_init_clock_gating(struct drm_device *dev)
7118 {
7119         struct drm_i915_private *dev_priv = dev->dev_private;
7120
7121         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7122         I915_WRITE(RENCLK_GATE_D2, 0);
7123         I915_WRITE(DSPCLK_GATE_D, 0);
7124         I915_WRITE(RAMCLK_GATE_D, 0);
7125         I915_WRITE16(DEUC, 0);
7126         I915_WRITE(MI_ARB_STATE,
7127                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7128
7129         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7130         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7131 }
7132
7133 static void broadwater_init_clock_gating(struct drm_device *dev)
7134 {
7135         struct drm_i915_private *dev_priv = dev->dev_private;
7136
7137         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7138                    I965_RCC_CLOCK_GATE_DISABLE |
7139                    I965_RCPB_CLOCK_GATE_DISABLE |
7140                    I965_ISC_CLOCK_GATE_DISABLE |
7141                    I965_FBC_CLOCK_GATE_DISABLE);
7142         I915_WRITE(RENCLK_GATE_D2, 0);
7143         I915_WRITE(MI_ARB_STATE,
7144                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7145
7146         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7147         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7148 }
7149
7150 static void gen3_init_clock_gating(struct drm_device *dev)
7151 {
7152         struct drm_i915_private *dev_priv = dev->dev_private;
7153         u32 dstate = I915_READ(D_STATE);
7154
7155         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7156                 DSTATE_DOT_CLOCK_GATING;
7157         I915_WRITE(D_STATE, dstate);
7158
7159         if (IS_PINEVIEW(dev))
7160                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7161
7162         /* IIR "flip pending" means done if this bit is set */
7163         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7164
7165         /* interrupts should cause a wake up from C3 */
7166         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7167
7168         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7169         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7170
7171         I915_WRITE(MI_ARB_STATE,
7172                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7173 }
7174
7175 static void i85x_init_clock_gating(struct drm_device *dev)
7176 {
7177         struct drm_i915_private *dev_priv = dev->dev_private;
7178
7179         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7180
7181         /* interrupts should cause a wake up from C3 */
7182         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7183                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7184
7185         I915_WRITE(MEM_MODE,
7186                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7187 }
7188
7189 static void i830_init_clock_gating(struct drm_device *dev)
7190 {
7191         struct drm_i915_private *dev_priv = dev->dev_private;
7192
7193         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7194
7195         I915_WRITE(MEM_MODE,
7196                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7197                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7198 }
7199
7200 void intel_init_clock_gating(struct drm_device *dev)
7201 {
7202         struct drm_i915_private *dev_priv = dev->dev_private;
7203
7204         dev_priv->display.init_clock_gating(dev);
7205 }
7206
7207 void intel_suspend_hw(struct drm_device *dev)
7208 {
7209         if (HAS_PCH_LPT(dev))
7210                 lpt_suspend_hw(dev);
7211 }
7212
7213 static void nop_init_clock_gating(struct drm_device *dev)
7214 {
7215         DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
7216 }
7217
7218 /**
7219  * intel_init_clock_gating_hooks - setup the clock gating hooks
7220  * @dev_priv: device private
7221  *
7222  * Setup the hooks that configure which clocks of a given platform can be
7223  * gated and also apply various GT and display specific workarounds for these
7224  * platforms. Note that some GT specific workarounds are applied separately
7225  * when GPU contexts or batchbuffers start their execution.
7226  */
7227 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7228 {
7229         if (IS_SKYLAKE(dev_priv))
7230                 dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7231         else if (IS_KABYLAKE(dev_priv))
7232                 dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7233         else if (IS_BROXTON(dev_priv))
7234                 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7235         else if (IS_BROADWELL(dev_priv))
7236                 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7237         else if (IS_CHERRYVIEW(dev_priv))
7238                 dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
7239         else if (IS_HASWELL(dev_priv))
7240                 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7241         else if (IS_IVYBRIDGE(dev_priv))
7242                 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7243         else if (IS_VALLEYVIEW(dev_priv))
7244                 dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
7245         else if (IS_GEN6(dev_priv))
7246                 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7247         else if (IS_GEN5(dev_priv))
7248                 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7249         else if (IS_G4X(dev_priv))
7250                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7251         else if (IS_CRESTLINE(dev_priv))
7252                 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7253         else if (IS_BROADWATER(dev_priv))
7254                 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7255         else if (IS_GEN3(dev_priv))
7256                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7257         else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7258                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7259         else if (IS_GEN2(dev_priv))
7260                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7261         else {
7262                 MISSING_CASE(INTEL_DEVID(dev_priv));
7263                 dev_priv->display.init_clock_gating = nop_init_clock_gating;
7264         }
7265 }
7266
7267 /* Set up chip specific power management-related functions */
7268 void intel_init_pm(struct drm_device *dev)
7269 {
7270         struct drm_i915_private *dev_priv = dev->dev_private;
7271
7272         intel_fbc_init(dev_priv);
7273
7274         /* For cxsr */
7275         if (IS_PINEVIEW(dev))
7276                 i915_pineview_get_mem_freq(dev);
7277         else if (IS_GEN5(dev))
7278                 i915_ironlake_get_mem_freq(dev);
7279
7280         /* For FIFO watermark updates */
7281         if (INTEL_INFO(dev)->gen >= 9) {
7282                 skl_setup_wm_latency(dev);
7283                 dev_priv->display.update_wm = skl_update_wm;
7284         } else if (HAS_PCH_SPLIT(dev)) {
7285                 ilk_setup_wm_latency(dev);
7286
7287                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7288                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7289                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7290                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7291                         dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7292                         dev_priv->display.compute_intermediate_wm =
7293                                 ilk_compute_intermediate_wm;
7294                         dev_priv->display.initial_watermarks =
7295                                 ilk_initial_watermarks;
7296                         dev_priv->display.optimize_watermarks =
7297                                 ilk_optimize_watermarks;
7298                 } else {
7299                         DRM_DEBUG_KMS("Failed to read display plane latency. "
7300                                       "Disable CxSR\n");
7301                 }
7302         } else if (IS_CHERRYVIEW(dev)) {
7303                 vlv_setup_wm_latency(dev);
7304                 dev_priv->display.update_wm = vlv_update_wm;
7305         } else if (IS_VALLEYVIEW(dev)) {
7306                 vlv_setup_wm_latency(dev);
7307                 dev_priv->display.update_wm = vlv_update_wm;
7308         } else if (IS_PINEVIEW(dev)) {
7309                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7310                                             dev_priv->is_ddr3,
7311                                             dev_priv->fsb_freq,
7312                                             dev_priv->mem_freq)) {
7313                         DRM_INFO("failed to find known CxSR latency "
7314                                  "(found ddr%s fsb freq %d, mem freq %d), "
7315                                  "disabling CxSR\n",
7316                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
7317                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7318                         /* Disable CxSR and never update its watermark again */
7319                         intel_set_memory_cxsr(dev_priv, false);
7320                         dev_priv->display.update_wm = NULL;
7321                 } else
7322                         dev_priv->display.update_wm = pineview_update_wm;
7323         } else if (IS_G4X(dev)) {
7324                 dev_priv->display.update_wm = g4x_update_wm;
7325         } else if (IS_GEN4(dev)) {
7326                 dev_priv->display.update_wm = i965_update_wm;
7327         } else if (IS_GEN3(dev)) {
7328                 dev_priv->display.update_wm = i9xx_update_wm;
7329                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7330         } else if (IS_GEN2(dev)) {
7331                 if (INTEL_INFO(dev)->num_pipes == 1) {
7332                         dev_priv->display.update_wm = i845_update_wm;
7333                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7334                 } else {
7335                         dev_priv->display.update_wm = i9xx_update_wm;
7336                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7337                 }
7338         } else {
7339                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7340         }
7341 }
7342
7343 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7344 {
7345         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7346
7347         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7348                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7349                 return -EAGAIN;
7350         }
7351
7352         I915_WRITE(GEN6_PCODE_DATA, *val);
7353         I915_WRITE(GEN6_PCODE_DATA1, 0);
7354         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7355
7356         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7357                      500)) {
7358                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7359                 return -ETIMEDOUT;
7360         }
7361
7362         *val = I915_READ(GEN6_PCODE_DATA);
7363         I915_WRITE(GEN6_PCODE_DATA, 0);
7364
7365         return 0;
7366 }
7367
7368 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7369 {
7370         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7371
7372         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7373                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7374                 return -EAGAIN;
7375         }
7376
7377         I915_WRITE(GEN6_PCODE_DATA, val);
7378         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7379
7380         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7381                      500)) {
7382                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7383                 return -ETIMEDOUT;
7384         }
7385
7386         I915_WRITE(GEN6_PCODE_DATA, 0);
7387
7388         return 0;
7389 }
7390
7391 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7392 {
7393         /*
7394          * N = val - 0xb7
7395          * Slow = Fast = GPLL ref * N
7396          */
7397         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7398 }
7399
7400 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7401 {
7402         return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7403 }
7404
7405 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7406 {
7407         /*
7408          * N = val / 2
7409          * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
7410          */
7411         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7412 }
7413
7414 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7415 {
7416         /* CHV needs even values */
7417         return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7418 }
7419
7420 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7421 {
7422         if (IS_GEN9(dev_priv))
7423                 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7424                                          GEN9_FREQ_SCALER);
7425         else if (IS_CHERRYVIEW(dev_priv))
7426                 return chv_gpu_freq(dev_priv, val);
7427         else if (IS_VALLEYVIEW(dev_priv))
7428                 return byt_gpu_freq(dev_priv, val);
7429         else
7430                 return val * GT_FREQUENCY_MULTIPLIER;
7431 }
7432
7433 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7434 {
7435         if (IS_GEN9(dev_priv))
7436                 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7437                                          GT_FREQUENCY_MULTIPLIER);
7438         else if (IS_CHERRYVIEW(dev_priv))
7439                 return chv_freq_opcode(dev_priv, val);
7440         else if (IS_VALLEYVIEW(dev_priv))
7441                 return byt_freq_opcode(dev_priv, val);
7442         else
7443                 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7444 }
7445
7446 struct request_boost {
7447         struct work_struct work;
7448         struct drm_i915_gem_request *req;
7449 };
7450
7451 static void __intel_rps_boost_work(struct work_struct *work)
7452 {
7453         struct request_boost *boost = container_of(work, struct request_boost, work);
7454         struct drm_i915_gem_request *req = boost->req;
7455
7456         if (!i915_gem_request_completed(req, true))
7457                 gen6_rps_boost(to_i915(req->engine->dev), NULL,
7458                                req->emitted_jiffies);
7459
7460         i915_gem_request_unreference__unlocked(req);
7461         kfree(boost);
7462 }
7463
7464 void intel_queue_rps_boost_for_request(struct drm_device *dev,
7465                                        struct drm_i915_gem_request *req)
7466 {
7467         struct request_boost *boost;
7468
7469         if (req == NULL || INTEL_INFO(dev)->gen < 6)
7470                 return;
7471
7472         if (i915_gem_request_completed(req, true))
7473                 return;
7474
7475         boost = kmalloc(sizeof(*boost), M_DRM, M_NOWAIT);
7476         if (boost == NULL)
7477                 return;
7478
7479         i915_gem_request_reference(req);
7480         boost->req = req;
7481
7482         INIT_WORK(&boost->work, __intel_rps_boost_work);
7483         queue_work(to_i915(dev)->wq, &boost->work);
7484 }
7485
7486 void intel_pm_setup(struct drm_device *dev)
7487 {
7488         struct drm_i915_private *dev_priv = dev->dev_private;
7489
7490         lockinit(&dev_priv->rps.hw_lock, "i915 rps.hw_lock", 0, LK_CANRECURSE);
7491         lockinit(&dev_priv->rps.client_lock, "i915rcl", 0, LK_CANRECURSE);
7492
7493         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7494                           intel_gen6_powersave_work);
7495         INIT_LIST_HEAD(&dev_priv->rps.clients);
7496         INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7497         INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7498
7499         dev_priv->pm.suspended = false;
7500         atomic_set(&dev_priv->pm.wakeref_count, 0);
7501         atomic_set(&dev_priv->pm.atomic_seq, 0);
7502 }