drm/i915: Use generic drm_plane helper functions
[dragonfly.git] / sys / dev / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_drv.h"
139
140 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
144 #define RING_EXECLIST_QFULL             (1 << 0x2)
145 #define RING_EXECLIST1_VALID            (1 << 0x3)
146 #define RING_EXECLIST0_VALID            (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
150
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
157
158 #define CTX_LRI_HEADER_0                0x01
159 #define CTX_CONTEXT_CONTROL             0x02
160 #define CTX_RING_HEAD                   0x04
161 #define CTX_RING_TAIL                   0x06
162 #define CTX_RING_BUFFER_START           0x08
163 #define CTX_RING_BUFFER_CONTROL         0x0a
164 #define CTX_BB_HEAD_U                   0x0c
165 #define CTX_BB_HEAD_L                   0x0e
166 #define CTX_BB_STATE                    0x10
167 #define CTX_SECOND_BB_HEAD_U            0x12
168 #define CTX_SECOND_BB_HEAD_L            0x14
169 #define CTX_SECOND_BB_STATE             0x16
170 #define CTX_BB_PER_CTX_PTR              0x18
171 #define CTX_RCS_INDIRECT_CTX            0x1a
172 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
173 #define CTX_LRI_HEADER_1                0x21
174 #define CTX_CTX_TIMESTAMP               0x22
175 #define CTX_PDP3_UDW                    0x24
176 #define CTX_PDP3_LDW                    0x26
177 #define CTX_PDP2_UDW                    0x28
178 #define CTX_PDP2_LDW                    0x2a
179 #define CTX_PDP1_UDW                    0x2c
180 #define CTX_PDP1_LDW                    0x2e
181 #define CTX_PDP0_UDW                    0x30
182 #define CTX_PDP0_LDW                    0x32
183 #define CTX_LRI_HEADER_2                0x41
184 #define CTX_R_PWR_CLK_STATE             0x42
185 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
186
187 #define GEN8_CTX_VALID (1<<0)
188 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 #define GEN8_CTX_PRIVILEGE (1<<8)
192 enum {
193         ADVANCED_CONTEXT = 0,
194         LEGACY_CONTEXT,
195         ADVANCED_AD_CONTEXT,
196         LEGACY_64B_CONTEXT
197 };
198 #define GEN8_CTX_MODE_SHIFT 3
199 enum {
200         FAULT_AND_HANG = 0,
201         FAULT_AND_HALT, /* Debug only */
202         FAULT_AND_STREAM,
203         FAULT_AND_CONTINUE /* Unsupported */
204 };
205 #define GEN8_CTX_ID_SHIFT 32
206
207 static int intel_lr_context_pin(struct intel_engine_cs *ring,
208                 struct intel_context *ctx);
209
210 /**
211  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
212  * @dev: DRM device.
213  * @enable_execlists: value of i915.enable_execlists module parameter.
214  *
215  * Only certain platforms support Execlists (the prerequisites being
216  * support for Logical Ring Contexts and Aliasing PPGTT or better).
217  *
218  * Return: 1 if Execlists is supported and has to be enabled.
219  */
220 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
221 {
222         WARN_ON(i915.enable_ppgtt == -1);
223
224         if (INTEL_INFO(dev)->gen >= 9)
225                 return 1;
226
227         if (enable_execlists == 0)
228                 return 0;
229
230         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
231             i915.use_mmio_flip >= 0)
232                 return 1;
233
234         return 0;
235 }
236
237 /**
238  * intel_execlists_ctx_id() - get the Execlists Context ID
239  * @ctx_obj: Logical Ring Context backing object.
240  *
241  * Do not confuse with ctx->id! Unfortunately we have a name overload
242  * here: the old context ID we pass to userspace as a handler so that
243  * they can refer to a context, and the new context ID we pass to the
244  * ELSP so that the GPU can inform us of the context status via
245  * interrupts.
246  *
247  * Return: 20-bits globally unique context ID.
248  */
249 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
250 {
251         u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
252
253         /* LRCA is required to be 4K aligned so the more significant 20 bits
254          * are globally unique */
255         return lrca >> 12;
256 }
257
258 static uint64_t execlists_ctx_descriptor(struct drm_i915_gem_object *ctx_obj)
259 {
260         uint64_t desc;
261         uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
262
263         WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
264
265         desc = GEN8_CTX_VALID;
266         desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
267         desc |= GEN8_CTX_L3LLC_COHERENT;
268         desc |= GEN8_CTX_PRIVILEGE;
269         desc |= lrca;
270         desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
271
272         /* TODO: WaDisableLiteRestore when we start using semaphore
273          * signalling between Command Streamers */
274         /* desc |= GEN8_CTX_FORCE_RESTORE; */
275
276         return desc;
277 }
278
279 static void execlists_elsp_write(struct intel_engine_cs *ring,
280                                  struct drm_i915_gem_object *ctx_obj0,
281                                  struct drm_i915_gem_object *ctx_obj1)
282 {
283         struct drm_device *dev = ring->dev;
284         struct drm_i915_private *dev_priv = dev->dev_private;
285         uint64_t temp = 0;
286         uint32_t desc[4];
287
288         /* XXX: You must always write both descriptors in the order below. */
289         if (ctx_obj1)
290                 temp = execlists_ctx_descriptor(ctx_obj1);
291         else
292                 temp = 0;
293         desc[1] = (u32)(temp >> 32);
294         desc[0] = (u32)temp;
295
296         temp = execlists_ctx_descriptor(ctx_obj0);
297         desc[3] = (u32)(temp >> 32);
298         desc[2] = (u32)temp;
299
300         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
301         I915_WRITE(RING_ELSP(ring), desc[1]);
302         I915_WRITE(RING_ELSP(ring), desc[0]);
303         I915_WRITE(RING_ELSP(ring), desc[3]);
304
305         /* The context is automatically loaded after the following */
306         I915_WRITE(RING_ELSP(ring), desc[2]);
307
308         /* ELSP is a wo register, so use another nearby reg for posting instead */
309         POSTING_READ(RING_EXECLIST_STATUS(ring));
310         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
311 }
312
313 static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
314                                     struct drm_i915_gem_object *ring_obj,
315                                     u32 tail)
316 {
317         struct vm_page *page;
318         uint32_t *reg_state;
319
320         page = i915_gem_object_get_page(ctx_obj, 1);
321         reg_state = kmap_atomic(page);
322
323         reg_state[CTX_RING_TAIL+1] = tail;
324         reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
325
326         kunmap_atomic(reg_state);
327
328         return 0;
329 }
330
331 static void execlists_submit_contexts(struct intel_engine_cs *ring,
332                                       struct intel_context *to0, u32 tail0,
333                                       struct intel_context *to1, u32 tail1)
334 {
335         struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
336         struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
337         struct drm_i915_gem_object *ctx_obj1 = NULL;
338         struct intel_ringbuffer *ringbuf1 = NULL;
339
340         BUG_ON(!ctx_obj0);
341         WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
342         WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
343
344         execlists_update_context(ctx_obj0, ringbuf0->obj, tail0);
345
346         if (to1) {
347                 ringbuf1 = to1->engine[ring->id].ringbuf;
348                 ctx_obj1 = to1->engine[ring->id].state;
349                 BUG_ON(!ctx_obj1);
350                 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
351                 WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
352
353                 execlists_update_context(ctx_obj1, ringbuf1->obj, tail1);
354         }
355
356         execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
357 }
358
359 static void execlists_context_unqueue(struct intel_engine_cs *ring)
360 {
361         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
362         struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
363
364         assert_spin_locked(&ring->execlist_lock);
365
366         if (list_empty(&ring->execlist_queue))
367                 return;
368
369         /* Try to read in pairs */
370         list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
371                                  execlist_link) {
372                 if (!req0) {
373                         req0 = cursor;
374                 } else if (req0->ctx == cursor->ctx) {
375                         /* Same ctx: ignore first request, as second request
376                          * will update tail past first request's workload */
377                         cursor->elsp_submitted = req0->elsp_submitted;
378                         list_del(&req0->execlist_link);
379                         list_add_tail(&req0->execlist_link,
380                                 &ring->execlist_retired_req_list);
381                         req0 = cursor;
382                 } else {
383                         req1 = cursor;
384                         break;
385                 }
386         }
387
388         WARN_ON(req1 && req1->elsp_submitted);
389
390         execlists_submit_contexts(ring, req0->ctx, req0->tail,
391                                   req1 ? req1->ctx : NULL,
392                                   req1 ? req1->tail : 0);
393
394         req0->elsp_submitted++;
395         if (req1)
396                 req1->elsp_submitted++;
397 }
398
399 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
400                                            u32 request_id)
401 {
402         struct drm_i915_gem_request *head_req;
403
404         assert_spin_locked(&ring->execlist_lock);
405
406         head_req = list_first_entry_or_null(&ring->execlist_queue,
407                                             struct drm_i915_gem_request,
408                                             execlist_link);
409
410         if (head_req != NULL) {
411                 struct drm_i915_gem_object *ctx_obj =
412                                 head_req->ctx->engine[ring->id].state;
413                 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
414                         WARN(head_req->elsp_submitted == 0,
415                              "Never submitted head request\n");
416
417                         if (--head_req->elsp_submitted <= 0) {
418                                 list_del(&head_req->execlist_link);
419                                 list_add_tail(&head_req->execlist_link,
420                                         &ring->execlist_retired_req_list);
421                                 return true;
422                         }
423                 }
424         }
425
426         return false;
427 }
428
429 /**
430  * intel_lrc_irq_handler() - handle Context Switch interrupts
431  * @ring: Engine Command Streamer to handle.
432  *
433  * Check the unread Context Status Buffers and manage the submission of new
434  * contexts to the ELSP accordingly.
435  */
436 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
437 {
438         struct drm_i915_private *dev_priv = ring->dev->dev_private;
439         u32 status_pointer;
440         u8 read_pointer;
441         u8 write_pointer;
442         u32 status;
443         u32 status_id;
444         u32 submit_contexts = 0;
445
446         status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
447
448         read_pointer = ring->next_context_status_buffer;
449         write_pointer = status_pointer & 0x07;
450         if (read_pointer > write_pointer)
451                 write_pointer += 6;
452
453         lockmgr(&ring->execlist_lock, LK_EXCLUSIVE);
454
455         while (read_pointer < write_pointer) {
456                 read_pointer++;
457                 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
458                                 (read_pointer % 6) * 8);
459                 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
460                                 (read_pointer % 6) * 8 + 4);
461
462                 if (status & GEN8_CTX_STATUS_PREEMPTED) {
463                         if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
464                                 if (execlists_check_remove_request(ring, status_id))
465                                         WARN(1, "Lite Restored request removed from queue\n");
466                         } else
467                                 WARN(1, "Preemption without Lite Restore\n");
468                 }
469
470                  if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
471                      (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
472                         if (execlists_check_remove_request(ring, status_id))
473                                 submit_contexts++;
474                 }
475         }
476
477         if (submit_contexts != 0)
478                 execlists_context_unqueue(ring);
479
480         lockmgr(&ring->execlist_lock, LK_RELEASE);
481
482         WARN(submit_contexts > 2, "More than two context complete events?\n");
483         ring->next_context_status_buffer = write_pointer % 6;
484
485         I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
486                    ((u32)ring->next_context_status_buffer & 0x07) << 8);
487 }
488
489 static int execlists_context_queue(struct intel_engine_cs *ring,
490                                    struct intel_context *to,
491                                    u32 tail,
492                                    struct drm_i915_gem_request *request)
493 {
494         struct drm_i915_gem_request *cursor;
495         struct drm_i915_private *dev_priv = ring->dev->dev_private;
496         int num_elements = 0;
497
498         if (to != ring->default_context)
499                 intel_lr_context_pin(ring, to);
500
501         if (!request) {
502                 /*
503                  * If there isn't a request associated with this submission,
504                  * create one as a temporary holder.
505                  */
506                 request = kzalloc(sizeof(*request), GFP_KERNEL);
507                 if (request == NULL)
508                         return -ENOMEM;
509                 request->ring = ring;
510                 request->ctx = to;
511                 kref_init(&request->ref);
512                 request->uniq = dev_priv->request_uniq++;
513                 i915_gem_context_reference(request->ctx);
514         } else {
515                 i915_gem_request_reference(request);
516                 WARN_ON(to != request->ctx);
517         }
518         request->tail = tail;
519
520         intel_runtime_pm_get(dev_priv);
521
522         lockmgr(&ring->execlist_lock, LK_EXCLUSIVE);
523
524         list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
525                 if (++num_elements > 2)
526                         break;
527
528         if (num_elements > 2) {
529                 struct drm_i915_gem_request *tail_req;
530
531                 tail_req = list_last_entry(&ring->execlist_queue,
532                                            struct drm_i915_gem_request,
533                                            execlist_link);
534
535                 if (to == tail_req->ctx) {
536                         WARN(tail_req->elsp_submitted != 0,
537                                 "More than 2 already-submitted reqs queued\n");
538                         list_del(&tail_req->execlist_link);
539                         list_add_tail(&tail_req->execlist_link,
540                                 &ring->execlist_retired_req_list);
541                 }
542         }
543
544         list_add_tail(&request->execlist_link, &ring->execlist_queue);
545         if (num_elements == 0)
546                 execlists_context_unqueue(ring);
547
548         lockmgr(&ring->execlist_lock, LK_RELEASE);
549
550         return 0;
551 }
552
553 static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf,
554                                               struct intel_context *ctx)
555 {
556         struct intel_engine_cs *ring = ringbuf->ring;
557         uint32_t flush_domains;
558         int ret;
559
560         flush_domains = 0;
561         if (ring->gpu_caches_dirty)
562                 flush_domains = I915_GEM_GPU_DOMAINS;
563
564         ret = ring->emit_flush(ringbuf, ctx,
565                                I915_GEM_GPU_DOMAINS, flush_domains);
566         if (ret)
567                 return ret;
568
569         ring->gpu_caches_dirty = false;
570         return 0;
571 }
572
573 static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
574                                  struct intel_context *ctx,
575                                  struct list_head *vmas)
576 {
577         struct intel_engine_cs *ring = ringbuf->ring;
578         struct i915_vma *vma;
579         uint32_t flush_domains = 0;
580         bool flush_chipset = false;
581         int ret;
582
583         list_for_each_entry(vma, vmas, exec_list) {
584                 struct drm_i915_gem_object *obj = vma->obj;
585
586                 ret = i915_gem_object_sync(obj, ring);
587                 if (ret)
588                         return ret;
589
590                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
591                         flush_chipset |= i915_gem_clflush_object(obj, false);
592
593                 flush_domains |= obj->base.write_domain;
594         }
595
596         if (flush_domains & I915_GEM_DOMAIN_GTT)
597                 wmb();
598
599         /* Unconditionally invalidate gpu caches and ensure that we do flush
600          * any residual writes from the previous batch.
601          */
602         return logical_ring_invalidate_all_caches(ringbuf, ctx);
603 }
604
605 /**
606  * execlists_submission() - submit a batchbuffer for execution, Execlists style
607  * @dev: DRM device.
608  * @file: DRM file.
609  * @ring: Engine Command Streamer to submit to.
610  * @ctx: Context to employ for this submission.
611  * @args: execbuffer call arguments.
612  * @vmas: list of vmas.
613  * @batch_obj: the batchbuffer to submit.
614  * @exec_start: batchbuffer start virtual address pointer.
615  * @flags: translated execbuffer call flags.
616  *
617  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
618  * away the submission details of the execbuffer ioctl call.
619  *
620  * Return: non-zero if the submission fails.
621  */
622 int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
623                                struct intel_engine_cs *ring,
624                                struct intel_context *ctx,
625                                struct drm_i915_gem_execbuffer2 *args,
626                                struct list_head *vmas,
627                                struct drm_i915_gem_object *batch_obj,
628                                u64 exec_start, u32 flags)
629 {
630         struct drm_i915_private *dev_priv = dev->dev_private;
631         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
632         int instp_mode;
633         u32 instp_mask;
634         int ret;
635
636         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
637         instp_mask = I915_EXEC_CONSTANTS_MASK;
638         switch (instp_mode) {
639         case I915_EXEC_CONSTANTS_REL_GENERAL:
640         case I915_EXEC_CONSTANTS_ABSOLUTE:
641         case I915_EXEC_CONSTANTS_REL_SURFACE:
642                 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
643                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
644                         return -EINVAL;
645                 }
646
647                 if (instp_mode != dev_priv->relative_constants_mode) {
648                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
649                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
650                                 return -EINVAL;
651                         }
652
653                         /* The HW changed the meaning on this bit on gen6 */
654                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
655                 }
656                 break;
657         default:
658                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
659                 return -EINVAL;
660         }
661
662         if (args->num_cliprects != 0) {
663                 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
664                 return -EINVAL;
665         } else {
666                 if (args->DR4 == 0xffffffff) {
667                         DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
668                         args->DR4 = 0;
669                 }
670
671                 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
672                         DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
673                         return -EINVAL;
674                 }
675         }
676
677         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
678                 DRM_DEBUG("sol reset is gen7 only\n");
679                 return -EINVAL;
680         }
681
682         ret = execlists_move_to_gpu(ringbuf, ctx, vmas);
683         if (ret)
684                 return ret;
685
686         if (ring == &dev_priv->ring[RCS] &&
687             instp_mode != dev_priv->relative_constants_mode) {
688                 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
689                 if (ret)
690                         return ret;
691
692                 intel_logical_ring_emit(ringbuf, MI_NOOP);
693                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
694                 intel_logical_ring_emit(ringbuf, INSTPM);
695                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
696                 intel_logical_ring_advance(ringbuf);
697
698                 dev_priv->relative_constants_mode = instp_mode;
699         }
700
701         ret = ring->emit_bb_start(ringbuf, ctx, exec_start, flags);
702         if (ret)
703                 return ret;
704
705         i915_gem_execbuffer_move_to_active(vmas, ring);
706         i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
707
708         return 0;
709 }
710
711 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
712 {
713         struct drm_i915_gem_request *req, *tmp;
714         struct drm_i915_private *dev_priv = ring->dev->dev_private;
715         struct list_head retired_list;
716
717         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
718         if (list_empty(&ring->execlist_retired_req_list))
719                 return;
720
721         INIT_LIST_HEAD(&retired_list);
722         lockmgr(&ring->execlist_lock, LK_EXCLUSIVE);
723         list_replace_init(&ring->execlist_retired_req_list, &retired_list);
724         lockmgr(&ring->execlist_lock, LK_RELEASE);
725
726         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
727                 struct intel_context *ctx = req->ctx;
728                 struct drm_i915_gem_object *ctx_obj =
729                                 ctx->engine[ring->id].state;
730
731                 if (ctx_obj && (ctx != ring->default_context))
732                         intel_lr_context_unpin(ring, ctx);
733                 intel_runtime_pm_put(dev_priv);
734                 list_del(&req->execlist_link);
735                 i915_gem_request_unreference(req);
736         }
737 }
738
739 void intel_logical_ring_stop(struct intel_engine_cs *ring)
740 {
741         struct drm_i915_private *dev_priv = ring->dev->dev_private;
742         int ret;
743
744         if (!intel_ring_initialized(ring))
745                 return;
746
747         ret = intel_ring_idle(ring);
748         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
749                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
750                           ring->name, ret);
751
752         /* TODO: Is this correct with Execlists enabled? */
753         I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
754         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
755                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
756                 return;
757         }
758         I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
759 }
760
761 int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf,
762                                   struct intel_context *ctx)
763 {
764         struct intel_engine_cs *ring = ringbuf->ring;
765         int ret;
766
767         if (!ring->gpu_caches_dirty)
768                 return 0;
769
770         ret = ring->emit_flush(ringbuf, ctx, 0, I915_GEM_GPU_DOMAINS);
771         if (ret)
772                 return ret;
773
774         ring->gpu_caches_dirty = false;
775         return 0;
776 }
777
778 /**
779  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
780  * @ringbuf: Logical Ringbuffer to advance.
781  *
782  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
783  * really happens during submission is that the context and current tail will be placed
784  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
785  * point, the tail *inside* the context is updated and the ELSP written to.
786  */
787 void intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
788                                            struct intel_context *ctx,
789                                            struct drm_i915_gem_request *request)
790 {
791         struct intel_engine_cs *ring = ringbuf->ring;
792
793         intel_logical_ring_advance(ringbuf);
794
795         if (intel_ring_stopped(ring))
796                 return;
797
798         execlists_context_queue(ring, ctx, ringbuf->tail, request);
799 }
800
801 static int intel_lr_context_pin(struct intel_engine_cs *ring,
802                 struct intel_context *ctx)
803 {
804         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
805         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
806         int ret = 0;
807
808         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
809         if (ctx->engine[ring->id].pin_count++ == 0) {
810                 ret = i915_gem_obj_ggtt_pin(ctx_obj,
811                                 GEN8_LR_CONTEXT_ALIGN, 0);
812                 if (ret)
813                         goto reset_pin_count;
814
815                 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
816                 if (ret)
817                         goto unpin_ctx_obj;
818         }
819
820         return ret;
821
822 unpin_ctx_obj:
823         i915_gem_object_ggtt_unpin(ctx_obj);
824 reset_pin_count:
825         ctx->engine[ring->id].pin_count = 0;
826
827         return ret;
828 }
829
830 void intel_lr_context_unpin(struct intel_engine_cs *ring,
831                 struct intel_context *ctx)
832 {
833         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
834         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
835
836         if (ctx_obj) {
837                 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
838                 if (--ctx->engine[ring->id].pin_count == 0) {
839                         intel_unpin_ringbuffer_obj(ringbuf);
840                         i915_gem_object_ggtt_unpin(ctx_obj);
841                 }
842         }
843 }
844
845 static int logical_ring_alloc_request(struct intel_engine_cs *ring,
846                                       struct intel_context *ctx)
847 {
848         struct drm_i915_gem_request *request;
849         struct drm_i915_private *dev_private = ring->dev->dev_private;
850         int ret;
851
852         if (ring->outstanding_lazy_request)
853                 return 0;
854
855         request = kzalloc(sizeof(*request), GFP_KERNEL);
856         if (request == NULL)
857                 return -ENOMEM;
858
859         if (ctx != ring->default_context) {
860                 ret = intel_lr_context_pin(ring, ctx);
861                 if (ret) {
862                         kfree(request);
863                         return ret;
864                 }
865         }
866
867         kref_init(&request->ref);
868         request->ring = ring;
869         request->uniq = dev_private->request_uniq++;
870
871         ret = i915_gem_get_seqno(ring->dev, &request->seqno);
872         if (ret) {
873                 intel_lr_context_unpin(ring, ctx);
874                 kfree(request);
875                 return ret;
876         }
877
878         /* Hold a reference to the context this request belongs to
879          * (we will need it when the time comes to emit/retire the
880          * request).
881          */
882         request->ctx = ctx;
883         i915_gem_context_reference(request->ctx);
884
885         ring->outstanding_lazy_request = request;
886         return 0;
887 }
888
889 static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
890                                      int bytes)
891 {
892         struct intel_engine_cs *ring = ringbuf->ring;
893         struct drm_i915_gem_request *request;
894         int ret;
895
896         if (intel_ring_space(ringbuf) >= bytes)
897                 return 0;
898
899         list_for_each_entry(request, &ring->request_list, list) {
900                 /*
901                  * The request queue is per-engine, so can contain requests
902                  * from multiple ringbuffers. Here, we must ignore any that
903                  * aren't from the ringbuffer we're considering.
904                  */
905                 struct intel_context *ctx = request->ctx;
906                 if (ctx->engine[ring->id].ringbuf != ringbuf)
907                         continue;
908
909                 /* Would completion of this request free enough space? */
910                 if (__intel_ring_space(request->tail, ringbuf->tail,
911                                        ringbuf->size) >= bytes) {
912                         break;
913                 }
914         }
915
916         if (&request->list == &ring->request_list)
917                 return -ENOSPC;
918
919         ret = i915_wait_request(request);
920         if (ret)
921                 return ret;
922
923         i915_gem_retire_requests_ring(ring);
924
925         return intel_ring_space(ringbuf) >= bytes ? 0 : -ENOSPC;
926 }
927
928 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
929                                        struct intel_context *ctx,
930                                        int bytes)
931 {
932         struct intel_engine_cs *ring = ringbuf->ring;
933         struct drm_device *dev = ring->dev;
934         struct drm_i915_private *dev_priv = dev->dev_private;
935         unsigned long end;
936         int ret;
937
938         ret = logical_ring_wait_request(ringbuf, bytes);
939         if (ret != -ENOSPC)
940                 return ret;
941
942         /* Force the context submission in case we have been skipping it */
943         intel_logical_ring_advance_and_submit(ringbuf, ctx, NULL);
944
945         /* With GEM the hangcheck timer should kick us out of the loop,
946          * leaving it early runs the risk of corrupting GEM state (due
947          * to running on almost untested codepaths). But on resume
948          * timers don't work yet, so prevent a complete hang in that
949          * case by choosing an insanely large timeout. */
950         end = jiffies + 60 * HZ;
951
952         ret = 0;
953         do {
954                 if (intel_ring_space(ringbuf) >= bytes)
955                         break;
956
957                 msleep(1);
958
959                 if (dev_priv->mm.interruptible && signal_pending(curthread->td_lwp)) {
960                         ret = -ERESTARTSYS;
961                         break;
962                 }
963
964                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
965                                            dev_priv->mm.interruptible);
966                 if (ret)
967                         break;
968
969                 if (time_after(jiffies, end)) {
970                         ret = -EBUSY;
971                         break;
972                 }
973         } while (1);
974
975         return ret;
976 }
977
978 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
979                                     struct intel_context *ctx)
980 {
981         uint32_t __iomem *virt;
982         int rem = ringbuf->size - ringbuf->tail;
983
984         if (ringbuf->space < rem) {
985                 int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);
986
987                 if (ret)
988                         return ret;
989         }
990
991         virt = (unsigned int *)((char *)ringbuf->virtual_start + ringbuf->tail);
992         rem /= 4;
993         while (rem--)
994                 iowrite32(MI_NOOP, virt++);
995
996         ringbuf->tail = 0;
997         intel_ring_update_space(ringbuf);
998
999         return 0;
1000 }
1001
1002 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
1003                                 struct intel_context *ctx, int bytes)
1004 {
1005         int ret;
1006
1007         if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1008                 ret = logical_ring_wrap_buffer(ringbuf, ctx);
1009                 if (unlikely(ret))
1010                         return ret;
1011         }
1012
1013         if (unlikely(ringbuf->space < bytes)) {
1014                 ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
1015                 if (unlikely(ret))
1016                         return ret;
1017         }
1018
1019         return 0;
1020 }
1021
1022 /**
1023  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
1024  *
1025  * @ringbuf: Logical ringbuffer.
1026  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
1027  *
1028  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
1029  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
1030  * and also preallocates a request (every workload submission is still mediated through
1031  * requests, same as it did with legacy ringbuffer submission).
1032  *
1033  * Return: non-zero if the ringbuffer is not ready to be written to.
1034  */
1035 int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
1036                              struct intel_context *ctx, int num_dwords)
1037 {
1038         struct intel_engine_cs *ring = ringbuf->ring;
1039         struct drm_device *dev = ring->dev;
1040         struct drm_i915_private *dev_priv = dev->dev_private;
1041         int ret;
1042
1043         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1044                                    dev_priv->mm.interruptible);
1045         if (ret)
1046                 return ret;
1047
1048         ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
1049         if (ret)
1050                 return ret;
1051
1052         /* Preallocate the olr before touching the ring */
1053         ret = logical_ring_alloc_request(ring, ctx);
1054         if (ret)
1055                 return ret;
1056
1057         ringbuf->space -= num_dwords * sizeof(uint32_t);
1058         return 0;
1059 }
1060
1061 static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
1062                                                struct intel_context *ctx)
1063 {
1064         int ret, i;
1065         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1066         struct drm_device *dev = ring->dev;
1067         struct drm_i915_private *dev_priv = dev->dev_private;
1068         struct i915_workarounds *w = &dev_priv->workarounds;
1069
1070         if (WARN_ON_ONCE(w->count == 0))
1071                 return 0;
1072
1073         ring->gpu_caches_dirty = true;
1074         ret = logical_ring_flush_all_caches(ringbuf, ctx);
1075         if (ret)
1076                 return ret;
1077
1078         ret = intel_logical_ring_begin(ringbuf, ctx, w->count * 2 + 2);
1079         if (ret)
1080                 return ret;
1081
1082         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1083         for (i = 0; i < w->count; i++) {
1084                 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1085                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1086         }
1087         intel_logical_ring_emit(ringbuf, MI_NOOP);
1088
1089         intel_logical_ring_advance(ringbuf);
1090
1091         ring->gpu_caches_dirty = true;
1092         ret = logical_ring_flush_all_caches(ringbuf, ctx);
1093         if (ret)
1094                 return ret;
1095
1096         return 0;
1097 }
1098
1099 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1100 {
1101         struct drm_device *dev = ring->dev;
1102         struct drm_i915_private *dev_priv = dev->dev_private;
1103
1104         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1105         I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1106
1107         I915_WRITE(RING_MODE_GEN7(ring),
1108                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1109                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1110         POSTING_READ(RING_MODE_GEN7(ring));
1111         ring->next_context_status_buffer = 0;
1112         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1113
1114         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1115
1116         return 0;
1117 }
1118
1119 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1120 {
1121         struct drm_device *dev = ring->dev;
1122         struct drm_i915_private *dev_priv = dev->dev_private;
1123         int ret;
1124
1125         ret = gen8_init_common_ring(ring);
1126         if (ret)
1127                 return ret;
1128
1129         /* We need to disable the AsyncFlip performance optimisations in order
1130          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1131          * programmed to '1' on all products.
1132          *
1133          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1134          */
1135         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1136
1137         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1138
1139         return init_workarounds_ring(ring);
1140 }
1141
1142 static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1143                               struct intel_context *ctx,
1144                               u64 offset, unsigned flags)
1145 {
1146         bool ppgtt = !(flags & I915_DISPATCH_SECURE);
1147         int ret;
1148
1149         ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1150         if (ret)
1151                 return ret;
1152
1153         /* FIXME(BDW): Address space and security selectors. */
1154         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1155         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1156         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1157         intel_logical_ring_emit(ringbuf, MI_NOOP);
1158         intel_logical_ring_advance(ringbuf);
1159
1160         return 0;
1161 }
1162
1163 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1164 {
1165         struct drm_device *dev = ring->dev;
1166         struct drm_i915_private *dev_priv = dev->dev_private;
1167
1168         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1169                 return false;
1170
1171         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1172         if (ring->irq_refcount++ == 0) {
1173                 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1174                 POSTING_READ(RING_IMR(ring->mmio_base));
1175         }
1176         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1177
1178         return true;
1179 }
1180
1181 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1182 {
1183         struct drm_device *dev = ring->dev;
1184         struct drm_i915_private *dev_priv = dev->dev_private;
1185
1186         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1187         if (--ring->irq_refcount == 0) {
1188                 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1189                 POSTING_READ(RING_IMR(ring->mmio_base));
1190         }
1191         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1192 }
1193
1194 static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1195                            struct intel_context *ctx,
1196                            u32 invalidate_domains,
1197                            u32 unused)
1198 {
1199         struct intel_engine_cs *ring = ringbuf->ring;
1200         struct drm_device *dev = ring->dev;
1201         struct drm_i915_private *dev_priv = dev->dev_private;
1202         uint32_t cmd;
1203         int ret;
1204
1205         ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1206         if (ret)
1207                 return ret;
1208
1209         cmd = MI_FLUSH_DW + 1;
1210
1211         /* We always require a command barrier so that subsequent
1212          * commands, such as breadcrumb interrupts, are strictly ordered
1213          * wrt the contents of the write cache being flushed to memory
1214          * (and thus being coherent from the CPU).
1215          */
1216         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1217
1218         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1219                 cmd |= MI_INVALIDATE_TLB;
1220                 if (ring == &dev_priv->ring[VCS])
1221                         cmd |= MI_INVALIDATE_BSD;
1222         }
1223
1224         intel_logical_ring_emit(ringbuf, cmd);
1225         intel_logical_ring_emit(ringbuf,
1226                                 I915_GEM_HWS_SCRATCH_ADDR |
1227                                 MI_FLUSH_DW_USE_GTT);
1228         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1229         intel_logical_ring_emit(ringbuf, 0); /* value */
1230         intel_logical_ring_advance(ringbuf);
1231
1232         return 0;
1233 }
1234
1235 static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1236                                   struct intel_context *ctx,
1237                                   u32 invalidate_domains,
1238                                   u32 flush_domains)
1239 {
1240         struct intel_engine_cs *ring = ringbuf->ring;
1241         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1242         u32 flags = 0;
1243         int ret;
1244
1245         flags |= PIPE_CONTROL_CS_STALL;
1246
1247         if (flush_domains) {
1248                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1249                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1250         }
1251
1252         if (invalidate_domains) {
1253                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1254                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1255                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1256                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1257                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1258                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1259                 flags |= PIPE_CONTROL_QW_WRITE;
1260                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1261         }
1262
1263         ret = intel_logical_ring_begin(ringbuf, ctx, 6);
1264         if (ret)
1265                 return ret;
1266
1267         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1268         intel_logical_ring_emit(ringbuf, flags);
1269         intel_logical_ring_emit(ringbuf, scratch_addr);
1270         intel_logical_ring_emit(ringbuf, 0);
1271         intel_logical_ring_emit(ringbuf, 0);
1272         intel_logical_ring_emit(ringbuf, 0);
1273         intel_logical_ring_advance(ringbuf);
1274
1275         return 0;
1276 }
1277
1278 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1279 {
1280         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1281 }
1282
1283 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1284 {
1285         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1286 }
1287
1288 static int gen8_emit_request(struct intel_ringbuffer *ringbuf,
1289                              struct drm_i915_gem_request *request)
1290 {
1291         struct intel_engine_cs *ring = ringbuf->ring;
1292         u32 cmd;
1293         int ret;
1294
1295         ret = intel_logical_ring_begin(ringbuf, request->ctx, 6);
1296         if (ret)
1297                 return ret;
1298
1299         cmd = MI_STORE_DWORD_IMM_GEN4;
1300         cmd |= MI_GLOBAL_GTT;
1301
1302         intel_logical_ring_emit(ringbuf, cmd);
1303         intel_logical_ring_emit(ringbuf,
1304                                 (ring->status_page.gfx_addr +
1305                                 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1306         intel_logical_ring_emit(ringbuf, 0);
1307         intel_logical_ring_emit(ringbuf,
1308                 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1309         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1310         intel_logical_ring_emit(ringbuf, MI_NOOP);
1311         intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
1312
1313         return 0;
1314 }
1315
1316 static int gen8_init_rcs_context(struct intel_engine_cs *ring,
1317                        struct intel_context *ctx)
1318 {
1319         int ret;
1320
1321         ret = intel_logical_ring_workarounds_emit(ring, ctx);
1322         if (ret)
1323                 return ret;
1324
1325         return intel_lr_context_render_state_init(ring, ctx);
1326 }
1327
1328 /**
1329  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1330  *
1331  * @ring: Engine Command Streamer.
1332  *
1333  */
1334 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1335 {
1336         struct drm_i915_private *dev_priv;
1337
1338         if (!intel_ring_initialized(ring))
1339                 return;
1340
1341         dev_priv = ring->dev->dev_private;
1342
1343         intel_logical_ring_stop(ring);
1344         WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1345         i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1346
1347         if (ring->cleanup)
1348                 ring->cleanup(ring);
1349
1350         i915_cmd_parser_fini_ring(ring);
1351
1352         if (ring->status_page.obj) {
1353                 kunmap(ring->status_page.obj->pages[0]);
1354                 ring->status_page.obj = NULL;
1355         }
1356 }
1357
1358 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1359 {
1360         int ret;
1361
1362         /* Intentionally left blank. */
1363         ring->buffer = NULL;
1364
1365         ring->dev = dev;
1366         INIT_LIST_HEAD(&ring->active_list);
1367         INIT_LIST_HEAD(&ring->request_list);
1368         init_waitqueue_head(&ring->irq_queue);
1369
1370         INIT_LIST_HEAD(&ring->execlist_queue);
1371         INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1372         lockinit(&ring->execlist_lock, "i915el", 0, LK_CANRECURSE);
1373
1374         ret = i915_cmd_parser_init_ring(ring);
1375         if (ret)
1376                 return ret;
1377
1378         ret = intel_lr_context_deferred_create(ring->default_context, ring);
1379
1380         return ret;
1381 }
1382
1383 static int logical_render_ring_init(struct drm_device *dev)
1384 {
1385         struct drm_i915_private *dev_priv = dev->dev_private;
1386         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1387         int ret;
1388
1389         ring->name = "render ring";
1390         ring->id = RCS;
1391         ring->mmio_base = RENDER_RING_BASE;
1392         ring->irq_enable_mask =
1393                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1394         ring->irq_keep_mask =
1395                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1396         if (HAS_L3_DPF(dev))
1397                 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1398
1399         ring->init_hw = gen8_init_render_ring;
1400         ring->init_context = gen8_init_rcs_context;
1401         ring->cleanup = intel_fini_pipe_control;
1402         ring->get_seqno = gen8_get_seqno;
1403         ring->set_seqno = gen8_set_seqno;
1404         ring->emit_request = gen8_emit_request;
1405         ring->emit_flush = gen8_emit_flush_render;
1406         ring->irq_get = gen8_logical_ring_get_irq;
1407         ring->irq_put = gen8_logical_ring_put_irq;
1408         ring->emit_bb_start = gen8_emit_bb_start;
1409
1410         ring->dev = dev;
1411         ret = logical_ring_init(dev, ring);
1412         if (ret)
1413                 return ret;
1414
1415         return intel_init_pipe_control(ring);
1416 }
1417
1418 static int logical_bsd_ring_init(struct drm_device *dev)
1419 {
1420         struct drm_i915_private *dev_priv = dev->dev_private;
1421         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1422
1423         ring->name = "bsd ring";
1424         ring->id = VCS;
1425         ring->mmio_base = GEN6_BSD_RING_BASE;
1426         ring->irq_enable_mask =
1427                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1428         ring->irq_keep_mask =
1429                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1430
1431         ring->init_hw = gen8_init_common_ring;
1432         ring->get_seqno = gen8_get_seqno;
1433         ring->set_seqno = gen8_set_seqno;
1434         ring->emit_request = gen8_emit_request;
1435         ring->emit_flush = gen8_emit_flush;
1436         ring->irq_get = gen8_logical_ring_get_irq;
1437         ring->irq_put = gen8_logical_ring_put_irq;
1438         ring->emit_bb_start = gen8_emit_bb_start;
1439
1440         return logical_ring_init(dev, ring);
1441 }
1442
1443 static int logical_bsd2_ring_init(struct drm_device *dev)
1444 {
1445         struct drm_i915_private *dev_priv = dev->dev_private;
1446         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1447
1448         ring->name = "bds2 ring";
1449         ring->id = VCS2;
1450         ring->mmio_base = GEN8_BSD2_RING_BASE;
1451         ring->irq_enable_mask =
1452                 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1453         ring->irq_keep_mask =
1454                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1455
1456         ring->init_hw = gen8_init_common_ring;
1457         ring->get_seqno = gen8_get_seqno;
1458         ring->set_seqno = gen8_set_seqno;
1459         ring->emit_request = gen8_emit_request;
1460         ring->emit_flush = gen8_emit_flush;
1461         ring->irq_get = gen8_logical_ring_get_irq;
1462         ring->irq_put = gen8_logical_ring_put_irq;
1463         ring->emit_bb_start = gen8_emit_bb_start;
1464
1465         return logical_ring_init(dev, ring);
1466 }
1467
1468 static int logical_blt_ring_init(struct drm_device *dev)
1469 {
1470         struct drm_i915_private *dev_priv = dev->dev_private;
1471         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1472
1473         ring->name = "blitter ring";
1474         ring->id = BCS;
1475         ring->mmio_base = BLT_RING_BASE;
1476         ring->irq_enable_mask =
1477                 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1478         ring->irq_keep_mask =
1479                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1480
1481         ring->init_hw = gen8_init_common_ring;
1482         ring->get_seqno = gen8_get_seqno;
1483         ring->set_seqno = gen8_set_seqno;
1484         ring->emit_request = gen8_emit_request;
1485         ring->emit_flush = gen8_emit_flush;
1486         ring->irq_get = gen8_logical_ring_get_irq;
1487         ring->irq_put = gen8_logical_ring_put_irq;
1488         ring->emit_bb_start = gen8_emit_bb_start;
1489
1490         return logical_ring_init(dev, ring);
1491 }
1492
1493 static int logical_vebox_ring_init(struct drm_device *dev)
1494 {
1495         struct drm_i915_private *dev_priv = dev->dev_private;
1496         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1497
1498         ring->name = "video enhancement ring";
1499         ring->id = VECS;
1500         ring->mmio_base = VEBOX_RING_BASE;
1501         ring->irq_enable_mask =
1502                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1503         ring->irq_keep_mask =
1504                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1505
1506         ring->init_hw = gen8_init_common_ring;
1507         ring->get_seqno = gen8_get_seqno;
1508         ring->set_seqno = gen8_set_seqno;
1509         ring->emit_request = gen8_emit_request;
1510         ring->emit_flush = gen8_emit_flush;
1511         ring->irq_get = gen8_logical_ring_get_irq;
1512         ring->irq_put = gen8_logical_ring_put_irq;
1513         ring->emit_bb_start = gen8_emit_bb_start;
1514
1515         return logical_ring_init(dev, ring);
1516 }
1517
1518 /**
1519  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1520  * @dev: DRM device.
1521  *
1522  * This function inits the engines for an Execlists submission style (the equivalent in the
1523  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1524  * those engines that are present in the hardware.
1525  *
1526  * Return: non-zero if the initialization failed.
1527  */
1528 int intel_logical_rings_init(struct drm_device *dev)
1529 {
1530         struct drm_i915_private *dev_priv = dev->dev_private;
1531         int ret;
1532
1533         ret = logical_render_ring_init(dev);
1534         if (ret)
1535                 return ret;
1536
1537         if (HAS_BSD(dev)) {
1538                 ret = logical_bsd_ring_init(dev);
1539                 if (ret)
1540                         goto cleanup_render_ring;
1541         }
1542
1543         if (HAS_BLT(dev)) {
1544                 ret = logical_blt_ring_init(dev);
1545                 if (ret)
1546                         goto cleanup_bsd_ring;
1547         }
1548
1549         if (HAS_VEBOX(dev)) {
1550                 ret = logical_vebox_ring_init(dev);
1551                 if (ret)
1552                         goto cleanup_blt_ring;
1553         }
1554
1555         if (HAS_BSD2(dev)) {
1556                 ret = logical_bsd2_ring_init(dev);
1557                 if (ret)
1558                         goto cleanup_vebox_ring;
1559         }
1560
1561         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1562         if (ret)
1563                 goto cleanup_bsd2_ring;
1564
1565         return 0;
1566
1567 cleanup_bsd2_ring:
1568         intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1569 cleanup_vebox_ring:
1570         intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1571 cleanup_blt_ring:
1572         intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1573 cleanup_bsd_ring:
1574         intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1575 cleanup_render_ring:
1576         intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1577
1578         return ret;
1579 }
1580
1581 int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1582                                        struct intel_context *ctx)
1583 {
1584         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1585         struct render_state so;
1586         struct drm_i915_file_private *file_priv = ctx->file_priv;
1587         struct drm_file *file = file_priv ? file_priv->file : NULL;
1588         int ret;
1589
1590         ret = i915_gem_render_state_prepare(ring, &so);
1591         if (ret)
1592                 return ret;
1593
1594         if (so.rodata == NULL)
1595                 return 0;
1596
1597         ret = ring->emit_bb_start(ringbuf,
1598                         ctx,
1599                         so.ggtt_offset,
1600                         I915_DISPATCH_SECURE);
1601         if (ret)
1602                 goto out;
1603
1604         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1605
1606         ret = __i915_add_request(ring, file, so.obj);
1607         /* intel_logical_ring_add_request moves object to inactive if it
1608          * fails */
1609 out:
1610         i915_gem_render_state_fini(&so);
1611         return ret;
1612 }
1613
1614 static int
1615 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1616                     struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1617 {
1618         struct drm_device *dev = ring->dev;
1619         struct drm_i915_private *dev_priv = dev->dev_private;
1620         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1621         struct vm_page *page;
1622         uint32_t *reg_state;
1623         int ret;
1624
1625         if (!ppgtt)
1626                 ppgtt = dev_priv->mm.aliasing_ppgtt;
1627
1628         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1629         if (ret) {
1630                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1631                 return ret;
1632         }
1633
1634         ret = i915_gem_object_get_pages(ctx_obj);
1635         if (ret) {
1636                 DRM_DEBUG_DRIVER("Could not get object pages\n");
1637                 return ret;
1638         }
1639
1640         i915_gem_object_pin_pages(ctx_obj);
1641
1642         /* The second page of the context object contains some fields which must
1643          * be set up prior to the first execution. */
1644         page = i915_gem_object_get_page(ctx_obj, 1);
1645         reg_state = kmap_atomic(page);
1646
1647         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1648          * commands followed by (reg, value) pairs. The values we are setting here are
1649          * only for the first context restore: on a subsequent save, the GPU will
1650          * recreate this batchbuffer with new values (including all the missing
1651          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1652         if (ring->id == RCS)
1653                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1654         else
1655                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1656         reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1657         reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1658         reg_state[CTX_CONTEXT_CONTROL+1] =
1659                         _MASKED_BIT_ENABLE((1<<3) | MI_RESTORE_INHIBIT);
1660         reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1661         reg_state[CTX_RING_HEAD+1] = 0;
1662         reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1663         reg_state[CTX_RING_TAIL+1] = 0;
1664         reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1665         /* Ring buffer start address is not known until the buffer is pinned.
1666          * It is written to the context image in execlists_update_context()
1667          */
1668         reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1669         reg_state[CTX_RING_BUFFER_CONTROL+1] =
1670                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1671         reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1672         reg_state[CTX_BB_HEAD_U+1] = 0;
1673         reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1674         reg_state[CTX_BB_HEAD_L+1] = 0;
1675         reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1676         reg_state[CTX_BB_STATE+1] = (1<<5);
1677         reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1678         reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1679         reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1680         reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1681         reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1682         reg_state[CTX_SECOND_BB_STATE+1] = 0;
1683         if (ring->id == RCS) {
1684                 /* TODO: according to BSpec, the register state context
1685                  * for CHV does not have these. OTOH, these registers do
1686                  * exist in CHV. I'm waiting for a clarification */
1687                 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1688                 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1689                 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1690                 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1691                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1692                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1693         }
1694         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1695         reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1696         reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1697         reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1698         reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1699         reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1700         reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1701         reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1702         reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1703         reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1704         reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1705         reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1706         reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[3]);
1707         reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[3]);
1708         reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[2]);
1709         reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[2]);
1710         reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[1]);
1711         reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[1]);
1712         reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[0]);
1713         reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[0]);
1714         if (ring->id == RCS) {
1715                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1716                 reg_state[CTX_R_PWR_CLK_STATE] = 0x20c8;
1717                 reg_state[CTX_R_PWR_CLK_STATE+1] = 0;
1718         }
1719
1720         kunmap_atomic(reg_state);
1721
1722         ctx_obj->dirty = 1;
1723         set_page_dirty(page);
1724         i915_gem_object_unpin_pages(ctx_obj);
1725
1726         return 0;
1727 }
1728
1729 /**
1730  * intel_lr_context_free() - free the LRC specific bits of a context
1731  * @ctx: the LR context to free.
1732  *
1733  * The real context freeing is done in i915_gem_context_free: this only
1734  * takes care of the bits that are LRC related: the per-engine backing
1735  * objects and the logical ringbuffer.
1736  */
1737 void intel_lr_context_free(struct intel_context *ctx)
1738 {
1739         int i;
1740
1741         for (i = 0; i < I915_NUM_RINGS; i++) {
1742                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1743
1744                 if (ctx_obj) {
1745                         struct intel_ringbuffer *ringbuf =
1746                                         ctx->engine[i].ringbuf;
1747                         struct intel_engine_cs *ring = ringbuf->ring;
1748
1749                         if (ctx == ring->default_context) {
1750                                 intel_unpin_ringbuffer_obj(ringbuf);
1751                                 i915_gem_object_ggtt_unpin(ctx_obj);
1752                         }
1753                         WARN_ON(ctx->engine[ring->id].pin_count);
1754                         intel_destroy_ringbuffer_obj(ringbuf);
1755                         kfree(ringbuf);
1756                         drm_gem_object_unreference(&ctx_obj->base);
1757                 }
1758         }
1759 }
1760
1761 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1762 {
1763         int ret = 0;
1764
1765         WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
1766
1767         switch (ring->id) {
1768         case RCS:
1769                 if (INTEL_INFO(ring->dev)->gen >= 9)
1770                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1771                 else
1772                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1773                 break;
1774         case VCS:
1775         case BCS:
1776         case VECS:
1777         case VCS2:
1778                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1779                 break;
1780         }
1781
1782         return ret;
1783 }
1784
1785 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1786                 struct drm_i915_gem_object *default_ctx_obj)
1787 {
1788         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1789
1790         /* The status page is offset 0 from the default context object
1791          * in LRC mode. */
1792         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
1793         ring->status_page.page_addr =
1794                         kmap(default_ctx_obj->pages[0]);
1795         ring->status_page.obj = default_ctx_obj;
1796
1797         I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1798                         (u32)ring->status_page.gfx_addr);
1799         POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1800 }
1801
1802 /**
1803  * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1804  * @ctx: LR context to create.
1805  * @ring: engine to be used with the context.
1806  *
1807  * This function can be called more than once, with different engines, if we plan
1808  * to use the context with them. The context backing objects and the ringbuffers
1809  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1810  * the creation is a deferred call: it's better to make sure first that we need to use
1811  * a given ring with the context.
1812  *
1813  * Return: non-zero on error.
1814  */
1815 int intel_lr_context_deferred_create(struct intel_context *ctx,
1816                                      struct intel_engine_cs *ring)
1817 {
1818         const bool is_global_default_ctx = (ctx == ring->default_context);
1819         struct drm_device *dev = ring->dev;
1820         struct drm_i915_gem_object *ctx_obj;
1821         uint32_t context_size;
1822         struct intel_ringbuffer *ringbuf;
1823         int ret;
1824
1825         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1826         WARN_ON(ctx->engine[ring->id].state);
1827
1828         context_size = round_up(get_lr_context_size(ring), 4096);
1829
1830         ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
1831         if (IS_ERR(ctx_obj)) {
1832                 ret = PTR_ERR(ctx_obj);
1833                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1834                 return ret;
1835         }
1836
1837         if (is_global_default_ctx) {
1838                 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1839                 if (ret) {
1840                         DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
1841                                         ret);
1842                         drm_gem_object_unreference(&ctx_obj->base);
1843                         return ret;
1844                 }
1845         }
1846
1847         ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1848         if (!ringbuf) {
1849                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1850                                 ring->name);
1851                 ret = -ENOMEM;
1852                 goto error_unpin_ctx;
1853         }
1854
1855         ringbuf->ring = ring;
1856
1857         ringbuf->size = 32 * PAGE_SIZE;
1858         ringbuf->effective_size = ringbuf->size;
1859         ringbuf->head = 0;
1860         ringbuf->tail = 0;
1861         ringbuf->last_retired_head = -1;
1862         intel_ring_update_space(ringbuf);
1863
1864         if (ringbuf->obj == NULL) {
1865                 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1866                 if (ret) {
1867                         DRM_DEBUG_DRIVER(
1868                                 "Failed to allocate ringbuffer obj %s: %d\n",
1869                                 ring->name, ret);
1870                         goto error_free_rbuf;
1871                 }
1872
1873                 if (is_global_default_ctx) {
1874                         ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1875                         if (ret) {
1876                                 DRM_ERROR(
1877                                         "Failed to pin and map ringbuffer %s: %d\n",
1878                                         ring->name, ret);
1879                                 goto error_destroy_rbuf;
1880                         }
1881                 }
1882
1883         }
1884
1885         ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1886         if (ret) {
1887                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1888                 goto error;
1889         }
1890
1891         ctx->engine[ring->id].ringbuf = ringbuf;
1892         ctx->engine[ring->id].state = ctx_obj;
1893
1894         if (ctx == ring->default_context)
1895                 lrc_setup_hardware_status_page(ring, ctx_obj);
1896         else if (ring->id == RCS && !ctx->rcs_initialized) {
1897                 if (ring->init_context) {
1898                         ret = ring->init_context(ring, ctx);
1899                         if (ret) {
1900                                 DRM_ERROR("ring init context: %d\n", ret);
1901                                 ctx->engine[ring->id].ringbuf = NULL;
1902                                 ctx->engine[ring->id].state = NULL;
1903                                 goto error;
1904                         }
1905                 }
1906
1907                 ctx->rcs_initialized = true;
1908         }
1909
1910         return 0;
1911
1912 error:
1913         if (is_global_default_ctx)
1914                 intel_unpin_ringbuffer_obj(ringbuf);
1915 error_destroy_rbuf:
1916         intel_destroy_ringbuffer_obj(ringbuf);
1917 error_free_rbuf:
1918         kfree(ringbuf);
1919 error_unpin_ctx:
1920         if (is_global_default_ctx)
1921                 i915_gem_object_ggtt_unpin(ctx_obj);
1922         drm_gem_object_unreference(&ctx_obj->base);
1923         return ret;
1924 }