Merge branch 'vendor/OPENPAM'
[dragonfly.git] / sys / vm / swap_pager.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1998-2010 The DragonFly Project.  All rights reserved.
5  * 
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  * 
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  * 
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  * 
36  * Copyright (c) 1994 John S. Dyson
37  * Copyright (c) 1990 University of Utah.
38  * Copyright (c) 1991, 1993
39  *      The Regents of the University of California.  All rights reserved.
40  *
41  * This code is derived from software contributed to Berkeley by
42  * the Systems Programming Group of the University of Utah Computer
43  * Science Department.
44  *
45  * Redistribution and use in source and binary forms, with or without
46  * modification, are permitted provided that the following conditions
47  * are met:
48  * 1. Redistributions of source code must retain the above copyright
49  *    notice, this list of conditions and the following disclaimer.
50  * 2. Redistributions in binary form must reproduce the above copyright
51  *    notice, this list of conditions and the following disclaimer in the
52  *    documentation and/or other materials provided with the distribution.
53  * 3. Neither the name of the University nor the names of its contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67  * SUCH DAMAGE.
68  *
69  *                              New Swap System
70  *                              Matthew Dillon
71  *
72  * Radix Bitmap 'blists'.
73  *
74  *      - The new swapper uses the new radix bitmap code.  This should scale
75  *        to arbitrarily small or arbitrarily large swap spaces and an almost
76  *        arbitrary degree of fragmentation.
77  *
78  * Features:
79  *
80  *      - on the fly reallocation of swap during putpages.  The new system
81  *        does not try to keep previously allocated swap blocks for dirty
82  *        pages.  
83  *
84  *      - on the fly deallocation of swap
85  *
86  *      - No more garbage collection required.  Unnecessarily allocated swap
87  *        blocks only exist for dirty vm_page_t's now and these are already
88  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
89  *        removal of invalidated swap blocks when a page is destroyed
90  *        or renamed.
91  *
92  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
93  * @(#)swap_pager.c     8.9 (Berkeley) 3/21/94
94  * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
95  */
96
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/conf.h>
100 #include <sys/kernel.h>
101 #include <sys/proc.h>
102 #include <sys/buf.h>
103 #include <sys/vnode.h>
104 #include <sys/malloc.h>
105 #include <sys/vmmeter.h>
106 #include <sys/sysctl.h>
107 #include <sys/blist.h>
108 #include <sys/lock.h>
109 #include <sys/kcollect.h>
110
111 #include <unistd.h>
112 #include "opt_swap.h"
113 #include <vm/vm.h>
114 #include <vm/vm_object.h>
115 #include <vm/vm_page.h>
116 #include <vm/vm_pager.h>
117 #include <vm/vm_pageout.h>
118 #include <vm/swap_pager.h>
119 #include <vm/vm_extern.h>
120 #include <vm/vm_zone.h>
121 #include <vm/vnode_pager.h>
122
123 #include <sys/thread2.h>
124 #include <sys/buf2.h>
125 #include <vm/vm_page2.h>
126
127 #ifndef MAX_PAGEOUT_CLUSTER
128 #define MAX_PAGEOUT_CLUSTER     SWB_NPAGES
129 #endif
130
131 #define SWM_FREE        0x02    /* free, period                 */
132 #define SWM_POP         0x04    /* pop out                      */
133
134 #define SWBIO_READ      0x01
135 #define SWBIO_WRITE     0x02
136 #define SWBIO_SYNC      0x04
137 #define SWBIO_TTC       0x08    /* for VM_PAGER_TRY_TO_CACHE */
138
139 struct swfreeinfo {
140         vm_object_t     object;
141         vm_pindex_t     basei;
142         vm_pindex_t     begi;
143         vm_pindex_t     endi;   /* inclusive */
144 };
145
146 struct swswapoffinfo {
147         vm_object_t     object;
148         int             devidx;
149         int             shared;
150 };
151
152 /*
153  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
154  * in the old system.
155  */
156
157 int swap_pager_full;            /* swap space exhaustion (task killing) */
158 int swap_fail_ticks;            /* when we became exhausted */
159 int swap_pager_almost_full;     /* swap space exhaustion (w/ hysteresis)*/
160 swblk_t vm_swap_cache_use;
161 swblk_t vm_swap_anon_use;
162 static int vm_report_swap_allocs;
163
164 static int nsw_rcount;          /* free read buffers                    */
165 static int nsw_wcount_sync;     /* limit write buffers / synchronous    */
166 static int nsw_wcount_async;    /* limit write buffers / asynchronous   */
167 static int nsw_wcount_async_max;/* assigned maximum                     */
168 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
169
170 struct blist *swapblist;
171 static int swap_async_max = 4;  /* maximum in-progress async I/O's      */
172 static int swap_burst_read = 0; /* allow burst reading */
173 static swblk_t swapiterator;    /* linearize allocations */
174 int swap_user_async = 0;        /* user swap pager operation can be async */
175
176 static struct spinlock swapbp_spin = SPINLOCK_INITIALIZER(&swapbp_spin, "swapbp_spin");
177
178 /* from vm_swap.c */
179 extern struct vnode *swapdev_vp;
180 extern struct swdevt *swdevt;
181 extern int nswdev;
182
183 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / SWB_DMMAX % nswdev : 0)
184
185 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
186         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
187 SYSCTL_INT(_vm, OID_AUTO, swap_burst_read,
188         CTLFLAG_RW, &swap_burst_read, 0, "Allow burst reads for pageins");
189 SYSCTL_INT(_vm, OID_AUTO, swap_user_async,
190         CTLFLAG_RW, &swap_user_async, 0, "Allow async uuser swap write I/O");
191
192 #if SWBLK_BITS == 64
193 SYSCTL_LONG(_vm, OID_AUTO, swap_cache_use,
194         CTLFLAG_RD, &vm_swap_cache_use, 0, "");
195 SYSCTL_LONG(_vm, OID_AUTO, swap_anon_use,
196         CTLFLAG_RD, &vm_swap_anon_use, 0, "");
197 SYSCTL_LONG(_vm, OID_AUTO, swap_size,
198         CTLFLAG_RD, &vm_swap_size, 0, "");
199 #else
200 SYSCTL_INT(_vm, OID_AUTO, swap_cache_use,
201         CTLFLAG_RD, &vm_swap_cache_use, 0, "");
202 SYSCTL_INT(_vm, OID_AUTO, swap_anon_use,
203         CTLFLAG_RD, &vm_swap_anon_use, 0, "");
204 SYSCTL_INT(_vm, OID_AUTO, swap_size,
205         CTLFLAG_RD, &vm_swap_size, 0, "");
206 #endif
207 SYSCTL_INT(_vm, OID_AUTO, report_swap_allocs,
208         CTLFLAG_RW, &vm_report_swap_allocs, 0, "");
209
210 vm_zone_t               swap_zone;
211
212 /*
213  * Red-Black tree for swblock entries
214  *
215  * The caller must hold vm_token
216  */
217 RB_GENERATE2(swblock_rb_tree, swblock, swb_entry, rb_swblock_compare,
218              vm_pindex_t, swb_index);
219
220 int
221 rb_swblock_compare(struct swblock *swb1, struct swblock *swb2)
222 {
223         if (swb1->swb_index < swb2->swb_index)
224                 return(-1);
225         if (swb1->swb_index > swb2->swb_index)
226                 return(1);
227         return(0);
228 }
229
230 static
231 int
232 rb_swblock_scancmp(struct swblock *swb, void *data)
233 {
234         struct swfreeinfo *info = data;
235
236         if (swb->swb_index < info->basei)
237                 return(-1);
238         if (swb->swb_index > info->endi)
239                 return(1);
240         return(0);
241 }
242
243 static
244 int
245 rb_swblock_condcmp(struct swblock *swb, void *data)
246 {
247         struct swfreeinfo *info = data;
248
249         if (swb->swb_index < info->basei)
250                 return(-1);
251         return(0);
252 }
253
254 /*
255  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
256  * calls hooked from other parts of the VM system and do not appear here.
257  * (see vm/swap_pager.h).
258  */
259
260 static void     swap_pager_dealloc (vm_object_t object);
261 static int      swap_pager_getpage (vm_object_t, vm_page_t *, int);
262 static void     swap_chain_iodone(struct bio *biox);
263
264 struct pagerops swappagerops = {
265         swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
266         swap_pager_getpage,     /* pagein                               */
267         swap_pager_putpages,    /* pageout                              */
268         swap_pager_haspage      /* get backing store status for page    */
269 };
270
271 /*
272  * SWB_DMMAX is in page-sized chunks with the new swap system.  It was
273  * dev-bsized chunks in the old.  SWB_DMMAX is always a power of 2.
274  *
275  * swap_*() routines are externally accessible.  swp_*() routines are
276  * internal.
277  */
278
279 int nswap_lowat = 128;          /* in pages, swap_pager_almost_full warn */
280 int nswap_hiwat = 512;          /* in pages, swap_pager_almost_full warn */
281
282 static __inline void    swp_sizecheck (void);
283 static void     swp_pager_async_iodone (struct bio *bio);
284
285 /*
286  * Swap bitmap functions
287  */
288
289 static __inline void    swp_pager_freeswapspace(vm_object_t object,
290                                                 swblk_t blk, int npages);
291 static __inline swblk_t swp_pager_getswapspace(vm_object_t object, int npages);
292
293 /*
294  * Metadata functions
295  */
296
297 static void swp_pager_meta_convert(vm_object_t);
298 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, swblk_t);
299 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
300 static void swp_pager_meta_free_all(vm_object_t);
301 static swblk_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
302
303 /*
304  * SWP_SIZECHECK() -    update swap_pager_full indication
305  *      
306  *      update the swap_pager_almost_full indication and warn when we are
307  *      about to run out of swap space, using lowat/hiwat hysteresis.
308  *
309  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
310  *
311  * No restrictions on call
312  * This routine may not block.
313  * SMP races are ok.
314  */
315 static __inline void
316 swp_sizecheck(void)
317 {
318         if (vm_swap_size < nswap_lowat) {
319                 if (swap_pager_almost_full == 0) {
320                         kprintf("swap_pager: out of swap space\n");
321                         swap_pager_almost_full = 1;
322                         swap_fail_ticks = ticks;
323                 }
324         } else {
325                 swap_pager_full = 0;
326                 if (vm_swap_size > nswap_hiwat)
327                         swap_pager_almost_full = 0;
328         }
329 }
330
331 /*
332  * Long-term data collection on 10-second interval.  Return the value
333  * for KCOLLECT_SWAPPCT and set the values for SWAPANO and SWAPCCAC.
334  *
335  * Return total swap in the scale field.  This can change if swap is
336  * regularly added or removed and may cause some historical confusion
337  * in that case, but SWAPPCT will always be historically accurate.
338  */
339
340 #define PTOB(value)     ((uint64_t)(value) << PAGE_SHIFT)
341
342 static uint64_t
343 collect_swap_callback(int n)
344 {
345         uint64_t total = vm_swap_max;
346         uint64_t anon = vm_swap_anon_use;
347         uint64_t cache = vm_swap_cache_use;
348
349         if (total == 0)         /* avoid divide by zero */
350                 total = 1;
351         kcollect_setvalue(KCOLLECT_SWAPANO, PTOB(anon));
352         kcollect_setvalue(KCOLLECT_SWAPCAC, PTOB(cache));
353         kcollect_setscale(KCOLLECT_SWAPANO,
354                           KCOLLECT_SCALE(KCOLLECT_SWAPANO_FORMAT, PTOB(total)));
355         kcollect_setscale(KCOLLECT_SWAPCAC,
356                           KCOLLECT_SCALE(KCOLLECT_SWAPCAC_FORMAT, PTOB(total)));
357         return (((anon + cache) * 10000 + (total >> 1)) / total);
358 }
359
360 /*
361  * SWAP_PAGER_INIT() -  initialize the swap pager!
362  *
363  *      Expected to be started from system init.  NOTE:  This code is run 
364  *      before much else so be careful what you depend on.  Most of the VM
365  *      system has yet to be initialized at this point.
366  *
367  * Called from the low level boot code only.
368  */
369 static void
370 swap_pager_init(void *arg __unused)
371 {
372         kcollect_register(KCOLLECT_SWAPPCT, "swapuse", collect_swap_callback,
373                           KCOLLECT_SCALE(KCOLLECT_SWAPPCT_FORMAT, 0));
374         kcollect_register(KCOLLECT_SWAPANO, "swapano", NULL,
375                           KCOLLECT_SCALE(KCOLLECT_SWAPANO_FORMAT, 0));
376         kcollect_register(KCOLLECT_SWAPCAC, "swapcac", NULL,
377                           KCOLLECT_SCALE(KCOLLECT_SWAPCAC_FORMAT, 0));
378 }
379 SYSINIT(vm_mem, SI_BOOT1_VM, SI_ORDER_THIRD, swap_pager_init, NULL);
380
381 /*
382  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
383  *
384  *      Expected to be started from pageout process once, prior to entering
385  *      its main loop.
386  *
387  * Called from the low level boot code only.
388  */
389 void
390 swap_pager_swap_init(void)
391 {
392         int n, n2;
393
394         /*
395          * Number of in-transit swap bp operations.  Don't
396          * exhaust the pbufs completely.  Make sure we
397          * initialize workable values (0 will work for hysteresis
398          * but it isn't very efficient).
399          *
400          * The nsw_cluster_max is constrained by the number of pages an XIO
401          * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
402          * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
403          * constrained by the swap device interleave stripe size.
404          *
405          * Currently we hardwire nsw_wcount_async to 4.  This limit is 
406          * designed to prevent other I/O from having high latencies due to
407          * our pageout I/O.  The value 4 works well for one or two active swap
408          * devices but is probably a little low if you have more.  Even so,
409          * a higher value would probably generate only a limited improvement
410          * with three or four active swap devices since the system does not
411          * typically have to pageout at extreme bandwidths.   We will want
412          * at least 2 per swap devices, and 4 is a pretty good value if you
413          * have one NFS swap device due to the command/ack latency over NFS.
414          * So it all works out pretty well.
415          */
416
417         nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
418
419         nsw_rcount = (nswbuf_kva + 1) / 2;
420         nsw_wcount_sync = (nswbuf_kva + 3) / 4;
421         nsw_wcount_async = 4;
422         nsw_wcount_async_max = nsw_wcount_async;
423
424         /*
425          * The zone is dynamically allocated so generally size it to
426          * maxswzone (32MB to 256GB of KVM).  Set a minimum size based
427          * on physical memory of around 8x (each swblock can hold 16 pages).
428          *
429          * With the advent of SSDs (vs HDs) the practical (swap:memory) ratio
430          * has increased dramatically.
431          */
432         n = vmstats.v_page_count / 2;
433         if (maxswzone && n < maxswzone / sizeof(struct swblock))
434                 n = maxswzone / sizeof(struct swblock);
435         n2 = n;
436
437         do {
438                 swap_zone = zinit(
439                         "SWAPMETA", 
440                         sizeof(struct swblock), 
441                         n,
442                         ZONE_INTERRUPT);
443                 if (swap_zone != NULL)
444                         break;
445                 /*
446                  * if the allocation failed, try a zone two thirds the
447                  * size of the previous attempt.
448                  */
449                 n -= ((n + 2) / 3);
450         } while (n > 0);
451
452         if (swap_zone == NULL)
453                 panic("swap_pager_swap_init: swap_zone == NULL");
454         if (n2 != n)
455                 kprintf("Swap zone entries reduced from %d to %d.\n", n2, n);
456 }
457
458 /*
459  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
460  *                      its metadata structures.
461  *
462  *      This routine is called from the mmap and fork code to create a new
463  *      OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
464  *      and then converting it with swp_pager_meta_convert().
465  *
466  *      We only support unnamed objects.
467  *
468  * No restrictions.
469  */
470 vm_object_t
471 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
472 {
473         vm_object_t object;
474
475         KKASSERT(handle == NULL);
476         object = vm_object_allocate_hold(OBJT_DEFAULT,
477                                          OFF_TO_IDX(offset + PAGE_MASK + size));
478         swp_pager_meta_convert(object);
479         vm_object_drop(object);
480
481         return (object);
482 }
483
484 /*
485  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
486  *
487  *      The swap backing for the object is destroyed.  The code is 
488  *      designed such that we can reinstantiate it later, but this
489  *      routine is typically called only when the entire object is
490  *      about to be destroyed.
491  *
492  * The object must be locked or unreferenceable.
493  * No other requirements.
494  */
495 static void
496 swap_pager_dealloc(vm_object_t object)
497 {
498         vm_object_hold(object);
499         vm_object_pip_wait(object, "swpdea");
500
501         /*
502          * Free all remaining metadata.  We only bother to free it from 
503          * the swap meta data.  We do not attempt to free swapblk's still
504          * associated with vm_page_t's for this object.  We do not care
505          * if paging is still in progress on some objects.
506          */
507         swp_pager_meta_free_all(object);
508         vm_object_drop(object);
509 }
510
511 /************************************************************************
512  *                      SWAP PAGER BITMAP ROUTINES                      *
513  ************************************************************************/
514
515 /*
516  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
517  *
518  *      Allocate swap for the requested number of pages.  The starting
519  *      swap block number (a page index) is returned or SWAPBLK_NONE
520  *      if the allocation failed.
521  *
522  *      Also has the side effect of advising that somebody made a mistake
523  *      when they configured swap and didn't configure enough.
524  *
525  * The caller must hold the object.
526  * This routine may not block.
527  */
528 static __inline swblk_t
529 swp_pager_getswapspace(vm_object_t object, int npages)
530 {
531         swblk_t blk;
532
533         lwkt_gettoken(&vm_token);
534         blk = blist_allocat(swapblist, npages, swapiterator);
535         if (blk == SWAPBLK_NONE)
536                 blk = blist_allocat(swapblist, npages, 0);
537         if (blk == SWAPBLK_NONE) {
538                 if (swap_pager_full != 2) {
539                         if (vm_swap_max == 0)
540                                 kprintf("Warning: The system would like to "
541                                         "page to swap but no swap space "
542                                         "is configured!\n");
543                         else
544                                 kprintf("swap_pager_getswapspace: "
545                                         "swap full allocating %d pages\n",
546                                         npages);
547                         swap_pager_full = 2;
548                         if (swap_pager_almost_full == 0)
549                                 swap_fail_ticks = ticks;
550                         swap_pager_almost_full = 1;
551                 }
552         } else {
553                 /* swapiterator = blk; disable for now, doesn't work well */
554                 swapacctspace(blk, -npages);
555                 if (object->type == OBJT_SWAP)
556                         vm_swap_anon_use += npages;
557                 else
558                         vm_swap_cache_use += npages;
559                 swp_sizecheck();
560         }
561         lwkt_reltoken(&vm_token);
562         return(blk);
563 }
564
565 /*
566  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space 
567  *
568  *      This routine returns the specified swap blocks back to the bitmap.
569  *
570  *      Note:  This routine may not block (it could in the old swap code),
571  *      and through the use of the new blist routines it does not block.
572  *
573  * This routine may not block.
574  */
575
576 static __inline void
577 swp_pager_freeswapspace(vm_object_t object, swblk_t blk, int npages)
578 {
579         struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)];
580
581         lwkt_gettoken(&vm_token);
582         sp->sw_nused -= npages;
583         if (object->type == OBJT_SWAP)
584                 vm_swap_anon_use -= npages;
585         else
586                 vm_swap_cache_use -= npages;
587
588         if (sp->sw_flags & SW_CLOSING) {
589                 lwkt_reltoken(&vm_token);
590                 return;
591         }
592
593         blist_free(swapblist, blk, npages);
594         vm_swap_size += npages;
595         swp_sizecheck();
596         lwkt_reltoken(&vm_token);
597 }
598
599 /*
600  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
601  *                              range within an object.
602  *
603  *      This is a globally accessible routine.
604  *
605  *      This routine removes swapblk assignments from swap metadata.
606  *
607  *      The external callers of this routine typically have already destroyed 
608  *      or renamed vm_page_t's associated with this range in the object so 
609  *      we should be ok.
610  *
611  * No requirements.
612  */
613 void
614 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
615 {
616         vm_object_hold(object);
617         swp_pager_meta_free(object, start, size);
618         vm_object_drop(object);
619 }
620
621 /*
622  * No requirements.
623  */
624 void
625 swap_pager_freespace_all(vm_object_t object)
626 {
627         vm_object_hold(object);
628         swp_pager_meta_free_all(object);
629         vm_object_drop(object);
630 }
631
632 /*
633  * This function conditionally frees swap cache swap starting at
634  * (*basei) in the object.  (count) swap blocks will be nominally freed.
635  * The actual number of blocks freed can be more or less than the
636  * requested number.
637  *
638  * This function nominally returns the number of blocks freed.  However,
639  * the actual number of blocks freed may be less then the returned value.
640  * If the function is unable to exhaust the object or if it is able to
641  * free (approximately) the requested number of blocks it returns
642  * a value n > count.
643  *
644  * If we exhaust the object we will return a value n <= count.
645  *
646  * The caller must hold the object.
647  *
648  * WARNING!  If count == 0 then -1 can be returned as a degenerate case,
649  *           callers should always pass a count value > 0.
650  */
651 static int swap_pager_condfree_callback(struct swblock *swap, void *data);
652
653 int
654 swap_pager_condfree(vm_object_t object, vm_pindex_t *basei, int count)
655 {
656         struct swfreeinfo info;
657         int n;
658         int t;
659
660         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
661
662         info.object = object;
663         info.basei = *basei;    /* skip up to this page index */
664         info.begi = count;      /* max swap pages to destroy */
665         info.endi = count * 8;  /* max swblocks to scan */
666
667         swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_condcmp,
668                                 swap_pager_condfree_callback, &info);
669         *basei = info.basei;
670
671         /*
672          * Take the higher difference swblocks vs pages
673          */
674         n = count - (int)info.begi;
675         t = count * 8 - (int)info.endi;
676         if (n < t)
677                 n = t;
678         if (n < 1)
679                 n = 1;
680         return(n);
681 }
682
683 /*
684  * The idea is to free whole meta-block to avoid fragmenting
685  * the swap space or disk I/O.  We only do this if NO VM pages
686  * are present.
687  *
688  * We do not have to deal with clearing PG_SWAPPED in related VM
689  * pages because there are no related VM pages.
690  *
691  * The caller must hold the object.
692  */
693 static int
694 swap_pager_condfree_callback(struct swblock *swap, void *data)
695 {
696         struct swfreeinfo *info = data;
697         vm_object_t object = info->object;
698         int i;
699
700         for (i = 0; i < SWAP_META_PAGES; ++i) {
701                 if (vm_page_lookup(object, swap->swb_index + i))
702                         break;
703         }
704         info->basei = swap->swb_index + SWAP_META_PAGES;
705         if (i == SWAP_META_PAGES) {
706                 info->begi -= swap->swb_count;
707                 swap_pager_freespace(object, swap->swb_index, SWAP_META_PAGES);
708         }
709         --info->endi;
710         if ((int)info->begi < 0 || (int)info->endi < 0)
711                 return(-1);
712         lwkt_yield();
713         return(0);
714 }
715
716 /*
717  * Called by vm_page_alloc() when a new VM page is inserted
718  * into a VM object.  Checks whether swap has been assigned to
719  * the page and sets PG_SWAPPED as necessary.
720  *
721  * (m) must be busied by caller and remains busied on return.
722  */
723 void
724 swap_pager_page_inserted(vm_page_t m)
725 {
726         if (m->object->swblock_count) {
727                 vm_object_hold(m->object);
728                 if (swp_pager_meta_ctl(m->object, m->pindex, 0) != SWAPBLK_NONE)
729                         vm_page_flag_set(m, PG_SWAPPED);
730                 vm_object_drop(m->object);
731         }
732 }
733
734 /*
735  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
736  *
737  *      Assigns swap blocks to the specified range within the object.  The 
738  *      swap blocks are not zerod.  Any previous swap assignment is destroyed.
739  *
740  *      Returns 0 on success, -1 on failure.
741  *
742  * The caller is responsible for avoiding races in the specified range.
743  * No other requirements.
744  */
745 int
746 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
747 {
748         int n = 0;
749         swblk_t blk = SWAPBLK_NONE;
750         vm_pindex_t beg = start;        /* save start index */
751
752         vm_object_hold(object);
753
754         while (size) {
755                 if (n == 0) {
756                         n = BLIST_MAX_ALLOC;
757                         while ((blk = swp_pager_getswapspace(object, n)) ==
758                                SWAPBLK_NONE)
759                         {
760                                 n >>= 1;
761                                 if (n == 0) {
762                                         swp_pager_meta_free(object, beg,
763                                                             start - beg);
764                                         vm_object_drop(object);
765                                         return(-1);
766                                 }
767                         }
768                 }
769                 swp_pager_meta_build(object, start, blk);
770                 --size;
771                 ++start;
772                 ++blk;
773                 --n;
774         }
775         swp_pager_meta_free(object, start, n);
776         vm_object_drop(object);
777         return(0);
778 }
779
780 /*
781  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
782  *                      and destroy the source.
783  *
784  *      Copy any valid swapblks from the source to the destination.  In
785  *      cases where both the source and destination have a valid swapblk,
786  *      we keep the destination's.
787  *
788  *      This routine is allowed to block.  It may block allocating metadata
789  *      indirectly through swp_pager_meta_build() or if paging is still in
790  *      progress on the source. 
791  *
792  *      XXX vm_page_collapse() kinda expects us not to block because we 
793  *      supposedly do not need to allocate memory, but for the moment we
794  *      *may* have to get a little memory from the zone allocator, but
795  *      it is taken from the interrupt memory.  We should be ok. 
796  *
797  *      The source object contains no vm_page_t's (which is just as well)
798  *      The source object is of type OBJT_SWAP.
799  *
800  *      The source and destination objects must be held by the caller.
801  */
802 void
803 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
804                 vm_pindex_t base_index, int destroysource)
805 {
806         vm_pindex_t i;
807
808         ASSERT_LWKT_TOKEN_HELD(vm_object_token(srcobject));
809         ASSERT_LWKT_TOKEN_HELD(vm_object_token(dstobject));
810
811         /*
812          * transfer source to destination.
813          */
814         for (i = 0; i < dstobject->size; ++i) {
815                 swblk_t dstaddr;
816
817                 /*
818                  * Locate (without changing) the swapblk on the destination,
819                  * unless it is invalid in which case free it silently, or
820                  * if the destination is a resident page, in which case the
821                  * source is thrown away.
822                  */
823                 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
824
825                 if (dstaddr == SWAPBLK_NONE) {
826                         /*
827                          * Destination has no swapblk and is not resident,
828                          * copy source.
829                          */
830                         swblk_t srcaddr;
831
832                         srcaddr = swp_pager_meta_ctl(srcobject,
833                                                      base_index + i, SWM_POP);
834
835                         if (srcaddr != SWAPBLK_NONE)
836                                 swp_pager_meta_build(dstobject, i, srcaddr);
837                 } else {
838                         /*
839                          * Destination has valid swapblk or it is represented
840                          * by a resident page.  We destroy the sourceblock.
841                          */
842                         swp_pager_meta_ctl(srcobject, base_index + i, SWM_FREE);
843                 }
844         }
845
846         /*
847          * Free left over swap blocks in source.
848          *
849          * We have to revert the type to OBJT_DEFAULT so we do not accidently
850          * double-remove the object from the swap queues.
851          */
852         if (destroysource) {
853                 /*
854                  * Reverting the type is not necessary, the caller is going
855                  * to destroy srcobject directly, but I'm doing it here
856                  * for consistency since we've removed the object from its
857                  * queues.
858                  */
859                 swp_pager_meta_free_all(srcobject);
860                 if (srcobject->type == OBJT_SWAP)
861                         srcobject->type = OBJT_DEFAULT;
862         }
863 }
864
865 /*
866  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
867  *                              the requested page.
868  *
869  *      We determine whether good backing store exists for the requested
870  *      page and return TRUE if it does, FALSE if it doesn't.
871  *
872  *      If TRUE, we also try to determine how much valid, contiguous backing
873  *      store exists before and after the requested page within a reasonable
874  *      distance.  We do not try to restrict it to the swap device stripe
875  *      (that is handled in getpages/putpages).  It probably isn't worth
876  *      doing here.
877  *
878  * No requirements.
879  */
880 boolean_t
881 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex)
882 {
883         swblk_t blk0;
884
885         /*
886          * do we have good backing store at the requested index ?
887          */
888         vm_object_hold(object);
889         blk0 = swp_pager_meta_ctl(object, pindex, 0);
890
891         if (blk0 == SWAPBLK_NONE) {
892                 vm_object_drop(object);
893                 return (FALSE);
894         }
895         vm_object_drop(object);
896         return (TRUE);
897 }
898
899 /*
900  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
901  *
902  * This removes any associated swap backing store, whether valid or
903  * not, from the page.  This operates on any VM object, not just OBJT_SWAP
904  * objects.
905  *
906  * This routine is typically called when a page is made dirty, at
907  * which point any associated swap can be freed.  MADV_FREE also
908  * calls us in a special-case situation
909  *
910  * NOTE!!!  If the page is clean and the swap was valid, the caller
911  *          should make the page dirty before calling this routine.
912  *          This routine does NOT change the m->dirty status of the page.
913  *          Also: MADV_FREE depends on it.
914  *
915  * The page must be busied.
916  * The caller can hold the object to avoid blocking, else we might block.
917  * No other requirements.
918  */
919 void
920 swap_pager_unswapped(vm_page_t m)
921 {
922         if (m->flags & PG_SWAPPED) {
923                 vm_object_hold(m->object);
924                 KKASSERT(m->flags & PG_SWAPPED);
925                 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
926                 vm_page_flag_clear(m, PG_SWAPPED);
927                 vm_object_drop(m->object);
928         }
929 }
930
931 /*
932  * SWAP_PAGER_STRATEGY() - read, write, free blocks
933  *
934  * This implements a VM OBJECT strategy function using swap backing store.
935  * This can operate on any VM OBJECT type, not necessarily just OBJT_SWAP
936  * types.  Only BUF_CMD_{READ,WRITE,FREEBLKS} is supported, any other
937  * requests will return EINVAL.
938  *
939  * This is intended to be a cacheless interface (i.e. caching occurs at
940  * higher levels), and is also used as a swap-based SSD cache for vnode
941  * and device objects.
942  *
943  * All I/O goes directly to and from the swap device.
944  *      
945  * We currently attempt to run I/O synchronously or asynchronously as
946  * the caller requests.  This isn't perfect because we loose error
947  * sequencing when we run multiple ops in parallel to satisfy a request.
948  * But this is swap, so we let it all hang out.
949  *
950  * NOTE: This function supports the KVABIO API wherein bp->b_data might
951  *       not be synchronized to the current cpu.
952  *
953  * No requirements.
954  */
955 void
956 swap_pager_strategy(vm_object_t object, struct bio *bio)
957 {
958         struct buf *bp = bio->bio_buf;
959         struct bio *nbio;
960         vm_pindex_t start;
961         vm_pindex_t biox_blkno = 0;
962         int count;
963         char *data;
964         struct bio *biox;
965         struct buf *bufx;
966 #if 0
967         struct bio_track *track;
968 #endif
969
970 #if 0
971         /*
972          * tracking for swapdev vnode I/Os
973          */
974         if (bp->b_cmd == BUF_CMD_READ)
975                 track = &swapdev_vp->v_track_read;
976         else
977                 track = &swapdev_vp->v_track_write;
978 #endif
979
980         /*
981          * Only supported commands
982          */
983         if (bp->b_cmd != BUF_CMD_FREEBLKS &&
984             bp->b_cmd != BUF_CMD_READ &&
985             bp->b_cmd != BUF_CMD_WRITE) {
986                 bp->b_error = EINVAL;
987                 bp->b_flags |= B_ERROR | B_INVAL;
988                 biodone(bio);
989                 return;
990         }
991
992         /*
993          * bcount must be an integral number of pages.
994          */
995         if (bp->b_bcount & PAGE_MASK) {
996                 bp->b_error = EINVAL;
997                 bp->b_flags |= B_ERROR | B_INVAL;
998                 biodone(bio);
999                 kprintf("swap_pager_strategy: bp %p offset %lld size %d, "
1000                         "not page bounded\n",
1001                         bp, (long long)bio->bio_offset, (int)bp->b_bcount);
1002                 return;
1003         }
1004
1005         /*
1006          * Clear error indication, initialize page index, count, data pointer.
1007          */
1008         bp->b_error = 0;
1009         bp->b_flags &= ~B_ERROR;
1010         bp->b_resid = bp->b_bcount;
1011
1012         start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT);
1013         count = howmany(bp->b_bcount, PAGE_SIZE);
1014
1015         /*
1016          * WARNING!  Do not dereference *data without issuing a bkvasync()
1017          */
1018         data = bp->b_data;
1019
1020         /*
1021          * Deal with BUF_CMD_FREEBLKS
1022          */
1023         if (bp->b_cmd == BUF_CMD_FREEBLKS) {
1024                 /*
1025                  * FREE PAGE(s) - destroy underlying swap that is no longer
1026                  *                needed.
1027                  */
1028                 vm_object_hold(object);
1029                 swp_pager_meta_free(object, start, count);
1030                 vm_object_drop(object);
1031                 bp->b_resid = 0;
1032                 biodone(bio);
1033                 return;
1034         }
1035
1036         /*
1037          * We need to be able to create a new cluster of I/O's.  We cannot
1038          * use the caller fields of the passed bio so push a new one.
1039          *
1040          * Because nbio is just a placeholder for the cluster links,
1041          * we can biodone() the original bio instead of nbio to make
1042          * things a bit more efficient.
1043          */
1044         nbio = push_bio(bio);
1045         nbio->bio_offset = bio->bio_offset;
1046         nbio->bio_caller_info1.cluster_head = NULL;
1047         nbio->bio_caller_info2.cluster_tail = NULL;
1048
1049         biox = NULL;
1050         bufx = NULL;
1051
1052         /*
1053          * Execute read or write
1054          */
1055         vm_object_hold(object);
1056
1057         while (count > 0) {
1058                 swblk_t blk;
1059
1060                 /*
1061                  * Obtain block.  If block not found and writing, allocate a
1062                  * new block and build it into the object.
1063                  */
1064                 blk = swp_pager_meta_ctl(object, start, 0);
1065                 if ((blk == SWAPBLK_NONE) && bp->b_cmd == BUF_CMD_WRITE) {
1066                         blk = swp_pager_getswapspace(object, 1);
1067                         if (blk == SWAPBLK_NONE) {
1068                                 bp->b_error = ENOMEM;
1069                                 bp->b_flags |= B_ERROR;
1070                                 break;
1071                         }
1072                         swp_pager_meta_build(object, start, blk);
1073                 }
1074                         
1075                 /*
1076                  * Do we have to flush our current collection?  Yes if:
1077                  *
1078                  *      - no swap block at this index
1079                  *      - swap block is not contiguous
1080                  *      - we cross a physical disk boundry in the
1081                  *        stripe.
1082                  */
1083                 if (biox &&
1084                     (biox_blkno + btoc(bufx->b_bcount) != blk ||
1085                      ((biox_blkno ^ blk) & ~SWB_DMMASK))) {
1086                         switch(bp->b_cmd) {
1087                         case BUF_CMD_READ:
1088                                 ++mycpu->gd_cnt.v_swapin;
1089                                 mycpu->gd_cnt.v_swappgsin +=
1090                                         btoc(bufx->b_bcount);
1091                                 break;
1092                         case BUF_CMD_WRITE:
1093                                 ++mycpu->gd_cnt.v_swapout;
1094                                 mycpu->gd_cnt.v_swappgsout +=
1095                                         btoc(bufx->b_bcount);
1096                                 bufx->b_dirtyend = bufx->b_bcount;
1097                                 break;
1098                         default:
1099                                 /* NOT REACHED */
1100                                 break;
1101                         }
1102
1103                         /*
1104                          * Finished with this buf.
1105                          */
1106                         KKASSERT(bufx->b_bcount != 0);
1107                         if (bufx->b_cmd != BUF_CMD_READ)
1108                                 bufx->b_dirtyend = bufx->b_bcount;
1109                         biox = NULL;
1110                         bufx = NULL;
1111                 }
1112
1113                 /*
1114                  * Add new swapblk to biox, instantiating biox if necessary.
1115                  * Zero-fill reads are able to take a shortcut.
1116                  */
1117                 if (blk == SWAPBLK_NONE) {
1118                         /*
1119                          * We can only get here if we are reading.
1120                          */
1121                         bkvasync(bp);
1122                         bzero(data, PAGE_SIZE);
1123                         bp->b_resid -= PAGE_SIZE;
1124                 } else {
1125                         if (biox == NULL) {
1126                                 /* XXX chain count > 4, wait to <= 4 */
1127
1128                                 bufx = getpbuf(NULL);
1129                                 bufx->b_flags |= B_KVABIO;
1130                                 biox = &bufx->b_bio1;
1131                                 cluster_append(nbio, bufx);
1132                                 bufx->b_cmd = bp->b_cmd;
1133                                 biox->bio_done = swap_chain_iodone;
1134                                 biox->bio_offset = (off_t)blk << PAGE_SHIFT;
1135                                 biox->bio_caller_info1.cluster_parent = nbio;
1136                                 biox_blkno = blk;
1137                                 bufx->b_bcount = 0;
1138                                 bufx->b_data = data;
1139                         }
1140                         bufx->b_bcount += PAGE_SIZE;
1141                 }
1142                 --count;
1143                 ++start;
1144                 data += PAGE_SIZE;
1145         }
1146
1147         vm_object_drop(object);
1148
1149         /*
1150          *  Flush out last buffer
1151          */
1152         if (biox) {
1153                 if (bufx->b_cmd == BUF_CMD_READ) {
1154                         ++mycpu->gd_cnt.v_swapin;
1155                         mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1156                 } else {
1157                         ++mycpu->gd_cnt.v_swapout;
1158                         mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1159                         bufx->b_dirtyend = bufx->b_bcount;
1160                 }
1161                 KKASSERT(bufx->b_bcount);
1162                 if (bufx->b_cmd != BUF_CMD_READ)
1163                         bufx->b_dirtyend = bufx->b_bcount;
1164                 /* biox, bufx = NULL */
1165         }
1166
1167         /*
1168          * Now initiate all the I/O.  Be careful looping on our chain as
1169          * I/O's may complete while we are still initiating them.
1170          *
1171          * If the request is a 100% sparse read no bios will be present
1172          * and we just biodone() the buffer.
1173          */
1174         nbio->bio_caller_info2.cluster_tail = NULL;
1175         bufx = nbio->bio_caller_info1.cluster_head;
1176
1177         if (bufx) {
1178                 while (bufx) {
1179                         biox = &bufx->b_bio1;
1180                         BUF_KERNPROC(bufx);
1181                         bufx = bufx->b_cluster_next;
1182                         vn_strategy(swapdev_vp, biox);
1183                 }
1184         } else {
1185                 biodone(bio);
1186         }
1187
1188         /*
1189          * Completion of the cluster will also call biodone_chain(nbio).
1190          * We never call biodone(nbio) so we don't have to worry about
1191          * setting up a bio_done callback.  It's handled in the sub-IO.
1192          */
1193         /**/
1194 }
1195
1196 /*
1197  * biodone callback
1198  *
1199  * No requirements.
1200  */
1201 static void
1202 swap_chain_iodone(struct bio *biox)
1203 {
1204         struct buf **nextp;
1205         struct buf *bufx;       /* chained sub-buffer */
1206         struct bio *nbio;       /* parent nbio with chain glue */
1207         struct buf *bp;         /* original bp associated with nbio */
1208         int chain_empty;
1209
1210         bufx = biox->bio_buf;
1211         nbio = biox->bio_caller_info1.cluster_parent;
1212         bp = nbio->bio_buf;
1213
1214         /*
1215          * Update the original buffer
1216          */
1217         KKASSERT(bp != NULL);
1218         if (bufx->b_flags & B_ERROR) {
1219                 atomic_set_int(&bufx->b_flags, B_ERROR);
1220                 bp->b_error = bufx->b_error;    /* race ok */
1221         } else if (bufx->b_resid != 0) {
1222                 atomic_set_int(&bufx->b_flags, B_ERROR);
1223                 bp->b_error = EINVAL;           /* race ok */
1224         } else {
1225                 atomic_subtract_int(&bp->b_resid, bufx->b_bcount);
1226         }
1227
1228         /*
1229          * Remove us from the chain.
1230          */
1231         spin_lock(&swapbp_spin);
1232         nextp = &nbio->bio_caller_info1.cluster_head;
1233         while (*nextp != bufx) {
1234                 KKASSERT(*nextp != NULL);
1235                 nextp = &(*nextp)->b_cluster_next;
1236         }
1237         *nextp = bufx->b_cluster_next;
1238         chain_empty = (nbio->bio_caller_info1.cluster_head == NULL);
1239         spin_unlock(&swapbp_spin);
1240
1241         /*
1242          * Clean up bufx.  If the chain is now empty we finish out
1243          * the parent.  Note that we may be racing other completions
1244          * so we must use the chain_empty status from above.
1245          */
1246         if (chain_empty) {
1247                 if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1248                         atomic_set_int(&bp->b_flags, B_ERROR);
1249                         bp->b_error = EINVAL;
1250                 }
1251                 biodone_chain(nbio);
1252         }
1253         relpbuf(bufx, NULL);
1254 }
1255
1256 /*
1257  * SWAP_PAGER_GETPAGES() - bring page in from swap
1258  *
1259  * The requested page may have to be brought in from swap.  Calculate the
1260  * swap block and bring in additional pages if possible.  All pages must
1261  * have contiguous swap block assignments and reside in the same object.
1262  *
1263  * The caller has a single vm_object_pip_add() reference prior to
1264  * calling us and we should return with the same.
1265  *
1266  * The caller has BUSY'd the page.  We should return with (*mpp) left busy,
1267  * and any additinal pages unbusied.
1268  *
1269  * If the caller encounters a PG_RAM page it will pass it to us even though
1270  * it may be valid and dirty.  We cannot overwrite the page in this case!
1271  * The case is used to allow us to issue pure read-aheads.
1272  *
1273  * NOTE! XXX This code does not entirely pipeline yet due to the fact that
1274  *       the PG_RAM page is validated at the same time as mreq.  What we
1275  *       really need to do is issue a separate read-ahead pbuf.
1276  *
1277  * No requirements.
1278  */
1279 static int
1280 swap_pager_getpage(vm_object_t object, vm_page_t *mpp, int seqaccess)
1281 {
1282         struct buf *bp;
1283         struct bio *bio;
1284         vm_page_t mreq;
1285         vm_page_t m;
1286         vm_offset_t kva;
1287         swblk_t blk;
1288         int i;
1289         int j;
1290         int raonly;
1291         int error;
1292         u_int32_t busy_count;
1293         vm_page_t marray[XIO_INTERNAL_PAGES];
1294
1295         mreq = *mpp;
1296
1297         vm_object_hold(object);
1298         if (mreq->object != object) {
1299                 panic("swap_pager_getpages: object mismatch %p/%p", 
1300                     object, 
1301                     mreq->object
1302                 );
1303         }
1304
1305         /*
1306          * We don't want to overwrite a fully valid page as it might be
1307          * dirty.  This case can occur when e.g. vm_fault hits a perfectly
1308          * valid page with PG_RAM set.
1309          *
1310          * In this case we see if the next page is a suitable page-in
1311          * candidate and if it is we issue read-ahead.  PG_RAM will be
1312          * set on the last page of the read-ahead to continue the pipeline.
1313          */
1314         if (mreq->valid == VM_PAGE_BITS_ALL) {
1315                 if (swap_burst_read == 0 || mreq->pindex + 1 >= object->size) {
1316                         vm_object_drop(object);
1317                         return(VM_PAGER_OK);
1318                 }
1319                 blk = swp_pager_meta_ctl(object, mreq->pindex + 1, 0);
1320                 if (blk == SWAPBLK_NONE) {
1321                         vm_object_drop(object);
1322                         return(VM_PAGER_OK);
1323                 }
1324                 m = vm_page_lookup_busy_try(object, mreq->pindex + 1,
1325                                             TRUE, &error);
1326                 if (error) {
1327                         vm_object_drop(object);
1328                         return(VM_PAGER_OK);
1329                 } else if (m == NULL) {
1330                         /*
1331                          * Use VM_ALLOC_QUICK to avoid blocking on cache
1332                          * page reuse.
1333                          */
1334                         m = vm_page_alloc(object, mreq->pindex + 1,
1335                                           VM_ALLOC_QUICK);
1336                         if (m == NULL) {
1337                                 vm_object_drop(object);
1338                                 return(VM_PAGER_OK);
1339                         }
1340                 } else {
1341                         if (m->valid) {
1342                                 vm_page_wakeup(m);
1343                                 vm_object_drop(object);
1344                                 return(VM_PAGER_OK);
1345                         }
1346                         vm_page_unqueue_nowakeup(m);
1347                 }
1348                 /* page is busy */
1349                 mreq = m;
1350                 raonly = 1;
1351         } else {
1352                 raonly = 0;
1353         }
1354
1355         /*
1356          * Try to block-read contiguous pages from swap if sequential,
1357          * otherwise just read one page.  Contiguous pages from swap must
1358          * reside within a single device stripe because the I/O cannot be
1359          * broken up across multiple stripes.
1360          *
1361          * Note that blk and iblk can be SWAPBLK_NONE but the loop is
1362          * set up such that the case(s) are handled implicitly.
1363          */
1364         blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1365         marray[0] = mreq;
1366
1367         for (i = 1; i <= swap_burst_read &&
1368                     i < XIO_INTERNAL_PAGES &&
1369                     mreq->pindex + i < object->size; ++i) {
1370                 swblk_t iblk;
1371
1372                 iblk = swp_pager_meta_ctl(object, mreq->pindex + i, 0);
1373                 if (iblk != blk + i)
1374                         break;
1375                 if ((blk ^ iblk) & ~SWB_DMMASK)
1376                         break;
1377                 m = vm_page_lookup_busy_try(object, mreq->pindex + i,
1378                                             TRUE, &error);
1379                 if (error) {
1380                         break;
1381                 } else if (m == NULL) {
1382                         /*
1383                          * Use VM_ALLOC_QUICK to avoid blocking on cache
1384                          * page reuse.
1385                          */
1386                         m = vm_page_alloc(object, mreq->pindex + i,
1387                                           VM_ALLOC_QUICK);
1388                         if (m == NULL)
1389                                 break;
1390                 } else {
1391                         if (m->valid) {
1392                                 vm_page_wakeup(m);
1393                                 break;
1394                         }
1395                         vm_page_unqueue_nowakeup(m);
1396                 }
1397                 /* page is busy */
1398                 marray[i] = m;
1399         }
1400         if (i > 1)
1401                 vm_page_flag_set(marray[i - 1], PG_RAM);
1402
1403         /*
1404          * If mreq is the requested page and we have nothing to do return
1405          * VM_PAGER_FAIL.  If raonly is set mreq is just another read-ahead
1406          * page and must be cleaned up.
1407          */
1408         if (blk == SWAPBLK_NONE) {
1409                 KKASSERT(i == 1);
1410                 if (raonly) {
1411                         vnode_pager_freepage(mreq);
1412                         vm_object_drop(object);
1413                         return(VM_PAGER_OK);
1414                 } else {
1415                         vm_object_drop(object);
1416                         return(VM_PAGER_FAIL);
1417                 }
1418         }
1419
1420         /*
1421          * Map our page(s) into kva for input
1422          *
1423          * Use the KVABIO API to avoid synchronizing the pmap.
1424          */
1425         bp = getpbuf_kva(&nsw_rcount);
1426         bio = &bp->b_bio1;
1427         kva = (vm_offset_t) bp->b_kvabase;
1428         bcopy(marray, bp->b_xio.xio_pages, i * sizeof(vm_page_t));
1429         pmap_qenter_noinval(kva, bp->b_xio.xio_pages, i);
1430
1431         bp->b_data = (caddr_t)kva;
1432         bp->b_bcount = PAGE_SIZE * i;
1433         bp->b_xio.xio_npages = i;
1434         bp->b_flags |= B_KVABIO;
1435         bio->bio_done = swp_pager_async_iodone;
1436         bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1437         bio->bio_caller_info1.index = SWBIO_READ;
1438
1439         /*
1440          * Set index.  If raonly set the index beyond the array so all
1441          * the pages are treated the same, otherwise the original mreq is
1442          * at index 0.
1443          */
1444         if (raonly)
1445                 bio->bio_driver_info = (void *)(intptr_t)i;
1446         else
1447                 bio->bio_driver_info = (void *)(intptr_t)0;
1448
1449         for (j = 0; j < i; ++j) {
1450                 atomic_set_int(&bp->b_xio.xio_pages[j]->busy_count,
1451                                PBUSY_SWAPINPROG);
1452         }
1453
1454         mycpu->gd_cnt.v_swapin++;
1455         mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
1456
1457         /*
1458          * We still hold the lock on mreq, and our automatic completion routine
1459          * does not remove it.
1460          */
1461         vm_object_pip_add(object, bp->b_xio.xio_npages);
1462
1463         /*
1464          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1465          * this point because we automatically release it on completion.
1466          * Instead, we look at the one page we are interested in which we
1467          * still hold a lock on even through the I/O completion.
1468          *
1469          * The other pages in our m[] array are also released on completion,
1470          * so we cannot assume they are valid anymore either.
1471          */
1472         bp->b_cmd = BUF_CMD_READ;
1473         BUF_KERNPROC(bp);
1474         vn_strategy(swapdev_vp, bio);
1475
1476         /*
1477          * Wait for the page we want to complete.  PBUSY_SWAPINPROG is always
1478          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1479          * is set in the meta-data.
1480          *
1481          * If this is a read-ahead only we return immediately without
1482          * waiting for I/O.
1483          */
1484         if (raonly) {
1485                 vm_object_drop(object);
1486                 return(VM_PAGER_OK);
1487         }
1488
1489         /*
1490          * Read-ahead includes originally requested page case.
1491          */
1492         for (;;) {
1493                 busy_count = mreq->busy_count;
1494                 cpu_ccfence();
1495                 if ((busy_count & PBUSY_SWAPINPROG) == 0)
1496                         break;
1497                 tsleep_interlock(mreq, 0);
1498                 if (!atomic_cmpset_int(&mreq->busy_count, busy_count,
1499                                        busy_count |
1500                                         PBUSY_SWAPINPROG | PBUSY_WANTED)) {
1501                         continue;
1502                 }
1503                 atomic_set_int(&mreq->flags, PG_REFERENCED);
1504                 mycpu->gd_cnt.v_intrans++;
1505                 if (tsleep(mreq, PINTERLOCKED, "swread", hz*20)) {
1506                         kprintf(
1507                             "swap_pager: indefinite wait buffer: "
1508                                 " bp %p offset: %lld, size: %ld\n",
1509                             bp,
1510                             (long long)bio->bio_offset,
1511                             (long)bp->b_bcount
1512                         );
1513                 }
1514         }
1515
1516         /*
1517          * Disallow speculative reads prior to the SWAPINPROG test.
1518          */
1519         cpu_lfence();
1520
1521         /*
1522          * mreq is left busied after completion, but all the other pages
1523          * are freed.  If we had an unrecoverable read error the page will
1524          * not be valid.
1525          */
1526         vm_object_drop(object);
1527         if (mreq->valid != VM_PAGE_BITS_ALL)
1528                 return(VM_PAGER_ERROR);
1529         else
1530                 return(VM_PAGER_OK);
1531
1532         /*
1533          * A final note: in a low swap situation, we cannot deallocate swap
1534          * and mark a page dirty here because the caller is likely to mark
1535          * the page clean when we return, causing the page to possibly revert 
1536          * to all-zero's later.
1537          */
1538 }
1539
1540 /*
1541  *      swap_pager_putpages: 
1542  *
1543  *      Assign swap (if necessary) and initiate I/O on the specified pages.
1544  *
1545  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1546  *      are automatically converted to SWAP objects.
1547  *
1548  *      In a low memory situation we may block in vn_strategy(), but the new 
1549  *      vm_page reservation system coupled with properly written VFS devices 
1550  *      should ensure that no low-memory deadlock occurs.  This is an area
1551  *      which needs work.
1552  *
1553  *      The parent has N vm_object_pip_add() references prior to
1554  *      calling us and will remove references for rtvals[] that are
1555  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1556  *      completion.
1557  *
1558  *      The parent has soft-busy'd the pages it passes us and will unbusy
1559  *      those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1560  *      We need to unbusy the rest on I/O completion.
1561  *
1562  * No requirements.
1563  */
1564 void
1565 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1566                     int flags, int *rtvals)
1567 {
1568         int i;
1569         int n = 0;
1570
1571         vm_object_hold(object);
1572
1573         if (count && m[0]->object != object) {
1574                 panic("swap_pager_getpages: object mismatch %p/%p", 
1575                     object, 
1576                     m[0]->object
1577                 );
1578         }
1579
1580         /*
1581          * Step 1
1582          *
1583          * Turn object into OBJT_SWAP
1584          * Check for bogus sysops
1585          *
1586          * Force sync if not pageout process, we don't want any single
1587          * non-pageout process to be able to hog the I/O subsystem!  This
1588          * can be overridden by setting.
1589          */
1590         if (object->type == OBJT_DEFAULT) {
1591                 if (object->type == OBJT_DEFAULT)
1592                         swp_pager_meta_convert(object);
1593         }
1594
1595         /*
1596          * Normally we force synchronous swap I/O if this is not the
1597          * pageout daemon to prevent any single user process limited
1598          * via RLIMIT_RSS from hogging swap write bandwidth.
1599          */
1600         if (curthread != pagethread &&
1601             curthread != emergpager &&
1602             swap_user_async == 0) {
1603                 flags |= VM_PAGER_PUT_SYNC;
1604         }
1605
1606         /*
1607          * Step 2
1608          *
1609          * Update nsw parameters from swap_async_max sysctl values.  
1610          * Do not let the sysop crash the machine with bogus numbers.
1611          */
1612         if (swap_async_max != nsw_wcount_async_max) {
1613                 int n;
1614
1615                 /*
1616                  * limit range
1617                  */
1618                 if ((n = swap_async_max) > nswbuf_kva / 2)
1619                         n = nswbuf_kva / 2;
1620                 if (n < 1)
1621                         n = 1;
1622                 swap_async_max = n;
1623
1624                 /*
1625                  * Adjust difference ( if possible ).  If the current async
1626                  * count is too low, we may not be able to make the adjustment
1627                  * at this time.
1628                  *
1629                  * vm_token needed for nsw_wcount sleep interlock
1630                  */
1631                 lwkt_gettoken(&vm_token);
1632                 n -= nsw_wcount_async_max;
1633                 if (nsw_wcount_async + n >= 0) {
1634                         nsw_wcount_async_max += n;
1635                         pbuf_adjcount(&nsw_wcount_async, n);
1636                 }
1637                 lwkt_reltoken(&vm_token);
1638         }
1639
1640         /*
1641          * Step 3
1642          *
1643          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1644          * The page is left dirty until the pageout operation completes
1645          * successfully.
1646          */
1647
1648         for (i = 0; i < count; i += n) {
1649                 struct buf *bp;
1650                 struct bio *bio;
1651                 swblk_t blk;
1652                 int j;
1653
1654                 /*
1655                  * Maximum I/O size is limited by a number of factors.
1656                  */
1657
1658                 n = min(BLIST_MAX_ALLOC, count - i);
1659                 n = min(n, nsw_cluster_max);
1660
1661                 lwkt_gettoken(&vm_token);
1662
1663                 /*
1664                  * Get biggest block of swap we can.  If we fail, fall
1665                  * back and try to allocate a smaller block.  Don't go
1666                  * overboard trying to allocate space if it would overly
1667                  * fragment swap.
1668                  */
1669                 while (
1670                     (blk = swp_pager_getswapspace(object, n)) == SWAPBLK_NONE &&
1671                     n > 4
1672                 ) {
1673                         n >>= 1;
1674                 }
1675                 if (blk == SWAPBLK_NONE) {
1676                         for (j = 0; j < n; ++j)
1677                                 rtvals[i+j] = VM_PAGER_FAIL;
1678                         lwkt_reltoken(&vm_token);
1679                         continue;
1680                 }
1681                 if (vm_report_swap_allocs > 0) {
1682                         kprintf("swap_alloc %08jx,%d\n", (intmax_t)blk, n);
1683                         --vm_report_swap_allocs;
1684                 }
1685
1686                 /*
1687                  * The I/O we are constructing cannot cross a physical
1688                  * disk boundry in the swap stripe.
1689                  */
1690                 if ((blk ^ (blk + n)) & ~SWB_DMMASK) {
1691                         j = ((blk + SWB_DMMAX) & ~SWB_DMMASK) - blk;
1692                         swp_pager_freeswapspace(object, blk + j, n - j);
1693                         n = j;
1694                 }
1695
1696                 /*
1697                  * All I/O parameters have been satisfied, build the I/O
1698                  * request and assign the swap space.
1699                  *
1700                  * Use the KVABIO API to avoid synchronizing the pmap.
1701                  */
1702                 if ((flags & VM_PAGER_PUT_SYNC))
1703                         bp = getpbuf_kva(&nsw_wcount_sync);
1704                 else
1705                         bp = getpbuf_kva(&nsw_wcount_async);
1706                 bio = &bp->b_bio1;
1707
1708                 lwkt_reltoken(&vm_token);
1709
1710                 pmap_qenter_noinval((vm_offset_t)bp->b_data, &m[i], n);
1711
1712                 bp->b_flags |= B_KVABIO;
1713                 bp->b_bcount = PAGE_SIZE * n;
1714                 bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1715
1716                 for (j = 0; j < n; ++j) {
1717                         vm_page_t mreq = m[i+j];
1718
1719                         swp_pager_meta_build(mreq->object, mreq->pindex,
1720                                              blk + j);
1721                         if (object->type == OBJT_SWAP)
1722                                 vm_page_dirty(mreq);
1723                         rtvals[i+j] = VM_PAGER_OK;
1724
1725                         atomic_set_int(&mreq->busy_count, PBUSY_SWAPINPROG);
1726                         bp->b_xio.xio_pages[j] = mreq;
1727                 }
1728                 bp->b_xio.xio_npages = n;
1729
1730                 mycpu->gd_cnt.v_swapout++;
1731                 mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
1732
1733                 bp->b_dirtyoff = 0;             /* req'd for NFS */
1734                 bp->b_dirtyend = bp->b_bcount;  /* req'd for NFS */
1735                 bp->b_cmd = BUF_CMD_WRITE;
1736                 bio->bio_caller_info1.index = SWBIO_WRITE;
1737
1738                 /*
1739                  * asynchronous
1740                  */
1741                 if ((flags & VM_PAGER_PUT_SYNC) == 0) {
1742                         bio->bio_done = swp_pager_async_iodone;
1743                         BUF_KERNPROC(bp);
1744                         vn_strategy(swapdev_vp, bio);
1745
1746                         for (j = 0; j < n; ++j)
1747                                 rtvals[i+j] = VM_PAGER_PEND;
1748                         continue;
1749                 }
1750
1751                 /*
1752                  * Issue synchrnously.
1753                  *
1754                  * Wait for the sync I/O to complete, then update rtvals.
1755                  * We just set the rtvals[] to VM_PAGER_PEND so we can call
1756                  * our async completion routine at the end, thus avoiding a
1757                  * double-free.
1758                  */
1759                 bio->bio_caller_info1.index |= SWBIO_SYNC;
1760                 if (flags & VM_PAGER_TRY_TO_CACHE)
1761                         bio->bio_caller_info1.index |= SWBIO_TTC;
1762                 bio->bio_done = biodone_sync;
1763                 bio->bio_flags |= BIO_SYNC;
1764                 vn_strategy(swapdev_vp, bio);
1765                 biowait(bio, "swwrt");
1766
1767                 for (j = 0; j < n; ++j)
1768                         rtvals[i+j] = VM_PAGER_PEND;
1769
1770                 /*
1771                  * Now that we are through with the bp, we can call the
1772                  * normal async completion, which frees everything up.
1773                  */
1774                 swp_pager_async_iodone(bio);
1775         }
1776         vm_object_drop(object);
1777 }
1778
1779 /*
1780  * No requirements.
1781  *
1782  * Recalculate the low and high-water marks.
1783  */
1784 void
1785 swap_pager_newswap(void)
1786 {
1787         /*
1788          * NOTE: vm_swap_max cannot exceed 1 billion blocks, which is the
1789          *       limitation imposed by the blist code.  Remember that this
1790          *       will be divided by NSWAP_MAX (4), so each swap device is
1791          *       limited to around a terrabyte.
1792          */
1793         if (vm_swap_max) {
1794                 nswap_lowat = (int64_t)vm_swap_max * 4 / 100;   /* 4% left */
1795                 nswap_hiwat = (int64_t)vm_swap_max * 6 / 100;   /* 6% left */
1796                 kprintf("swap low/high-water marks set to %d/%d\n",
1797                         nswap_lowat, nswap_hiwat);
1798         } else {
1799                 nswap_lowat = 128;
1800                 nswap_hiwat = 512;
1801         }
1802         swp_sizecheck();
1803 }
1804
1805 /*
1806  *      swp_pager_async_iodone:
1807  *
1808  *      Completion routine for asynchronous reads and writes from/to swap.
1809  *      Also called manually by synchronous code to finish up a bp.
1810  *
1811  *      For READ operations, the pages are BUSY'd.  For WRITE operations,
1812  *      the pages are vm_page_t->busy'd.  For READ operations, we BUSY
1813  *      unbusy all pages except the 'main' request page.  For WRITE 
1814  *      operations, we vm_page_t->busy'd unbusy all pages ( we can do this 
1815  *      because we marked them all VM_PAGER_PEND on return from putpages ).
1816  *
1817  *      This routine may not block.
1818  *
1819  * No requirements.
1820  */
1821 static void
1822 swp_pager_async_iodone(struct bio *bio)
1823 {
1824         struct buf *bp = bio->bio_buf;
1825         vm_object_t object = NULL;
1826         int i;
1827         int *nswptr;
1828
1829         /*
1830          * report error
1831          */
1832         if (bp->b_flags & B_ERROR) {
1833                 kprintf(
1834                     "swap_pager: I/O error - %s failed; offset %lld,"
1835                         "size %ld, error %d\n",
1836                     ((bio->bio_caller_info1.index & SWBIO_READ) ?
1837                         "pagein" : "pageout"),
1838                     (long long)bio->bio_offset,
1839                     (long)bp->b_bcount,
1840                     bp->b_error
1841                 );
1842         }
1843
1844         /*
1845          * set object.
1846          */
1847         if (bp->b_xio.xio_npages)
1848                 object = bp->b_xio.xio_pages[0]->object;
1849
1850 #if 0
1851         /* PMAP TESTING CODE (useful, keep it in but #if 0'd) */
1852         if (bio->bio_caller_info1.index & SWBIO_WRITE) {
1853                 if (bio->bio_crc != iscsi_crc32(bp->b_data, bp->b_bcount)) {
1854                         kprintf("SWAPOUT: BADCRC %08x %08x\n",
1855                                 bio->bio_crc,
1856                                 iscsi_crc32(bp->b_data, bp->b_bcount));
1857                         for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1858                                 vm_page_t m = bp->b_xio.xio_pages[i];
1859                                 if (m->flags & PG_WRITEABLE)
1860                                         kprintf("SWAPOUT: "
1861                                                 "%d/%d %p writable\n",
1862                                                 i, bp->b_xio.xio_npages, m);
1863                         }
1864                 }
1865         }
1866 #endif
1867
1868         /*
1869          * remove the mapping for kernel virtual
1870          */
1871         pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
1872
1873         /*
1874          * cleanup pages.  If an error occurs writing to swap, we are in
1875          * very serious trouble.  If it happens to be a disk error, though,
1876          * we may be able to recover by reassigning the swap later on.  So
1877          * in this case we remove the m->swapblk assignment for the page 
1878          * but do not free it in the rlist.  The errornous block(s) are thus
1879          * never reallocated as swap.  Redirty the page and continue.
1880          */
1881         for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1882                 vm_page_t m = bp->b_xio.xio_pages[i];
1883
1884                 if (bp->b_flags & B_ERROR) {
1885                         /*
1886                          * If an error occurs I'd love to throw the swapblk
1887                          * away without freeing it back to swapspace, so it
1888                          * can never be used again.  But I can't from an 
1889                          * interrupt.
1890                          */
1891
1892                         if (bio->bio_caller_info1.index & SWBIO_READ) {
1893                                 /*
1894                                  * When reading, reqpage needs to stay
1895                                  * locked for the parent, but all other
1896                                  * pages can be freed.  We still want to
1897                                  * wakeup the parent waiting on the page,
1898                                  * though.  ( also: pg_reqpage can be -1 and 
1899                                  * not match anything ).
1900                                  *
1901                                  * We have to wake specifically requested pages
1902                                  * up too because we cleared SWAPINPROG and
1903                                  * someone may be waiting for that.
1904                                  *
1905                                  * NOTE: For reads, m->dirty will probably
1906                                  *       be overridden by the original caller
1907                                  *       of getpages so don't play cute tricks
1908                                  *       here.
1909                                  *
1910                                  * NOTE: We can't actually free the page from
1911                                  *       here, because this is an interrupt.
1912                                  *       It is not legal to mess with
1913                                  *       object->memq from an interrupt.
1914                                  *       Deactivate the page instead.
1915                                  *
1916                                  * WARNING! The instant SWAPINPROG is
1917                                  *          cleared another cpu may start
1918                                  *          using the mreq page (it will
1919                                  *          check m->valid immediately).
1920                                  */
1921
1922                                 m->valid = 0;
1923                                 atomic_clear_int(&m->busy_count,
1924                                                  PBUSY_SWAPINPROG);
1925
1926                                 /*
1927                                  * bio_driver_info holds the requested page
1928                                  * index.
1929                                  */
1930                                 if (i != (int)(intptr_t)bio->bio_driver_info) {
1931                                         vm_page_deactivate(m);
1932                                         vm_page_wakeup(m);
1933                                 } else {
1934                                         vm_page_flash(m);
1935                                 }
1936                                 /*
1937                                  * If i == bp->b_pager.pg_reqpage, do not wake 
1938                                  * the page up.  The caller needs to.
1939                                  */
1940                         } else {
1941                                 /*
1942                                  * If a write error occurs remove the swap
1943                                  * assignment (note that PG_SWAPPED may or
1944                                  * may not be set depending on prior activity).
1945                                  *
1946                                  * Re-dirty OBJT_SWAP pages as there is no
1947                                  * other backing store, we can't throw the
1948                                  * page away.
1949                                  *
1950                                  * Non-OBJT_SWAP pages (aka swapcache) must
1951                                  * not be dirtied since they may not have
1952                                  * been dirty in the first place, and they
1953                                  * do have backing store (the vnode).
1954                                  */
1955                                 vm_page_busy_wait(m, FALSE, "swadpg");
1956                                 vm_object_hold(m->object);
1957                                 swp_pager_meta_ctl(m->object, m->pindex,
1958                                                    SWM_FREE);
1959                                 vm_page_flag_clear(m, PG_SWAPPED);
1960                                 vm_object_drop(m->object);
1961                                 if (m->object->type == OBJT_SWAP) {
1962                                         vm_page_dirty(m);
1963                                         vm_page_activate(m);
1964                                 }
1965                                 vm_page_io_finish(m);
1966                                 atomic_clear_int(&m->busy_count,
1967                                                  PBUSY_SWAPINPROG);
1968                                 vm_page_wakeup(m);
1969                         }
1970                 } else if (bio->bio_caller_info1.index & SWBIO_READ) {
1971                         /*
1972                          * NOTE: for reads, m->dirty will probably be 
1973                          * overridden by the original caller of getpages so
1974                          * we cannot set them in order to free the underlying
1975                          * swap in a low-swap situation.  I don't think we'd
1976                          * want to do that anyway, but it was an optimization
1977                          * that existed in the old swapper for a time before
1978                          * it got ripped out due to precisely this problem.
1979                          *
1980                          * If not the requested page then deactivate it.
1981                          *
1982                          * Note that the requested page, reqpage, is left
1983                          * busied, but we still have to wake it up.  The
1984                          * other pages are released (unbusied) by 
1985                          * vm_page_wakeup().  We do not set reqpage's
1986                          * valid bits here, it is up to the caller.
1987                          */
1988
1989                         /* 
1990                          * NOTE: Can't call pmap_clear_modify(m) from an
1991                          *       interrupt thread, the pmap code may have to
1992                          *       map non-kernel pmaps and currently asserts
1993                          *       the case.
1994                          *
1995                          * WARNING! The instant SWAPINPROG is
1996                          *          cleared another cpu may start
1997                          *          using the mreq page (it will
1998                          *          check m->valid immediately).
1999                          */
2000                         /*pmap_clear_modify(m);*/
2001                         m->valid = VM_PAGE_BITS_ALL;
2002                         vm_page_undirty(m);
2003                         vm_page_flag_set(m, PG_SWAPPED);
2004                         atomic_clear_int(&m->busy_count, PBUSY_SWAPINPROG);
2005
2006                         /*
2007                          * We have to wake specifically requested pages
2008                          * up too because we cleared SWAPINPROG and
2009                          * could be waiting for it in getpages.  However,
2010                          * be sure to not unbusy getpages specifically
2011                          * requested page - getpages expects it to be 
2012                          * left busy.
2013                          *
2014                          * bio_driver_info holds the requested page
2015                          */
2016                         if (i != (int)(intptr_t)bio->bio_driver_info) {
2017                                 vm_page_deactivate(m);
2018                                 vm_page_wakeup(m);
2019                         } else {
2020                                 vm_page_flash(m);
2021                         }
2022                 } else {
2023                         /*
2024                          * Mark the page clean but do not mess with the
2025                          * pmap-layer's modified state.  That state should
2026                          * also be clear since the caller protected the
2027                          * page VM_PROT_READ, but allow the case.
2028                          *
2029                          * We are in an interrupt, avoid pmap operations.
2030                          *
2031                          * If we have a severe page deficit, deactivate the
2032                          * page.  Do not try to cache it (which would also
2033                          * involve a pmap op), because the page might still
2034                          * be read-heavy.
2035                          *
2036                          * When using the swap to cache clean vnode pages
2037                          * we do not mess with the page dirty bits.
2038                          *
2039                          * NOTE! Nobody is waiting for the key mreq page
2040                          *       on write completion.
2041                          */
2042                         vm_page_busy_wait(m, FALSE, "swadpg");
2043                         if (m->object->type == OBJT_SWAP)
2044                                 vm_page_undirty(m);
2045                         vm_page_flag_set(m, PG_SWAPPED);
2046                         atomic_clear_int(&m->busy_count, PBUSY_SWAPINPROG);
2047                         if (vm_page_count_severe())
2048                                 vm_page_deactivate(m);
2049                         vm_page_io_finish(m);
2050                         if (bio->bio_caller_info1.index & SWBIO_TTC)
2051                                 vm_page_try_to_cache(m);
2052                         else
2053                                 vm_page_wakeup(m);
2054                 }
2055         }
2056
2057         /*
2058          * adjust pip.  NOTE: the original parent may still have its own
2059          * pip refs on the object.
2060          */
2061
2062         if (object)
2063                 vm_object_pip_wakeup_n(object, bp->b_xio.xio_npages);
2064
2065         /*
2066          * Release the physical I/O buffer.
2067          *
2068          * NOTE: Due to synchronous operations in the write case b_cmd may
2069          *       already be set to BUF_CMD_DONE and BIO_SYNC may have already
2070          *       been cleared.
2071          *
2072          * Use vm_token to interlock nsw_rcount/wcount wakeup?
2073          */
2074         lwkt_gettoken(&vm_token);
2075         if (bio->bio_caller_info1.index & SWBIO_READ)
2076                 nswptr = &nsw_rcount;
2077         else if (bio->bio_caller_info1.index & SWBIO_SYNC)
2078                 nswptr = &nsw_wcount_sync;
2079         else
2080                 nswptr = &nsw_wcount_async;
2081         bp->b_cmd = BUF_CMD_DONE;
2082         relpbuf(bp, nswptr);
2083         lwkt_reltoken(&vm_token);
2084 }
2085
2086 /*
2087  * Fault-in a potentially swapped page and remove the swap reference.
2088  * (used by swapoff code)
2089  *
2090  * object must be held.
2091  */
2092 static __inline void
2093 swp_pager_fault_page(vm_object_t object, int *sharedp, vm_pindex_t pindex)
2094 {
2095         struct vnode *vp;
2096         vm_page_t m;
2097         int error;
2098
2099         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2100
2101         if (object->type == OBJT_VNODE) {
2102                 /*
2103                  * Any swap related to a vnode is due to swapcache.  We must
2104                  * vget() the vnode in case it is not active (otherwise
2105                  * vref() will panic).  Calling vm_object_page_remove() will
2106                  * ensure that any swap ref is removed interlocked with the
2107                  * page.  clean_only is set to TRUE so we don't throw away
2108                  * dirty pages.
2109                  */
2110                 vp = object->handle;
2111                 error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE);
2112                 if (error == 0) {
2113                         vm_object_page_remove(object, pindex, pindex + 1, TRUE);
2114                         vput(vp);
2115                 }
2116         } else {
2117                 /*
2118                  * Otherwise it is a normal OBJT_SWAP object and we can
2119                  * fault the page in and remove the swap.
2120                  */
2121                 m = vm_fault_object_page(object, IDX_TO_OFF(pindex),
2122                                          VM_PROT_NONE,
2123                                          VM_FAULT_DIRTY | VM_FAULT_UNSWAP,
2124                                          sharedp, &error);
2125                 if (m)
2126                         vm_page_unhold(m);
2127         }
2128 }
2129
2130 /*
2131  * This removes all swap blocks related to a particular device.  We have
2132  * to be careful of ripups during the scan.
2133  */
2134 static int swp_pager_swapoff_callback(struct swblock *swap, void *data);
2135
2136 int
2137 swap_pager_swapoff(int devidx)
2138 {
2139         struct vm_object_hash *hash;
2140         struct swswapoffinfo info;
2141         struct vm_object marker;
2142         vm_object_t object;
2143         int n;
2144
2145         bzero(&marker, sizeof(marker));
2146         marker.type = OBJT_MARKER;
2147
2148         for (n = 0; n < VMOBJ_HSIZE; ++n) {
2149                 hash = &vm_object_hash[n];
2150
2151                 lwkt_gettoken(&hash->token);
2152                 TAILQ_INSERT_HEAD(&hash->list, &marker, object_list);
2153
2154                 while ((object = TAILQ_NEXT(&marker, object_list)) != NULL) {
2155                         if (object->type == OBJT_MARKER)
2156                                 goto skip;
2157                         if (object->type != OBJT_SWAP &&
2158                             object->type != OBJT_VNODE)
2159                                 goto skip;
2160                         vm_object_hold(object);
2161                         if (object->type != OBJT_SWAP &&
2162                             object->type != OBJT_VNODE) {
2163                                 vm_object_drop(object);
2164                                 goto skip;
2165                         }
2166
2167                         /*
2168                          * Object is special in that we can't just pagein
2169                          * into vm_page's in it (tmpfs, vn).
2170                          */
2171                         if ((object->flags & OBJ_NOPAGEIN) &&
2172                             RB_ROOT(&object->swblock_root)) {
2173                                 vm_object_drop(object);
2174                                 goto skip;
2175                         }
2176
2177                         info.object = object;
2178                         info.shared = 0;
2179                         info.devidx = devidx;
2180                         swblock_rb_tree_RB_SCAN(&object->swblock_root,
2181                                             NULL, swp_pager_swapoff_callback,
2182                                             &info);
2183                         vm_object_drop(object);
2184 skip:
2185                         if (object == TAILQ_NEXT(&marker, object_list)) {
2186                                 TAILQ_REMOVE(&hash->list, &marker, object_list);
2187                                 TAILQ_INSERT_AFTER(&hash->list, object,
2188                                                    &marker, object_list);
2189                         }
2190                 }
2191                 TAILQ_REMOVE(&hash->list, &marker, object_list);
2192                 lwkt_reltoken(&hash->token);
2193         }
2194
2195         /*
2196          * If we fail to locate all swblocks we just fail gracefully and
2197          * do not bother to restore paging on the swap device.  If the
2198          * user wants to retry the user can retry.
2199          */
2200         if (swdevt[devidx].sw_nused)
2201                 return (1);
2202         else
2203                 return (0);
2204 }
2205
2206 static
2207 int
2208 swp_pager_swapoff_callback(struct swblock *swap, void *data)
2209 {
2210         struct swswapoffinfo *info = data;
2211         vm_object_t object = info->object;
2212         vm_pindex_t index;
2213         swblk_t v;
2214         int i;
2215
2216         index = swap->swb_index;
2217         for (i = 0; i < SWAP_META_PAGES; ++i) {
2218                 /*
2219                  * Make sure we don't race a dying object.  This will
2220                  * kill the scan of the object's swap blocks entirely.
2221                  */
2222                 if (object->flags & OBJ_DEAD)
2223                         return(-1);
2224
2225                 /*
2226                  * Fault the page, which can obviously block.  If the swap
2227                  * structure disappears break out.
2228                  */
2229                 v = swap->swb_pages[i];
2230                 if (v != SWAPBLK_NONE && BLK2DEVIDX(v) == info->devidx) {
2231                         swp_pager_fault_page(object, &info->shared,
2232                                              swap->swb_index + i);
2233                         /* swap ptr might go away */
2234                         if (RB_LOOKUP(swblock_rb_tree,
2235                                       &object->swblock_root, index) != swap) {
2236                                 break;
2237                         }
2238                 }
2239         }
2240         return(0);
2241 }
2242
2243 /************************************************************************
2244  *                              SWAP META DATA                          *
2245  ************************************************************************
2246  *
2247  *      These routines manipulate the swap metadata stored in the 
2248  *      OBJT_SWAP object.
2249  *
2250  *      Swap metadata is implemented with a global hash and not directly
2251  *      linked into the object.  Instead the object simply contains
2252  *      appropriate tracking counters.
2253  */
2254
2255 /*
2256  * Lookup the swblock containing the specified swap block index.
2257  *
2258  * The caller must hold the object.
2259  */
2260 static __inline
2261 struct swblock *
2262 swp_pager_lookup(vm_object_t object, vm_pindex_t index)
2263 {
2264         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2265         index &= ~(vm_pindex_t)SWAP_META_MASK;
2266         return (RB_LOOKUP(swblock_rb_tree, &object->swblock_root, index));
2267 }
2268
2269 /*
2270  * Remove a swblock from the RB tree.
2271  *
2272  * The caller must hold the object.
2273  */
2274 static __inline
2275 void
2276 swp_pager_remove(vm_object_t object, struct swblock *swap)
2277 {
2278         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2279         RB_REMOVE(swblock_rb_tree, &object->swblock_root, swap);
2280 }
2281
2282 /*
2283  * Convert default object to swap object if necessary
2284  *
2285  * The caller must hold the object.
2286  */
2287 static void
2288 swp_pager_meta_convert(vm_object_t object)
2289 {
2290         if (object->type == OBJT_DEFAULT) {
2291                 object->type = OBJT_SWAP;
2292                 KKASSERT(object->swblock_count == 0);
2293         }
2294 }
2295
2296 /*
2297  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
2298  *
2299  *      We first convert the object to a swap object if it is a default
2300  *      object.  Vnode objects do not need to be converted.
2301  *
2302  *      The specified swapblk is added to the object's swap metadata.  If
2303  *      the swapblk is not valid, it is freed instead.  Any previously
2304  *      assigned swapblk is freed.
2305  *
2306  * The caller must hold the object.
2307  */
2308 static void
2309 swp_pager_meta_build(vm_object_t object, vm_pindex_t index, swblk_t swapblk)
2310 {
2311         struct swblock *swap;
2312         struct swblock *oswap;
2313         vm_pindex_t v;
2314
2315         KKASSERT(swapblk != SWAPBLK_NONE);
2316         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2317
2318         /*
2319          * Convert object if necessary
2320          */
2321         if (object->type == OBJT_DEFAULT)
2322                 swp_pager_meta_convert(object);
2323         
2324         /*
2325          * Locate swblock.  If not found create, but if we aren't adding
2326          * anything just return.  If we run out of space in the map we wait
2327          * and, since the hash table may have changed, retry.
2328          */
2329 retry:
2330         swap = swp_pager_lookup(object, index);
2331
2332         if (swap == NULL) {
2333                 int i;
2334
2335                 swap = zalloc(swap_zone);
2336                 if (swap == NULL) {
2337                         vm_wait(0);
2338                         goto retry;
2339                 }
2340                 swap->swb_index = index & ~(vm_pindex_t)SWAP_META_MASK;
2341                 swap->swb_count = 0;
2342
2343                 ++object->swblock_count;
2344
2345                 for (i = 0; i < SWAP_META_PAGES; ++i)
2346                         swap->swb_pages[i] = SWAPBLK_NONE;
2347                 oswap = RB_INSERT(swblock_rb_tree, &object->swblock_root, swap);
2348                 KKASSERT(oswap == NULL);
2349         }
2350
2351         /*
2352          * Delete prior contents of metadata.
2353          *
2354          * NOTE: Decrement swb_count after the freeing operation (which
2355          *       might block) to prevent racing destruction of the swblock.
2356          */
2357         index &= SWAP_META_MASK;
2358
2359         while ((v = swap->swb_pages[index]) != SWAPBLK_NONE) {
2360                 swap->swb_pages[index] = SWAPBLK_NONE;
2361                 /* can block */
2362                 swp_pager_freeswapspace(object, v, 1);
2363                 --swap->swb_count;
2364                 --mycpu->gd_vmtotal.t_vm;
2365         }
2366
2367         /*
2368          * Enter block into metadata
2369          */
2370         swap->swb_pages[index] = swapblk;
2371         if (swapblk != SWAPBLK_NONE) {
2372                 ++swap->swb_count;
2373                 ++mycpu->gd_vmtotal.t_vm;
2374         }
2375 }
2376
2377 /*
2378  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2379  *
2380  *      The requested range of blocks is freed, with any associated swap 
2381  *      returned to the swap bitmap.
2382  *
2383  *      This routine will free swap metadata structures as they are cleaned 
2384  *      out.  This routine does *NOT* operate on swap metadata associated
2385  *      with resident pages.
2386  *
2387  * The caller must hold the object.
2388  */
2389 static int swp_pager_meta_free_callback(struct swblock *swb, void *data);
2390
2391 static void
2392 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count)
2393 {
2394         struct swfreeinfo info;
2395
2396         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2397
2398         /*
2399          * Nothing to do
2400          */
2401         if (object->swblock_count == 0) {
2402                 KKASSERT(RB_EMPTY(&object->swblock_root));
2403                 return;
2404         }
2405         if (count == 0)
2406                 return;
2407
2408         /*
2409          * Setup for RB tree scan.  Note that the pindex range can be huge
2410          * due to the 64 bit page index space so we cannot safely iterate.
2411          */
2412         info.object = object;
2413         info.basei = index & ~(vm_pindex_t)SWAP_META_MASK;
2414         info.begi = index;
2415         info.endi = index + count - 1;
2416         swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_scancmp,
2417                                 swp_pager_meta_free_callback, &info);
2418 }
2419
2420 /*
2421  * The caller must hold the object.
2422  */
2423 static
2424 int
2425 swp_pager_meta_free_callback(struct swblock *swap, void *data)
2426 {
2427         struct swfreeinfo *info = data;
2428         vm_object_t object = info->object;
2429         int index;
2430         int eindex;
2431
2432         /*
2433          * Figure out the range within the swblock.  The wider scan may
2434          * return edge-case swap blocks when the start and/or end points
2435          * are in the middle of a block.
2436          */
2437         if (swap->swb_index < info->begi)
2438                 index = (int)info->begi & SWAP_META_MASK;
2439         else
2440                 index = 0;
2441
2442         if (swap->swb_index + SWAP_META_PAGES > info->endi)
2443                 eindex = (int)info->endi & SWAP_META_MASK;
2444         else
2445                 eindex = SWAP_META_MASK;
2446
2447         /*
2448          * Scan and free the blocks.  The loop terminates early
2449          * if (swap) runs out of blocks and could be freed.
2450          *
2451          * NOTE: Decrement swb_count after swp_pager_freeswapspace()
2452          *       to deal with a zfree race.
2453          */
2454         while (index <= eindex) {
2455                 swblk_t v = swap->swb_pages[index];
2456
2457                 if (v != SWAPBLK_NONE) {
2458                         swap->swb_pages[index] = SWAPBLK_NONE;
2459                         /* can block */
2460                         swp_pager_freeswapspace(object, v, 1);
2461                         --mycpu->gd_vmtotal.t_vm;
2462                         if (--swap->swb_count == 0) {
2463                                 swp_pager_remove(object, swap);
2464                                 zfree(swap_zone, swap);
2465                                 --object->swblock_count;
2466                                 break;
2467                         }
2468                 }
2469                 ++index;
2470         }
2471
2472         /* swap may be invalid here due to zfree above */
2473         lwkt_yield();
2474
2475         return(0);
2476 }
2477
2478 /*
2479  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2480  *
2481  *      This routine locates and destroys all swap metadata associated with
2482  *      an object.
2483  *
2484  * NOTE: Decrement swb_count after the freeing operation (which
2485  *       might block) to prevent racing destruction of the swblock.
2486  *
2487  * The caller must hold the object.
2488  */
2489 static void
2490 swp_pager_meta_free_all(vm_object_t object)
2491 {
2492         struct swblock *swap;
2493         int i;
2494
2495         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2496
2497         while ((swap = RB_ROOT(&object->swblock_root)) != NULL) {
2498                 swp_pager_remove(object, swap);
2499                 for (i = 0; i < SWAP_META_PAGES; ++i) {
2500                         swblk_t v = swap->swb_pages[i];
2501                         if (v != SWAPBLK_NONE) {
2502                                 /* can block */
2503                                 swp_pager_freeswapspace(object, v, 1);
2504                                 --swap->swb_count;
2505                                 --mycpu->gd_vmtotal.t_vm;
2506                         }
2507                 }
2508                 if (swap->swb_count != 0)
2509                         panic("swap_pager_meta_free_all: swb_count != 0");
2510                 zfree(swap_zone, swap);
2511                 --object->swblock_count;
2512                 lwkt_yield();
2513         }
2514         KKASSERT(object->swblock_count == 0);
2515 }
2516
2517 /*
2518  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2519  *
2520  *      This routine is capable of looking up, popping, or freeing
2521  *      swapblk assignments in the swap meta data or in the vm_page_t.
2522  *      The routine typically returns the swapblk being looked-up, or popped,
2523  *      or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2524  *      was invalid.  This routine will automatically free any invalid 
2525  *      meta-data swapblks.
2526  *
2527  *      It is not possible to store invalid swapblks in the swap meta data
2528  *      (other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2529  *
2530  *      When acting on a busy resident page and paging is in progress, we 
2531  *      have to wait until paging is complete but otherwise can act on the 
2532  *      busy page.
2533  *
2534  *      SWM_FREE        remove and free swap block from metadata
2535  *      SWM_POP         remove from meta data but do not free.. pop it out
2536  *
2537  * The caller must hold the object.
2538  */
2539 static swblk_t
2540 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t index, int flags)
2541 {
2542         struct swblock *swap;
2543         swblk_t r1;
2544
2545         if (object->swblock_count == 0)
2546                 return(SWAPBLK_NONE);
2547
2548         r1 = SWAPBLK_NONE;
2549         swap = swp_pager_lookup(object, index);
2550
2551         if (swap != NULL) {
2552                 index &= SWAP_META_MASK;
2553                 r1 = swap->swb_pages[index];
2554
2555                 if (r1 != SWAPBLK_NONE) {
2556                         if (flags & (SWM_FREE|SWM_POP)) {
2557                                 swap->swb_pages[index] = SWAPBLK_NONE;
2558                                 --mycpu->gd_vmtotal.t_vm;
2559                                 if (--swap->swb_count == 0) {
2560                                         swp_pager_remove(object, swap);
2561                                         zfree(swap_zone, swap);
2562                                         --object->swblock_count;
2563                                 }
2564                         } 
2565                         /* swap ptr may be invalid */
2566                         if (flags & SWM_FREE) {
2567                                 swp_pager_freeswapspace(object, r1, 1);
2568                                 r1 = SWAPBLK_NONE;
2569                         }
2570                 }
2571                 /* swap ptr may be invalid */
2572         }
2573         return(r1);
2574 }