Merge from vendor branch BIND:
[dragonfly.git] / sys / vm / vm_object.c
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by the University of
19  *      California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
65  * $DragonFly: src/sys/vm/vm_object.c,v 1.19 2004/09/17 10:02:12 dillon Exp $
66  */
67
68 /*
69  *      Virtual memory object module.
70  */
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>           /* for curproc, pageproc */
75 #include <sys/vnode.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_zone.h>
94
95 #define EASY_SCAN_FACTOR        8
96
97 #define MSYNC_FLUSH_HARDSEQ     0x01
98 #define MSYNC_FLUSH_SOFTSEQ     0x02
99
100 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
101 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
102         CTLFLAG_RW, &msync_flush_flags, 0, "");
103
104 static void     vm_object_qcollapse (vm_object_t object);
105 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
106
107 /*
108  *      Virtual memory objects maintain the actual data
109  *      associated with allocated virtual memory.  A given
110  *      page of memory exists within exactly one object.
111  *
112  *      An object is only deallocated when all "references"
113  *      are given up.  Only one "reference" to a given
114  *      region of an object should be writeable.
115  *
116  *      Associated with each object is a list of all resident
117  *      memory pages belonging to that object; this list is
118  *      maintained by the "vm_page" module, and locked by the object's
119  *      lock.
120  *
121  *      Each object also records a "pager" routine which is
122  *      used to retrieve (and store) pages to the proper backing
123  *      storage.  In addition, objects may be backed by other
124  *      objects from which they were virtual-copied.
125  *
126  *      The only items within the object structure which are
127  *      modified after time of creation are:
128  *              reference count         locked by object's lock
129  *              pager routine           locked by object's lock
130  *
131  */
132
133 struct object_q vm_object_list;
134 static struct lwkt_token vm_object_list_token;
135 static long vm_object_count;            /* count of all objects */
136 vm_object_t kernel_object;
137 vm_object_t kmem_object;
138 static struct vm_object kernel_object_store;
139 static struct vm_object kmem_object_store;
140 extern int vm_pageout_page_count;
141
142 static long object_collapses;
143 static long object_bypasses;
144 static int next_index;
145 static vm_zone_t obj_zone;
146 static struct vm_zone obj_zone_store;
147 static int object_hash_rand;
148 #define VM_OBJECTS_INIT 256
149 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
150
151 void
152 _vm_object_allocate(objtype_t type, vm_size_t size, vm_object_t object)
153 {
154         int incr;
155         TAILQ_INIT(&object->memq);
156         LIST_INIT(&object->shadow_head);
157
158         object->type = type;
159         object->size = size;
160         object->ref_count = 1;
161         object->flags = 0;
162         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
163                 vm_object_set_flag(object, OBJ_ONEMAPPING);
164         object->paging_in_progress = 0;
165         object->resident_page_count = 0;
166         object->shadow_count = 0;
167         object->pg_color = next_index;
168         if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
169                 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
170         else
171                 incr = size;
172         next_index = (next_index + incr) & PQ_L2_MASK;
173         object->handle = NULL;
174         object->backing_object = NULL;
175         object->backing_object_offset = (vm_ooffset_t) 0;
176         /*
177          * Try to generate a number that will spread objects out in the
178          * hash table.  We 'wipe' new objects across the hash in 128 page
179          * increments plus 1 more to offset it a little more by the time
180          * it wraps around.
181          */
182         object->hash_rand = object_hash_rand - 129;
183
184         object->generation++;
185
186         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
187         vm_object_count++;
188         object_hash_rand = object->hash_rand;
189 }
190
191 /*
192  *      vm_object_init:
193  *
194  *      Initialize the VM objects module.
195  */
196 void
197 vm_object_init(void)
198 {
199         TAILQ_INIT(&vm_object_list);
200         lwkt_token_init(&vm_object_list_token);
201         vm_object_count = 0;
202         
203         kernel_object = &kernel_object_store;
204         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
205             kernel_object);
206
207         kmem_object = &kmem_object_store;
208         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
209             kmem_object);
210
211         obj_zone = &obj_zone_store;
212         zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
213                 vm_objects_init, VM_OBJECTS_INIT);
214 }
215
216 void
217 vm_object_init2(void)
218 {
219         zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
220 }
221
222 /*
223  *      vm_object_allocate:
224  *
225  *      Returns a new object with the given size.
226  */
227
228 vm_object_t
229 vm_object_allocate(objtype_t type, vm_size_t size)
230 {
231         vm_object_t result;
232
233         result = (vm_object_t) zalloc(obj_zone);
234
235         _vm_object_allocate(type, size, result);
236
237         return (result);
238 }
239
240
241 /*
242  *      vm_object_reference:
243  *
244  *      Gets another reference to the given object.
245  */
246 void
247 vm_object_reference(vm_object_t object)
248 {
249         if (object == NULL)
250                 return;
251
252 #if 0
253         /* object can be re-referenced during final cleaning */
254         KASSERT(!(object->flags & OBJ_DEAD),
255             ("vm_object_reference: attempting to reference dead obj"));
256 #endif
257
258         object->ref_count++;
259         if (object->type == OBJT_VNODE) {
260                 while (vget((struct vnode *) object->handle, NULL,
261                     LK_RETRY|LK_NOOBJ, curthread)) {
262                         printf("vm_object_reference: delay in getting object\n");
263                 }
264         }
265 }
266
267 void
268 vm_object_vndeallocate(vm_object_t object)
269 {
270         struct vnode *vp = (struct vnode *) object->handle;
271
272         KASSERT(object->type == OBJT_VNODE,
273             ("vm_object_vndeallocate: not a vnode object"));
274         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
275 #ifdef INVARIANTS
276         if (object->ref_count == 0) {
277                 vprint("vm_object_vndeallocate", vp);
278                 panic("vm_object_vndeallocate: bad object reference count");
279         }
280 #endif
281
282         object->ref_count--;
283         if (object->ref_count == 0) {
284                 vp->v_flag &= ~VTEXT;
285                 vm_object_clear_flag(object, OBJ_OPT);
286         }
287         vrele(vp);
288 }
289
290 /*
291  *      vm_object_deallocate:
292  *
293  *      Release a reference to the specified object,
294  *      gained either through a vm_object_allocate
295  *      or a vm_object_reference call.  When all references
296  *      are gone, storage associated with this object
297  *      may be relinquished.
298  *
299  *      No object may be locked.
300  */
301 void
302 vm_object_deallocate(vm_object_t object)
303 {
304         vm_object_t temp;
305
306         while (object != NULL) {
307
308                 if (object->type == OBJT_VNODE) {
309                         vm_object_vndeallocate(object);
310                         return;
311                 }
312
313                 if (object->ref_count == 0) {
314                         panic("vm_object_deallocate: object deallocated too many times: %d", object->type);
315                 } else if (object->ref_count > 2) {
316                         object->ref_count--;
317                         return;
318                 }
319
320                 /*
321                  * Here on ref_count of one or two, which are special cases for
322                  * objects.
323                  */
324                 if ((object->ref_count == 2) && (object->shadow_count == 0)) {
325                         vm_object_set_flag(object, OBJ_ONEMAPPING);
326                         object->ref_count--;
327                         return;
328                 } else if ((object->ref_count == 2) && (object->shadow_count == 1)) {
329                         object->ref_count--;
330                         if ((object->handle == NULL) &&
331                             (object->type == OBJT_DEFAULT ||
332                              object->type == OBJT_SWAP)) {
333                                 vm_object_t robject;
334
335                                 robject = LIST_FIRST(&object->shadow_head);
336                                 KASSERT(robject != NULL,
337                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
338                                          object->ref_count,
339                                          object->shadow_count));
340                                 if ((robject->handle == NULL) &&
341                                     (robject->type == OBJT_DEFAULT ||
342                                      robject->type == OBJT_SWAP)) {
343
344                                         robject->ref_count++;
345
346                                         while (
347                                                 robject->paging_in_progress ||
348                                                 object->paging_in_progress
349                                         ) {
350                                                 vm_object_pip_sleep(robject, "objde1");
351                                                 vm_object_pip_sleep(object, "objde2");
352                                         }
353
354                                         if (robject->ref_count == 1) {
355                                                 robject->ref_count--;
356                                                 object = robject;
357                                                 goto doterm;
358                                         }
359
360                                         object = robject;
361                                         vm_object_collapse(object);
362                                         continue;
363                                 }
364                         }
365
366                         return;
367
368                 } else {
369                         object->ref_count--;
370                         if (object->ref_count != 0)
371                                 return;
372                 }
373
374 doterm:
375
376                 temp = object->backing_object;
377                 if (temp) {
378                         LIST_REMOVE(object, shadow_list);
379                         temp->shadow_count--;
380                         if (temp->ref_count == 0)
381                                 vm_object_clear_flag(temp, OBJ_OPT);
382                         temp->generation++;
383                         object->backing_object = NULL;
384                 }
385
386                 /*
387                  * Don't double-terminate, we could be in a termination
388                  * recursion due to the terminate having to sync data
389                  * to disk.
390                  */
391                 if ((object->flags & OBJ_DEAD) == 0)
392                         vm_object_terminate(object);
393                 object = temp;
394         }
395 }
396
397 /*
398  *      vm_object_terminate actually destroys the specified object, freeing
399  *      up all previously used resources.
400  *
401  *      The object must be locked.
402  *      This routine may block.
403  */
404 void
405 vm_object_terminate(vm_object_t object)
406 {
407         lwkt_tokref ilock;
408         vm_page_t p;
409         int s;
410
411         /*
412          * Make sure no one uses us.
413          */
414         vm_object_set_flag(object, OBJ_DEAD);
415
416         /*
417          * wait for the pageout daemon to be done with the object
418          */
419         vm_object_pip_wait(object, "objtrm");
420
421         KASSERT(!object->paging_in_progress,
422                 ("vm_object_terminate: pageout in progress"));
423
424         /*
425          * Clean and free the pages, as appropriate. All references to the
426          * object are gone, so we don't need to lock it.
427          */
428         if (object->type == OBJT_VNODE) {
429                 struct vnode *vp;
430
431                 /*
432                  * Freeze optimized copies.
433                  */
434                 vm_freeze_copyopts(object, 0, object->size);
435
436                 /*
437                  * Clean pages and flush buffers.
438                  */
439                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
440
441                 vp = (struct vnode *) object->handle;
442                 vinvalbuf(vp, V_SAVE, NULL, 0, 0);
443         }
444
445         /*
446          * Wait for any I/O to complete, after which there had better not
447          * be any references left on the object.
448          */
449         vm_object_pip_wait(object, "objtrm");
450
451         if (object->ref_count != 0)
452                 panic("vm_object_terminate: object with references, ref_count=%d", object->ref_count);
453
454         /*
455          * Now free any remaining pages. For internal objects, this also
456          * removes them from paging queues. Don't free wired pages, just
457          * remove them from the object. 
458          */
459         s = splvm();
460         while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
461                 if (p->busy || (p->flags & PG_BUSY))
462                         panic("vm_object_terminate: freeing busy page %p", p);
463                 if (p->wire_count == 0) {
464                         vm_page_busy(p);
465                         vm_page_free(p);
466                         mycpu->gd_cnt.v_pfree++;
467                 } else {
468                         vm_page_busy(p);
469                         vm_page_remove(p);
470                         vm_page_wakeup(p);
471                 }
472         }
473         splx(s);
474
475         /*
476          * Let the pager know object is dead.
477          */
478         vm_pager_deallocate(object);
479
480         /*
481          * Remove the object from the global object list.
482          */
483         lwkt_gettoken(&ilock, &vm_object_list_token);
484         TAILQ_REMOVE(&vm_object_list, object, object_list);
485         lwkt_reltoken(&ilock);
486
487         wakeup(object);
488
489         /*
490          * Free the space for the object.
491          */
492         zfree(obj_zone, object);
493 }
494
495 /*
496  *      vm_object_page_clean
497  *
498  *      Clean all dirty pages in the specified range of object.  Leaves page 
499  *      on whatever queue it is currently on.   If NOSYNC is set then do not
500  *      write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
501  *      leaving the object dirty.
502  *
503  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
504  *      synchronous clustering mode implementation.
505  *
506  *      Odd semantics: if start == end, we clean everything.
507  */
508
509 void
510 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
511     int flags)
512 {
513         vm_page_t p, np;
514         vm_offset_t tstart, tend;
515         vm_pindex_t pi;
516         struct vnode *vp;
517         int clearobjflags;
518         int pagerflags;
519         int curgeneration;
520         lwkt_tokref vlock;
521         int s;
522
523         if (object->type != OBJT_VNODE ||
524                 (object->flags & OBJ_MIGHTBEDIRTY) == 0)
525                 return;
526
527         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
528         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
529
530         vp = object->handle;
531
532         vm_object_set_flag(object, OBJ_CLEANING);
533
534         /*
535          * Handle 'entire object' case
536          */
537         tstart = start;
538         if (end == 0) {
539                 tend = object->size;
540         } else {
541                 tend = end;
542         }
543
544         /*
545          * If the caller is smart and only msync()s a range he knows is
546          * dirty, we may be able to avoid an object scan.  This results in
547          * a phenominal improvement in performance.  We cannot do this
548          * as a matter of course because the object may be huge - e.g.
549          * the size might be in the gigabytes or terrabytes.
550          */
551         if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
552                 vm_offset_t tscan;
553                 int scanlimit;
554                 int scanreset;
555
556                 scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
557                 if (scanreset < 16)
558                         scanreset = 16;
559                 pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
560
561                 scanlimit = scanreset;
562                 tscan = tstart;
563
564                 /*
565                  * spl protection is required despite the obj generation
566                  * tracking because we cannot safely call vm_page_test_dirty()
567                  * or avoid page field tests against an interrupt unbusy/free
568                  * race that might occur prior to the busy check in
569                  * vm_object_page_collect_flush().
570                  */
571                 s = splvm();
572                 while (tscan < tend) {
573                         curgeneration = object->generation;
574                         p = vm_page_lookup(object, tscan);
575                         if (p == NULL || p->valid == 0 ||
576                             (p->queue - p->pc) == PQ_CACHE) {
577                                 if (--scanlimit == 0)
578                                         break;
579                                 ++tscan;
580                                 continue;
581                         }
582                         vm_page_test_dirty(p);
583                         if ((p->dirty & p->valid) == 0) {
584                                 if (--scanlimit == 0)
585                                         break;
586                                 ++tscan;
587                                 continue;
588                         }
589                         /*
590                          * If we have been asked to skip nosync pages and 
591                          * this is a nosync page, we can't continue.
592                          */
593                         if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
594                                 if (--scanlimit == 0)
595                                         break;
596                                 ++tscan;
597                                 continue;
598                         }
599                         scanlimit = scanreset;
600
601                         /*
602                          * This returns 0 if it was unable to busy the first
603                          * page (i.e. had to sleep).
604                          */
605                         tscan += vm_object_page_collect_flush(object, p, 
606                                                 curgeneration, pagerflags);
607                 }
608                 splx(s);
609
610                 /*
611                  * If everything was dirty and we flushed it successfully,
612                  * and the requested range is not the entire object, we
613                  * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
614                  * return immediately.
615                  */
616                 if (tscan >= tend && (tstart || tend < object->size)) {
617                         vm_object_clear_flag(object, OBJ_CLEANING);
618                         return;
619                 }
620                 pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
621         }
622
623         /*
624          * Generally set CLEANCHK interlock and make the page read-only so
625          * we can then clear the object flags.
626          *
627          * However, if this is a nosync mmap then the object is likely to 
628          * stay dirty so do not mess with the page and do not clear the
629          * object flags.
630          *
631          * spl protection is required because an interrupt can remove page
632          * from the object.
633          */
634         clearobjflags = 1;
635
636         s = splvm();
637         for (p = TAILQ_FIRST(&object->memq); p; p = TAILQ_NEXT(p, listq)) {
638                 vm_page_flag_set(p, PG_CLEANCHK);
639                 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
640                         clearobjflags = 0;
641                 else
642                         vm_page_protect(p, VM_PROT_READ);
643         }
644         splx(s);
645
646         if (clearobjflags && (tstart == 0) && (tend == object->size)) {
647                 struct vnode *vp;
648
649                 vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
650                 if (object->type == OBJT_VNODE &&
651                     (vp = (struct vnode *)object->handle) != NULL) {
652                         if (vp->v_flag & VOBJDIRTY) {
653                                 lwkt_gettoken(&vlock, vp->v_interlock);
654                                 vp->v_flag &= ~VOBJDIRTY;
655                                 lwkt_reltoken(&vlock);
656                         }
657                 }
658         }
659
660         /*
661          * spl protection is required both to avoid an interrupt unbusy/free
662          * race against a vm_page_lookup(), and also to ensure that the
663          * memq is consistent.  We do not want a busy page to be ripped out
664          * from under us.
665          */
666         s = splvm();
667 rescan:
668         splx(s);        /* give interrupts a chance */
669         s = splvm();
670         curgeneration = object->generation;
671
672         for (p = TAILQ_FIRST(&object->memq); p; p = np) {
673                 int n;
674
675                 np = TAILQ_NEXT(p, listq);
676
677 again:
678                 pi = p->pindex;
679                 if (((p->flags & PG_CLEANCHK) == 0) ||
680                         (pi < tstart) || (pi >= tend) ||
681                         (p->valid == 0) ||
682                         ((p->queue - p->pc) == PQ_CACHE)) {
683                         vm_page_flag_clear(p, PG_CLEANCHK);
684                         continue;
685                 }
686
687                 vm_page_test_dirty(p);
688                 if ((p->dirty & p->valid) == 0) {
689                         vm_page_flag_clear(p, PG_CLEANCHK);
690                         continue;
691                 }
692
693                 /*
694                  * If we have been asked to skip nosync pages and this is a
695                  * nosync page, skip it.  Note that the object flags were
696                  * not cleared in this case so we do not have to set them.
697                  */
698                 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
699                         vm_page_flag_clear(p, PG_CLEANCHK);
700                         continue;
701                 }
702
703                 n = vm_object_page_collect_flush(object, p,
704                         curgeneration, pagerflags);
705                 if (n == 0)
706                         goto rescan;
707                 if (object->generation != curgeneration)
708                         goto rescan;
709
710                 /*
711                  * Try to optimize the next page.  If we can't we pick up
712                  * our (random) scan where we left off.
713                  */
714                 if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
715                         if ((p = vm_page_lookup(object, pi + n)) != NULL)
716                                 goto again;
717                 }
718         }
719         splx(s);
720
721 #if 0
722         VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
723 #endif
724
725         vm_object_clear_flag(object, OBJ_CLEANING);
726         return;
727 }
728
729 /*
730  * This routine must be called at splvm() to properly avoid an interrupt
731  * unbusy/free race that can occur prior to the busy check.
732  *
733  * Using the object generation number here to detect page ripout is not
734  * the best idea in the world. XXX
735  *
736  * NOTE: we operate under the assumption that a page found to not be busy
737  * will not be ripped out from under us by an interrupt.  XXX we should
738  * recode this to explicitly busy the pages.
739  */
740 static int
741 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
742 {
743         int runlen;
744         int maxf;
745         int chkb;
746         int maxb;
747         int i;
748         vm_pindex_t pi;
749         vm_page_t maf[vm_pageout_page_count];
750         vm_page_t mab[vm_pageout_page_count];
751         vm_page_t ma[vm_pageout_page_count];
752
753         pi = p->pindex;
754         while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
755                 if (object->generation != curgeneration) {
756                         return(0);
757                 }
758         }
759
760         maxf = 0;
761         for(i = 1; i < vm_pageout_page_count; i++) {
762                 vm_page_t tp;
763
764                 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
765                         if ((tp->flags & PG_BUSY) ||
766                                 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 
767                                  (tp->flags & PG_CLEANCHK) == 0) ||
768                                 (tp->busy != 0))
769                                 break;
770                         if((tp->queue - tp->pc) == PQ_CACHE) {
771                                 vm_page_flag_clear(tp, PG_CLEANCHK);
772                                 break;
773                         }
774                         vm_page_test_dirty(tp);
775                         if ((tp->dirty & tp->valid) == 0) {
776                                 vm_page_flag_clear(tp, PG_CLEANCHK);
777                                 break;
778                         }
779                         maf[ i - 1 ] = tp;
780                         maxf++;
781                         continue;
782                 }
783                 break;
784         }
785
786         maxb = 0;
787         chkb = vm_pageout_page_count -  maxf;
788         if (chkb) {
789                 for(i = 1; i < chkb;i++) {
790                         vm_page_t tp;
791
792                         if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
793                                 if ((tp->flags & PG_BUSY) ||
794                                         ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 
795                                          (tp->flags & PG_CLEANCHK) == 0) ||
796                                         (tp->busy != 0))
797                                         break;
798                                 if((tp->queue - tp->pc) == PQ_CACHE) {
799                                         vm_page_flag_clear(tp, PG_CLEANCHK);
800                                         break;
801                                 }
802                                 vm_page_test_dirty(tp);
803                                 if ((tp->dirty & tp->valid) == 0) {
804                                         vm_page_flag_clear(tp, PG_CLEANCHK);
805                                         break;
806                                 }
807                                 mab[ i - 1 ] = tp;
808                                 maxb++;
809                                 continue;
810                         }
811                         break;
812                 }
813         }
814
815         for(i = 0; i < maxb; i++) {
816                 int index = (maxb - i) - 1;
817                 ma[index] = mab[i];
818                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
819         }
820         vm_page_flag_clear(p, PG_CLEANCHK);
821         ma[maxb] = p;
822         for(i = 0; i < maxf; i++) {
823                 int index = (maxb + i) + 1;
824                 ma[index] = maf[i];
825                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
826         }
827         runlen = maxb + maxf + 1;
828
829         vm_pageout_flush(ma, runlen, pagerflags);
830         for (i = 0; i < runlen; i++) {
831                 if (ma[i]->valid & ma[i]->dirty) {
832                         vm_page_protect(ma[i], VM_PROT_READ);
833                         vm_page_flag_set(ma[i], PG_CLEANCHK);
834
835                         /*
836                          * maxf will end up being the actual number of pages
837                          * we wrote out contiguously, non-inclusive of the
838                          * first page.  We do not count look-behind pages.
839                          */
840                         if (i >= maxb + 1 && (maxf > i - maxb - 1))
841                                 maxf = i - maxb - 1;
842                 }
843         }
844         return(maxf + 1);
845 }
846
847 #ifdef not_used
848 /* XXX I cannot tell if this should be an exported symbol */
849 /*
850  *      vm_object_deactivate_pages
851  *
852  *      Deactivate all pages in the specified object.  (Keep its pages
853  *      in memory even though it is no longer referenced.)
854  *
855  *      The object must be locked.
856  */
857 static void
858 vm_object_deactivate_pages(vm_object_t object)
859 {
860         vm_page_t p, next;
861         int s;
862
863         s = splvm();
864         for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
865                 next = TAILQ_NEXT(p, listq);
866                 vm_page_deactivate(p);
867         }
868         splx(s);
869 }
870 #endif
871
872 /*
873  * Same as vm_object_pmap_copy, except range checking really
874  * works, and is meant for small sections of an object.
875  *
876  * This code protects resident pages by making them read-only
877  * and is typically called on a fork or split when a page
878  * is converted to copy-on-write.  
879  *
880  * NOTE: If the page is already at VM_PROT_NONE, calling
881  * vm_page_protect will have no effect.
882  */
883 void
884 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
885 {
886         vm_pindex_t idx;
887         vm_page_t p;
888         int s;
889
890         if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
891                 return;
892
893         /*
894          * spl protection needed to prevent races between the lookup,
895          * an interrupt unbusy/free, and our protect call.
896          */
897         s = splvm();
898         for (idx = start; idx < end; idx++) {
899                 p = vm_page_lookup(object, idx);
900                 if (p == NULL)
901                         continue;
902                 vm_page_protect(p, VM_PROT_READ);
903         }
904         splx(s);
905 }
906
907 /*
908  *      vm_object_pmap_remove:
909  *
910  *      Removes all physical pages in the specified
911  *      object range from all physical maps.
912  *
913  *      The object must *not* be locked.
914  */
915 void
916 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
917 {
918         vm_page_t p;
919         int s;
920
921         if (object == NULL)
922                 return;
923
924         /*
925          * spl protection is required because an interrupt can unbusy/free
926          * a page.
927          */
928         s = splvm();
929         for (p = TAILQ_FIRST(&object->memq);
930             p != NULL;
931             p = TAILQ_NEXT(p, listq)
932         ) {
933                 if (p->pindex >= start && p->pindex < end)
934                         vm_page_protect(p, VM_PROT_NONE);
935         }
936         splx(s);
937         if ((start == 0) && (object->size == end))
938                 vm_object_clear_flag(object, OBJ_WRITEABLE);
939 }
940
941 /*
942  *      vm_object_madvise:
943  *
944  *      Implements the madvise function at the object/page level.
945  *
946  *      MADV_WILLNEED   (any object)
947  *
948  *          Activate the specified pages if they are resident.
949  *
950  *      MADV_DONTNEED   (any object)
951  *
952  *          Deactivate the specified pages if they are resident.
953  *
954  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
955  *                       OBJ_ONEMAPPING only)
956  *
957  *          Deactivate and clean the specified pages if they are
958  *          resident.  This permits the process to reuse the pages
959  *          without faulting or the kernel to reclaim the pages
960  *          without I/O.
961  */
962 void
963 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
964 {
965         vm_pindex_t end, tpindex;
966         vm_object_t tobject;
967         vm_page_t m;
968         int s;
969
970         if (object == NULL)
971                 return;
972
973         end = pindex + count;
974
975         /*
976          * Locate and adjust resident pages
977          */
978
979         for (; pindex < end; pindex += 1) {
980 relookup:
981                 tobject = object;
982                 tpindex = pindex;
983 shadowlookup:
984                 /*
985                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
986                  * and those pages must be OBJ_ONEMAPPING.
987                  */
988                 if (advise == MADV_FREE) {
989                         if ((tobject->type != OBJT_DEFAULT &&
990                              tobject->type != OBJT_SWAP) ||
991                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
992                                 continue;
993                         }
994                 }
995
996                 /*
997                  * spl protection is required to avoid a race between the
998                  * lookup, an interrupt unbusy/free, and our busy check.
999                  */
1000
1001                 s = splvm();
1002                 m = vm_page_lookup(tobject, tpindex);
1003
1004                 if (m == NULL) {
1005                         /*
1006                          * There may be swap even if there is no backing page
1007                          */
1008                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1009                                 swap_pager_freespace(tobject, tpindex, 1);
1010
1011                         /*
1012                          * next object
1013                          */
1014                         splx(s);
1015                         if (tobject->backing_object == NULL)
1016                                 continue;
1017                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1018                         tobject = tobject->backing_object;
1019                         goto shadowlookup;
1020                 }
1021
1022                 /*
1023                  * If the page is busy or not in a normal active state,
1024                  * we skip it.  If the page is not managed there are no
1025                  * page queues to mess with.  Things can break if we mess
1026                  * with pages in any of the below states.
1027                  */
1028                 if (
1029                     m->hold_count ||
1030                     m->wire_count ||
1031                     (m->flags & PG_UNMANAGED) ||
1032                     m->valid != VM_PAGE_BITS_ALL
1033                 ) {
1034                         splx(s);
1035                         continue;
1036                 }
1037
1038                 if (vm_page_sleep_busy(m, TRUE, "madvpo")) {
1039                         splx(s);
1040                         goto relookup;
1041                 }
1042                 splx(s);
1043
1044                 /*
1045                  * Theoretically once a page is known not to be busy, an
1046                  * interrupt cannot come along and rip it out from under us.
1047                  */
1048
1049                 if (advise == MADV_WILLNEED) {
1050                         vm_page_activate(m);
1051                 } else if (advise == MADV_DONTNEED) {
1052                         vm_page_dontneed(m);
1053                 } else if (advise == MADV_FREE) {
1054                         /*
1055                          * Mark the page clean.  This will allow the page
1056                          * to be freed up by the system.  However, such pages
1057                          * are often reused quickly by malloc()/free()
1058                          * so we do not do anything that would cause
1059                          * a page fault if we can help it.
1060                          *
1061                          * Specifically, we do not try to actually free
1062                          * the page now nor do we try to put it in the
1063                          * cache (which would cause a page fault on reuse).
1064                          *
1065                          * But we do make the page is freeable as we
1066                          * can without actually taking the step of unmapping
1067                          * it.
1068                          */
1069                         pmap_clear_modify(m);
1070                         m->dirty = 0;
1071                         m->act_count = 0;
1072                         vm_page_dontneed(m);
1073                         if (tobject->type == OBJT_SWAP)
1074                                 swap_pager_freespace(tobject, tpindex, 1);
1075                 }
1076         }       
1077 }
1078
1079 /*
1080  *      vm_object_shadow:
1081  *
1082  *      Create a new object which is backed by the
1083  *      specified existing object range.  The source
1084  *      object reference is deallocated.
1085  *
1086  *      The new object and offset into that object
1087  *      are returned in the source parameters.
1088  */
1089
1090 void
1091 vm_object_shadow(vm_object_t *object,   /* IN/OUT */
1092                  vm_ooffset_t *offset,  /* IN/OUT */
1093                  vm_size_t length)
1094 {
1095         vm_object_t source;
1096         vm_object_t result;
1097
1098         source = *object;
1099
1100         /*
1101          * Don't create the new object if the old object isn't shared.
1102          */
1103
1104         if (source != NULL &&
1105             source->ref_count == 1 &&
1106             source->handle == NULL &&
1107             (source->type == OBJT_DEFAULT ||
1108              source->type == OBJT_SWAP))
1109                 return;
1110
1111         /*
1112          * Allocate a new object with the given length
1113          */
1114
1115         if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1116                 panic("vm_object_shadow: no object for shadowing");
1117
1118         /*
1119          * The new object shadows the source object, adding a reference to it.
1120          * Our caller changes his reference to point to the new object,
1121          * removing a reference to the source object.  Net result: no change
1122          * of reference count.
1123          *
1124          * Try to optimize the result object's page color when shadowing
1125          * in order to maintain page coloring consistency in the combined 
1126          * shadowed object.
1127          */
1128         result->backing_object = source;
1129         if (source) {
1130                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1131                 source->shadow_count++;
1132                 source->generation++;
1133                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1134         }
1135
1136         /*
1137          * Store the offset into the source object, and fix up the offset into
1138          * the new object.
1139          */
1140
1141         result->backing_object_offset = *offset;
1142
1143         /*
1144          * Return the new things
1145          */
1146
1147         *offset = 0;
1148         *object = result;
1149 }
1150
1151 #define OBSC_TEST_ALL_SHADOWED  0x0001
1152 #define OBSC_COLLAPSE_NOWAIT    0x0002
1153 #define OBSC_COLLAPSE_WAIT      0x0004
1154
1155 static __inline int
1156 vm_object_backing_scan(vm_object_t object, int op)
1157 {
1158         int s;
1159         int r = 1;
1160         vm_page_t p;
1161         vm_object_t backing_object;
1162         vm_pindex_t backing_offset_index;
1163
1164         /*
1165          * spl protection is required to avoid races between the memq/lookup,
1166          * an interrupt doing an unbusy/free, and our busy check.  Amoung
1167          * other things.
1168          */
1169         s = splvm();
1170
1171         backing_object = object->backing_object;
1172         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1173
1174         /*
1175          * Initial conditions
1176          */
1177
1178         if (op & OBSC_TEST_ALL_SHADOWED) {
1179                 /*
1180                  * We do not want to have to test for the existence of
1181                  * swap pages in the backing object.  XXX but with the
1182                  * new swapper this would be pretty easy to do.
1183                  *
1184                  * XXX what about anonymous MAP_SHARED memory that hasn't
1185                  * been ZFOD faulted yet?  If we do not test for this, the
1186                  * shadow test may succeed! XXX
1187                  */
1188                 if (backing_object->type != OBJT_DEFAULT) {
1189                         splx(s);
1190                         return(0);
1191                 }
1192         }
1193         if (op & OBSC_COLLAPSE_WAIT) {
1194                 vm_object_set_flag(backing_object, OBJ_DEAD);
1195         }
1196
1197         /*
1198          * Our scan
1199          */
1200
1201         p = TAILQ_FIRST(&backing_object->memq);
1202         while (p) {
1203                 vm_page_t next = TAILQ_NEXT(p, listq);
1204                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1205
1206                 if (op & OBSC_TEST_ALL_SHADOWED) {
1207                         vm_page_t pp;
1208
1209                         /*
1210                          * Ignore pages outside the parent object's range
1211                          * and outside the parent object's mapping of the 
1212                          * backing object.
1213                          *
1214                          * note that we do not busy the backing object's
1215                          * page.
1216                          */
1217
1218                         if (
1219                             p->pindex < backing_offset_index ||
1220                             new_pindex >= object->size
1221                         ) {
1222                                 p = next;
1223                                 continue;
1224                         }
1225
1226                         /*
1227                          * See if the parent has the page or if the parent's
1228                          * object pager has the page.  If the parent has the
1229                          * page but the page is not valid, the parent's
1230                          * object pager must have the page.
1231                          *
1232                          * If this fails, the parent does not completely shadow
1233                          * the object and we might as well give up now.
1234                          */
1235
1236                         pp = vm_page_lookup(object, new_pindex);
1237                         if (
1238                             (pp == NULL || pp->valid == 0) &&
1239                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
1240                         ) {
1241                                 r = 0;
1242                                 break;
1243                         }
1244                 }
1245
1246                 /*
1247                  * Check for busy page
1248                  */
1249
1250                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1251                         vm_page_t pp;
1252
1253                         if (op & OBSC_COLLAPSE_NOWAIT) {
1254                                 if (
1255                                     (p->flags & PG_BUSY) ||
1256                                     !p->valid || 
1257                                     p->hold_count || 
1258                                     p->wire_count ||
1259                                     p->busy
1260                                 ) {
1261                                         p = next;
1262                                         continue;
1263                                 }
1264                         } else if (op & OBSC_COLLAPSE_WAIT) {
1265                                 if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1266                                         /*
1267                                          * If we slept, anything could have
1268                                          * happened.  Since the object is
1269                                          * marked dead, the backing offset
1270                                          * should not have changed so we
1271                                          * just restart our scan.
1272                                          */
1273                                         p = TAILQ_FIRST(&backing_object->memq);
1274                                         continue;
1275                                 }
1276                         }
1277
1278                         /* 
1279                          * Busy the page
1280                          */
1281                         vm_page_busy(p);
1282
1283                         KASSERT(
1284                             p->object == backing_object,
1285                             ("vm_object_qcollapse(): object mismatch")
1286                         );
1287
1288                         /*
1289                          * Destroy any associated swap
1290                          */
1291                         if (backing_object->type == OBJT_SWAP) {
1292                                 swap_pager_freespace(
1293                                     backing_object, 
1294                                     p->pindex,
1295                                     1
1296                                 );
1297                         }
1298
1299                         if (
1300                             p->pindex < backing_offset_index ||
1301                             new_pindex >= object->size
1302                         ) {
1303                                 /*
1304                                  * Page is out of the parent object's range, we 
1305                                  * can simply destroy it. 
1306                                  */
1307                                 vm_page_protect(p, VM_PROT_NONE);
1308                                 vm_page_free(p);
1309                                 p = next;
1310                                 continue;
1311                         }
1312
1313                         pp = vm_page_lookup(object, new_pindex);
1314                         if (
1315                             pp != NULL ||
1316                             vm_pager_has_page(object, new_pindex, NULL, NULL)
1317                         ) {
1318                                 /*
1319                                  * page already exists in parent OR swap exists
1320                                  * for this location in the parent.  Destroy 
1321                                  * the original page from the backing object.
1322                                  *
1323                                  * Leave the parent's page alone
1324                                  */
1325                                 vm_page_protect(p, VM_PROT_NONE);
1326                                 vm_page_free(p);
1327                                 p = next;
1328                                 continue;
1329                         }
1330
1331                         /*
1332                          * Page does not exist in parent, rename the
1333                          * page from the backing object to the main object. 
1334                          *
1335                          * If the page was mapped to a process, it can remain 
1336                          * mapped through the rename.
1337                          */
1338                         if ((p->queue - p->pc) == PQ_CACHE)
1339                                 vm_page_deactivate(p);
1340
1341                         vm_page_rename(p, object, new_pindex);
1342                         /* page automatically made dirty by rename */
1343                 }
1344                 p = next;
1345         }
1346         splx(s);
1347         return(r);
1348 }
1349
1350
1351 /*
1352  * this version of collapse allows the operation to occur earlier and
1353  * when paging_in_progress is true for an object...  This is not a complete
1354  * operation, but should plug 99.9% of the rest of the leaks.
1355  */
1356 static void
1357 vm_object_qcollapse(vm_object_t object)
1358 {
1359         vm_object_t backing_object = object->backing_object;
1360
1361         if (backing_object->ref_count != 1)
1362                 return;
1363
1364         backing_object->ref_count += 2;
1365
1366         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1367
1368         backing_object->ref_count -= 2;
1369 }
1370
1371 /*
1372  *      vm_object_collapse:
1373  *
1374  *      Collapse an object with the object backing it.
1375  *      Pages in the backing object are moved into the
1376  *      parent, and the backing object is deallocated.
1377  */
1378 void
1379 vm_object_collapse(vm_object_t object)
1380 {
1381         while (TRUE) {
1382                 vm_object_t backing_object;
1383
1384                 /*
1385                  * Verify that the conditions are right for collapse:
1386                  *
1387                  * The object exists and the backing object exists.
1388                  */
1389                 if (object == NULL)
1390                         break;
1391
1392                 if ((backing_object = object->backing_object) == NULL)
1393                         break;
1394
1395                 /*
1396                  * we check the backing object first, because it is most likely
1397                  * not collapsable.
1398                  */
1399                 if (backing_object->handle != NULL ||
1400                     (backing_object->type != OBJT_DEFAULT &&
1401                      backing_object->type != OBJT_SWAP) ||
1402                     (backing_object->flags & OBJ_DEAD) ||
1403                     object->handle != NULL ||
1404                     (object->type != OBJT_DEFAULT &&
1405                      object->type != OBJT_SWAP) ||
1406                     (object->flags & OBJ_DEAD)) {
1407                         break;
1408                 }
1409
1410                 if (
1411                     object->paging_in_progress != 0 ||
1412                     backing_object->paging_in_progress != 0
1413                 ) {
1414                         vm_object_qcollapse(object);
1415                         break;
1416                 }
1417
1418                 /*
1419                  * We know that we can either collapse the backing object (if
1420                  * the parent is the only reference to it) or (perhaps) have
1421                  * the parent bypass the object if the parent happens to shadow
1422                  * all the resident pages in the entire backing object.
1423                  *
1424                  * This is ignoring pager-backed pages such as swap pages.
1425                  * vm_object_backing_scan fails the shadowing test in this
1426                  * case.
1427                  */
1428
1429                 if (backing_object->ref_count == 1) {
1430                         /*
1431                          * If there is exactly one reference to the backing
1432                          * object, we can collapse it into the parent.  
1433                          */
1434
1435                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1436
1437                         /*
1438                          * Move the pager from backing_object to object.
1439                          */
1440
1441                         if (backing_object->type == OBJT_SWAP) {
1442                                 vm_object_pip_add(backing_object, 1);
1443
1444                                 /*
1445                                  * scrap the paging_offset junk and do a 
1446                                  * discrete copy.  This also removes major 
1447                                  * assumptions about how the swap-pager 
1448                                  * works from where it doesn't belong.  The
1449                                  * new swapper is able to optimize the
1450                                  * destroy-source case.
1451                                  */
1452
1453                                 vm_object_pip_add(object, 1);
1454                                 swap_pager_copy(
1455                                     backing_object,
1456                                     object,
1457                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1458                                 vm_object_pip_wakeup(object);
1459
1460                                 vm_object_pip_wakeup(backing_object);
1461                         }
1462                         /*
1463                          * Object now shadows whatever backing_object did.
1464                          * Note that the reference to 
1465                          * backing_object->backing_object moves from within 
1466                          * backing_object to within object.
1467                          */
1468
1469                         LIST_REMOVE(object, shadow_list);
1470                         object->backing_object->shadow_count--;
1471                         object->backing_object->generation++;
1472                         if (backing_object->backing_object) {
1473                                 LIST_REMOVE(backing_object, shadow_list);
1474                                 backing_object->backing_object->shadow_count--;
1475                                 backing_object->backing_object->generation++;
1476                         }
1477                         object->backing_object = backing_object->backing_object;
1478                         if (object->backing_object) {
1479                                 LIST_INSERT_HEAD(
1480                                     &object->backing_object->shadow_head,
1481                                     object, 
1482                                     shadow_list
1483                                 );
1484                                 object->backing_object->shadow_count++;
1485                                 object->backing_object->generation++;
1486                         }
1487
1488                         object->backing_object_offset +=
1489                             backing_object->backing_object_offset;
1490
1491                         /*
1492                          * Discard backing_object.
1493                          *
1494                          * Since the backing object has no pages, no pager left,
1495                          * and no object references within it, all that is
1496                          * necessary is to dispose of it.
1497                          */
1498
1499                         KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1500                         KASSERT(TAILQ_FIRST(&backing_object->memq) == NULL, ("backing_object %p somehow has left over pages during collapse!", backing_object));
1501                         TAILQ_REMOVE(
1502                             &vm_object_list, 
1503                             backing_object,
1504                             object_list
1505                         );
1506                         vm_object_count--;
1507
1508                         zfree(obj_zone, backing_object);
1509
1510                         object_collapses++;
1511                 } else {
1512                         vm_object_t new_backing_object;
1513
1514                         /*
1515                          * If we do not entirely shadow the backing object,
1516                          * there is nothing we can do so we give up.
1517                          */
1518
1519                         if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1520                                 break;
1521                         }
1522
1523                         /*
1524                          * Make the parent shadow the next object in the
1525                          * chain.  Deallocating backing_object will not remove
1526                          * it, since its reference count is at least 2.
1527                          */
1528
1529                         LIST_REMOVE(object, shadow_list);
1530                         backing_object->shadow_count--;
1531                         backing_object->generation++;
1532
1533                         new_backing_object = backing_object->backing_object;
1534                         if ((object->backing_object = new_backing_object) != NULL) {
1535                                 vm_object_reference(new_backing_object);
1536                                 LIST_INSERT_HEAD(
1537                                     &new_backing_object->shadow_head,
1538                                     object,
1539                                     shadow_list
1540                                 );
1541                                 new_backing_object->shadow_count++;
1542                                 new_backing_object->generation++;
1543                                 object->backing_object_offset +=
1544                                         backing_object->backing_object_offset;
1545                         }
1546
1547                         /*
1548                          * Drop the reference count on backing_object. Since
1549                          * its ref_count was at least 2, it will not vanish;
1550                          * so we don't need to call vm_object_deallocate, but
1551                          * we do anyway.
1552                          */
1553                         vm_object_deallocate(backing_object);
1554                         object_bypasses++;
1555                 }
1556
1557                 /*
1558                  * Try again with this object's new backing object.
1559                  */
1560         }
1561 }
1562
1563 /*
1564  *      vm_object_page_remove: [internal]
1565  *
1566  *      Removes all physical pages in the specified
1567  *      object range from the object's list of pages.
1568  */
1569 void
1570 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1571     boolean_t clean_only)
1572 {
1573         vm_page_t p, next;
1574         unsigned int size;
1575         int all;
1576         int s;
1577
1578         if (object == NULL || object->resident_page_count == 0)
1579                 return;
1580
1581         all = ((end == 0) && (start == 0));
1582
1583         /*
1584          * Since physically-backed objects do not use managed pages, we can't
1585          * remove pages from the object (we must instead remove the page
1586          * references, and then destroy the object).
1587          */
1588         KASSERT(object->type != OBJT_PHYS, 
1589                 ("attempt to remove pages from a physical object"));
1590
1591         /*
1592          * Indicating that the object is undergoing paging.
1593          *
1594          * spl protection is required to avoid a race between the memq scan,
1595          * an interrupt unbusy/free, and the busy check.
1596          */
1597         vm_object_pip_add(object, 1);
1598         s = splvm();
1599 again:
1600         size = end - start;
1601         if (all || size > object->resident_page_count / 4) {
1602                 for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
1603                         next = TAILQ_NEXT(p, listq);
1604                         if (all || ((start <= p->pindex) && (p->pindex < end))) {
1605                                 if (p->wire_count != 0) {
1606                                         vm_page_protect(p, VM_PROT_NONE);
1607                                         if (!clean_only)
1608                                                 p->valid = 0;
1609                                         continue;
1610                                 }
1611
1612                                 /*
1613                                  * The busy flags are only cleared at
1614                                  * interrupt -- minimize the spl transitions
1615                                  */
1616
1617                                 if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1618                                         goto again;
1619
1620                                 if (clean_only && p->valid) {
1621                                         vm_page_test_dirty(p);
1622                                         if (p->valid & p->dirty)
1623                                                 continue;
1624                                 }
1625
1626                                 vm_page_busy(p);
1627                                 vm_page_protect(p, VM_PROT_NONE);
1628                                 vm_page_free(p);
1629                         }
1630                 }
1631         } else {
1632                 while (size > 0) {
1633                         if ((p = vm_page_lookup(object, start)) != 0) {
1634                                 if (p->wire_count != 0) {
1635                                         vm_page_protect(p, VM_PROT_NONE);
1636                                         if (!clean_only)
1637                                                 p->valid = 0;
1638                                         start += 1;
1639                                         size -= 1;
1640                                         continue;
1641                                 }
1642
1643                                 /*
1644                                  * The busy flags are only cleared at
1645                                  * interrupt -- minimize the spl transitions
1646                                  */
1647                                 if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1648                                         goto again;
1649
1650                                 if (clean_only && p->valid) {
1651                                         vm_page_test_dirty(p);
1652                                         if (p->valid & p->dirty) {
1653                                                 start += 1;
1654                                                 size -= 1;
1655                                                 continue;
1656                                         }
1657                                 }
1658
1659                                 vm_page_busy(p);
1660                                 vm_page_protect(p, VM_PROT_NONE);
1661                                 vm_page_free(p);
1662                         }
1663                         start += 1;
1664                         size -= 1;
1665                 }
1666         }
1667         splx(s);
1668         vm_object_pip_wakeup(object);
1669 }
1670
1671 /*
1672  *      Routine:        vm_object_coalesce
1673  *      Function:       Coalesces two objects backing up adjoining
1674  *                      regions of memory into a single object.
1675  *
1676  *      returns TRUE if objects were combined.
1677  *
1678  *      NOTE:   Only works at the moment if the second object is NULL -
1679  *              if it's not, which object do we lock first?
1680  *
1681  *      Parameters:
1682  *              prev_object     First object to coalesce
1683  *              prev_offset     Offset into prev_object
1684  *              next_object     Second object into coalesce
1685  *              next_offset     Offset into next_object
1686  *
1687  *              prev_size       Size of reference to prev_object
1688  *              next_size       Size of reference to next_object
1689  *
1690  *      Conditions:
1691  *      The object must *not* be locked.
1692  */
1693 boolean_t
1694 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1695     vm_size_t prev_size, vm_size_t next_size)
1696 {
1697         vm_pindex_t next_pindex;
1698
1699         if (prev_object == NULL) {
1700                 return (TRUE);
1701         }
1702
1703         if (prev_object->type != OBJT_DEFAULT &&
1704             prev_object->type != OBJT_SWAP) {
1705                 return (FALSE);
1706         }
1707
1708         /*
1709          * Try to collapse the object first
1710          */
1711         vm_object_collapse(prev_object);
1712
1713         /*
1714          * Can't coalesce if: . more than one reference . paged out . shadows
1715          * another object . has a copy elsewhere (any of which mean that the
1716          * pages not mapped to prev_entry may be in use anyway)
1717          */
1718
1719         if (prev_object->backing_object != NULL) {
1720                 return (FALSE);
1721         }
1722
1723         prev_size >>= PAGE_SHIFT;
1724         next_size >>= PAGE_SHIFT;
1725         next_pindex = prev_pindex + prev_size;
1726
1727         if ((prev_object->ref_count > 1) &&
1728             (prev_object->size != next_pindex)) {
1729                 return (FALSE);
1730         }
1731
1732         /*
1733          * Remove any pages that may still be in the object from a previous
1734          * deallocation.
1735          */
1736         if (next_pindex < prev_object->size) {
1737                 vm_object_page_remove(prev_object,
1738                                       next_pindex,
1739                                       next_pindex + next_size, FALSE);
1740                 if (prev_object->type == OBJT_SWAP)
1741                         swap_pager_freespace(prev_object,
1742                                              next_pindex, next_size);
1743         }
1744
1745         /*
1746          * Extend the object if necessary.
1747          */
1748         if (next_pindex + next_size > prev_object->size)
1749                 prev_object->size = next_pindex + next_size;
1750
1751         return (TRUE);
1752 }
1753
1754 void
1755 vm_object_set_writeable_dirty(vm_object_t object)
1756 {
1757         struct vnode *vp;
1758         lwkt_tokref vlock;
1759
1760         vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1761         if (object->type == OBJT_VNODE &&
1762             (vp = (struct vnode *)object->handle) != NULL) {
1763                 if ((vp->v_flag & VOBJDIRTY) == 0) {
1764                         lwkt_gettoken(&vlock, vp->v_interlock);
1765                         vp->v_flag |= VOBJDIRTY;
1766                         lwkt_reltoken(&vlock);
1767                 }
1768         }
1769 }
1770
1771
1772
1773 #include "opt_ddb.h"
1774 #ifdef DDB
1775 #include <sys/kernel.h>
1776
1777 #include <sys/cons.h>
1778
1779 #include <ddb/ddb.h>
1780
1781 static int      _vm_object_in_map (vm_map_t map, vm_object_t object,
1782                                        vm_map_entry_t entry);
1783 static int      vm_object_in_map (vm_object_t object);
1784
1785 static int
1786 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1787 {
1788         vm_map_t tmpm;
1789         vm_map_entry_t tmpe;
1790         vm_object_t obj;
1791         int entcount;
1792
1793         if (map == 0)
1794                 return 0;
1795
1796         if (entry == 0) {
1797                 tmpe = map->header.next;
1798                 entcount = map->nentries;
1799                 while (entcount-- && (tmpe != &map->header)) {
1800                         if( _vm_object_in_map(map, object, tmpe)) {
1801                                 return 1;
1802                         }
1803                         tmpe = tmpe->next;
1804                 }
1805         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1806                 tmpm = entry->object.sub_map;
1807                 tmpe = tmpm->header.next;
1808                 entcount = tmpm->nentries;
1809                 while (entcount-- && tmpe != &tmpm->header) {
1810                         if( _vm_object_in_map(tmpm, object, tmpe)) {
1811                                 return 1;
1812                         }
1813                         tmpe = tmpe->next;
1814                 }
1815         } else if ((obj = entry->object.vm_object) != NULL) {
1816                 for(; obj; obj=obj->backing_object)
1817                         if( obj == object) {
1818                                 return 1;
1819                         }
1820         }
1821         return 0;
1822 }
1823
1824 static int
1825 vm_object_in_map(vm_object_t object)
1826 {
1827         struct proc *p;
1828         for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1829                 if( !p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1830                         continue;
1831                 if( _vm_object_in_map(&p->p_vmspace->vm_map, object, 0))
1832                         return 1;
1833         }
1834         if( _vm_object_in_map( kernel_map, object, 0))
1835                 return 1;
1836         if( _vm_object_in_map( pager_map, object, 0))
1837                 return 1;
1838         if( _vm_object_in_map( buffer_map, object, 0))
1839                 return 1;
1840         return 0;
1841 }
1842
1843 DB_SHOW_COMMAND(vmochk, vm_object_check)
1844 {
1845         vm_object_t object;
1846
1847         /*
1848          * make sure that internal objs are in a map somewhere
1849          * and none have zero ref counts.
1850          */
1851         for (object = TAILQ_FIRST(&vm_object_list);
1852                         object != NULL;
1853                         object = TAILQ_NEXT(object, object_list)) {
1854                 if (object->handle == NULL &&
1855                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1856                         if (object->ref_count == 0) {
1857                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
1858                                         (long)object->size);
1859                         }
1860                         if (!vm_object_in_map(object)) {
1861                                 db_printf(
1862                         "vmochk: internal obj is not in a map: "
1863                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1864                                     object->ref_count, (u_long)object->size, 
1865                                     (u_long)object->size,
1866                                     (void *)object->backing_object);
1867                         }
1868                 }
1869         }
1870 }
1871
1872 /*
1873  *      vm_object_print:        [ debug ]
1874  */
1875 DB_SHOW_COMMAND(object, vm_object_print_static)
1876 {
1877         /* XXX convert args. */
1878         vm_object_t object = (vm_object_t)addr;
1879         boolean_t full = have_addr;
1880
1881         vm_page_t p;
1882
1883         /* XXX count is an (unused) arg.  Avoid shadowing it. */
1884 #define count   was_count
1885
1886         int count;
1887
1888         if (object == NULL)
1889                 return;
1890
1891         db_iprintf(
1892             "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1893             object, (int)object->type, (u_long)object->size,
1894             object->resident_page_count, object->ref_count, object->flags);
1895         /*
1896          * XXX no %qd in kernel.  Truncate object->backing_object_offset.
1897          */
1898         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1899             object->shadow_count, 
1900             object->backing_object ? object->backing_object->ref_count : 0,
1901             object->backing_object, (long)object->backing_object_offset);
1902
1903         if (!full)
1904                 return;
1905
1906         db_indent += 2;
1907         count = 0;
1908         for (p = TAILQ_FIRST(&object->memq); p != NULL; p = TAILQ_NEXT(p, listq)) {
1909                 if (count == 0)
1910                         db_iprintf("memory:=");
1911                 else if (count == 6) {
1912                         db_printf("\n");
1913                         db_iprintf(" ...");
1914                         count = 0;
1915                 } else
1916                         db_printf(",");
1917                 count++;
1918
1919                 db_printf("(off=0x%lx,page=0x%lx)",
1920                     (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
1921         }
1922         if (count != 0)
1923                 db_printf("\n");
1924         db_indent -= 2;
1925 }
1926
1927 /* XXX. */
1928 #undef count
1929
1930 /* XXX need this non-static entry for calling from vm_map_print. */
1931 void
1932 vm_object_print(/* db_expr_t */ long addr,
1933                 boolean_t have_addr,
1934                 /* db_expr_t */ long count,
1935                 char *modif)
1936 {
1937         vm_object_print_static(addr, have_addr, count, modif);
1938 }
1939
1940 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
1941 {
1942         vm_object_t object;
1943         int nl = 0;
1944         int c;
1945         for (object = TAILQ_FIRST(&vm_object_list);
1946                         object != NULL;
1947                         object = TAILQ_NEXT(object, object_list)) {
1948                 vm_pindex_t idx, fidx;
1949                 vm_pindex_t osize;
1950                 vm_paddr_t pa = -1, padiff;
1951                 int rcount;
1952                 vm_page_t m;
1953
1954                 db_printf("new object: %p\n", (void *)object);
1955                 if ( nl > 18) {
1956                         c = cngetc();
1957                         if (c != ' ')
1958                                 return;
1959                         nl = 0;
1960                 }
1961                 nl++;
1962                 rcount = 0;
1963                 fidx = 0;
1964                 osize = object->size;
1965                 if (osize > 128)
1966                         osize = 128;
1967                 for (idx = 0; idx < osize; idx++) {
1968                         m = vm_page_lookup(object, idx);
1969                         if (m == NULL) {
1970                                 if (rcount) {
1971                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1972                                                 (long)fidx, rcount, (long)pa);
1973                                         if ( nl > 18) {
1974                                                 c = cngetc();
1975                                                 if (c != ' ')
1976                                                         return;
1977                                                 nl = 0;
1978                                         }
1979                                         nl++;
1980                                         rcount = 0;
1981                                 }
1982                                 continue;
1983                         }
1984
1985                                 
1986                         if (rcount &&
1987                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
1988                                 ++rcount;
1989                                 continue;
1990                         }
1991                         if (rcount) {
1992                                 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
1993                                 padiff >>= PAGE_SHIFT;
1994                                 padiff &= PQ_L2_MASK;
1995                                 if (padiff == 0) {
1996                                         pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
1997                                         ++rcount;
1998                                         continue;
1999                                 }
2000                                 db_printf(" index(%ld)run(%d)pa(0x%lx)",
2001                                         (long)fidx, rcount, (long)pa);
2002                                 db_printf("pd(%ld)\n", (long)padiff);
2003                                 if ( nl > 18) {
2004                                         c = cngetc();
2005                                         if (c != ' ')
2006                                                 return;
2007                                         nl = 0;
2008                                 }
2009                                 nl++;
2010                         }
2011                         fidx = idx;
2012                         pa = VM_PAGE_TO_PHYS(m);
2013                         rcount = 1;
2014                 }
2015                 if (rcount) {
2016                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2017                                 (long)fidx, rcount, (long)pa);
2018                         if ( nl > 18) {
2019                                 c = cngetc();
2020                                 if (c != ' ')
2021                                         return;
2022                                 nl = 0;
2023                         }
2024                         nl++;
2025                 }
2026         }
2027 }
2028 #endif /* DDB */