Merge branch 'vendor/MDOCML'
[dragonfly.git] / sys / vm / vm_fault.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *      This product includes software developed by the University of
26  *      California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  *
71  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
72  * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $
73  */
74
75 /*
76  *      Page fault handling module.
77  */
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/vnode.h>
84 #include <sys/resourcevar.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vkernel.h>
87 #include <sys/lock.h>
88 #include <sys/sysctl.h>
89
90 #include <cpu/lwbuf.h>
91
92 #include <vm/vm.h>
93 #include <vm/vm_param.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_pageout.h>
99 #include <vm/vm_kern.h>
100 #include <vm/vm_pager.h>
101 #include <vm/vnode_pager.h>
102 #include <vm/vm_extern.h>
103
104 #include <sys/thread2.h>
105 #include <vm/vm_page2.h>
106
107 struct faultstate {
108         vm_page_t m;
109         vm_object_t object;
110         vm_pindex_t pindex;
111         vm_prot_t prot;
112         vm_page_t first_m;
113         vm_object_t first_object;
114         vm_prot_t first_prot;
115         vm_map_t map;
116         vm_map_entry_t entry;
117         int lookup_still_valid;
118         int hardfault;
119         int fault_flags;
120         int map_generation;
121         int shared;
122         boolean_t wired;
123         struct vnode *vp;
124 };
125
126 static int debug_cluster = 0;
127 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
128 int vm_shared_fault = 1;
129 SYSCTL_INT(_vm, OID_AUTO, shared_fault, CTLFLAG_RW, &vm_shared_fault, 0,
130            "Allow shared token on vm_object");
131 static long vm_shared_hit = 0;
132 SYSCTL_LONG(_vm, OID_AUTO, shared_hit, CTLFLAG_RW, &vm_shared_hit, 0,
133            "Successful shared faults");
134 static long vm_shared_miss = 0;
135 SYSCTL_LONG(_vm, OID_AUTO, shared_miss, CTLFLAG_RW, &vm_shared_miss, 0,
136            "Unsuccessful shared faults");
137
138 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t);
139 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int);
140 #if 0
141 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
142 #endif
143 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
144 static void vm_prefault(pmap_t pmap, vm_offset_t addra,
145                         vm_map_entry_t entry, int prot, int fault_flags);
146 static void vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
147                         vm_map_entry_t entry, int prot, int fault_flags);
148
149 static __inline void
150 release_page(struct faultstate *fs)
151 {
152         vm_page_deactivate(fs->m);
153         vm_page_wakeup(fs->m);
154         fs->m = NULL;
155 }
156
157 /*
158  * NOTE: Once unlocked any cached fs->entry becomes invalid, any reuse
159  *       requires relocking and then checking the timestamp.
160  *
161  * NOTE: vm_map_lock_read() does not bump fs->map->timestamp so we do
162  *       not have to update fs->map_generation here.
163  *
164  * NOTE: This function can fail due to a deadlock against the caller's
165  *       holding of a vm_page BUSY.
166  */
167 static __inline int
168 relock_map(struct faultstate *fs)
169 {
170         int error;
171
172         if (fs->lookup_still_valid == FALSE && fs->map) {
173                 error = vm_map_lock_read_to(fs->map);
174                 if (error == 0)
175                         fs->lookup_still_valid = TRUE;
176         } else {
177                 error = 0;
178         }
179         return error;
180 }
181
182 static __inline void
183 unlock_map(struct faultstate *fs)
184 {
185         if (fs->lookup_still_valid && fs->map) {
186                 vm_map_lookup_done(fs->map, fs->entry, 0);
187                 fs->lookup_still_valid = FALSE;
188         }
189 }
190
191 /*
192  * Clean up after a successful call to vm_fault_object() so another call
193  * to vm_fault_object() can be made.
194  */
195 static void
196 _cleanup_successful_fault(struct faultstate *fs, int relock)
197 {
198         if (fs->object != fs->first_object) {
199                 vm_page_free(fs->first_m);
200                 vm_object_pip_wakeup(fs->object);
201                 fs->first_m = NULL;
202         }
203         fs->object = fs->first_object;
204         if (relock && fs->lookup_still_valid == FALSE) {
205                 if (fs->map)
206                         vm_map_lock_read(fs->map);
207                 fs->lookup_still_valid = TRUE;
208         }
209 }
210
211 static void
212 _unlock_things(struct faultstate *fs, int dealloc)
213 {
214         _cleanup_successful_fault(fs, 0);
215         if (dealloc) {
216                 /*vm_object_deallocate(fs->first_object);*/
217                 /*fs->first_object = NULL; drop used later on */
218         }
219         unlock_map(fs); 
220         if (fs->vp != NULL) { 
221                 vput(fs->vp);
222                 fs->vp = NULL;
223         }
224 }
225
226 #define unlock_things(fs) _unlock_things(fs, 0)
227 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
228 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
229
230 /*
231  * TRYPAGER 
232  *
233  * Determine if the pager for the current object *might* contain the page.
234  *
235  * We only need to try the pager if this is not a default object (default
236  * objects are zero-fill and have no real pager), and if we are not taking
237  * a wiring fault or if the FS entry is wired.
238  */
239 #define TRYPAGER(fs)    \
240                 (fs->object->type != OBJT_DEFAULT && \
241                 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
242
243 /*
244  * vm_fault:
245  *
246  * Handle a page fault occuring at the given address, requiring the given
247  * permissions, in the map specified.  If successful, the page is inserted
248  * into the associated physical map.
249  *
250  * NOTE: The given address should be truncated to the proper page address.
251  *
252  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
253  * a standard error specifying why the fault is fatal is returned.
254  *
255  * The map in question must be referenced, and remains so.
256  * The caller may hold no locks.
257  * No other requirements.
258  */
259 int
260 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
261 {
262         int result;
263         vm_pindex_t first_pindex;
264         struct faultstate fs;
265         struct lwp *lp;
266         int growstack;
267
268         vm_page_pcpu_cache();
269         fs.hardfault = 0;
270         fs.fault_flags = fault_flags;
271         fs.vp = NULL;
272         growstack = 1;
273
274         if ((lp = curthread->td_lwp) != NULL)
275                 lp->lwp_flags |= LWP_PAGING;
276
277         lwkt_gettoken(&map->token);
278
279 RetryFault:
280         /*
281          * Find the vm_map_entry representing the backing store and resolve
282          * the top level object and page index.  This may have the side
283          * effect of executing a copy-on-write on the map entry and/or
284          * creating a shadow object, but will not COW any actual VM pages.
285          *
286          * On success fs.map is left read-locked and various other fields 
287          * are initialized but not otherwise referenced or locked.
288          *
289          * NOTE!  vm_map_lookup will try to upgrade the fault_type to
290          * VM_FAULT_WRITE if the map entry is a virtual page table and also
291          * writable, so we can set the 'A'accessed bit in the virtual page
292          * table entry.
293          */
294         fs.map = map;
295         result = vm_map_lookup(&fs.map, vaddr, fault_type,
296                                &fs.entry, &fs.first_object,
297                                &first_pindex, &fs.first_prot, &fs.wired);
298
299         /*
300          * If the lookup failed or the map protections are incompatible,
301          * the fault generally fails.  However, if the caller is trying
302          * to do a user wiring we have more work to do.
303          */
304         if (result != KERN_SUCCESS) {
305                 if (result != KERN_PROTECTION_FAILURE ||
306                     (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
307                 {
308                         if (result == KERN_INVALID_ADDRESS && growstack &&
309                             map != &kernel_map && curproc != NULL) {
310                                 result = vm_map_growstack(curproc, vaddr);
311                                 if (result == KERN_SUCCESS) {
312                                         growstack = 0;
313                                         goto RetryFault;
314                                 }
315                                 result = KERN_FAILURE;
316                         }
317                         goto done;
318                 }
319
320                 /*
321                  * If we are user-wiring a r/w segment, and it is COW, then
322                  * we need to do the COW operation.  Note that we don't
323                  * currently COW RO sections now, because it is NOT desirable
324                  * to COW .text.  We simply keep .text from ever being COW'ed
325                  * and take the heat that one cannot debug wired .text sections.
326                  */
327                 result = vm_map_lookup(&fs.map, vaddr,
328                                        VM_PROT_READ|VM_PROT_WRITE|
329                                         VM_PROT_OVERRIDE_WRITE,
330                                        &fs.entry, &fs.first_object,
331                                        &first_pindex, &fs.first_prot,
332                                        &fs.wired);
333                 if (result != KERN_SUCCESS) {
334                         result = KERN_FAILURE;
335                         goto done;
336                 }
337
338                 /*
339                  * If we don't COW now, on a user wire, the user will never
340                  * be able to write to the mapping.  If we don't make this
341                  * restriction, the bookkeeping would be nearly impossible.
342                  *
343                  * XXX We have a shared lock, this will have a MP race but
344                  * I don't see how it can hurt anything.
345                  */
346                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
347                         fs.entry->max_protection &= ~VM_PROT_WRITE;
348         }
349
350         /*
351          * fs.map is read-locked
352          *
353          * Misc checks.  Save the map generation number to detect races.
354          */
355         fs.map_generation = fs.map->timestamp;
356         fs.lookup_still_valid = TRUE;
357         fs.first_m = NULL;
358         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
359         fs.shared = 0;
360         fs.vp = NULL;
361
362         if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
363                 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
364                         panic("vm_fault: fault on nofault entry, addr: %p",
365                               (void *)vaddr);
366                 }
367                 if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
368                     vaddr >= fs.entry->start &&
369                     vaddr < fs.entry->start + PAGE_SIZE) {
370                         panic("vm_fault: fault on stack guard, addr: %p",
371                               (void *)vaddr);
372                 }
373         }
374
375         /*
376          * A system map entry may return a NULL object.  No object means
377          * no pager means an unrecoverable kernel fault.
378          */
379         if (fs.first_object == NULL) {
380                 panic("vm_fault: unrecoverable fault at %p in entry %p",
381                         (void *)vaddr, fs.entry);
382         }
383
384         /*
385          * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
386          * is set.
387          */
388         if ((curthread->td_flags & TDF_NOFAULT) &&
389             (fs.first_object->type == OBJT_VNODE ||
390              fs.first_object->backing_object)) {
391                 result = KERN_FAILURE;
392                 unlock_things(&fs);
393                 goto done2;
394         }
395
396         /*
397          * Attempt to shortcut the fault if the lookup returns a
398          * terminal object and the page is present.  This allows us
399          * to obtain a shared token on the object instead of an exclusive
400          * token, which theoretically should allow concurrent faults.
401          *
402          * We cannot acquire a shared token on kernel_map, at least not
403          * on i386, because the i386 pmap code uses the kernel_object for
404          * its page table page management, resulting in a shared->exclusive
405          * sequence which will deadlock.  This will not happen normally
406          * anyway, except on well cached pageable kmem (like pipe buffers),
407          * so it should not impact performance.
408          */
409         if (vm_shared_fault &&
410             fs.first_object->backing_object == NULL &&
411             fs.entry->maptype == VM_MAPTYPE_NORMAL &&
412             fs.map != &kernel_map) {
413                 int error;
414                 vm_object_hold_shared(fs.first_object);
415                 /*fs.vp = vnode_pager_lock(fs.first_object);*/
416                 fs.m = vm_page_lookup_busy_try(fs.first_object,
417                                                 first_pindex,
418                                                 TRUE, &error);
419                 if (error == 0 && fs.m) {
420                         /*
421                          * Activate the page and figure out if we can
422                          * short-cut a quick mapping.
423                          *
424                          * WARNING!  We cannot call swap_pager_unswapped()
425                          *           with a shared token!  Note that we
426                          *           have to test fs.first_prot here.
427                          */
428                         vm_page_activate(fs.m);
429                         if (fs.m->valid == VM_PAGE_BITS_ALL &&
430                             ((fs.m->flags & PG_SWAPPED) == 0 ||
431                              (fs.first_prot & VM_PROT_WRITE) == 0 ||
432                              (fs.fault_flags & VM_FAULT_DIRTY) == 0)) {
433                                 fs.lookup_still_valid = TRUE;
434                                 fs.first_m = NULL;
435                                 fs.object = fs.first_object;
436                                 fs.prot = fs.first_prot;
437                                 if (fs.wired)
438                                         fault_type = fs.first_prot;
439                                 if (fs.prot & VM_PROT_WRITE) {
440                                         vm_object_set_writeable_dirty(
441                                                         fs.m->object);
442                                         vm_set_nosync(fs.m, fs.entry);
443                                         if (fs.fault_flags & VM_FAULT_DIRTY) {
444                                                 vm_page_dirty(fs.m);
445                                                 /*XXX*/
446                                                 swap_pager_unswapped(fs.m);
447                                         }
448                                 }
449                                 result = KERN_SUCCESS;
450                                 fault_flags |= VM_FAULT_BURST_QUICK;
451                                 fault_flags &= ~VM_FAULT_BURST;
452                                 ++vm_shared_hit;
453                                 goto quick;
454                         }
455                         vm_page_wakeup(fs.m);
456                         fs.m = NULL;
457                 }
458                 vm_object_drop(fs.first_object); /* XXX drop on shared tok?*/
459         }
460         ++vm_shared_miss;
461
462         /*
463          * Bump the paging-in-progress count to prevent size changes (e.g.
464          * truncation operations) during I/O.  This must be done after
465          * obtaining the vnode lock in order to avoid possible deadlocks.
466          */
467         vm_object_hold(fs.first_object);
468         if (fs.vp == NULL)
469                 fs.vp = vnode_pager_lock(fs.first_object);
470
471 #if 0
472         fs.lookup_still_valid = TRUE;
473         fs.first_m = NULL;
474         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
475         fs.shared = 0;
476 #endif
477
478         /*
479          * If the entry is wired we cannot change the page protection.
480          */
481         if (fs.wired)
482                 fault_type = fs.first_prot;
483
484         /*
485          * The page we want is at (first_object, first_pindex), but if the
486          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
487          * page table to figure out the actual pindex.
488          *
489          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
490          * ONLY
491          */
492         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
493                 result = vm_fault_vpagetable(&fs, &first_pindex,
494                                              fs.entry->aux.master_pde,
495                                              fault_type);
496                 if (result == KERN_TRY_AGAIN) {
497                         vm_object_drop(fs.first_object);
498                         goto RetryFault;
499                 }
500                 if (result != KERN_SUCCESS)
501                         goto done;
502         }
503
504         /*
505          * Now we have the actual (object, pindex), fault in the page.  If
506          * vm_fault_object() fails it will unlock and deallocate the FS
507          * data.   If it succeeds everything remains locked and fs->object
508          * will have an additional PIP count if it is not equal to
509          * fs->first_object
510          *
511          * vm_fault_object will set fs->prot for the pmap operation.  It is
512          * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
513          * page can be safely written.  However, it will force a read-only
514          * mapping for a read fault if the memory is managed by a virtual
515          * page table.
516          *
517          * If the fault code uses the shared object lock shortcut
518          * we must not try to burst (we can't allocate VM pages).
519          */
520         result = vm_fault_object(&fs, first_pindex, fault_type);
521         if (fs.shared)
522                 fault_flags &= ~VM_FAULT_BURST;
523
524         if (result == KERN_TRY_AGAIN) {
525                 vm_object_drop(fs.first_object);
526                 goto RetryFault;
527         }
528         if (result != KERN_SUCCESS)
529                 goto done;
530
531 quick:
532         /*
533          * On success vm_fault_object() does not unlock or deallocate, and fs.m
534          * will contain a busied page.
535          *
536          * Enter the page into the pmap and do pmap-related adjustments.
537          */
538         vm_page_flag_set(fs.m, PG_REFERENCED);
539         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired, fs.entry);
540         mycpu->gd_cnt.v_vm_faults++;
541         if (curthread->td_lwp)
542                 ++curthread->td_lwp->lwp_ru.ru_minflt;
543
544         /*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */
545         KKASSERT(fs.m->flags & PG_BUSY);
546
547         /*
548          * If the page is not wired down, then put it where the pageout daemon
549          * can find it.
550          */
551         if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
552                 if (fs.wired)
553                         vm_page_wire(fs.m);
554                 else
555                         vm_page_unwire(fs.m, 1);
556         } else {
557                 vm_page_activate(fs.m);
558         }
559         vm_page_wakeup(fs.m);
560
561         /*
562          * Burst in a few more pages if possible.  The fs.map should still
563          * be locked.  To avoid interlocking against a vnode->getblk
564          * operation we had to be sure to unbusy our primary vm_page above
565          * first.
566          */
567         if (fault_flags & VM_FAULT_BURST) {
568                 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0
569                     && fs.wired == 0) {
570                         vm_prefault(fs.map->pmap, vaddr,
571                                     fs.entry, fs.prot, fault_flags);
572                 }
573         }
574         if (fault_flags & VM_FAULT_BURST_QUICK) {
575                 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0
576                     && fs.wired == 0) {
577                         vm_prefault_quick(fs.map->pmap, vaddr,
578                                           fs.entry, fs.prot, fault_flags);
579                 }
580         }
581
582         /*
583          * Unlock everything, and return
584          */
585         unlock_things(&fs);
586
587         if (curthread->td_lwp) {
588                 if (fs.hardfault) {
589                         curthread->td_lwp->lwp_ru.ru_majflt++;
590                 } else {
591                         curthread->td_lwp->lwp_ru.ru_minflt++;
592                 }
593         }
594
595         /*vm_object_deallocate(fs.first_object);*/
596         /*fs.m = NULL; */
597         /*fs.first_object = NULL; must still drop later */
598
599         result = KERN_SUCCESS;
600 done:
601         if (fs.first_object)
602                 vm_object_drop(fs.first_object);
603 done2:
604         lwkt_reltoken(&map->token);
605         if (lp)
606                 lp->lwp_flags &= ~LWP_PAGING;
607         return (result);
608 }
609
610 /*
611  * Fault in the specified virtual address in the current process map, 
612  * returning a held VM page or NULL.  See vm_fault_page() for more 
613  * information.
614  *
615  * No requirements.
616  */
617 vm_page_t
618 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
619 {
620         struct lwp *lp = curthread->td_lwp;
621         vm_page_t m;
622
623         m = vm_fault_page(&lp->lwp_vmspace->vm_map, va, 
624                           fault_type, VM_FAULT_NORMAL, errorp);
625         return(m);
626 }
627
628 /*
629  * Fault in the specified virtual address in the specified map, doing all
630  * necessary manipulation of the object store and all necessary I/O.  Return
631  * a held VM page or NULL, and set *errorp.  The related pmap is not
632  * updated.
633  *
634  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
635  * and marked PG_REFERENCED as well.
636  *
637  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
638  * error will be returned.
639  *
640  * No requirements.
641  */
642 vm_page_t
643 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
644               int fault_flags, int *errorp)
645 {
646         vm_pindex_t first_pindex;
647         struct faultstate fs;
648         int result;
649         vm_prot_t orig_fault_type = fault_type;
650
651         fs.hardfault = 0;
652         fs.fault_flags = fault_flags;
653         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
654
655         lwkt_gettoken(&map->token);
656
657 RetryFault:
658         /*
659          * Find the vm_map_entry representing the backing store and resolve
660          * the top level object and page index.  This may have the side
661          * effect of executing a copy-on-write on the map entry and/or
662          * creating a shadow object, but will not COW any actual VM pages.
663          *
664          * On success fs.map is left read-locked and various other fields 
665          * are initialized but not otherwise referenced or locked.
666          *
667          * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
668          * if the map entry is a virtual page table and also writable,
669          * so we can set the 'A'accessed bit in the virtual page table entry.
670          */
671         fs.map = map;
672         result = vm_map_lookup(&fs.map, vaddr, fault_type,
673                                &fs.entry, &fs.first_object,
674                                &first_pindex, &fs.first_prot, &fs.wired);
675
676         if (result != KERN_SUCCESS) {
677                 *errorp = result;
678                 fs.m = NULL;
679                 goto done;
680         }
681
682         /*
683          * fs.map is read-locked
684          *
685          * Misc checks.  Save the map generation number to detect races.
686          */
687         fs.map_generation = fs.map->timestamp;
688         fs.lookup_still_valid = TRUE;
689         fs.first_m = NULL;
690         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
691         fs.shared = 0;
692         fs.vp = NULL;
693
694         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
695                 panic("vm_fault: fault on nofault entry, addr: %lx",
696                     (u_long)vaddr);
697         }
698
699         /*
700          * A system map entry may return a NULL object.  No object means
701          * no pager means an unrecoverable kernel fault.
702          */
703         if (fs.first_object == NULL) {
704                 panic("vm_fault: unrecoverable fault at %p in entry %p",
705                         (void *)vaddr, fs.entry);
706         }
707
708         /*
709          * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
710          * is set.
711          */
712         if ((curthread->td_flags & TDF_NOFAULT) &&
713             (fs.first_object->type == OBJT_VNODE ||
714              fs.first_object->backing_object)) {
715                 *errorp = KERN_FAILURE;
716                 unlock_things(&fs);
717                 goto done2;
718         }
719
720         /*
721          * Make a reference to this object to prevent its disposal while we
722          * are messing with it.  Once we have the reference, the map is free
723          * to be diddled.  Since objects reference their shadows (and copies),
724          * they will stay around as well.
725          *
726          * The reference should also prevent an unexpected collapse of the
727          * parent that might move pages from the current object into the
728          * parent unexpectedly, resulting in corruption.
729          *
730          * Bump the paging-in-progress count to prevent size changes (e.g.
731          * truncation operations) during I/O.  This must be done after
732          * obtaining the vnode lock in order to avoid possible deadlocks.
733          */
734         vm_object_hold(fs.first_object);
735         fs.vp = vnode_pager_lock(fs.first_object);
736
737 #if 0
738         fs.lookup_still_valid = TRUE;
739         fs.first_m = NULL;
740         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
741         fs.shared = 0;
742 #endif
743
744         /*
745          * If the entry is wired we cannot change the page protection.
746          */
747         if (fs.wired)
748                 fault_type = fs.first_prot;
749
750         /*
751          * The page we want is at (first_object, first_pindex), but if the
752          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
753          * page table to figure out the actual pindex.
754          *
755          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
756          * ONLY
757          */
758         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
759                 result = vm_fault_vpagetable(&fs, &first_pindex,
760                                              fs.entry->aux.master_pde,
761                                              fault_type);
762                 if (result == KERN_TRY_AGAIN) {
763                         vm_object_drop(fs.first_object);
764                         goto RetryFault;
765                 }
766                 if (result != KERN_SUCCESS) {
767                         *errorp = result;
768                         fs.m = NULL;
769                         goto done;
770                 }
771         }
772
773         /*
774          * Now we have the actual (object, pindex), fault in the page.  If
775          * vm_fault_object() fails it will unlock and deallocate the FS
776          * data.   If it succeeds everything remains locked and fs->object
777          * will have an additinal PIP count if it is not equal to
778          * fs->first_object
779          */
780         fs.m = NULL;
781         result = vm_fault_object(&fs, first_pindex, fault_type);
782
783         if (result == KERN_TRY_AGAIN) {
784                 vm_object_drop(fs.first_object);
785                 goto RetryFault;
786         }
787         if (result != KERN_SUCCESS) {
788                 *errorp = result;
789                 fs.m = NULL;
790                 goto done;
791         }
792
793         if ((orig_fault_type & VM_PROT_WRITE) &&
794             (fs.prot & VM_PROT_WRITE) == 0) {
795                 *errorp = KERN_PROTECTION_FAILURE;
796                 unlock_and_deallocate(&fs);
797                 fs.m = NULL;
798                 goto done;
799         }
800
801         /*
802          * DO NOT UPDATE THE PMAP!!!  This function may be called for
803          * a pmap unrelated to the current process pmap, in which case
804          * the current cpu core will not be listed in the pmap's pm_active
805          * mask.  Thus invalidation interlocks will fail to work properly.
806          *
807          * (for example, 'ps' uses procfs to read program arguments from
808          * each process's stack).
809          *
810          * In addition to the above this function will be called to acquire
811          * a page that might already be faulted in, re-faulting it
812          * continuously is a waste of time.
813          *
814          * XXX could this have been the cause of our random seg-fault
815          *     issues?  procfs accesses user stacks.
816          */
817         vm_page_flag_set(fs.m, PG_REFERENCED);
818 #if 0
819         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired, NULL);
820         mycpu->gd_cnt.v_vm_faults++;
821         if (curthread->td_lwp)
822                 ++curthread->td_lwp->lwp_ru.ru_minflt;
823 #endif
824
825         /*
826          * On success vm_fault_object() does not unlock or deallocate, and fs.m
827          * will contain a busied page.  So we must unlock here after having
828          * messed with the pmap.
829          */
830         unlock_things(&fs);
831
832         /*
833          * Return a held page.  We are not doing any pmap manipulation so do
834          * not set PG_MAPPED.  However, adjust the page flags according to
835          * the fault type because the caller may not use a managed pmapping
836          * (so we don't want to lose the fact that the page will be dirtied
837          * if a write fault was specified).
838          */
839         vm_page_hold(fs.m);
840         vm_page_activate(fs.m);
841         if (fault_type & VM_PROT_WRITE)
842                 vm_page_dirty(fs.m);
843
844         if (curthread->td_lwp) {
845                 if (fs.hardfault) {
846                         curthread->td_lwp->lwp_ru.ru_majflt++;
847                 } else {
848                         curthread->td_lwp->lwp_ru.ru_minflt++;
849                 }
850         }
851
852         /*
853          * Unlock everything, and return the held page.
854          */
855         vm_page_wakeup(fs.m);
856         /*vm_object_deallocate(fs.first_object);*/
857         /*fs.first_object = NULL; */
858         *errorp = 0;
859
860 done:
861         if (fs.first_object)
862                 vm_object_drop(fs.first_object);
863 done2:
864         lwkt_reltoken(&map->token);
865         return(fs.m);
866 }
867
868 /*
869  * Fault in the specified (object,offset), dirty the returned page as
870  * needed.  If the requested fault_type cannot be done NULL and an
871  * error is returned.
872  *
873  * A held (but not busied) page is returned.
874  *
875  * No requirements.
876  */
877 vm_page_t
878 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
879                      vm_prot_t fault_type, int fault_flags,
880                      int shared, int *errorp)
881 {
882         int result;
883         vm_pindex_t first_pindex;
884         struct faultstate fs;
885         struct vm_map_entry entry;
886
887         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
888         bzero(&entry, sizeof(entry));
889         entry.object.vm_object = object;
890         entry.maptype = VM_MAPTYPE_NORMAL;
891         entry.protection = entry.max_protection = fault_type;
892
893         fs.hardfault = 0;
894         fs.fault_flags = fault_flags;
895         fs.map = NULL;
896         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
897
898 RetryFault:
899         
900         fs.first_object = object;
901         first_pindex = OFF_TO_IDX(offset);
902         fs.entry = &entry;
903         fs.first_prot = fault_type;
904         fs.wired = 0;
905         fs.shared = shared;
906         /*fs.map_generation = 0; unused */
907
908         /*
909          * Make a reference to this object to prevent its disposal while we
910          * are messing with it.  Once we have the reference, the map is free
911          * to be diddled.  Since objects reference their shadows (and copies),
912          * they will stay around as well.
913          *
914          * The reference should also prevent an unexpected collapse of the
915          * parent that might move pages from the current object into the
916          * parent unexpectedly, resulting in corruption.
917          *
918          * Bump the paging-in-progress count to prevent size changes (e.g.
919          * truncation operations) during I/O.  This must be done after
920          * obtaining the vnode lock in order to avoid possible deadlocks.
921          */
922         fs.vp = vnode_pager_lock(fs.first_object);
923
924         fs.lookup_still_valid = TRUE;
925         fs.first_m = NULL;
926         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
927
928 #if 0
929         /* XXX future - ability to operate on VM object using vpagetable */
930         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
931                 result = vm_fault_vpagetable(&fs, &first_pindex,
932                                              fs.entry->aux.master_pde,
933                                              fault_type);
934                 if (result == KERN_TRY_AGAIN)
935                         goto RetryFault;
936                 if (result != KERN_SUCCESS) {
937                         *errorp = result;
938                         return (NULL);
939                 }
940         }
941 #endif
942
943         /*
944          * Now we have the actual (object, pindex), fault in the page.  If
945          * vm_fault_object() fails it will unlock and deallocate the FS
946          * data.   If it succeeds everything remains locked and fs->object
947          * will have an additinal PIP count if it is not equal to
948          * fs->first_object
949          */
950         result = vm_fault_object(&fs, first_pindex, fault_type);
951
952         if (result == KERN_TRY_AGAIN)
953                 goto RetryFault;
954         if (result != KERN_SUCCESS) {
955                 *errorp = result;
956                 return(NULL);
957         }
958
959         if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
960                 *errorp = KERN_PROTECTION_FAILURE;
961                 unlock_and_deallocate(&fs);
962                 return(NULL);
963         }
964
965         /*
966          * On success vm_fault_object() does not unlock or deallocate, so we
967          * do it here.  Note that the returned fs.m will be busied.
968          */
969         unlock_things(&fs);
970
971         /*
972          * Return a held page.  We are not doing any pmap manipulation so do
973          * not set PG_MAPPED.  However, adjust the page flags according to
974          * the fault type because the caller may not use a managed pmapping
975          * (so we don't want to lose the fact that the page will be dirtied
976          * if a write fault was specified).
977          */
978         vm_page_hold(fs.m);
979         vm_page_activate(fs.m);
980         if ((fault_type & VM_PROT_WRITE) || (fault_flags & VM_FAULT_DIRTY))
981                 vm_page_dirty(fs.m);
982         if (fault_flags & VM_FAULT_UNSWAP)
983                 swap_pager_unswapped(fs.m);
984
985         /*
986          * Indicate that the page was accessed.
987          */
988         vm_page_flag_set(fs.m, PG_REFERENCED);
989
990         if (curthread->td_lwp) {
991                 if (fs.hardfault) {
992                         curthread->td_lwp->lwp_ru.ru_majflt++;
993                 } else {
994                         curthread->td_lwp->lwp_ru.ru_minflt++;
995                 }
996         }
997
998         /*
999          * Unlock everything, and return the held page.
1000          */
1001         vm_page_wakeup(fs.m);
1002         /*vm_object_deallocate(fs.first_object);*/
1003         /*fs.first_object = NULL; */
1004
1005         *errorp = 0;
1006         return(fs.m);
1007 }
1008
1009 /*
1010  * Translate the virtual page number (first_pindex) that is relative
1011  * to the address space into a logical page number that is relative to the
1012  * backing object.  Use the virtual page table pointed to by (vpte).
1013  *
1014  * This implements an N-level page table.  Any level can terminate the
1015  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
1016  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
1017  */
1018 static
1019 int
1020 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
1021                     vpte_t vpte, int fault_type)
1022 {
1023         struct lwbuf *lwb;
1024         struct lwbuf lwb_cache;
1025         int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
1026         int result = KERN_SUCCESS;
1027         vpte_t *ptep;
1028
1029         ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1030         for (;;) {
1031                 /*
1032                  * We cannot proceed if the vpte is not valid, not readable
1033                  * for a read fault, or not writable for a write fault.
1034                  */
1035                 if ((vpte & VPTE_V) == 0) {
1036                         unlock_and_deallocate(fs);
1037                         return (KERN_FAILURE);
1038                 }
1039                 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) {
1040                         unlock_and_deallocate(fs);
1041                         return (KERN_FAILURE);
1042                 }
1043                 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) {
1044                         unlock_and_deallocate(fs);
1045                         return (KERN_FAILURE);
1046                 }
1047                 if ((vpte & VPTE_PS) || vshift == 0)
1048                         break;
1049                 KKASSERT(vshift >= VPTE_PAGE_BITS);
1050
1051                 /*
1052                  * Get the page table page.  Nominally we only read the page
1053                  * table, but since we are actively setting VPTE_M and VPTE_A,
1054                  * tell vm_fault_object() that we are writing it. 
1055                  *
1056                  * There is currently no real need to optimize this.
1057                  */
1058                 result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
1059                                          VM_PROT_READ|VM_PROT_WRITE);
1060                 if (result != KERN_SUCCESS)
1061                         return (result);
1062
1063                 /*
1064                  * Process the returned fs.m and look up the page table
1065                  * entry in the page table page.
1066                  */
1067                 vshift -= VPTE_PAGE_BITS;
1068                 lwb = lwbuf_alloc(fs->m, &lwb_cache);
1069                 ptep = ((vpte_t *)lwbuf_kva(lwb) +
1070                         ((*pindex >> vshift) & VPTE_PAGE_MASK));
1071                 vpte = *ptep;
1072
1073                 /*
1074                  * Page table write-back.  If the vpte is valid for the
1075                  * requested operation, do a write-back to the page table.
1076                  *
1077                  * XXX VPTE_M is not set properly for page directory pages.
1078                  * It doesn't get set in the page directory if the page table
1079                  * is modified during a read access.
1080                  */
1081                 vm_page_activate(fs->m);
1082                 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
1083                     (vpte & VPTE_W)) {
1084                         if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
1085                                 atomic_set_long(ptep, VPTE_M | VPTE_A);
1086                                 vm_page_dirty(fs->m);
1087                         }
1088                 }
1089                 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) &&
1090                     (vpte & VPTE_R)) {
1091                         if ((vpte & VPTE_A) == 0) {
1092                                 atomic_set_long(ptep, VPTE_A);
1093                                 vm_page_dirty(fs->m);
1094                         }
1095                 }
1096                 lwbuf_free(lwb);
1097                 vm_page_flag_set(fs->m, PG_REFERENCED);
1098                 vm_page_wakeup(fs->m);
1099                 fs->m = NULL;
1100                 cleanup_successful_fault(fs);
1101         }
1102         /*
1103          * Combine remaining address bits with the vpte.
1104          */
1105         /* JG how many bits from each? */
1106         *pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
1107                   (*pindex & ((1L << vshift) - 1));
1108         return (KERN_SUCCESS);
1109 }
1110
1111
1112 /*
1113  * This is the core of the vm_fault code.
1114  *
1115  * Do all operations required to fault-in (fs.first_object, pindex).  Run
1116  * through the shadow chain as necessary and do required COW or virtual
1117  * copy operations.  The caller has already fully resolved the vm_map_entry
1118  * and, if appropriate, has created a copy-on-write layer.  All we need to
1119  * do is iterate the object chain.
1120  *
1121  * On failure (fs) is unlocked and deallocated and the caller may return or
1122  * retry depending on the failure code.  On success (fs) is NOT unlocked or
1123  * deallocated, fs.m will contained a resolved, busied page, and fs.object
1124  * will have an additional PIP count if it is not equal to fs.first_object.
1125  *
1126  * fs->first_object must be held on call.
1127  */
1128 static
1129 int
1130 vm_fault_object(struct faultstate *fs,
1131                 vm_pindex_t first_pindex, vm_prot_t fault_type)
1132 {
1133         vm_object_t next_object;
1134         vm_pindex_t pindex;
1135         int error;
1136
1137         ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1138         fs->prot = fs->first_prot;
1139         fs->object = fs->first_object;
1140         pindex = first_pindex;
1141
1142         vm_object_chain_acquire(fs->first_object);
1143         vm_object_pip_add(fs->first_object, 1);
1144
1145         /* 
1146          * If a read fault occurs we try to make the page writable if
1147          * possible.  There are three cases where we cannot make the
1148          * page mapping writable:
1149          *
1150          * (1) The mapping is read-only or the VM object is read-only,
1151          *     fs->prot above will simply not have VM_PROT_WRITE set.
1152          *
1153          * (2) If the mapping is a virtual page table we need to be able
1154          *     to detect writes so we can set VPTE_M in the virtual page
1155          *     table.
1156          *
1157          * (3) If the VM page is read-only or copy-on-write, upgrading would
1158          *     just result in an unnecessary COW fault.
1159          *
1160          * VM_PROT_VPAGED is set if faulting via a virtual page table and
1161          * causes adjustments to the 'M'odify bit to also turn off write
1162          * access to force a re-fault.
1163          */
1164         if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1165                 if ((fault_type & VM_PROT_WRITE) == 0)
1166                         fs->prot &= ~VM_PROT_WRITE;
1167         }
1168
1169         /* vm_object_hold(fs->object); implied b/c object == first_object */
1170
1171         for (;;) {
1172                 /*
1173                  * The entire backing chain from first_object to object
1174                  * inclusive is chainlocked.
1175                  *
1176                  * If the object is dead, we stop here
1177                  *
1178                  * vm_shared_fault (fs->shared != 0) case: nothing special.
1179                  */
1180                 if (fs->object->flags & OBJ_DEAD) {
1181                         vm_object_pip_wakeup(fs->first_object);
1182                         vm_object_chain_release_all(fs->first_object,
1183                                                     fs->object);
1184                         if (fs->object != fs->first_object)
1185                                 vm_object_drop(fs->object);
1186                         unlock_and_deallocate(fs);
1187                         return (KERN_PROTECTION_FAILURE);
1188                 }
1189
1190                 /*
1191                  * See if the page is resident.  Wait/Retry if the page is
1192                  * busy (lots of stuff may have changed so we can't continue
1193                  * in that case).
1194                  *
1195                  * We can theoretically allow the soft-busy case on a read
1196                  * fault if the page is marked valid, but since such
1197                  * pages are typically already pmap'd, putting that
1198                  * special case in might be more effort then it is
1199                  * worth.  We cannot under any circumstances mess
1200                  * around with a vm_page_t->busy page except, perhaps,
1201                  * to pmap it.
1202                  *
1203                  * vm_shared_fault (fs->shared != 0) case:
1204                  *      error           nothing special
1205                  *      fs->m           relock excl if I/O needed
1206                  *      NULL            relock excl
1207                  */
1208                 fs->m = vm_page_lookup_busy_try(fs->object, pindex,
1209                                                 TRUE, &error);
1210                 if (error) {
1211                         vm_object_pip_wakeup(fs->first_object);
1212                         vm_object_chain_release_all(fs->first_object,
1213                                                     fs->object);
1214                         if (fs->object != fs->first_object)
1215                                 vm_object_drop(fs->object);
1216                         unlock_things(fs);
1217                         vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1218                         mycpu->gd_cnt.v_intrans++;
1219                         /*vm_object_deallocate(fs->first_object);*/
1220                         /*fs->first_object = NULL;*/
1221                         fs->m = NULL;
1222                         return (KERN_TRY_AGAIN);
1223                 }
1224                 if (fs->m) {
1225                         /*
1226                          * The page is busied for us.
1227                          *
1228                          * If reactivating a page from PQ_CACHE we may have
1229                          * to rate-limit.
1230                          */
1231                         int queue = fs->m->queue;
1232                         vm_page_unqueue_nowakeup(fs->m);
1233
1234                         if ((queue - fs->m->pc) == PQ_CACHE && 
1235                             vm_page_count_severe()) {
1236                                 vm_page_activate(fs->m);
1237                                 vm_page_wakeup(fs->m);
1238                                 fs->m = NULL;
1239                                 vm_object_pip_wakeup(fs->first_object);
1240                                 vm_object_chain_release_all(fs->first_object,
1241                                                             fs->object);
1242                                 if (fs->object != fs->first_object)
1243                                         vm_object_drop(fs->object);
1244                                 unlock_and_deallocate(fs);
1245                                 vm_wait_pfault();
1246                                 return (KERN_TRY_AGAIN);
1247                         }
1248
1249                         /*
1250                          * If it still isn't completely valid (readable),
1251                          * or if a read-ahead-mark is set on the VM page,
1252                          * jump to readrest, else we found the page and
1253                          * can return.
1254                          *
1255                          * We can release the spl once we have marked the
1256                          * page busy.
1257                          */
1258                         if (fs->m->object != &kernel_object) {
1259                                 if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1260                                     VM_PAGE_BITS_ALL) {
1261                                         if (fs->shared) {
1262                                                 vm_object_drop(fs->object);
1263                                                 vm_object_hold(fs->object);
1264                                                 fs->shared = 0;
1265                                         }
1266                                         goto readrest;
1267                                 }
1268                                 if (fs->m->flags & PG_RAM) {
1269                                         if (debug_cluster)
1270                                                 kprintf("R");
1271                                         vm_page_flag_clear(fs->m, PG_RAM);
1272                                         if (fs->shared) {
1273                                                 vm_object_drop(fs->object);
1274                                                 vm_object_hold(fs->object);
1275                                                 fs->shared = 0;
1276                                         }
1277                                         goto readrest;
1278                                 }
1279                         }
1280                         break; /* break to PAGE HAS BEEN FOUND */
1281                 }
1282
1283                 if (fs->shared) {
1284                         vm_object_drop(fs->object);
1285                         vm_object_hold(fs->object);
1286                         fs->shared = 0;
1287                 }
1288
1289                 /*
1290                  * Page is not resident, If this is the search termination
1291                  * or the pager might contain the page, allocate a new page.
1292                  */
1293                 if (TRYPAGER(fs) || fs->object == fs->first_object) {
1294                         /*
1295                          * If the page is beyond the object size we fail
1296                          */
1297                         if (pindex >= fs->object->size) {
1298                                 vm_object_pip_wakeup(fs->first_object);
1299                                 vm_object_chain_release_all(fs->first_object,
1300                                                             fs->object);
1301                                 if (fs->object != fs->first_object)
1302                                         vm_object_drop(fs->object);
1303                                 unlock_and_deallocate(fs);
1304                                 return (KERN_PROTECTION_FAILURE);
1305                         }
1306
1307                         /*
1308                          * Allocate a new page for this object/offset pair.
1309                          *
1310                          * It is possible for the allocation to race, so
1311                          * handle the case.
1312                          */
1313                         fs->m = NULL;
1314                         if (!vm_page_count_severe()) {
1315                                 fs->m = vm_page_alloc(fs->object, pindex,
1316                                     ((fs->vp || fs->object->backing_object) ?
1317                                         VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL :
1318                                         VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1319                                         VM_ALLOC_USE_GD | VM_ALLOC_ZERO));
1320                         }
1321                         if (fs->m == NULL) {
1322                                 vm_object_pip_wakeup(fs->first_object);
1323                                 vm_object_chain_release_all(fs->first_object,
1324                                                             fs->object);
1325                                 if (fs->object != fs->first_object)
1326                                         vm_object_drop(fs->object);
1327                                 unlock_and_deallocate(fs);
1328                                 vm_wait_pfault();
1329                                 return (KERN_TRY_AGAIN);
1330                         }
1331
1332                         /*
1333                          * Fall through to readrest.  We have a new page which
1334                          * will have to be paged (since m->valid will be 0).
1335                          */
1336                 }
1337
1338 readrest:
1339                 /*
1340                  * We have found an invalid or partially valid page, a
1341                  * page with a read-ahead mark which might be partially or
1342                  * fully valid (and maybe dirty too), or we have allocated
1343                  * a new page.
1344                  *
1345                  * Attempt to fault-in the page if there is a chance that the
1346                  * pager has it, and potentially fault in additional pages
1347                  * at the same time.
1348                  *
1349                  * If TRYPAGER is true then fs.m will be non-NULL and busied
1350                  * for us.
1351                  */
1352                 if (TRYPAGER(fs)) {
1353                         int rv;
1354                         int seqaccess;
1355                         u_char behavior = vm_map_entry_behavior(fs->entry);
1356
1357                         if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1358                                 seqaccess = 0;
1359                         else
1360                                 seqaccess = -1;
1361
1362 #if 0
1363                         /*
1364                          * If sequential access is detected then attempt
1365                          * to deactivate/cache pages behind the scan to
1366                          * prevent resource hogging.
1367                          *
1368                          * Use of PG_RAM to detect sequential access
1369                          * also simulates multi-zone sequential access
1370                          * detection for free.
1371                          *
1372                          * NOTE: Partially valid dirty pages cannot be
1373                          *       deactivated without causing NFS picemeal
1374                          *       writes to barf.
1375                          */
1376                         if ((fs->first_object->type != OBJT_DEVICE) &&
1377                             (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
1378                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
1379                                  (fs->m->flags & PG_RAM)))
1380                         ) {
1381                                 vm_pindex_t scan_pindex;
1382                                 int scan_count = 16;
1383
1384                                 if (first_pindex < 16) {
1385                                         scan_pindex = 0;
1386                                         scan_count = 0;
1387                                 } else {
1388                                         scan_pindex = first_pindex - 16;
1389                                         if (scan_pindex < 16)
1390                                                 scan_count = scan_pindex;
1391                                         else
1392                                                 scan_count = 16;
1393                                 }
1394
1395                                 while (scan_count) {
1396                                         vm_page_t mt;
1397
1398                                         mt = vm_page_lookup(fs->first_object,
1399                                                             scan_pindex);
1400                                         if (mt == NULL)
1401                                                 break;
1402                                         if (vm_page_busy_try(mt, TRUE))
1403                                                 goto skip;
1404
1405                                         if (mt->valid != VM_PAGE_BITS_ALL) {
1406                                                 vm_page_wakeup(mt);
1407                                                 break;
1408                                         }
1409                                         if ((mt->flags &
1410                                              (PG_FICTITIOUS | PG_UNMANAGED |
1411                                               PG_NEED_COMMIT)) ||
1412                                             mt->hold_count ||
1413                                             mt->wire_count)  {
1414                                                 vm_page_wakeup(mt);
1415                                                 goto skip;
1416                                         }
1417                                         if (mt->dirty == 0)
1418                                                 vm_page_test_dirty(mt);
1419                                         if (mt->dirty) {
1420                                                 vm_page_protect(mt,
1421                                                                 VM_PROT_NONE);
1422                                                 vm_page_deactivate(mt);
1423                                                 vm_page_wakeup(mt);
1424                                         } else {
1425                                                 vm_page_cache(mt);
1426                                         }
1427 skip:
1428                                         --scan_count;
1429                                         --scan_pindex;
1430                                 }
1431
1432                                 seqaccess = 1;
1433                         }
1434 #endif
1435
1436                         /*
1437                          * Avoid deadlocking against the map when doing I/O.
1438                          * fs.object and the page is PG_BUSY'd.
1439                          *
1440                          * NOTE: Once unlocked, fs->entry can become stale
1441                          *       so this will NULL it out.
1442                          *
1443                          * NOTE: fs->entry is invalid until we relock the
1444                          *       map and verify that the timestamp has not
1445                          *       changed.
1446                          */
1447                         unlock_map(fs);
1448
1449                         /*
1450                          * Acquire the page data.  We still hold a ref on
1451                          * fs.object and the page has been PG_BUSY's.
1452                          *
1453                          * The pager may replace the page (for example, in
1454                          * order to enter a fictitious page into the
1455                          * object).  If it does so it is responsible for
1456                          * cleaning up the passed page and properly setting
1457                          * the new page PG_BUSY.
1458                          *
1459                          * If we got here through a PG_RAM read-ahead
1460                          * mark the page may be partially dirty and thus
1461                          * not freeable.  Don't bother checking to see
1462                          * if the pager has the page because we can't free
1463                          * it anyway.  We have to depend on the get_page
1464                          * operation filling in any gaps whether there is
1465                          * backing store or not.
1466                          */
1467                         rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1468
1469                         if (rv == VM_PAGER_OK) {
1470                                 /*
1471                                  * Relookup in case pager changed page. Pager
1472                                  * is responsible for disposition of old page
1473                                  * if moved.
1474                                  *
1475                                  * XXX other code segments do relookups too.
1476                                  * It's a bad abstraction that needs to be
1477                                  * fixed/removed.
1478                                  */
1479                                 fs->m = vm_page_lookup(fs->object, pindex);
1480                                 if (fs->m == NULL) {
1481                                         vm_object_pip_wakeup(fs->first_object);
1482                                         vm_object_chain_release_all(
1483                                                 fs->first_object, fs->object);
1484                                         if (fs->object != fs->first_object)
1485                                                 vm_object_drop(fs->object);
1486                                         unlock_and_deallocate(fs);
1487                                         return (KERN_TRY_AGAIN);
1488                                 }
1489
1490                                 ++fs->hardfault;
1491                                 break; /* break to PAGE HAS BEEN FOUND */
1492                         }
1493
1494                         /*
1495                          * Remove the bogus page (which does not exist at this
1496                          * object/offset); before doing so, we must get back
1497                          * our object lock to preserve our invariant.
1498                          *
1499                          * Also wake up any other process that may want to bring
1500                          * in this page.
1501                          *
1502                          * If this is the top-level object, we must leave the
1503                          * busy page to prevent another process from rushing
1504                          * past us, and inserting the page in that object at
1505                          * the same time that we are.
1506                          */
1507                         if (rv == VM_PAGER_ERROR) {
1508                                 if (curproc) {
1509                                         kprintf("vm_fault: pager read error, "
1510                                                 "pid %d (%s)\n",
1511                                                 curproc->p_pid,
1512                                                 curproc->p_comm);
1513                                 } else {
1514                                         kprintf("vm_fault: pager read error, "
1515                                                 "thread %p (%s)\n",
1516                                                 curthread,
1517                                                 curproc->p_comm);
1518                                 }
1519                         }
1520
1521                         /*
1522                          * Data outside the range of the pager or an I/O error
1523                          *
1524                          * The page may have been wired during the pagein,
1525                          * e.g. by the buffer cache, and cannot simply be
1526                          * freed.  Call vnode_pager_freepage() to deal with it.
1527                          */
1528                         /*
1529                          * XXX - the check for kernel_map is a kludge to work
1530                          * around having the machine panic on a kernel space
1531                          * fault w/ I/O error.
1532                          */
1533                         if (((fs->map != &kernel_map) &&
1534                             (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1535                                 vnode_pager_freepage(fs->m);
1536                                 fs->m = NULL;
1537                                 vm_object_pip_wakeup(fs->first_object);
1538                                 vm_object_chain_release_all(fs->first_object,
1539                                                             fs->object);
1540                                 if (fs->object != fs->first_object)
1541                                         vm_object_drop(fs->object);
1542                                 unlock_and_deallocate(fs);
1543                                 if (rv == VM_PAGER_ERROR)
1544                                         return (KERN_FAILURE);
1545                                 else
1546                                         return (KERN_PROTECTION_FAILURE);
1547                                 /* NOT REACHED */
1548                         }
1549                         if (fs->object != fs->first_object) {
1550                                 vnode_pager_freepage(fs->m);
1551                                 fs->m = NULL;
1552                                 /*
1553                                  * XXX - we cannot just fall out at this
1554                                  * point, m has been freed and is invalid!
1555                                  */
1556                         }
1557                 }
1558
1559                 /*
1560                  * We get here if the object has a default pager (or unwiring) 
1561                  * or the pager doesn't have the page.
1562                  */
1563                 if (fs->object == fs->first_object)
1564                         fs->first_m = fs->m;
1565
1566                 /*
1567                  * Move on to the next object.  The chain lock should prevent
1568                  * the backing_object from getting ripped out from under us.
1569                  *
1570                  * vm_shared_fault case:
1571                  *
1572                  *      If the next object is the last object and
1573                  *      vnode-backed (thus possibly shared), we can try a
1574                  *      shared object lock.  There is no 'chain' for this
1575                  *      last object if vnode-backed (otherwise we would
1576                  *      need an exclusive lock).
1577                  *
1578                  *      fs->shared mode is very fragile and only works
1579                  *      under certain specific conditions, and is only
1580                  *      handled for those conditions in our loop.  Essentially
1581                  *      it is designed only to be able to 'dip into' the
1582                  *      vnode's object and extract an already-cached page.
1583                  */
1584                 fs->shared = 0;
1585                 if ((next_object = fs->object->backing_object) != NULL) {
1586                         fs->shared = vm_object_hold_maybe_shared(next_object);
1587                         vm_object_chain_acquire(next_object);
1588                         KKASSERT(next_object == fs->object->backing_object);
1589                         pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1590                 }
1591
1592                 if (next_object == NULL) {
1593                         /*
1594                          * If there's no object left, fill the page in the top
1595                          * object with zeros.
1596                          */
1597                         if (fs->object != fs->first_object) {
1598                                 if (fs->first_object->backing_object !=
1599                                     fs->object) {
1600                                         vm_object_hold(fs->first_object->backing_object);
1601                                 }
1602                                 vm_object_chain_release_all(
1603                                         fs->first_object->backing_object,
1604                                         fs->object);
1605                                 if (fs->first_object->backing_object !=
1606                                     fs->object) {
1607                                         vm_object_drop(fs->first_object->backing_object);
1608                                 }
1609                                 vm_object_pip_wakeup(fs->object);
1610                                 vm_object_drop(fs->object);
1611                                 fs->object = fs->first_object;
1612                                 pindex = first_pindex;
1613                                 fs->m = fs->first_m;
1614                         }
1615                         fs->first_m = NULL;
1616
1617                         /*
1618                          * Zero the page if necessary and mark it valid.
1619                          */
1620                         if ((fs->m->flags & PG_ZERO) == 0) {
1621                                 vm_page_zero_fill(fs->m);
1622                         } else {
1623 #ifdef PMAP_DEBUG
1624                                 pmap_page_assertzero(VM_PAGE_TO_PHYS(fs->m));
1625 #endif
1626                                 vm_page_flag_clear(fs->m, PG_ZERO);
1627                                 mycpu->gd_cnt.v_ozfod++;
1628                         }
1629                         mycpu->gd_cnt.v_zfod++;
1630                         fs->m->valid = VM_PAGE_BITS_ALL;
1631                         break;  /* break to PAGE HAS BEEN FOUND */
1632                 }
1633                 if (fs->object != fs->first_object) {
1634                         vm_object_pip_wakeup(fs->object);
1635                         vm_object_lock_swap();
1636                         vm_object_drop(fs->object);
1637                 }
1638                 KASSERT(fs->object != next_object,
1639                         ("object loop %p", next_object));
1640                 fs->object = next_object;
1641                 vm_object_pip_add(fs->object, 1);
1642         }
1643
1644         /*
1645          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1646          * is held.]
1647          *
1648          * object still held.
1649          *
1650          * If the page is being written, but isn't already owned by the
1651          * top-level object, we have to copy it into a new page owned by the
1652          * top-level object.
1653          */
1654         KASSERT((fs->m->flags & PG_BUSY) != 0,
1655                 ("vm_fault: not busy after main loop"));
1656
1657         if (fs->object != fs->first_object) {
1658                 /*
1659                  * We only really need to copy if we want to write it.
1660                  */
1661                 if (fault_type & VM_PROT_WRITE) {
1662                         /*
1663                          * This allows pages to be virtually copied from a 
1664                          * backing_object into the first_object, where the 
1665                          * backing object has no other refs to it, and cannot
1666                          * gain any more refs.  Instead of a bcopy, we just 
1667                          * move the page from the backing object to the 
1668                          * first object.  Note that we must mark the page 
1669                          * dirty in the first object so that it will go out 
1670                          * to swap when needed.
1671                          */
1672                         if (
1673                                 /*
1674                                  * Map, if present, has not changed
1675                                  */
1676                                 (fs->map == NULL ||
1677                                 fs->map_generation == fs->map->timestamp) &&
1678                                 /*
1679                                  * Only one shadow object
1680                                  */
1681                                 (fs->object->shadow_count == 1) &&
1682                                 /*
1683                                  * No COW refs, except us
1684                                  */
1685                                 (fs->object->ref_count == 1) &&
1686                                 /*
1687                                  * No one else can look this object up
1688                                  */
1689                                 (fs->object->handle == NULL) &&
1690                                 /*
1691                                  * No other ways to look the object up
1692                                  */
1693                                 ((fs->object->type == OBJT_DEFAULT) ||
1694                                  (fs->object->type == OBJT_SWAP)) &&
1695                                 /*
1696                                  * We don't chase down the shadow chain
1697                                  */
1698                                 (fs->object == fs->first_object->backing_object) &&
1699
1700                                 /*
1701                                  * grab the lock if we need to
1702                                  */
1703                                 (fs->lookup_still_valid ||
1704                                  fs->map == NULL ||
1705                                  lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1706                             ) {
1707                                 /*
1708                                  * (first_m) and (m) are both busied.  We have
1709                                  * move (m) into (first_m)'s object/pindex
1710                                  * in an atomic fashion, then free (first_m).
1711                                  *
1712                                  * first_object is held so second remove
1713                                  * followed by the rename should wind
1714                                  * up being atomic.  vm_page_free() might
1715                                  * block so we don't do it until after the
1716                                  * rename.
1717                                  */
1718                                 fs->lookup_still_valid = 1;
1719                                 vm_page_protect(fs->first_m, VM_PROT_NONE);
1720                                 vm_page_remove(fs->first_m);
1721                                 vm_page_rename(fs->m, fs->first_object,
1722                                                first_pindex);
1723                                 vm_page_free(fs->first_m);
1724                                 fs->first_m = fs->m;
1725                                 fs->m = NULL;
1726                                 mycpu->gd_cnt.v_cow_optim++;
1727                         } else {
1728                                 /*
1729                                  * Oh, well, lets copy it.
1730                                  *
1731                                  * Why are we unmapping the original page
1732                                  * here?  Well, in short, not all accessors
1733                                  * of user memory go through the pmap.  The
1734                                  * procfs code doesn't have access user memory
1735                                  * via a local pmap, so vm_fault_page*()
1736                                  * can't call pmap_enter().  And the umtx*()
1737                                  * code may modify the COW'd page via a DMAP
1738                                  * or kernel mapping and not via the pmap,
1739                                  * leaving the original page still mapped
1740                                  * read-only into the pmap.
1741                                  *
1742                                  * So we have to remove the page from at
1743                                  * least the current pmap if it is in it.
1744                                  * Just remove it from all pmaps.
1745                                  */
1746                                 vm_page_copy(fs->m, fs->first_m);
1747                                 vm_page_protect(fs->m, VM_PROT_NONE);
1748                                 vm_page_event(fs->m, VMEVENT_COW);
1749                         }
1750
1751                         if (fs->m) {
1752                                 /*
1753                                  * We no longer need the old page or object.
1754                                  */
1755                                 release_page(fs);
1756                         }
1757
1758                         /*
1759                          * We intend to revert to first_object, undo the
1760                          * chain lock through to that.
1761                          */
1762                         if (fs->first_object->backing_object != fs->object)
1763                                 vm_object_hold(fs->first_object->backing_object);
1764                         vm_object_chain_release_all(
1765                                         fs->first_object->backing_object,
1766                                         fs->object);
1767                         if (fs->first_object->backing_object != fs->object)
1768                                 vm_object_drop(fs->first_object->backing_object);
1769
1770                         /*
1771                          * fs->object != fs->first_object due to above 
1772                          * conditional
1773                          */
1774                         vm_object_pip_wakeup(fs->object);
1775                         vm_object_drop(fs->object);
1776
1777                         /*
1778                          * Only use the new page below...
1779                          */
1780
1781                         mycpu->gd_cnt.v_cow_faults++;
1782                         fs->m = fs->first_m;
1783                         fs->object = fs->first_object;
1784                         pindex = first_pindex;
1785                 } else {
1786                         /*
1787                          * If it wasn't a write fault avoid having to copy
1788                          * the page by mapping it read-only.
1789                          */
1790                         fs->prot &= ~VM_PROT_WRITE;
1791                 }
1792         }
1793
1794         /*
1795          * Relock the map if necessary, then check the generation count.
1796          * relock_map() will update fs->timestamp to account for the
1797          * relocking if necessary.
1798          *
1799          * If the count has changed after relocking then all sorts of
1800          * crap may have happened and we have to retry.
1801          *
1802          * NOTE: The relock_map() can fail due to a deadlock against
1803          *       the vm_page we are holding BUSY.
1804          */
1805         if (fs->lookup_still_valid == FALSE && fs->map) {
1806                 if (relock_map(fs) ||
1807                     fs->map->timestamp != fs->map_generation) {
1808                         release_page(fs);
1809                         vm_object_pip_wakeup(fs->first_object);
1810                         vm_object_chain_release_all(fs->first_object,
1811                                                     fs->object);
1812                         if (fs->object != fs->first_object)
1813                                 vm_object_drop(fs->object);
1814                         unlock_and_deallocate(fs);
1815                         return (KERN_TRY_AGAIN);
1816                 }
1817         }
1818
1819         /*
1820          * If the fault is a write, we know that this page is being
1821          * written NOW so dirty it explicitly to save on pmap_is_modified()
1822          * calls later.
1823          *
1824          * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1825          * if the page is already dirty to prevent data written with
1826          * the expectation of being synced from not being synced.
1827          * Likewise if this entry does not request NOSYNC then make
1828          * sure the page isn't marked NOSYNC.  Applications sharing
1829          * data should use the same flags to avoid ping ponging.
1830          *
1831          * Also tell the backing pager, if any, that it should remove
1832          * any swap backing since the page is now dirty.
1833          */
1834         vm_page_activate(fs->m);
1835         if (fs->prot & VM_PROT_WRITE) {
1836                 vm_object_set_writeable_dirty(fs->m->object);
1837                 vm_set_nosync(fs->m, fs->entry);
1838                 if (fs->fault_flags & VM_FAULT_DIRTY) {
1839                         vm_page_dirty(fs->m);
1840                         swap_pager_unswapped(fs->m);
1841                 }
1842         }
1843
1844         vm_object_pip_wakeup(fs->first_object);
1845         vm_object_chain_release_all(fs->first_object, fs->object);
1846         if (fs->object != fs->first_object)
1847                 vm_object_drop(fs->object);
1848
1849         /*
1850          * Page had better still be busy.  We are still locked up and 
1851          * fs->object will have another PIP reference if it is not equal
1852          * to fs->first_object.
1853          */
1854         KASSERT(fs->m->flags & PG_BUSY,
1855                 ("vm_fault: page %p not busy!", fs->m));
1856
1857         /*
1858          * Sanity check: page must be completely valid or it is not fit to
1859          * map into user space.  vm_pager_get_pages() ensures this.
1860          */
1861         if (fs->m->valid != VM_PAGE_BITS_ALL) {
1862                 vm_page_zero_invalid(fs->m, TRUE);
1863                 kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1864         }
1865         vm_page_flag_clear(fs->m, PG_ZERO);
1866
1867         return (KERN_SUCCESS);
1868 }
1869
1870 /*
1871  * Wire down a range of virtual addresses in a map.  The entry in question
1872  * should be marked in-transition and the map must be locked.  We must
1873  * release the map temporarily while faulting-in the page to avoid a
1874  * deadlock.  Note that the entry may be clipped while we are blocked but
1875  * will never be freed.
1876  *
1877  * No requirements.
1878  */
1879 int
1880 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1881 {
1882         boolean_t fictitious;
1883         vm_offset_t start;
1884         vm_offset_t end;
1885         vm_offset_t va;
1886         vm_paddr_t pa;
1887         vm_page_t m;
1888         pmap_t pmap;
1889         int rv;
1890
1891         lwkt_gettoken(&map->token);
1892
1893         pmap = vm_map_pmap(map);
1894         start = entry->start;
1895         end = entry->end;
1896         fictitious = entry->object.vm_object &&
1897                         (entry->object.vm_object->type == OBJT_DEVICE);
1898         if (entry->eflags & MAP_ENTRY_KSTACK)
1899                 start += PAGE_SIZE;
1900         map->timestamp++;
1901         vm_map_unlock(map);
1902
1903         /*
1904          * We simulate a fault to get the page and enter it in the physical
1905          * map.
1906          */
1907         for (va = start; va < end; va += PAGE_SIZE) {
1908                 if (user_wire) {
1909                         rv = vm_fault(map, va, VM_PROT_READ, 
1910                                         VM_FAULT_USER_WIRE);
1911                 } else {
1912                         rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1913                                         VM_FAULT_CHANGE_WIRING);
1914                 }
1915                 if (rv) {
1916                         while (va > start) {
1917                                 va -= PAGE_SIZE;
1918                                 if ((pa = pmap_extract(pmap, va)) == 0)
1919                                         continue;
1920                                 pmap_change_wiring(pmap, va, FALSE, entry);
1921                                 if (!fictitious) {
1922                                         m = PHYS_TO_VM_PAGE(pa);
1923                                         vm_page_busy_wait(m, FALSE, "vmwrpg");
1924                                         vm_page_unwire(m, 1);
1925                                         vm_page_wakeup(m);
1926                                 }
1927                         }
1928                         goto done;
1929                 }
1930         }
1931         rv = KERN_SUCCESS;
1932 done:
1933         vm_map_lock(map);
1934         lwkt_reltoken(&map->token);
1935         return (rv);
1936 }
1937
1938 /*
1939  * Unwire a range of virtual addresses in a map.  The map should be
1940  * locked.
1941  */
1942 void
1943 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1944 {
1945         boolean_t fictitious;
1946         vm_offset_t start;
1947         vm_offset_t end;
1948         vm_offset_t va;
1949         vm_paddr_t pa;
1950         vm_page_t m;
1951         pmap_t pmap;
1952
1953         lwkt_gettoken(&map->token);
1954
1955         pmap = vm_map_pmap(map);
1956         start = entry->start;
1957         end = entry->end;
1958         fictitious = entry->object.vm_object &&
1959                         (entry->object.vm_object->type == OBJT_DEVICE);
1960         if (entry->eflags & MAP_ENTRY_KSTACK)
1961                 start += PAGE_SIZE;
1962
1963         /*
1964          * Since the pages are wired down, we must be able to get their
1965          * mappings from the physical map system.
1966          */
1967         for (va = start; va < end; va += PAGE_SIZE) {
1968                 pa = pmap_extract(pmap, va);
1969                 if (pa != 0) {
1970                         pmap_change_wiring(pmap, va, FALSE, entry);
1971                         if (!fictitious) {
1972                                 m = PHYS_TO_VM_PAGE(pa);
1973                                 vm_page_busy_wait(m, FALSE, "vmwupg");
1974                                 vm_page_unwire(m, 1);
1975                                 vm_page_wakeup(m);
1976                         }
1977                 }
1978         }
1979         lwkt_reltoken(&map->token);
1980 }
1981
1982 /*
1983  * Copy all of the pages from a wired-down map entry to another.
1984  *
1985  * The source and destination maps must be locked for write.
1986  * The source and destination maps token must be held
1987  * The source map entry must be wired down (or be a sharing map
1988  * entry corresponding to a main map entry that is wired down).
1989  *
1990  * No other requirements.
1991  *
1992  * XXX do segment optimization
1993  */
1994 void
1995 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1996                     vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1997 {
1998         vm_object_t dst_object;
1999         vm_object_t src_object;
2000         vm_ooffset_t dst_offset;
2001         vm_ooffset_t src_offset;
2002         vm_prot_t prot;
2003         vm_offset_t vaddr;
2004         vm_page_t dst_m;
2005         vm_page_t src_m;
2006
2007         src_object = src_entry->object.vm_object;
2008         src_offset = src_entry->offset;
2009
2010         /*
2011          * Create the top-level object for the destination entry. (Doesn't
2012          * actually shadow anything - we copy the pages directly.)
2013          */
2014         vm_map_entry_allocate_object(dst_entry);
2015         dst_object = dst_entry->object.vm_object;
2016
2017         prot = dst_entry->max_protection;
2018
2019         /*
2020          * Loop through all of the pages in the entry's range, copying each
2021          * one from the source object (it should be there) to the destination
2022          * object.
2023          */
2024         vm_object_hold(src_object);
2025         vm_object_hold(dst_object);
2026         for (vaddr = dst_entry->start, dst_offset = 0;
2027             vaddr < dst_entry->end;
2028             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
2029
2030                 /*
2031                  * Allocate a page in the destination object
2032                  */
2033                 do {
2034                         dst_m = vm_page_alloc(dst_object,
2035                                               OFF_TO_IDX(dst_offset),
2036                                               VM_ALLOC_NORMAL);
2037                         if (dst_m == NULL) {
2038                                 vm_wait(0);
2039                         }
2040                 } while (dst_m == NULL);
2041
2042                 /*
2043                  * Find the page in the source object, and copy it in.
2044                  * (Because the source is wired down, the page will be in
2045                  * memory.)
2046                  */
2047                 src_m = vm_page_lookup(src_object,
2048                                        OFF_TO_IDX(dst_offset + src_offset));
2049                 if (src_m == NULL)
2050                         panic("vm_fault_copy_wired: page missing");
2051
2052                 vm_page_copy(src_m, dst_m);
2053                 vm_page_event(src_m, VMEVENT_COW);
2054
2055                 /*
2056                  * Enter it in the pmap...
2057                  */
2058
2059                 vm_page_flag_clear(dst_m, PG_ZERO);
2060                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE, dst_entry);
2061
2062                 /*
2063                  * Mark it no longer busy, and put it on the active list.
2064                  */
2065                 vm_page_activate(dst_m);
2066                 vm_page_wakeup(dst_m);
2067         }
2068         vm_object_drop(dst_object);
2069         vm_object_drop(src_object);
2070 }
2071
2072 #if 0
2073
2074 /*
2075  * This routine checks around the requested page for other pages that
2076  * might be able to be faulted in.  This routine brackets the viable
2077  * pages for the pages to be paged in.
2078  *
2079  * Inputs:
2080  *      m, rbehind, rahead
2081  *
2082  * Outputs:
2083  *  marray (array of vm_page_t), reqpage (index of requested page)
2084  *
2085  * Return value:
2086  *  number of pages in marray
2087  */
2088 static int
2089 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
2090                           vm_page_t *marray, int *reqpage)
2091 {
2092         int i,j;
2093         vm_object_t object;
2094         vm_pindex_t pindex, startpindex, endpindex, tpindex;
2095         vm_page_t rtm;
2096         int cbehind, cahead;
2097
2098         object = m->object;
2099         pindex = m->pindex;
2100
2101         /*
2102          * we don't fault-ahead for device pager
2103          */
2104         if (object->type == OBJT_DEVICE) {
2105                 *reqpage = 0;
2106                 marray[0] = m;
2107                 return 1;
2108         }
2109
2110         /*
2111          * if the requested page is not available, then give up now
2112          */
2113         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
2114                 *reqpage = 0;   /* not used by caller, fix compiler warn */
2115                 return 0;
2116         }
2117
2118         if ((cbehind == 0) && (cahead == 0)) {
2119                 *reqpage = 0;
2120                 marray[0] = m;
2121                 return 1;
2122         }
2123
2124         if (rahead > cahead) {
2125                 rahead = cahead;
2126         }
2127
2128         if (rbehind > cbehind) {
2129                 rbehind = cbehind;
2130         }
2131
2132         /*
2133          * Do not do any readahead if we have insufficient free memory.
2134          *
2135          * XXX code was broken disabled before and has instability
2136          * with this conditonal fixed, so shortcut for now.
2137          */
2138         if (burst_fault == 0 || vm_page_count_severe()) {
2139                 marray[0] = m;
2140                 *reqpage = 0;
2141                 return 1;
2142         }
2143
2144         /*
2145          * scan backward for the read behind pages -- in memory 
2146          *
2147          * Assume that if the page is not found an interrupt will not
2148          * create it.  Theoretically interrupts can only remove (busy)
2149          * pages, not create new associations.
2150          */
2151         if (pindex > 0) {
2152                 if (rbehind > pindex) {
2153                         rbehind = pindex;
2154                         startpindex = 0;
2155                 } else {
2156                         startpindex = pindex - rbehind;
2157                 }
2158
2159                 vm_object_hold(object);
2160                 for (tpindex = pindex; tpindex > startpindex; --tpindex) {
2161                         if (vm_page_lookup(object, tpindex - 1))
2162                                 break;
2163                 }
2164
2165                 i = 0;
2166                 while (tpindex < pindex) {
2167                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2168                                                              VM_ALLOC_NULL_OK);
2169                         if (rtm == NULL) {
2170                                 for (j = 0; j < i; j++) {
2171                                         vm_page_free(marray[j]);
2172                                 }
2173                                 vm_object_drop(object);
2174                                 marray[0] = m;
2175                                 *reqpage = 0;
2176                                 return 1;
2177                         }
2178                         marray[i] = rtm;
2179                         ++i;
2180                         ++tpindex;
2181                 }
2182                 vm_object_drop(object);
2183         } else {
2184                 i = 0;
2185         }
2186
2187         /*
2188          * Assign requested page
2189          */
2190         marray[i] = m;
2191         *reqpage = i;
2192         ++i;
2193
2194         /*
2195          * Scan forwards for read-ahead pages
2196          */
2197         tpindex = pindex + 1;
2198         endpindex = tpindex + rahead;
2199         if (endpindex > object->size)
2200                 endpindex = object->size;
2201
2202         vm_object_hold(object);
2203         while (tpindex < endpindex) {
2204                 if (vm_page_lookup(object, tpindex))
2205                         break;
2206                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2207                                                      VM_ALLOC_NULL_OK);
2208                 if (rtm == NULL)
2209                         break;
2210                 marray[i] = rtm;
2211                 ++i;
2212                 ++tpindex;
2213         }
2214         vm_object_drop(object);
2215
2216         return (i);
2217 }
2218
2219 #endif
2220
2221 /*
2222  * vm_prefault() provides a quick way of clustering pagefaults into a
2223  * processes address space.  It is a "cousin" of pmap_object_init_pt,
2224  * except it runs at page fault time instead of mmap time.
2225  *
2226  * vm.fast_fault        Enables pre-faulting zero-fill pages
2227  *
2228  * vm.prefault_pages    Number of pages (1/2 negative, 1/2 positive) to
2229  *                      prefault.  Scan stops in either direction when
2230  *                      a page is found to already exist.
2231  *
2232  * This code used to be per-platform pmap_prefault().  It is now
2233  * machine-independent and enhanced to also pre-fault zero-fill pages
2234  * (see vm.fast_fault) as well as make them writable, which greatly
2235  * reduces the number of page faults programs incur.
2236  *
2237  * Application performance when pre-faulting zero-fill pages is heavily
2238  * dependent on the application.  Very tiny applications like /bin/echo
2239  * lose a little performance while applications of any appreciable size
2240  * gain performance.  Prefaulting multiple pages also reduces SMP
2241  * congestion and can improve SMP performance significantly.
2242  *
2243  * NOTE!  prot may allow writing but this only applies to the top level
2244  *        object.  If we wind up mapping a page extracted from a backing
2245  *        object we have to make sure it is read-only.
2246  *
2247  * NOTE!  The caller has already handled any COW operations on the
2248  *        vm_map_entry via the normal fault code.  Do NOT call this
2249  *        shortcut unless the normal fault code has run on this entry.
2250  *
2251  * The related map must be locked.
2252  * No other requirements.
2253  */
2254 static int vm_prefault_pages = 8;
2255 SYSCTL_INT(_vm, OID_AUTO, prefault_pages, CTLFLAG_RW, &vm_prefault_pages, 0,
2256            "Maximum number of pages to pre-fault");
2257 static int vm_fast_fault = 1;
2258 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
2259            "Burst fault zero-fill regions");
2260
2261 /*
2262  * Set PG_NOSYNC if the map entry indicates so, but only if the page
2263  * is not already dirty by other means.  This will prevent passive
2264  * filesystem syncing as well as 'sync' from writing out the page.
2265  */
2266 static void
2267 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
2268 {
2269         if (entry->eflags & MAP_ENTRY_NOSYNC) {
2270                 if (m->dirty == 0)
2271                         vm_page_flag_set(m, PG_NOSYNC);
2272         } else {
2273                 vm_page_flag_clear(m, PG_NOSYNC);
2274         }
2275 }
2276
2277 static void
2278 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot,
2279             int fault_flags)
2280 {
2281         struct lwp *lp;
2282         vm_page_t m;
2283         vm_offset_t addr;
2284         vm_pindex_t index;
2285         vm_pindex_t pindex;
2286         vm_object_t object;
2287         int pprot;
2288         int i;
2289         int noneg;
2290         int nopos;
2291         int maxpages;
2292
2293         /*
2294          * Get stable max count value, disabled if set to 0
2295          */
2296         maxpages = vm_prefault_pages;
2297         cpu_ccfence();
2298         if (maxpages <= 0)
2299                 return;
2300
2301         /*
2302          * We do not currently prefault mappings that use virtual page
2303          * tables.  We do not prefault foreign pmaps.
2304          */
2305         if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
2306                 return;
2307         lp = curthread->td_lwp;
2308         if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2309                 return;
2310
2311         /*
2312          * Limit pre-fault count to 1024 pages.
2313          */
2314         if (maxpages > 1024)
2315                 maxpages = 1024;
2316
2317         object = entry->object.vm_object;
2318         KKASSERT(object != NULL);
2319         KKASSERT(object == entry->object.vm_object);
2320         vm_object_hold(object);
2321         vm_object_chain_acquire(object);
2322
2323         noneg = 0;
2324         nopos = 0;
2325         for (i = 0; i < maxpages; ++i) {
2326                 vm_object_t lobject;
2327                 vm_object_t nobject;
2328                 int allocated = 0;
2329                 int error;
2330
2331                 /*
2332                  * This can eat a lot of time on a heavily contended
2333                  * machine so yield on the tick if needed.
2334                  */
2335                 if ((i & 7) == 7)
2336                         lwkt_yield();
2337
2338                 /*
2339                  * Calculate the page to pre-fault, stopping the scan in
2340                  * each direction separately if the limit is reached.
2341                  */
2342                 if (i & 1) {
2343                         if (noneg)
2344                                 continue;
2345                         addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2346                 } else {
2347                         if (nopos)
2348                                 continue;
2349                         addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2350                 }
2351                 if (addr < entry->start) {
2352                         noneg = 1;
2353                         if (noneg && nopos)
2354                                 break;
2355                         continue;
2356                 }
2357                 if (addr >= entry->end) {
2358                         nopos = 1;
2359                         if (noneg && nopos)
2360                                 break;
2361                         continue;
2362                 }
2363
2364                 /*
2365                  * Skip pages already mapped, and stop scanning in that
2366                  * direction.  When the scan terminates in both directions
2367                  * we are done.
2368                  */
2369                 if (pmap_prefault_ok(pmap, addr) == 0) {
2370                         if (i & 1)
2371                                 noneg = 1;
2372                         else
2373                                 nopos = 1;
2374                         if (noneg && nopos)
2375                                 break;
2376                         continue;
2377                 }
2378
2379                 /*
2380                  * Follow the VM object chain to obtain the page to be mapped
2381                  * into the pmap.
2382                  *
2383                  * If we reach the terminal object without finding a page
2384                  * and we determine it would be advantageous, then allocate
2385                  * a zero-fill page for the base object.  The base object
2386                  * is guaranteed to be OBJT_DEFAULT for this case.
2387                  *
2388                  * In order to not have to check the pager via *haspage*()
2389                  * we stop if any non-default object is encountered.  e.g.
2390                  * a vnode or swap object would stop the loop.
2391                  */
2392                 index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2393                 lobject = object;
2394                 pindex = index;
2395                 pprot = prot;
2396
2397                 KKASSERT(lobject == entry->object.vm_object);
2398                 /*vm_object_hold(lobject); implied */
2399
2400                 while ((m = vm_page_lookup_busy_try(lobject, pindex,
2401                                                     TRUE, &error)) == NULL) {
2402                         if (lobject->type != OBJT_DEFAULT)
2403                                 break;
2404                         if (lobject->backing_object == NULL) {
2405                                 if (vm_fast_fault == 0)
2406                                         break;
2407                                 if ((prot & VM_PROT_WRITE) == 0 ||
2408                                     vm_page_count_min(0)) {
2409                                         break;
2410                                 }
2411
2412                                 /*
2413                                  * NOTE: Allocated from base object
2414                                  */
2415                                 m = vm_page_alloc(object, index,
2416                                                   VM_ALLOC_NORMAL |
2417                                                   VM_ALLOC_ZERO |
2418                                                   VM_ALLOC_USE_GD |
2419                                                   VM_ALLOC_NULL_OK);
2420                                 if (m == NULL)
2421                                         break;
2422                                 allocated = 1;
2423                                 pprot = prot;
2424                                 /* lobject = object .. not needed */
2425                                 break;
2426                         }
2427                         if (lobject->backing_object_offset & PAGE_MASK)
2428                                 break;
2429                         nobject = lobject->backing_object;
2430                         vm_object_hold(nobject);
2431                         KKASSERT(nobject == lobject->backing_object);
2432                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2433                         if (lobject != object) {
2434                                 vm_object_lock_swap();
2435                                 vm_object_drop(lobject);
2436                         }
2437                         lobject = nobject;
2438                         pprot &= ~VM_PROT_WRITE;
2439                         vm_object_chain_acquire(lobject);
2440                 }
2441
2442                 /*
2443                  * NOTE: A non-NULL (m) will be associated with lobject if
2444                  *       it was found there, otherwise it is probably a
2445                  *       zero-fill page associated with the base object.
2446                  *
2447                  * Give-up if no page is available.
2448                  */
2449                 if (m == NULL) {
2450                         if (lobject != object) {
2451                                 if (object->backing_object != lobject)
2452                                         vm_object_hold(object->backing_object);
2453                                 vm_object_chain_release_all(
2454                                         object->backing_object, lobject);
2455                                 if (object->backing_object != lobject)
2456                                         vm_object_drop(object->backing_object);
2457                                 vm_object_drop(lobject);
2458                         }
2459                         break;
2460                 }
2461
2462                 /*
2463                  * The object must be marked dirty if we are mapping a
2464                  * writable page.  m->object is either lobject or object,
2465                  * both of which are still held.  Do this before we
2466                  * potentially drop the object.
2467                  */
2468                 if (pprot & VM_PROT_WRITE)
2469                         vm_object_set_writeable_dirty(m->object);
2470
2471                 /*
2472                  * Do not conditionalize on PG_RAM.  If pages are present in
2473                  * the VM system we assume optimal caching.  If caching is
2474                  * not optimal the I/O gravy train will be restarted when we
2475                  * hit an unavailable page.  We do not want to try to restart
2476                  * the gravy train now because we really don't know how much
2477                  * of the object has been cached.  The cost for restarting
2478                  * the gravy train should be low (since accesses will likely
2479                  * be I/O bound anyway).
2480                  */
2481                 if (lobject != object) {
2482                         if (object->backing_object != lobject)
2483                                 vm_object_hold(object->backing_object);
2484                         vm_object_chain_release_all(object->backing_object,
2485                                                     lobject);
2486                         if (object->backing_object != lobject)
2487                                 vm_object_drop(object->backing_object);
2488                         vm_object_drop(lobject);
2489                 }
2490
2491                 /*
2492                  * Enter the page into the pmap if appropriate.  If we had
2493                  * allocated the page we have to place it on a queue.  If not
2494                  * we just have to make sure it isn't on the cache queue
2495                  * (pages on the cache queue are not allowed to be mapped).
2496                  */
2497                 if (allocated) {
2498                         /*
2499                          * Page must be zerod.
2500                          */
2501                         if ((m->flags & PG_ZERO) == 0) {
2502                                 vm_page_zero_fill(m);
2503                         } else {
2504 #ifdef PMAP_DEBUG
2505                                 pmap_page_assertzero(
2506                                                 VM_PAGE_TO_PHYS(m));
2507 #endif
2508                                 vm_page_flag_clear(m, PG_ZERO);
2509                                 mycpu->gd_cnt.v_ozfod++;
2510                         }
2511                         mycpu->gd_cnt.v_zfod++;
2512                         m->valid = VM_PAGE_BITS_ALL;
2513
2514                         /*
2515                          * Handle dirty page case
2516                          */
2517                         if (pprot & VM_PROT_WRITE)
2518                                 vm_set_nosync(m, entry);
2519                         pmap_enter(pmap, addr, m, pprot, 0, entry);
2520                         mycpu->gd_cnt.v_vm_faults++;
2521                         if (curthread->td_lwp)
2522                                 ++curthread->td_lwp->lwp_ru.ru_minflt;
2523                         vm_page_deactivate(m);
2524                         if (pprot & VM_PROT_WRITE) {
2525                                 /*vm_object_set_writeable_dirty(m->object);*/
2526                                 vm_set_nosync(m, entry);
2527                                 if (fault_flags & VM_FAULT_DIRTY) {
2528                                         vm_page_dirty(m);
2529                                         /*XXX*/
2530                                         swap_pager_unswapped(m);
2531                                 }
2532                         }
2533                         vm_page_wakeup(m);
2534                 } else if (error) {
2535                         /* couldn't busy page, no wakeup */
2536                 } else if (
2537                     ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2538                     (m->flags & PG_FICTITIOUS) == 0) {
2539                         /*
2540                          * A fully valid page not undergoing soft I/O can
2541                          * be immediately entered into the pmap.
2542                          */
2543                         if ((m->queue - m->pc) == PQ_CACHE)
2544                                 vm_page_deactivate(m);
2545                         if (pprot & VM_PROT_WRITE) {
2546                                 /*vm_object_set_writeable_dirty(m->object);*/
2547                                 vm_set_nosync(m, entry);
2548                                 if (fault_flags & VM_FAULT_DIRTY) {
2549                                         vm_page_dirty(m);
2550                                         /*XXX*/
2551                                         swap_pager_unswapped(m);
2552                                 }
2553                         }
2554                         if (pprot & VM_PROT_WRITE)
2555                                 vm_set_nosync(m, entry);
2556                         pmap_enter(pmap, addr, m, pprot, 0, entry);
2557                         mycpu->gd_cnt.v_vm_faults++;
2558                         if (curthread->td_lwp)
2559                                 ++curthread->td_lwp->lwp_ru.ru_minflt;
2560                         vm_page_wakeup(m);
2561                 } else {
2562                         vm_page_wakeup(m);
2563                 }
2564         }
2565         vm_object_chain_release(object);
2566         vm_object_drop(object);
2567 }
2568
2569 static void
2570 vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
2571                   vm_map_entry_t entry, int prot, int fault_flags)
2572 {
2573         struct lwp *lp;
2574         vm_page_t m;
2575         vm_offset_t addr;
2576         vm_pindex_t pindex;
2577         vm_object_t object;
2578         int i;
2579         int noneg;
2580         int nopos;
2581         int maxpages;
2582
2583         /*
2584          * Get stable max count value, disabled if set to 0
2585          */
2586         maxpages = vm_prefault_pages;
2587         cpu_ccfence();
2588         if (maxpages <= 0)
2589                 return;
2590
2591         /*
2592          * We do not currently prefault mappings that use virtual page
2593          * tables.  We do not prefault foreign pmaps.
2594          */
2595         if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
2596                 return;
2597         lp = curthread->td_lwp;
2598         if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2599                 return;
2600
2601         /*
2602          * Limit pre-fault count to 1024 pages.
2603          */
2604         if (maxpages > 1024)
2605                 maxpages = 1024;
2606
2607         object = entry->object.vm_object;
2608         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2609         KKASSERT(object->backing_object == NULL);
2610
2611         noneg = 0;
2612         nopos = 0;
2613         for (i = 0; i < maxpages; ++i) {
2614                 int error;
2615
2616                 /*
2617                  * Calculate the page to pre-fault, stopping the scan in
2618                  * each direction separately if the limit is reached.
2619                  */
2620                 if (i & 1) {
2621                         if (noneg)
2622                                 continue;
2623                         addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2624                 } else {
2625                         if (nopos)
2626                                 continue;
2627                         addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2628                 }
2629                 if (addr < entry->start) {
2630                         noneg = 1;
2631                         if (noneg && nopos)
2632                                 break;
2633                         continue;
2634                 }
2635                 if (addr >= entry->end) {
2636                         nopos = 1;
2637                         if (noneg && nopos)
2638                                 break;
2639                         continue;
2640                 }
2641
2642                 /*
2643                  * Skip pages already mapped, and stop scanning in that
2644                  * direction.  When the scan terminates in both directions
2645                  * we are done.
2646                  */
2647                 if (pmap_prefault_ok(pmap, addr) == 0) {
2648                         if (i & 1)
2649                                 noneg = 1;
2650                         else
2651                                 nopos = 1;
2652                         if (noneg && nopos)
2653                                 break;
2654                         continue;
2655                 }
2656
2657                 /*
2658                  * Follow the VM object chain to obtain the page to be mapped
2659                  * into the pmap.  This version of the prefault code only
2660                  * works with terminal objects.
2661                  *
2662                  * WARNING!  We cannot call swap_pager_unswapped() with a
2663                  *           shared token.
2664                  */
2665                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2666
2667                 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2668                 if (m == NULL || error)
2669                         continue;
2670
2671                 if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2672                     (m->flags & PG_FICTITIOUS) == 0 &&
2673                     ((m->flags & PG_SWAPPED) == 0 ||
2674                      (prot & VM_PROT_WRITE) == 0 ||
2675                      (fault_flags & VM_FAULT_DIRTY) == 0)) {
2676                         /*
2677                          * A fully valid page not undergoing soft I/O can
2678                          * be immediately entered into the pmap.
2679                          */
2680                         if ((m->queue - m->pc) == PQ_CACHE)
2681                                 vm_page_deactivate(m);
2682                         if (prot & VM_PROT_WRITE) {
2683                                 vm_object_set_writeable_dirty(m->object);
2684                                 vm_set_nosync(m, entry);
2685                                 if (fault_flags & VM_FAULT_DIRTY) {
2686                                         vm_page_dirty(m);
2687                                         /*XXX*/
2688                                         swap_pager_unswapped(m);
2689                                 }
2690                         }
2691                         pmap_enter(pmap, addr, m, prot, 0, entry);
2692                         mycpu->gd_cnt.v_vm_faults++;
2693                         if (curthread->td_lwp)
2694                                 ++curthread->td_lwp->lwp_ru.ru_minflt;
2695                 }
2696                 vm_page_wakeup(m);
2697         }
2698 }